
FLARE: Fingerprinting Deep Reinforcement Learning Agents
using Universal Adversarial Masks

Buse G. A. Tekgul
Nokia Bell Labs & Aalto University

Espoo, Finland
buse.atli_tekgul@nokia-bell-labs.com

N. Asokan
University of Waterloo & Aalto University

Waterloo, Canada
asokan@acm.org

ABSTRACT
We propose FLARE, the first fingerprinting mechanism to verify
whether a suspected Deep Reinforcement Learning (DRL) policy
is an illegitimate copy of another (victim) policy. We first show
that it is possible to find non-transferable, universal adversarial
masks, i.e., perturbations, to generate adversarial examples that
can successfully transfer from a victim policy to its modified ver-
sions but not to independently trained policies. FLARE employs
these masks as fingerprints to verify the true ownership of stolen
DRL policies by measuring an action agreement value over states
perturbed by such masks. Our empirical evaluations show that
FLARE is effective (100% action agreement on stolen copies) and
does not falsely accuse independent policies (no false positives).
FLARE is also robust to model modification attacks and cannot be
easily evaded by more informed adversaries without negatively
impacting agent performance. We also show that not all universal
adversarial masks are suitable candidates for fingerprints due to
the inherent characteristics of DRL policies. The spatio-temporal
dynamics of DRL problems and sequential decision-making process
make characterizing the decision boundary of DRL policies more
difficult, as well as searching for universal masks that capture the
geometry of it.

1 INTRODUCTION
Deep reinforcement learning (DRL) has emerged as a promising
technique for building intelligent agents due to its ability to learn
from and interact with high-dimensional input data. Following
the work of Mnih et al. [26], which shows that DRL has exceeded
human-level performance in Atari games, it has been successfully
used in many real-world applications, including green data cen-
ters [17], autonomous driving [15] and robotic manipulation [14].

The commercial success and continuous improvement of DRL
methods attract adversaries, leading them to look for and exploit vul-
nerabilities in DRL agents. DRL agents leverage the power of deep
neural networks (DNNs) to improve agents’ decision-making strat-
egy, i.e., policy. Therefore, known vulnerabilities of DNNs might
also be valid for agents’ policies. For example, considerable re-
search has been devoted to evasion attacks against DRL policies
using adversarial examples [9, 12, 13, 30, 36], which are generally
computed for input states that are representations of the environ-
ment received by the agent. Unlike evasion attacks and related
defenses [18, 29, 44], few studies investigated the ownership of
DRL models [3, 6, 21] against model piracy attacks. The high train-
ing costs of DRLs and their business advantage lead adversaries to
steal models and redistribute them unauthorized ways. To deter
adversaries, it is crucial to have the technical means to identify the
true ownership of illegitimate copies of DRL agents.

Recently, DNN fingerprinting has been proposed as an own-
ership verification method [23, 31]. DNN fingerprinting aims to
identify the inherent properties of the victim (original) model and
use this information during verification. Current DNN fingerprint-
ing methods leverage conferrable adversarial examples (CAE) [23]
or universal adversarial perturbations (UAP fingerprinting) [31], as
adversarial examples can characterize the DNN decision boundary.
Conferrable adversarial examples [23] are a subclass of transfer-
able adversarial examples that can successfully force the victim
DNN model and its modified versions to make the same wrong
predictions, but are not transferable to other independently trained
models. Unlike CAE, UAP [31] obtains universal adversarial per-
turbations from both victim and suspected models, and produces a
similarity score using contrastive learning. Bothmethods are shown
to be effective and robust ownership verification approaches, but
adapting them in DRL has challenges. First, both methods query
suspected DNN models with adversarial version of input samples
with different labels that are selected from the training set. How-
ever, this is not possible in DRL due to dynamic environments
and continuous agent-environment interaction. Therefore, these
methods require constructing a special verification setup that has
unconventional environment dynamics and completely changes
the trajectory of the agent regardless of the task. Second, there is no
one-to-one mapping between the input states and the correspond-
ing actions in DRL. This makes fingerprint generation challenging,
since there is no single optimal action for any clean state and no
desired incorrect action for any adversarial state either.

In this paper, we propose FLARE, the first DRL fingerprinting
scheme designed for discrete reinforcement learning tasks and com-
bines the idea behind CAE and UAP. The effectiveness of adversarial
perturbations decreases as they transfer from one DRL policy or
algorithm to another [12]. This implies that it would be possible
to find adversarial examples that are not transferable across DRL
agents. However, using individual non-transferable adversarial ex-
amples for ownership verification might be impractical due to the
problems mentioned above. Therefore, FLARE aims to generate
non-transferable universal masks as fingerprints, which are indepen-
dent of input states, source actions, or target actions. Fingerprints
computed by FLARE are instances of weaknesses that are inherent
in the victim’s DRL policy. FLARE leverages these weak points to
verify the true ownership of suspected policies. During verification,
suspected agents receive states modified by applying a universal
mask from the victim’s fingerprint in a small time window while
trying to complete their task. FLARE verifies the true ownership
if the similarity between the actions of the suspected agent and
the victim agent in the same fingerprinted states is greater than a
threshold value. FLARE does not change the training procedure,

i

ar
X

iv
:2

30
7.

14
75

1v
3

 [
cs

.L
G

]
 2

5
Se

p
20

23

and verification can be implemented at any time during deployment.
Our main contributions are as follows:

(1) We propose FLARE, the first fingerprinting method to ver-
ify the ownership of DRL agents used in discrete tasks by
leveraging non-transferable universal adversarial masks (Sec-
tion 3). We show that FLARE is an effective ownership veri-
fication method with no false positives (Section 4.2).1

(2) We verify the robustness of FLARE against model modifi-
cation attacks (e.g., fine-tuning and pruning) on 6 different
DRL agents trained using two different games of the Arcade
Learning Environment [4]. We also show that well-informed
adversaries cannot easily evade verification without sacri-
ficing agent performance, and FLARE is robust against false
claims made by malicious accusers. (Section 4.3).

(3) We empirically demonstrate that universal adversarial per-
turbations generated by minimum-distance methods [27, 31]
are not good candidates for DRL fingerprinting. These pertur-
bations are not unique weaknesses of DRL policies by design
and fail against model modification attacks (Section 5).

2 BACKGROUND
2.1 Deep Reinforcement Learning
2.1.1 Reinforcement Learning. A typical reinforcement learning
(RL) problem is modeled as a 5-tuple Markov Decision Process
(MDP) (𝑆,𝐴, 𝑃, 𝑅,𝛾), where 𝑆 denotes the state space,𝐴 is the action
space, 𝑃 symbolizes the state transition probability (i.e., environ-
ment dynamics), 𝑅 is the reward function, and 𝛾 ∈ [0, 1] denotes
the discount factor used to calculate the discounted cumulative
reward, i.e., return. In this setting, the RL agent receives a state
𝒔𝑡 ∈ 𝑆 at the time step 𝑡 , performs an action 𝑎𝑡 ∈ 𝐴, and then
subsequently receives a reward 𝑟𝑡+1 as well as the next state 𝒔𝑡+1
based on 𝑃 (𝒔𝑡+1 |𝒔𝑡 , 𝑎𝑡). The objective of an RL agent is to maximize
its expected return by interacting with the environment and to
obtain an optimal policy 𝜋 (𝑎 |𝒔) : 𝑆 → 𝐴 that outputs an optimal
action (the action that gives the maximum expected return over all
actions) for any given state. During training, the policy is optimized
recursively by calculating the expected return over states using the
Bellman equation [34]. In this work, we consider states to be fully
observable and finite-horizon tasks (i.e., an episode is completed
when a stopping criterion is reached). Therefore, the discounted
return at a time step 𝑡 is calculated as 𝑅𝑡 =

∑𝑇
𝑘=𝑡

𝛾𝑘−𝑡𝑟𝑘 where T
is the final time step in a single episode. We also focus on tasks
with a discrete action space, where one-hot vectors can be used to
distinguish one action from every other action.

2.1.2 Deep Reinforcement Learning (DRL). When the state space 𝑆
is too complex and high-dimensional, deep neural networks (DNNs)
can be useful to approximate policy 𝜋 (𝑎 |𝒔). In this work, we assume
that the environment is dynamic, as in real-world applications.
Model-free DRL methods are the preferred approach in this setting,
since these methods do not require estimating the dynamics of the
environment. Two typical model-free DRL methods approximate 𝜋 :
value-based and policy-based methods. Value-based [26] methods
approximate the action value function 𝑄𝜋 (𝒔, 𝑎) which computes

1The code to reproduce our experiments is available on https://github.com/ssg-
research/FLARE.

the estimated return of state 𝒔𝑡 if the agent chooses the action 𝑎𝑡
and then follows the current policy. The optimal policy is implicitly
obtained once 𝑄𝜋 is optimized. Policy-based methods [25, 33] first
parameterize the policy 𝜋 (𝑎 |𝒔, 𝜃) and then optimize it by updating
the parameters 𝜃 through the gradient ascent.

In this paper, we use 𝜋 to symbolize the optimal policy obtained
during training and 𝜋 to denote the optimal action 𝑎𝑡 decided by 𝜋
for the input state 𝒔𝑡 , where 𝑎𝑡 = 𝜋 (𝒔𝑡).

2.2 Adversarial Examples
2.2.1 Adversarial Examples in DNN. An adversarial example 𝒙′ is
an intentionally modified input sample 𝒙 ∈ 𝑋 with an imperceptible
amount of noise 𝒓 to force a DNN model 𝑓 : 𝑋 → 𝑌 into producing
incorrect predictions 𝑓 . Targeted adversarial examples are labeled
with 𝑦′, the intended (incorrect) prediction, in advance to satisfy
𝑦′ = 𝑓 (𝒙′) and 𝑦′ ≠ 𝑓 (𝒙), while untargeted adversarial examples
aim to evade the correct prediction, i.e., 𝑓 (𝒙′) ≠ 𝑓 (𝒙). Untargeted
adversarial examples against a victim DNN model 𝑓 are computed
by solving an optimization problem,

argmax
𝒙′

L(𝑓 (𝒙′), 𝑓 (𝒙)) s.t.: ∥𝒙′ − 𝒙 ∥𝑝 = ∥𝒓 ∥𝑝 ≤ 𝜖, (1)

where L denotes the prediction loss of 𝑓 . This formulation is
used bymaximum-confidence adversarial example generation meth-
ods [8] that maximize L while constraining the amount of pertur-
bation with 𝜖 . On the contrary, the minimum-distance methods aim
to minimize the sufficient amount of perturbation that changes the
prediction [27].

An adversarial example 𝒙′ calculated against one model 𝑓 and
successfully misleads it can transfer across other models, i.e., fools
𝑓 ∗ that are trained for the same task. The transferability of an ad-
versarial example increases when the source model 𝑓 and the target
models 𝑓 ∗ learn similar decision boundaries [37]. Since maximum-
confidence adversarial examples are misclassified with higher con-
fidence, they have a higher transferability rate than minimum-
confidence adversarial examples [8].

The definition of an adversarial example in DRL differs according
to the target component of the victim agent and the overall goal [9,
12, 24, 30, 36, 40]. In this work, we consider adversarial states 𝒔′
that mislead the policy 𝜋 : 𝜋 (𝒔′) ≠ 𝜋 (𝒔), ∥𝒔′ − 𝒔∥𝑝 = ∥𝒓 ∥𝑝 , and set
the norm 𝑝 to∞.

2.2.2 Universal Adversarial Perturbations. Instead of computing
individual adversarial examples, Moosavi et al. [27] propose finding
a perturbation vector 𝒓 that fools the DNN model 𝑓 (𝒙 + 𝒓) ≠ 𝑓 (𝒙)
on almost all data points 𝒙 sampled from the same distribution as
the dataset D𝑡𝑟𝑎𝑖𝑛 used for training 𝑓 . The optimization problem
in Equation 1 is modified to find universal perturbations as

P𝒙∼𝜇 (𝑓 (𝒙 + 𝒓) ≠ 𝑓 (𝒙)) ≥ 𝛿𝒓 s.t.: ∥𝒓 ∥𝑝 ≤ 𝜖, (2)

where 𝛿𝒓 denotes the desired fooling rate of 𝒓 for all 𝒙 sampled
from a dataset 𝐷 with distribution 𝜇.

Following Moosavi et al.’s initial work [27], several different
techniques are proposed to generate universal adversarial perturba-
tions. For example, Mopuri et al. [28] train a generative adversarial
network to model the distribution of universal adversarial pertur-
bations for a target DNN classification model and produce diverse

ii

https://github.com/ssg-research/FLARE
https://github.com/ssg-research/FLARE

perturbations that achieve a high 𝛿𝒓 . Liu et al. [19] generate a uni-
versal adversarial perturbation that does not require training data
and exploits the uncertainty of the model at each DNN layer.

2.3 Ownership Verification via Fingerprinting
Ownership verification in machine learning (ML) refers to a type
of defense against model theft and extraction attacks by deterrence.
Model owners can reduce the incentive for such attacks by iden-
tifying and verifying the true ownership of stolen models. DNN
model fingerprinting is a well-known ownership verification tech-
nique. DNN fingerprinting methods identify unique knowledge
that characterizes the victim model (fingerprint generation) and
later use this information to verify whether the suspected model
is derived from the victim model (fingerprint verification). For ex-
ample, Ciao et al. [5] use adversarial example generation methods
to extract data points near the decision boundary of DNN classi-
fiers, label them as fingerprints, and utilize them along with their
labels to detect piracy models. Lukas et al. [23] fingerprint DNN
models through conferrable adversarial examples (CAE) that can
successfully transfer from the source model to its modified ver-
sions, but not to other DNN models independently trained for the
same classification task. To verify the fingerprint in a suspected
model, CAE measures the error rate between the predictions of
victim and suspected models, and the verdict is delivered based on
a decision threshold. CAEs employ predictions of different indepen-
dently trained models and modified versions of the victim model
to compute fingerprints. Therefore, CAE has a high computational
cost, since it requires training multiple modified and independent
models to extract conferrable adversarial examples. Peng et al. [31]
propose using universal adversarial perturbations (UAP) as finger-
prints. During verification, previously computed UAPs for both
victim and suspected models are mapped to a joint representation
space, and contrastive learning is used to measure a similarity score
in this projected space.

Adopting both UAP and CAE in DRL settings faces similar chal-
lenges. First, the verification episodes should include adversarial
states that are completely different from each other, and also from
a normal test episode during deployment. Second, in CAE, the pre-
dictions of multiple models having a good performance might be
close to each other for the same input samples, since these models
are trained over the same labeled dataset. However, there is no
single predefined optimal action for input states in DRL. When
agents receive the same state, they might act differently to perform
the task due to their unique and different policies. Third, UAP fin-
gerprinting uniformly selects data samples that are from different
source classes and moves them towards different target classes in
DNNs, but there is no one-to-one mapping between input states
and corresponding optimal actions to obtain useful fingerprints in
DRL settings.

3 METHODOLOGY
3.1 Adversary Model
The adversary A’s goal is to obtain an illegal copy of the vic-
tim agent’s (V) policy 𝜋V without being detected. A has eco-
nomic incentives and aims to illegally monetize stolen policy 𝜋A

using a surrogate DRL agent. 𝜋V can be leaked by exploiting hard-
ware/software vulnerabilities [41] of different components within
V . Furthermore, A seeks to prevent traceback. Therefore, A at-
tempts to degrade the effectiveness of possible ownership verifica-
tion methods by modifying 𝜋A , without incurring any substantial
drop in 𝜋A ’s return.

3.1.1 Adversary’s capabilities. A has computational capabilities
and access to the similar environment that 𝜋V was trained on,
but it cannot reproduce the same training episodes. One can ar-
gue that A can also train its own policy, but we assume that it
cannot obtain a policy as good as 𝜋V due to nondeterminism (e.g.,
network architecture, difference in environment dynamics, DRL
algorithm, hyperparameter selection, difference in computational
resources, etc.). A presumes that there might be an ownership ver-
ification mechanism, but does not know the exact algorithm. Based
on this assumption, we also consider the existence of well-informed
adversaries2 knowing that ownership verification is performed
by fingerprinting and adversarial examples. If well-informed A
knows the complete procedure of the fingerprinting process, then
it can forge its own fingerprints to create ambiguity in verification.
However, this could be prevented with FLARE if 𝜋V and the corre-
sponding fingerprints are securely time-stamped and registered in
a bulletin or provided to a trusted third party [35].

3.1.2 Verifier’s Capabilities. A verifier (judge, J) is a trusted third
party independent of bothV and A. Given a suspected DRL agent
S with policy 𝜋S and fingerprints provided byV , the duty of J is
to determine whether 𝜋S can be traced back to 𝜋V and demonstrate
the true ownership. J has black-box access to S, i.e., it does not
know the algorithm and parameters of 𝜋S . J can modify the envi-
ronment without introducing any temporal latency or suspending
the task. If the verification uses time stamps, it provides anteriority
to J to resolve any ambiguity. We also give J computational ca-
pabilities to train and search for independent policies used for the
same task if there is a need to validate that fingerprints are unique
to the original model and do not transfer to independent models.
We also define that a good fingerprinting mechanism should satisfy
the following requirements:
(1) Effectiveness: Successful ownership verification of stolen poli-

cies, i.e., maximizing true positives.
(2) Integrity: Avoiding accidental accusations of independently

trained policies, i.e., minimizing false positives.
(3) Robustness: Withstanding model modification and evasion

attacks. This is achieved if either the ownership of the modified
policy is still successfully verified or the modification results in
a substantial decrease in utility measured by the agent perfor-
mance.

Fingerprinting algorithms do not necessarily aim for utility (i.e.,
maintaining the quality of the suspected model on fingerprints),
as they typically use adversarial examples during verification [23,
31] and the desired outcomes for fingerprints contain incorrect

2ML literature commonly uses the term “adaptive” to refer to adversaries who are
aware of deployed defenses. In security literature, it is customary to assume that all
adversaries are aware of the defenses, and the term “adaptive” is used for adversaries
who are able to dynamically modify their attack strategy based on what they learn
about the defenses during the attack. We use the term “well-informed” to refer to such
adversaries so that our usage does not conflict with either ML or security literature.

iii

predictions. Therefore, we did not include utility as a requirement.
However, we still restrict FLARE based on the utility concept, so that
agents can still maintain their overall performance and complete
the task without a significant performance degradation in episodes
that include the verification phase.

3.2 Universal Adversarial Masks as Fingerprints
FLARE aims to find a set of adversarial masks that can fool the
original agent in any input state to which it is added, but cannot
transfer to independently trained agents. Lukas et al. [23] define a
similar property for classifiers called “conferrability”. Conferrable
adversarial examples can transfer from the original classifier to its
derivatives but not to independently trained classifiers. In contrast,
FLARE does not generate individual adversarial examples but in-
stead searches for universal adversarial masks that can be used to
generate conferrable adversarial examples.

3.2.1 Fingerprint Generation. During fingerprint generation, FLARE
first computes the universal adversarial mask using the original
policy 𝜋V and independently trained models 𝜋𝑖 , (𝑖 ∈ I) that have
the same DNN architecture. FLARE aims to find a universal mask 𝒓
that maximizes the loss function in Equation 3 and is bounded by 𝜖
in 𝑙∞-norm.

L(𝜋V (𝒔𝑡 +𝒓), 𝜋V (𝒔𝑡))−1(𝜋V (𝒔𝑡)=𝜋𝑖 (𝒔𝑡))L(𝜋𝑖 (𝒔𝑡 +𝒓), 𝜋𝑖 (𝒔𝑡)) (3)

The first part of Equation 3 maximizes the categorical cross-
entropy loss between 𝜋V ’s predictions for clean and adversarial
states using the log-probability vector for all actions 𝜋V in adver-
sarial state and the performed action 𝜋V in the clean version of
that state. The second part minimizes the categorical cross-entropy
loss between adversarial states 𝒔𝑡 + 𝒓 computed for 𝜋𝑖 and their
clean counterparts 𝒔𝑡 only if the predicted action for 𝒔𝑡 is the same
for both 𝜋V and 𝜋𝑖 . The modified loss function ensures that the
same 𝒔𝑡 + 𝒓 cannot mislead 𝜋V and 𝜋𝑖 in the same way, even if
𝜋𝑖 produces a suboptimal action. FLARE uses untargeted adver-
sarial examples as fingerprints (see Section 2.2), so the solution of
Equation 3 forces 𝜋V into the incorrect action in 𝒔𝑡 + 𝒓 , but has
a minimum effect on 𝜋𝑖 . Multiple independently trained policies
are used to calculate the second part of Equation 3 for each 𝑖 ∈ I
by taking the average of individual losses. A universal adversarial
mask should also achieve a high fooling rate 𝛿𝒓 as presented in
Equation 2.

To ensure universality, FLARE uses an approach similar to [30]
when solving Equation 3. First,V completes one episode and the
observed states are saved in a training set D𝑓 𝑙𝑎𝑟𝑒 . Then FLARE
computes the average gradient of the loss function in Equation 3
w.r.t. 𝑘 states randomly sampled from D𝑓 𝑙𝑎𝑟𝑒 . This enables FLARE

to generate
(𝑙𝑒𝑛 (D𝑓 𝑙𝑎𝑟𝑒)

𝑘

)
different universal adversarial masks as a

fingerprint candidate. After generating the fingerprint candidate,
FLARE checks its non-transferability score. We compute the non-
transferability score (𝑛𝑡𝑠) for a universal adversarial mask 𝒓 on an
episode 𝑒𝑝𝑠 (that 𝜋V follows) as

𝑛𝑡𝑠 (𝒓, 𝑒𝑝𝑠) = 𝛿𝒓,𝑒𝑝𝑠 ×𝑚𝑎𝑥𝑖∈I (1 −𝐴𝐴(𝜋V , 𝜋𝑖 , 𝒔, 𝒓)), (4)

Algorithm 1 Fingerprint generation
Input: D𝑓 𝑙𝑎𝑟𝑒 : Fingerprint generation set
Output: FRL: Fingerprint list
1: parameters: 𝜏𝑛𝑡𝑠 , 𝜏𝛿 , 𝑛episodes, 𝑛FRL
2: FRL = [].
3: for 𝑒𝑝𝑠 ≤ 𝑛episodes do
4: Generate 𝒓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 from D𝑓 𝑙𝑎𝑟𝑒

5: Compute 𝑛𝑡𝑠 (𝒓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) using I and ∀𝒔𝑡 ∈ 𝑒𝑝𝑠

6: if 𝑛𝑡𝑠 ≥ 𝜏𝑛𝑡𝑠 and 𝛿𝒓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ≥ 𝜏𝛿 then
7: Add 𝒓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 into FRL
8: end if
9: if 𝑙𝑒𝑛(FRL) == 𝑛FRL then
10: return FRL
11: end if
12: end for
13: return FRL

where 𝛿𝒓,𝑒𝑝𝑠 refers to the fooling rate measured for 𝜋V using all 𝒔
observed in 𝑒𝑝𝑠 . 𝐴𝐴 denotes action agreement and is calculated as

𝐴𝐴(𝜋𝑖 , 𝜋 𝑗 , 𝒔, 𝒓) =
1
𝑁

𝑡=𝑁∑︁
𝑡=0

1(𝜋𝑖 (𝒔𝑡+𝒓)=𝜋 𝑗 (𝒔𝑡+𝒓)) , (5)

where 𝑁 refers to the length of one full episode 𝑒𝑝𝑠 that 𝜋V follows.
FLARE only accepts the candidate 𝒓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 as a valid finger-

print if 𝑛𝑡𝑠 (𝒓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) is greater than a threshold value 𝜏𝑛𝑡𝑠 and
achieves a fooling rate 𝛿𝒓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 higher than 𝜏𝛿 over a single 𝑒𝑝𝑠 .
How FLARE decides whether to include a universal adversarial
mask in a fingerprint list FLR is presented in Algorithm 1.

3.2.2 Fingerprint Verification. For fingerprint verification, the veri-
fier J has given a fingerprint set FLR. J first observes the inter-
actions between the suspected agent S and the environment to
estimate the total number of states 𝑁 that occur during a single
episode. Then, for each subsequent episode, J adds one finger-
print starting from a random state at time 𝑡𝑠𝑡𝑎𝑟𝑡 over a short time
window of length𝑀 to preserve the return in an acceptable range.
V is also queried with the adversarial states 𝒔𝑡 + 𝒓 that the sus-
pected agent receives. For each fingerprint, 𝐴𝐴 is calculated as
1/𝑀 ∑𝑡𝑠𝑡𝑎𝑟𝑡+𝑀−1

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡
𝐴𝐴(𝜋V , 𝜋S, 𝒔𝑡 , 𝒓). If 𝐴𝐴 for a single fingerprint

exceeds a decision threshold 𝐴𝐴 ≥ 0.5, that fingerprint produces
supporting evidence to verify that the suspected model is the stolen
copy. The final verdict (stolen vs. independent) is made based on the
majority vote. FLARE also returns 𝐴𝐴 averaged on all fingerprints
to quantify the confidence in the final decision. The verification
procedure is summarized by Algorithm 2.

4 EMPIRICAL ANALYSIS
4.1 Experimental Setup
We evaluated FLARE using the Arcade Learning Environment
(ALE) [4]. We selected two different games, Pong and MsPacman,
from ALE to train agents with three different model-free DRL al-
gorithms: A2C [25], DQN [26], and PPO [33]. Pong is a two-player
game in which agents are trained to win against the computer,
while MsPacman is a single-player game with the goal of achieving

iv

Algorithm 2 Fingerprint verification
Input: FRL, 𝜋V , 𝜋S : Fingerprint list, victim and suspected policies
Output: 𝐴𝐴,𝑀𝑣𝑜𝑡𝑒 : action agreement, majority vote
1: 𝐴𝐴 = [], 𝑀𝑣𝑜𝑡𝑒 = 0,𝑇𝑣𝑜𝑡𝑒 = 0.
2: Run a single episode with 𝜋S , save total number of states 𝑁
3: for 𝑖, 𝒓𝑖 in (𝑟𝑎𝑛𝑔𝑒 (FRL), FRL) do
4: 𝐴𝐴𝑖 = 0.0
5: Generate random 𝑡𝑠𝑡𝑎𝑟𝑡 ∈ [0,𝑚𝑖𝑛(𝑁, 𝑁 −𝑀)]
6: Run a test episode with 𝜋S
7: while test episode of 𝜋S not finished do
8: Calculate 𝐴𝐴𝑖 over time steps 𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑠𝑡𝑎𝑟𝑡 +𝑀)
9: end while
10: 𝑀𝑣𝑜𝑡𝑒 + = 1 if (𝐴𝐴𝑖 ≥ 0.5), 𝑇𝑣𝑜𝑡𝑒 + = 1
11: Add 𝐴𝐴𝑖 into 𝐴𝐴
12: Decision: Stolen if 𝑀𝑣𝑜𝑡𝑒 > (𝑇𝑣𝑜𝑡𝑒 −𝑀𝑣𝑜𝑡𝑒)
13: end for
14: return Decision,𝑀𝑣𝑜𝑡𝑒 , mean and std of 𝐴𝐴

the highest score without crashing into enemies. When construct-
ing the state information, we applied the pre-processing methods
proposed in [26]. Furthermore, for each victim V , we indepen-
dently trained five additional policies 𝜋𝑖 (𝑖 ∈ I) that have the same
DNN architecture and the DRL algorithm as V , and used them
during fingerprint generation. In total, we obtained six victim poli-
cies and thirty independent policies. In Pong, the victim and the
independent policies win the game with the highest score (+21). In
MsPacman, it was harder to achieve similar high scores since states
are more complex than Pong and depend on the position of multiple
enemies. In both games, the score is used to quantify the agent’s
return. Appendix A.1 presents software/hardware requirements for
reproduction, as well as the average performance of all agents.

During fingerprint generation in DQN, FLARE uses the DNN ap-
proximating Q value function. For other algorithms, FLARE selects
the policy network (e.g., the actor network in A2C) to compute
fingerprints. We set the maximum number of fingerprints 𝑙𝑒𝑛(𝐹𝑅𝐿)
at 10, and the window size𝑀 at 40. The discussion on the choice of
𝑙𝑒𝑛(𝐹𝑅𝐿) and𝑀 is included in Appendix A.2. Other hyperparame-
ters used in fingerprint generation are also listed in Appendix A.2.
In our experimental setup, we used different random initialization
for episodes used in training, fingerprint generation, verification,
estimation of agent performance, modification attacks, and eva-
sion attacks to ensure randomness in dynamic (and uncontrollable)
environments.

4.2 Effectiveness and Integrity
Figure 1 summarizes various FLARE metrics (fooling rate 𝛿 , non-
transferability score 𝑛𝑡𝑠 and action agreement 𝐴𝐴 calculated on
different policies) for three different DRL algorithms. 𝐴𝐴𝑜𝑟𝑖𝑔 de-
notes 𝐴𝐴 of the adversary’s policy 𝜋A which is identical to the
victim policy 𝜋V . 𝐴𝐴𝑖𝑛𝑑 (verification) refers to 𝐴𝐴 values of inde-
pendent policies 𝜋𝑖 that share the same DRL algorithm as 𝜋V and
are used in Algorithm 1 (5 policies for eachV). We use the remain-
ing 10 independent policies (having a different DRL algorithm from
V) trained for the same task to calculate 𝐴𝐴𝑜𝑡ℎ𝑒𝑟𝑠 (verification).
𝐴𝐴𝑜𝑟𝑖𝑔 is much higher than the threshold value 0.5, almost equal to

Figure 1: Various FLAREmetrics averaged over 10 runs for all
generated fingerprints. FLARE can successfully distinguish
between the original model 𝐴𝐴𝑜𝑟𝑖𝑔 and independent models
𝐴𝐴𝑖𝑛𝑑 , 𝐴𝐴𝑜𝑡ℎ𝑒𝑟𝑠 , while achieving high fooling rate 𝛿 and non-
transferability score 𝑛𝑡𝑠.

1.0 in most cases. Furthermore, the average fooling rate of finger-
prints is high, which proves that fingerprints successfully mislead
𝜋A . The average of𝐴𝐴𝑖𝑛𝑑 (verification) and𝐴𝐴𝑜𝑡ℎ𝑒𝑟𝑠 (verification)
are lower than 0.5 in all cases, and the majority vote is always “‘not
stolen (independent)” for any other 𝜋𝑖 that is not 𝜋A . Results show
that FLARE achieves a high detection rate while avoiding false
accusations of independently trained ones. Thus, we conclude that
FLARE satisfies the effectiveness and integrity requirements.

As shown in Figure 1, 𝐴𝐴𝑖𝑛𝑑 and 𝐴𝐴𝑜𝑡ℎ𝑒𝑟𝑠 show different vari-
ances for three DRL algorithms. We found that one or two fin-
gerprints seldom produce 𝐴𝐴 ≥ 0.5 for 𝜋V and 𝜋𝑖 , although they
behave differently in the same clean states. This reveals that a single
fingerprint rarely represents the same weakness of two separate
policies, and the number of fingerprints should be high enough to
satisfy integrity considering this phenomenon.

During verification, we set the threshold value to 0.5 (a single
fingerprint votes for “stolen” if 𝐴𝐴 ≥ 0.5) over all experiments.
However, it might be better to look at the full profile of the receiver
operational characteristic (ROC) curves, which give a complete
picture of the trade-off between false positive and true positive
rates by varying the threshold value. We provide ROC curves for
both Pong and MsPacman games in Appendix A.3.

v

Table 1: Average impact, 𝐴𝐴 and voting results (✓:Stolen, ✗: Independent) for piracy policies that are 1) fine-tuned over a
different number of episodes and 2) pruned and then fine-tuned over 200 episodes. 𝐴𝐴 is averaged over 10 verification episodes,
while impact is averaged over 10 test episodes. (: Successful verification with 𝐴𝐴 ≥ 0.75, : Successful verification with
0.75 ≥ 𝐴𝐴 ≥ 0.50, : Failed verification with high impact ≥ 0.4, : Failed verification with low impact < 0.4)

Game, DRL
method Stats

Fine-tuning, # of episodes Pruning and fine-tuning, pruning levels (%)

50 100 200 25 50 75 90

Pong,
A2C

Impact 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0

𝐴𝐴 0.95 ± 0.14 0.95 ± 0.14 0.94 ± 0.10 0.94 ± 0.14 0.91 ± 0.25 0.67 ± 0.42 0.28 ± 0.42

Votes 10 ✓/ 0 ✗ 10 ✓/ 0 ✗ 10 ✓/ 0 ✗ 10 ✓/ 0 ✗ 9 ✓/ 1 ✗ 6 ✓/ 4 ✗ 3 ✓/ 7 ✗

Pong,
DQN

Impact 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.8 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

𝐴𝐴 0.94 ± 0.05 0.89 ± 0.14 0.90 ± 0.17 0.88 ± 0.16 0.66 ± 0.38 0.09 ± 0.17 0.27 ± 0.4

Votes 10 ✓/ 0 ✗ 10 ✓/ 0 ✗ 9 ✓/1 ✗ 10 ✓/ 0 ✗ 7 ✓/ 3 ✗ 1 ✓/ 9 ✗ 3 ✓/ 7 ✗

Pong,
PPO

Impact 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

𝐴𝐴 0.88 ± 0.23 0.89 ± 0.25 0.88 ± 0.30 0.78 ± 0.35 0.67 ± 0.35 0.65 ± 0.41 0.71 ± 0.39

Votes 9 ✓/1 ✗ 9 ✓/1 ✗ 9 ✓/1 ✗ 7 ✓/ 3 ✗ 7 ✓/ 3 ✗ 6 ✓/ 4 ✗ 7 ✓/ 3 ✗

MsPacman,
A2C

Impact 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.39 ± 0.19 0.03 ± 0.10 0.30 ± 0.15 0.73 ± 0.11

𝐴𝐴 0.82 ± 0.16 0.75 ± 0.29 0.62 ± 0.35 0.71 ± 0.28 0.65 ± 0.39 0.72 ± 0.26 0.59 ± 0.23

Votes 9 ✓/1 ✗ 8 ✓/2 ✗ 6 ✓/4 ✗ 6 ✓/4 ✗ 7 ✓/3 ✗ 8 ✓/2 ✗ 6 ✓/4 ✗

MsPacman,
DQN

Impact 0.79 ± 0.11 0.83 ± 0.02 0.87 ± 0.03 0.79 ± 0.11 0.74 ± 0.09 0.86 ± 0.01 0.71 ± 0.43

𝐴𝐴 0.23 ± 0.34 0.15 ± 0.28 0.16 ± 0.31 0.38 ± 0.44 0.00 ± 0.01 0.59 ± 0.46 0.42 ± 0.42

Votes 2 ✓/8 ✗ 1 ✓/9 ✗ 2 ✓/8 ✗ 4 ✓/6 ✗ 0 ✓/10 ✗ 6 ✓/4 ✗ 4 ✓/6 ✗

MsPacman,
PPO

Impact 0.85 ± 0.11 0.40 ± 0.26 0.51 ± 0.08 0.52 ± 0.15 0.57 ± 0.04 0.62 ± 0.05 0.66 ± 0.19

𝐴𝐴 0.43 ± 0.36 0.11 ± 0.16 0.25 ± 0.32 0.26 ± 0.36 0.33 ± 0.38 0.31 ± 0.32 0.13 ± 0.20

Votes 4 ✓/6 ✗ 0 ✓/10 ✗ 3 ✓/7 ✗ 3 ✓/ 7 ✗ 3 ✓/ 7 ✗ 4 ✓/ 6 ✗ 1 ✓/ 9 ✗

Utility : As stated in Section 3.1, we do not consider utility a
requirement for FLARE. However, based on the definition in [16],
we measure the impact of the verification on the victim agent to
ensure that it does not fail the task during verification. We measure
the impact as:

𝐼𝑚𝑝𝑎𝑐𝑡 =
𝑅𝑒𝑡𝑢𝑟𝑛V(𝑡𝑒𝑠𝑡) − 𝑅𝑒𝑡𝑢𝑟𝑛V(𝑣𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛)
𝑅𝑒𝑡𝑢𝑟𝑛V(𝑡𝑒𝑠𝑡) − 𝑅𝑒𝑡𝑢𝑟𝑛V𝑚𝑖𝑛 (𝑡𝑒𝑠𝑡)

. (6)

𝑅𝑒𝑡𝑢𝑟𝑛V(𝑡𝑒𝑠𝑡) and 𝑅𝑒𝑡𝑢𝑟𝑛V(𝑣𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛) are the average return
ofV in an episode initialized with the same start state (and with
the same environment dynamics) with or without the verification.
𝑅𝑒𝑡𝑢𝑟𝑛V𝑚𝑖𝑛 (𝑡𝑒𝑠𝑡) is the return ofV if it chooses the worst possible
actions for each state in the same episode. The results presented in
Appendix A.4 show that the average impact on agent performance
is 0.02 and 0.22 in MsPacman and Pong, respectively. We also found
that the return never drops to 𝑅𝑒𝑡𝑢𝑟𝑛V𝑚𝑖𝑛 (𝑡𝑒𝑠𝑡) during verifica-
tion. Thus, we conclude that agents continue their task without a
significant impact after the verification phase ends.

4.3 Robustness
4.3.1 Robustness Against Model Modification Attacks. Adversary
A could modify the stolen policy 𝜋A by carefully retraining it to

preserve agent performance while trying to suppress evidence used
for verification. We consider two common types of model modifi-
cation attacks, fine-tuning [32] and weight pruning [11], where A
is aware of the existence of an ownership verification technique
but does not know the type of it. We implemented fine-tuning by
retraining 𝜋A in an additional 200 episodes and decreasing the
learning rate by 100 to maintain agent performance. For pruning,
we first performed global pruning, i.e., removed a percentage of
the lowest connections across the DNN model. After pruning, we
fine-tuned the pruned model over 200 episodes.

To evaluate the robustness requirement, we computed the ma-
jority vote and 𝐴𝐴 values of the stolen 𝜋A and modified policies
𝜋A∗ on the verification episodes. We also measured the impact of
the modification on model utility (agent performance) by changing
Equation 6 to:

𝐼𝑚𝑝𝑎𝑐𝑡 =
𝑅𝑒𝑡𝑢𝑟𝑛A(𝑡𝑒𝑠𝑡) − 𝑅𝑒𝑡𝑢𝑟𝑛A∗ (𝑡𝑒𝑠𝑡)
𝑅𝑒𝑡𝑢𝑟𝑛A(𝑡𝑒𝑠𝑡) − 𝑅𝑒𝑡𝑢𝑟𝑛𝐴𝑚𝑖𝑛 (𝑡𝑒𝑠𝑡)

, (7)

where 𝑅𝑒𝑡𝑢𝑟𝑛A∗ is the return of stolen and modified policy, and
𝑅𝑒𝑡𝑢𝑟𝑛A denotes the return of stolen (unmodified) policy over the
same test episodes. Based on the results on the impact of verifi-
cation on utility, we generously set the maximum allowable im-
pact as 0.4 for modification attacks, indicating that 𝑅𝑒𝑡𝑢𝑟𝑛A∗ (𝑡𝑒𝑠𝑡)

vi

Figure 2:𝐴𝐴 and returnwhen attacker implements randomactionwith different ratios, Visual Foresight (VF), andVF+suboptimal
action as evasion against FLARE. 𝐴𝐴 is averaged in 10 verification episodes, whereas the return is averaged in 10 test episodes.
Solid lines represent the return while dashed lines refer to 𝐴𝐴. Each plot includes three solid and dashed lines (some of which
overlap), and different markings on these lines refer to a specific evasion method.

would fall a little more than halfway between 𝑅𝑒𝑡𝑢𝑟𝑛A(𝑡𝑒𝑠𝑡) and
𝑅𝑒𝑡𝑢𝑟𝑛A𝑚𝑖𝑛 (𝑡𝑒𝑠𝑡) .

Table 1 shows the robustness evaluation of FLARE against model
modification attacks. As shown in the table, FLARE successfully
verifies fine-tuned Pong agents with high 𝐴𝐴 values. FLARE usu-
ally results in a failed verification of fine-tuned MsPacman agents.
However, the impact of modification is exceptionally high for these
cases. A similar conclusion can be drawn from the pruning results.
An increase in the pruning level negatively affects the verification
by decreasing its 𝐴𝐴 values. However, the impact of pruning is
too high in three cases in Pong and most of the cases in MsPac-
man, despite failed verification. Based on our robustness definition
in Section 3.1, we conclude that FLARE is robust against model
modification attacks.

4.3.2 Robustness Against Evasion Attacks and Well-informed Adver-
saries. A can evade verification by discovering individual inputs
used for verification or adapt the agent’s behavior to avoid a suc-
cessful verification. For evasion, A should have more information
about the ownership verification procedure. In our setup,A knows
that the ownership verification is done via FLARE but is unaware of
the exact adversarial mask used during verification. Based on this
information, the simplest evasion attack is performing suboptimal
actions with a pre-defined random action ratio on each episode. Fig-
ure 2 confirms that the increase in the random action ratio causes
a decrease in agent performance (lower return) despite successful

evasion. Therefore, FLARE is robust against evasion via suboptimal
action return.

Evasion attacks can combine detecting adversarial examples
(i.e., fingerprints used for verification) and then performing either
suboptimal actions or restoring original actions. We employ Vi-
sual Foresight (VF) [18] to carry out this attack. VF predicts the
next states and the associated probability distribution of actions
by looking at a history of previous states and observed actions.
If the distance between the predicted and current action distribu-
tion is large, VF detects that state as adversarial, and performs the
predicted action instead of the current one as a recovery mecha-
nism. Figure 2 shows that the use of VF does not affect the agent
performance. However, the high values of 𝐴𝐴 shown in the figure
justifies that VF cannot recover agent performance when states are
perturbed with non-transferable, universal adversarial masks and
fail to evade verification. This is because the collected history of pre-
vious states consists of adversarial inputs, which might lead to the
original (incorrect) action even if the adversarial state is detected
correctly [36]. For this reason, we also evaluated the case where
VF chooses a suboptimal action (VF + suboptimal action) instead of
the one predicted during recovery. Figure 2 shows that it decreases
𝐴𝐴 more than VF, but 𝐴𝐴 is not too low to evade verification and
change the final verdict.

Finally, we evaluated FLARE against the most well-informed ad-
versaries that can improve the robustness of the policy against 𝑙∞

vii

norm adversarial perturbations by adversarial training. For adver-
sarial training, we implemented one of the recent state-of-the-art
methods, RADIAL-RL [29]. We choose to implement RADIAL-RL
for DQN agents, because these are shared cases between our and
the authors’ experiments. RADIAL-DQN (RADIAL-RL designed for
DQN) first obtains a policy without adversarial training and then
fine-tunes the policy by incorporating an adversarial loss term into
the loss function that is minimized during training. In our setting,
A performs RADIAL-DQN by skipping the first step and fine-tunes
the stolen policy 𝜋A using adversarial loss. We adopted the open
source repository of the authors 3 in our framework, did not change
the hyperparameters used in RADIAL-DQN, and saved both agents
with the best performance and the final agent after RADIAL-DQN
was completed.

The first two rows of Table 2 summarize the impact, 𝐴𝐴 values,
and the votes for agents modified through RADIAL-DQN. The re-
sults indicate that A can evade verification by making 𝜋A more
robust to adversarial states in Pong. A obtains an improved policy
for MsPacman (3rd column, negative impact: higher reward), but
cannot evade verification. This outcome is not surprising, as DNN
fingerprinting has limitations against adaptive adversaries that per-
form adversarial training [23]. Then, we considered an alternative
scenario whereV fine-tunes its policy with RADIAL-DQN, saves
the best agent, and generates fingerprints for this agent (RDQN).
The last two rows of Table 2 show the verification results when
A implements RADIAL-DQN against adversarially robust victim
agents. In this case, A cannot evade verification without affect-
ing the agent’s performance. Therefore, although FLARE is limited
against adversarial training, it satisfies the robustness requirement
when fingerprinting adversarially robust victim agents.

4.3.3 Robustness Against False Claims. Liu et al. [20] show that
malicious accusers can produce fake fingerprints that can pass the
ownership verification test against independent models in many
ownership verification schemes, including CAE [23]. Therefore,
we also evaluated the robustness of FLARE against malicious ac-
cusers by generating fingerprints for the accuser’s policy without
maximizing the loss for independent policies (Equation 3) and not
measuring the non-transferability score (Algorithm 1, line 6), which
is similar to the setup proposed in [20] to evaluate CAE. We se-
lected one of the five independent policies 𝜋𝑖 , 𝑖 ∈ I that behaves
the closest to 𝜋V in the test episodes and has the same DRL al-
gorithm as the accuser policy and other independent policies as
J ’s control set. As shown in Table 3, the malicious accuser cannot
falsely claim ownership of V for the perturbation constraint set
in FLARE (𝜖 = 0.05), except the PPO agent trained for Pong. If the
perturbation constraint becomes larger (𝜖 ≥ 0.1), then the accuser’s
false fingerprints transfer to other models in those cases. Having
J perform an additional check that the size of the adversarial
mask does not exceed a prescribed bound can mitigate against false
claims attacks for FLARE. Table 3 also indicates that adversarial
states have a higher transferability rate between PPO algorithms
compared to others. In these cases, J can train or search for other
independent PPO policies for the same task as suggested in [20],
and it can reject the claim if the accuser’s fingerprints falsely verify
all independent models. Therefore, we conclude that FLARE is not
3https://github.com/tuomaso/radial_rl_v2

Table 2: Average impact, 𝐴𝐴 and voting results for stolen
policies modified by RADIAL-DQN. Results are reported for
both the agent with the best performance during RADIAL-
DQN (3rd column) and the final agent obtained after RADIAL-
DQN finishes (4th column). 𝐴𝐴 is averaged on 10 verification
episodes and impact is averaged over 10 test episodes. (*:
improved policy, : Successful verification with 𝐴𝐴 ≥
0.75, : Successful verification with 0.75 ≥ 𝐴𝐴 ≥ 0.50,

: Failed verification with high impact ≥ 0.4, : Failed
verification with low impact < 0.4)

Game, DRL
method Stats Best Agent Final Agent

Pong,
RADIAL-
DQN

Impact 0.0 ± 0.0 0.0 ± 0.0

𝐴𝐴 0.04 ± 0.06 0.04 ± 0.06

Votes 0 ✓/ 10 ✗ 0 ✓/ 10 ✗

MsPacman,
RADIAL-
DQN

Impact −0.16 ± 0.03∗ 0.39 ± 0.03

𝐴𝐴 0.59 ± 0.40 0.29 ± 0.31

Votes 6 ✓/ 4 ✗ 4 ✓/ 6 ✗

Pong,
RADIAL-
RDQN

Impact 0.0 ± 0.0 0.0 ± 0.0

𝐴𝐴 0.84 ± 0.21 0.89 ± 0.17

Votes 8 ✓/ 2 ✗ 9 ✓/ 1 ✗

MsPacman,
RADIAL-
RDQN

Impact 0.15 ± 0.04 0.55 ± 0.06

𝐴𝐴 0.61 ± 0.34 0.09 ± 0.18

Votes 7 ✓/ 3 ✗ 1 ✓/ 9 ✗

susceptible to false claims with a simple additional countermeasure
on 𝜖 and non-transferability check based on the DRL algorithm.

Model extraction attacks in DRL : In this work, we limit the
scope to the adversary model described in Section 3.1 and do not
consider model extraction attacks against DRL policies through
imitation learning [7]. Nevertheless, we tried to implement the
model extraction attack proposed by Chen et al. [7], but were unable
to obtain good stolen policies, which could be due to the simpler
tasks chosen in the setup of the original work. Chen et al. [7]
experimentally show that adversarial examples can successfully
transfer from stolen policies to the victim policy if they share the
same DRL algorithm. Their preliminary results provide insight into
the possibility of preserving fingerprints during the extraction of
the DRL model. Thus, we leave the construction of effective DRL
model extraction attacks and evaluate the robustness of FLARE
against these attacks for future work.

5 TRANSFERABILITY OF UNIVERSAL MASKS
The fingerprint generation process in FLARE is based on maximum-
confidence adversarial example generation techniques and is similar
to Fast Gradient Sign Method (FGSM) [12], since FLARE averages
the gradient of Equation 3 w.r.t. randomly selected states. As pre-
sented in Section 2.2, maximum-confidence adversarial examples
have a higher transferability rate than minimum-confidence ex-
amples. FGSM is a maximum-confidence method itself; however,

viii

https://github.com/tuomaso/radial_rl_v2

Table 3: 𝐴𝐴 values (averaged over 10 verification episodes) and voting results for false claims against victimV, and independent
I policies with different perturbation constraint 𝜖 values. (The cases where a false claim succeeds are shown as follows: :
False claim with 𝐴𝐴 ≥ 0.75, : False claim with 0.75 ≥ 𝐴𝐴 ≥ 0.50)

𝝐 vs. 𝑨𝑨 (Votes)

Game, DRL method 0.05 0.1 0.2 0.5

Pong, V 0.45 ± 0.47 (5 ✓/ 5 ✗) 0.49 ± 0.49 (5 ✓/ 5 ✗) 0.40 ± 0.49 (4 ✓/ 6 ✗) 0.40 ± 0.49 (4 ✓/ 6 ✗)

A2C I, avg. 0.32 ± 0.36 (3 ✓/ 7 ✗) 0.38 ± 0.45 (3 ✓/ 7 ✗) 0.30 ± 0.41 (3 ✓/ 7 ✗) 0.28 ± 0.43 (3 ✓/ 7 ✗)

Pong, V 0.37 ± 0.42 (4 ✓/ 6 ✗) 0.37 ± 0.45 (3 ✓/ 7 ✗) 0.33 ± 0.45 (3 ✓/ 7 ✗) 0.40 ± 0.49 (4 ✓/ 6 ✗)

DQN I, avg. 0.01 ± 0.18 (1 ✓/ 9 ✗) 0.07 ± 0.22 (1 ✓/ 9 ✗) 0.05 ± 0.19 (1 ✓/ 9 ✗) 0.05 ± 0.19 (1 ✓/ 9 ✗)

Pong, V 0.56 ± 0.39 (5 ✓/ 5 ✗) 0.68 ± 0.42 (7 ✓/ 3 ✗) 0.76 ± 0.38 (8 ✓/ 2 ✗) 0.78 ± 0.39 (8 ✓/ 2 ✗)

PPO I, avg. 0.56 ± 0.36 (6 ✓/ 4 ✗) 0.59 ± 0.38 (6 ✓/ 4 ✗) 0.59 ± 0.38 (6 ✓/ 4 ✗) 0.52 ± 0.41 (6 ✓/ 4 ✗)

MsPacman, V 0.00 ± 0.00 (0 ✓/10 ✗) 0.03 ± 0.05 (0 ✓/10 ✗) 0.14 ± 0.29 (1 ✓/9 ✗) 0.09 ± 0.22 (1 ✓/9 ✗)

A2C I, avg. 0.15 ± 0.56 (1 ✓/9 ✗) 0.14 ± 0.21 (1 ✓/9 ✗) 0.13 ± 0.30 (2 ✓/8 ✗) 0.21 ± 0.36 (2 ✓/8 ✗)

MsPacman, V 0.23 ± 0.36 (2 ✓/8 ✗) 0.0 ± 0.0 (0 ✓/10 ✗) 0.0 ± 0.0 (0 ✓/10 ✗) 0.0 ± 0.0 (0 ✓/10 ✗)

DQN I, avg. 0.26 ± 0.24 (2✓/8 ✗) 0.19 ± 0.26 (2✓/8 ✗) 0.15 ± 0.29 (1✓/9✗) 0.24 ± 0.26 (3✓/7✗)

MsPacman, V 0.19 ± 0.18 (1 ✓/ 9 ✗) 0.26 ± 0.31 (3 ✓/ 7 ✗) 0.38 ± 0.37 (4 ✓/ 6 ✗) 0.07 ± 0.21 (1 ✓/ 9 ✗)

PPO I, avg. 0.10 ± 0.11 (0 ✓/10 ✗) 0.50 ± 0.39 (5 ✓/5 ✗) 0.74 ± 0.40 (8 ✓/2 ✗) 0.80 ± 0.20 (8 ✓/2 ✗)

during the computation of universal, non-transferable adversarial
masks, the effect of the high-sensitivity directions obtained from
the most confident adversarial examples is diminished by others.
Nevertheless, we analyzed whether minimum-confidence adver-
sarial masks in DNNs can be useful for DRL fingerprinting. For
that reason, we changed the universal mask generation 𝒓 , (Algo-
rithm 1, line 4) with Universal Adversarial Perturbation (UAP) [27]
by implementing the method proposed for DRL settings [36].

We found that FLARE with UAP satisfies the effectiveness and
integrity requirements for all agents, except the DQN agent trained
for MsPacman. It was impossible to obtain an adversarial example
with the perturbation constraint used in FLARE (𝜖 = 0.05) against
this agent, but increasing it leads to transferable adversarial exam-
ples and false positives. The real issue with UAP emerges when the
adversary A modifies the stolen policy 𝜋A with model modifica-
tion attacks. Due to its minimum-distance property, UAP finds the
smallest high-sensitivity directions belonging to the closest incor-
rect class (or discrete actions in DRL), and generally the resulting 𝒓
is smaller than 𝜖 . Therefore, a small change in 𝜋A negatively affects
the robustness of UAP. Contrary to UAP, FLARE shifts the source
sample using the maximum amount of perturbation 𝜖 , forces 𝜋A
to perform the same incorrect action and is more robust against
model modification attacks. We illustrate this problem in Figure 3.

One of the main reasons why FLARE has better robustness stems
from the fact that the input space embeddings in DRL are not as
separable as in DNN [2]. In DRL, although the input states are
spatially similar, they often result in different actions. DRL agents
optimize policies using both input state and environment dynamics
and act upon spatio-temporal abstractions [43]. FLARE identifies
discontinuities in the optimal policy and computes an adversarial
state that is spatially similar to the source state but far from it in
temporal dimension. UAP typically explores adversarial pockets

Figure 3: Depiction of fingerprints generated by UAP and
FLARE for a DRL policy and three available actions. UAP
moves the source sample in the direction of the closest incor-
rect action, and typically this movement is less than the per-
turbation constraint (denoted by circles). In contrast, FLARE
shifts the source sample to the same action, which is irrele-
vant to the original action, while using the maximum value
of the perturbation constraint.

that are closer in the spatial domain due to its minimum-distance
strategy. Therefore, it cannot withstand model modification attacks
that preserve the spatio-temporal abstractions and slightly change
the sequential strategy.

We provide experimental results for our discussion in Table 4.
This table compares the fooling rate and action agreement 𝐴𝐴 for
adversarial states used in the verification of fine-tuned policies.

ix

Table 4: Comparison of UAP and FLARE based on fooling rate (measured for the victim policy) and action agreement 𝐴𝐴. Both
the fooling rate and 𝐴𝐴 are averaged using adversarial states (fingerprints) in 10 verification episodes. The higher fooling rate
and 𝐴𝐴 values are highlighted in green. Matched actions: Cases where victim and modified policies perform the same action
for the same state. Different actions: Cases where victim and modified policies perform different actions for the same state.

Game, DRL Method UAP FLARE
(Fine-tuned Matched actions Different actions Matched actions Different actions
over 200 eps.) Fooling rate 𝐴𝐴 Fooling rate 𝐴𝐴 Fooling rate 𝐴𝐴 Fooling rate 𝐴𝐴

Pong, A2C 0.79 ± 0.09 0.78 ± 0.08 0.89 ± 0.07 0.69 ± 0.13 0.95 ± 0.10 0.94 ± 0.09 0.85 ± 0.12 0.92 ± 0.16
Pong, DQN 0.69 ± 0.11 0.12 ± 0.10 0.55 ± 0.18 0.24 ± 0.14 0.89 ± 0.13 0.92 ± 0.18 0.93 ± 0.07 0.94 ± 0.09
Pong, PPO 0.86 ± 0.05 0.40 ± 0.21 0.82 ± 0.14 0.41 ± 0.13 0.91 ± 0.03 0.98 ± 0.08 0.90 ± 0.07 0.87 ± 0.3

MsPacman, A2C 0.76 ± 0.32 0.53 ± 0.42 0.91 ± 0.13 0.58 ± 0.42 0.68 ± 0.36 0.64 ± 0.36 0.64 ± 0.42 0.55 ± 0.43

We chose to report the results for fine-tuned policies from Table 1
considering the acceptable impact range (< 0.4) on the modified
agent’s performance. Matched actions refers to situations where
both victim and modified policies perform the same action for
the same input state without any added fingerprints. In contrast,
different actions refer to cases where victim and modified policies
behave differently for the same input state. Table 4 shows that the
fooling rate of UAP is lower than FLARE in almost all cases. This
supports our first claim regarding the robustness of UAP and FLARE.
The columns labeled with 𝐴𝐴 show the action agreement where
the fingerprint successfully misleads the victim policy. In this case,
the ideal𝐴𝐴 value for matched actions would be 1.0. As can be seen
from Table 4, FLARE reaches much higher 𝐴𝐴 values for matched
actions than UAP. Surprisingly, FLARE attains higher 𝐴𝐴 values
for different actions as well. This shows that, even if the fine-tuned
policy successfully changes the agent’s behavior, the adversarial
states generated by FLARE force the policy to perform the same
incorrect action. The same conclusion cannot be drawn from the
UAP results, as the 𝐴𝐴 values reported for the same actions are
lower than FLARE even in the case with the higher fooling rate.

Based on this discussion, we conjecture that using minimum-
distance adversarial examples to fingerprint DRL agents requires
either adding modified policies to the loss function in Equation 3,
or considering the temporal structure of the policy while finding
the high-sensitivity directions. The latter option also opens a new
space of adversarial examples that can exploit temporal abstractions
learned by DRL policies.

6 RELATEDWORK
Adversarial Examples in DRL : Recent work has shown that DRL poli-
cies are vulnerable to adversarial examples generated for agents’
states [12, 36] or actions [40] in single-agent environments, or
produce natural adversarial states by exploiting other agents in
multi-agent settings [9]. Other studies focus on perturbing the
dynamics of the environment by modifying the environment condi-
tions [24, 30]. DRL adversarial training [29, 45] has been considered
as a mitigation, but adversarially robust policies were found to be
more vulnerable to high-sensitivity directions caused by a natural
change in the environment [16].
Ownership Verification via Model Watermarking : Model watermark-
ing has become a widely known ownership verification procedure
for DNNs [1, 21, 45]. Model watermarking embeds traceable infor-
mation (i.e. watermark) into the DNN by either directly inserting it

into model parameters or adding unique knowledge into a small
subset of the training set. During ownership verification, the exis-
tence of the watermark is proven on illegitimate copies. Previous
DRL ownership verification methods adapt model watermarking
techniques. For example, Behzadan et al. [3] propose the embedding
of sequential states that are separate from the main environment as
watermarks during training. However, watermark verification also
requires a different environment, and there is no guarantee that
watermarks will be retained while learning complex tasks. Chen
et al. [6] obtain a sequence of damage-free states as watermarks
that are sampled from the same environment and do not impact
agent performance. During verification, the authors compare the
action probability distributions given by both the victim and the
suspected agents over these sequential states. However, this water-
marking method requires modifying both the training process and
the reward function.

Although model watermarking is considered a practical solu-
tion to protect DNN ownership, many studies have shown [22, 42]
that they cannot withstand well-informed adversaries and model
modification attacks. Compared to watermarking, DNN fingerprint-
ing methods show improved robustness to model modification
and extraction attacks [23, 31]. Furthermore, fingerprinting does
not change the training procedure unlike watermarking. However,
there is no prior work applying fingerprinting as an ownership
verification method in DRL.
Ownership Verification of Large models via Fingerprinting: Although
FLARE is specifically designed for DRL, we conjecture that uni-
versal and non-transferable adversarial masks can be useful for
fingerprinting, e.g., large language models. For example, Wallace
et al. [38] show the availability of context-independent universal
adversarial triggers that force large language models to produce
incorrect results. Similarly, Gu et al. [10] demonstrate that universal
adversarial patches can fool vision transformers. If universality is
restricted with the non-transferability requirement, then the gen-
erated adversarial masks will profile the global behavior of large
models and can be used in ownership verification.

7 CONCLUSION
In this paper, we propose FLARE, the first fingerprint method that
can be used for ownership verification of DRL policies, and show
the existence of non-transferable universal adversarial masks in
DRL settings. We empirically demonstrate that our fingerprints
are efficient and do not accidentally accuse independently trained

x

models. Adversarial training is the only method that evades verifi-
cation by making policies robust to adversarial examples. However,
our experiments show that the fingerprints obtained by FLARE for
robust policies are persistent. We hypothesize that FLARE can be
extended to continuous tasks, where the verifier can check how
much the suspected agent deviates from the original action value,
and we leave this for future work.

A promising direction for future work related to DRL finger-
printing is to study whether an intentional change in environment
conditions can be useful candidates for fingerprints. DRL policies
show decreased robustness when deployed in a different environ-
ment and include high-sensitivity directions due to natural causes.
This vulnerability leads to model evasion attacks via natural ad-
versarial examples, but can also be leveraged to learn natural (and
non-transferable) fingerprints for ownership verification. We be-
lieve that our study can create more interest in securing DRL agents
using novel ownership verification methods against possible model
piracy and extraction attacks.

Acknowledgements. This research was partially supported by In-
tel. We thank Dr. Samuel Marchal and Shelly Wang for initial dis-
cussions on this problem and for collaborating on an alternative
approach to fingerprinting DRLs that we explored prior to the so-
lution presented in this paper. We also thank Aalto Science-IT for
computational resources.

REFERENCES
[1] Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet.

2018. Turning Your Weakness Into a Strength: Watermarking Deep Neural
Networks by Backdooring. In 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018, William Enck and Adrienne Porter
Felt (Eds.). USENIX Association, 1615–1631.

[2] Raghuram Mandyam Annasamy and Katia Sycara. 2019. Towards Better Inter-
pretability in Deep Q-Networks. Proceedings of the AAAI Conference on Artificial
Intelligence 33, 01 (Jul. 2019), 4561–4569. https://ojs.aaai.org/index.php/AAAI/
article/view/4377

[3] Vahid Behzadan and William H. Hsu. 2019. Sequential Triggers for Water-
marking of Deep Reinforcement Learning Policies. CoRR abs/1906.01126 (2019).
arXiv:1906.01126 http://arxiv.org/abs/1906.01126

[4] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The
Arcade Learning Environment: An Evaluation Platform for General Agents. J.
Artif. Intell. Res. 47 (2013), 253–279. https://doi.org/10.1613/jair.3912

[5] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. IPGuard: Protecting In-
tellectual Property of Deep Neural Networks via Fingerprinting the Classification
Boundary. In ASIA CCS ’21: ACM Asia Conference on Computer and Communica-
tions Security, Virtual Event, Hong Kong, June 7-11, 2021, Jiannong Cao, Man Ho
Au, Zhiqiang Lin, and Moti Yung (Eds.). ACM, 14–25.

[6] Kangjie Chen, Shangwei Guo, Tianwei Zhang, Shuxin Li, and Yang Liu. 2021.
Temporal Watermarks for Deep Reinforcement Learning Models. In 20th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, Virtual Event,
United Kingdom, May 3-7, 2021, Frank Dignum, Alessio Lomuscio, Ulle Endriss,
and Ann Nowé (Eds.). ACM, 314–322. https://doi.org/10.5555/3463952.3463994

[7] Kangjie Chen, Shangwei Guo, Tianwei Zhang, Xiaofei Xie, and Yang Liu. 2021.
Stealing Deep Reinforcement Learning Models for Fun and Profit. In Proceedings
of the 2021 ACMAsia Conference on Computer and Communications Security (ASIA
CCS ’21). Association for Computing Machinery, New York, NY, USA, 307–319.

[8] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio,
Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. 2019. Why Do Adversarial
Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks.
In 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA,
USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX
Association, 321–338.

[9] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart
Russell. 2020. Adversarial Policies: Attacking Deep Reinforcement Learning. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=
HJgEMpVFwB

[10] Jindong Gu, Volker Tresp, and Yao Qin. 2022. Are Vision Transformers Robust
to Patch Perturbations?. In Computer Vision – ECCV 2022, Shai Avidan, Gabriel
Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (Eds.).
Springer Nature Switzerland, Cham, 404–421.

[11] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both
Weights and Connections for Efficient Neural Networks. In Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume
1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 1135–1143.

[12] Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter
Abbeel. 2017. Adversarial Attacks on Neural Network Policies. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings. OpenReview.net. https://openreview.net/
forum?id=ryvlRyBKl

[13] Matthew Inkawhich, Yiran Chen, and Hai Li. 2020. Snooping Attacks on Deep
Reinforcement Learning. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems (Auckland, New Zealand) (AAMAS
’20). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 557–565.

[14] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,
and Sergey Levine. 2018. Scalable Deep Reinforcement Learning for Vision-
Based Robotic Manipulation. In 2nd Annual Conference on Robot Learning, CoRL
2018, Zürich, Switzerland, 29-31 October 2018, Proceedings (Proceedings of Machine
Learning Research, Vol. 87). PMLR, 651–673.

[15] B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al
Sallab, Senthil Kumar Yogamani, and Patrick Pérez. 2022. Deep Reinforcement
Learning for Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 23,
6 (2022), 4909–4926.

[16] Ezgi Korkmaz. 2022. Deep Reinforcement Learning Policies Learn Shared Ad-
versarial Features across MDPs. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Virtual Event, February 22 - March 1, 2022. AAAI Press,
7229–7238. https://ojs.aaai.org/index.php/AAAI/article/view/20684

[17] Yuanlong Li, Yonggang Wen, Dacheng Tao, and Kyle Guan. 2020. Transforming
Cooling Optimization for Green Data Center via Deep Reinforcement Learning.
IEEE Trans. Cybern. 50, 5 (2020), 2002–2013.

[18] Yen-Chen Lin, Ming-Yu Liu, Min Sun, and Jia-Bin Huang. 2017. Detecting
Adversarial Attacks on Neural Network Policies with Visual Foresight. CoRR
abs/1710.00814 (2017). arXiv:1710.00814 http://arxiv.org/abs/1710.00814

[19] Hong Liu, Rongrong Ji, Jie Li, Baochang Zhang, Yue Gao, YongjianWu, and Feiyue
Huang. 2019. Universal Adversarial Perturbation via Prior Driven Uncertainty
Approximation. In 2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 2941–2949.

[20] Jian Liu, Rui Zhang, Sebastian Szyller, Kui Ren, and N. Asokan. 2023. False
Claims against Model Ownership Resolution. CoRR abs/2304.06607 (2023). https:
//doi.org/10.48550/arXiv.2304.06607 arXiv:2304.06607

[21] Sofiane Lounici, Mohamed Njeh, Orhan Ermis, Melek Önen, and Slim Trabelsi.
2021. YesWe can: Watermarking Machine Learning Models beyond Classification.
In 2021 IEEE 34th Computer Security Foundations Symposium (CSF). IEEE, IEEE,
Dubrovnik, 1–14.

[22] Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum. 2022. Sok: How
Robust is Image Classification Deep Neural Network Watermarking?. In 2022
IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, 787–804.

[23] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. 2021. Deep Neural Network
Fingerprinting by Conferrable Adversarial Examples. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net. https://openreview.net/forum?id=VqzVhqxkjH1

[24] Daniel J. Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias
Springenberg, Yuanyuan Shi, Jackie Kay, Todd Hester, Timothy A. Mann, and
Martin A. Riedmiller. 2020. Robust Reinforcement Learning for Continuous
Control with Model Misspecification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

[25] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016 (JMLR Workshop and Conference Proceedings, Vol. 48). JMLR.org,
1928–1937.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533. https://doi.org/10.1038/nature14236

[27] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. 2017. Universal Adversarial Perturbations. In Proceedings of the IEEE
conference on computer vision and pattern recognition. IEEE, Honolulu, 1765–1773.

xi

https://ojs.aaai.org/index.php/AAAI/article/view/4377
https://ojs.aaai.org/index.php/AAAI/article/view/4377
https://arxiv.org/abs/1906.01126
http://arxiv.org/abs/1906.01126
https://doi.org/10.1613/jair.3912
https://doi.org/10.5555/3463952.3463994
https://openreview.net/forum?id=HJgEMpVFwB
https://openreview.net/forum?id=HJgEMpVFwB
https://openreview.net/forum?id=ryvlRyBKl
https://openreview.net/forum?id=ryvlRyBKl
https://ojs.aaai.org/index.php/AAAI/article/view/20684
https://arxiv.org/abs/1710.00814
http://arxiv.org/abs/1710.00814
https://doi.org/10.48550/arXiv.2304.06607
https://doi.org/10.48550/arXiv.2304.06607
https://arxiv.org/abs/2304.06607
https://openreview.net/forum?id=VqzVhqxkjH1
https://doi.org/10.1038/nature14236

[28] Konda Reddy Mopuri, Utkarsh Ojha, Utsav Garg, and R. Venkatesh Babu. 2018.
NAG: Network for Adversary Generation. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018. Computer Vision Foundation / IEEE Computer Society, 742–751.

[29] Tuomas P. Oikarinen, Wang Zhang, Alexandre Megretski, Luca Daniel, and Tsui-
Wei Weng. 2021. Robust Deep Reinforcement Learning through Adversarial Loss.
In Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (Eds.). 26156–26167.

[30] Xinlei Pan, Chaowei Xiao, Warren He, Shuang Yang, Jian Peng, Mingjie Sun,
Mingyan Liu, Bo Li, and Dawn Song. 2022. Characterizing Attacks on Deep
Reinforcement Learning. In Proceedings of the 21st International Conference on Au-
tonomous Agents and Multiagent Systems (Virtual Event, New Zealand) (AAMAS
’22). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 1010–1018.

[31] Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin Zhu, and Minhui
Xue. 2022. Fingerprinting Deep Neural Networks Globally via Universal Ad-
versarial Perturbations. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. IEEE, New Orleans, 13430–13439.

[32] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
2014. CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops
2014, Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society, 512–519.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
arXiv:1707.06347 http://arxiv.org/abs/1707.06347

[34] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA.

[35] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N. Asokan. 2021. DAWN:
Dynamic Adversarial Watermarking of Neural Networks. In MM ’21: ACM Mul-
timedia Conference, Virtual Event, China, October 20 - 24, 2021, Heng Tao Shen,
Yueting Zhuang, John R. Smith, Yang Yang, Pablo César, Florian Metze, and
Balakrishnan Prabhakaran (Eds.). ACM, 4417–4425.

[36] Buse G. A. Tekgul, ShellyWang, Samuel Marchal, and N. Asokan. 2022. Real-Time
Adversarial Perturbations Against Deep Reinforcement Learning Policies: Attacks
and Defenses. In 27th European Symposium on Research in Computer Security,
Copenhagen, Denmark, September 26-30, 2022, Proceedings, Part III (Lecture Notes
in Computer Science, Vol. 13556). Springer, 384–404.

[37] Florian Tramèr, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D.
McDaniel. 2017. The Space of Transferable Adversarial Examples. CoRR
abs/1704.03453 (2017). arXiv:1704.03453 http://arxiv.org/abs/1704.03453

[38] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019.
Universal Adversarial Triggers for Attacking and Analyzing NLP. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP).

[39] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. [n. d.]. Dueling Network Architectures for Deep Reinforcement
Learning. In Proceedings of the 33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR Workshop and
Conference Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger
(Eds.). JMLR.org, 1995–2003.

[40] Tsui-Wei Weng, Krishnamurthy Dj Dvijotham, Jonathan Uesato, Kai Xiao, Sven
Gowal, Robert Stanforth, and Pushmeet Kohli. 2020. Toward Evaluating Robust-
ness of Deep Reinforcement Learning with Continuous Control. In 8th Interna-
tional Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

[41] Mengjia Yan, ChristopherW. Fletcher, and Josep Torrellas. 2020. Cache Telepathy:
Leveraging Shared Resource Attacks to Learn DNNArchitectures. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 2003–2020. https:
//www.usenix.org/conference/usenixsecurity20/presentation/yan

[42] Yifan Yan, Xudong Pan, Yining Wang, Mi Zhang, and Min Yang. 2022. Crack-
ing White-box DNN Watermarks via Invariant Neuron Transforms. CoRR
abs/2205.00199 (2022). arXiv:2205.00199 https://doi.org/10.48550/arXiv.2205.
00199

[43] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. [n. d.]. Graying the black box:
Understanding DQNs. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR
Workshop and Conference Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q.
Weinberger (Eds.). JMLR.org, 1899–1908.

[44] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane S. Bon-
ing, and Cho-Jui Hsieh. 2020. Robust Deep Reinforcement Learning against
Adversarial Perturbations on State Observations. (2020).

[45] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing
Huang, and Ian M. Molloy. 2018. Protecting Intellectual Property of Deep Neural
Networks with Watermarking. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, AsiaCCS 2018, Incheon, Republic of Korea,

June 04-08, 2018, Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier
López, and Taesoo Kim (Eds.). ACM, 159–172.

A APPENDIX
A.1 Training DRL Agents
To facilitate the comparison, we used the same setup to implement
all DRL policies and attacks: PyTorch (version 1.4.0), NumPy (ver-
sion 1.18.1), Gym (a toolkit for developing reinforcement learning
algorithms, version 0.15.7) and Atari-Py (a Python interface for
the Arcade Learning Environment, version 0.2.6). All experiments
were carried out on a computer with 2x12 core Intel(R) Xeon(R)
CPUs (32GB RAM) and NVIDIA Quadro P5000 with 16GB memory.
To train DQN agents, we used a dueling Q-network architecture
proposed in [39]. For training A2C and PPO agents, we choosed to
implement the convolutional neural networks suggested in OpenAI
Baselines4. In both A2C and PPO, actors and critics use the same
architecture, except for the penultimate later. The hyperparameter
values of each victim agent are set the same as OpenAI baselines,
while slightly differ for training independent agents.

All victim and independent DRL agents trained to play Pong
reach the highest score +21. The summary of agents trained to play
MsPacman is presented in Table 5. In MsPacman, we deliberately
chose agents with the best performance as the victim, since they
have a clear business advantage over other models, thus incentiviz-
ing adversaries to apply piracy attacks against them.

A.2 Hyperparameter Selection in FLARE
The perturbation constraint 𝜖 directly affects the trade-off between
the success of an adversarial example and its non-transferability.
Therefore, we performed a grid search for 𝜖 and set it to an optimal
value 0.05. We set the minimum fooling rate 𝜏𝛿 at a high value 0.8
to ensure the universality of the adversarial mask and set the non-
transferability score at 0.7. Based on these values and Equation 4,
for a candidate universal adversarial mask 𝒓 , the minimum action
agreement of independent agents𝑚𝑖𝑛𝑖∈I (𝐴𝐴(𝜋V , 𝜋𝑖 , 𝒔, 𝒓)) should
be lower than 0.125 to be chosen as a valid fingerprint. For both the
Pong and MsPacman agents, we used a reduced set of actions (4
discrete actions in total). Theminimum𝑚𝑖𝑛𝑖∈I (𝐴𝐴(𝜋V , 𝜋𝑖 , 𝒔, 𝒓)) =
0.125 is much lower than 0.25 (𝐴𝐴, if actions are randomly chosen)
and satisfies the non-transferability requirement. Finally, we set
𝑛episodes at a high value to guarantee that a sufficient number of
fingerprints is generated for efficient verification. The prescribed
hyperparameter values during fingerprint generation are listed in
Table 6.

A.2.1 Selection of the Number of Fingerprints. The number of fin-
gerprints generated and used for verification affects integrity and
robustness. An insufficient number of fingerprints could result in
a high action agreement 𝐴𝐴 between the independent and victim
(original) policies and ultimately falsely verify the ownership of the
independent policies as explained in Section 4.2. On the contrary, a
high number of fingerprints could give low 𝐴𝐴 between the victim
policy and its modified versions, since some of the fingerprints
could give a lower fooling rate in the modified policies. For that,
we performed verification by changing the maximum number of

4https://github.com/openai/baselines

xii

https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1704.03453
http://arxiv.org/abs/1704.03453
https://www.usenix.org/conference/usenixsecurity20/presentation/yan
https://www.usenix.org/conference/usenixsecurity20/presentation/yan
https://arxiv.org/abs/2205.00199
https://doi.org/10.48550/arXiv.2205.00199
https://doi.org/10.48550/arXiv.2205.00199
https://github.com/openai/baselines

Table 5: Return (averaged over 10 test episodes) of the victim and independent policies trained for MsPacman. The best and
worst agents for the same DRL algorithm are highlighted in green and red, respectively.

DRL Method Victim Agent Independent Agents
A2C 3316.00 ± 512.72 1670.00 ± 537.27 2552.00 ± 595.66 2144.00 ± 816.58 2246.00 ± 4.90 1750.00 ± 72.66
DQN 2620.00 ± 80.62 2363.00 ± 269.26 2484.00 ± 389.67 2218.00 ± 347.84 2211.00 ± 154.24 2472.00 ± 412.74
PPO 2731.00 ± 545.50 2019.00 ± 77.13 2198.00 ± 536.35 2040.00 ± 161.43 2017.00 ± 397.57 2167.00 ± 268.52

Table 6: Hyperparameters used in fingerprint generation

Parameter Value Definition

𝜖 0.05 𝑙∞ constraint on the perturbation 𝒓

𝜏𝑛𝑡𝑠 0.7 minimum non-transferability score of 𝒓

𝜏𝛿 0.8 minimum fooling rate of 𝒓 on a dataset

𝑛episodes 1000
maximum number of training episodes

to generate/collect fingerprints

Table 7: Total number of trials (i.e., episodes) required for
obtaining the fingerprint list during the fingerprint genera-
tion phase (2nd column), and the average ratio of adversarial
states that includes the fingerprint to the total number of
states observed for the same episode (3rd column) during ver-
ification. The ratio is averaged over 10 verification episodes
for each victim agent.

of trials (# of adversarial states)/(# of states)
in generation in verification

Pong, A2C 34 0.02 ± 0.00
Pong, DQN 46 0.02 ± 0.00
Pong, PPO 14 0.02 ± 0.00

MsPacman, A2C 110 0.04 ± 0.01
MsPacman, DQN 38 0.05 ± 0.01
MsPacman, PPO 10 0.05 ± 0.01

fingerprints used for fingerprint generation. As demonstrated in
Figure 4, the number of fingerprints does not affect the return dur-
ing verification, but a sufficient number of fingerprints (around 5)
are needed to achieve high 𝐴𝐴 to provide high confidence for the
final decision. We set the number of fingerprints at 10 to satisfy the
effectiveness and robustness requirements simultaneously.

A.2.2 Selection of the Window Size. In addition to the number
of fingerprints, the decision on window size is important. If the
window size is large, then the return during verification decreases
and the agent can perform poorly. Figure 5 illustrates the effect of
window size on return and 𝐴𝐴 during verification for Pong DQN
agents. Although 𝐴𝐴 does not change significantly with larger
window sizes, there is a steady decline in return. Based on this
result, the window size can be set to 40 or even less, but we set it to
40 after performing the same analysis for all agents and observing
the change in return.

A.2.3 Computation costs of FLARE. Based on the hyperparameters
chosen in our experimental setup, we computed the number of
trials (i.e. epiosodes) required to generate the fingerprint list and
presented them in Table 7. The required number of trials is less than

Figure 4: The effect of the number of fingerprints on the re-
turn during verification and𝐴𝐴 averaged over 10 verification
episodes.

Figure 5: The effect of window size on the return during
verification and 𝐴𝐴 averaged over 10 verification episodes.

50 in almost all cases, except MsPacman. We found that this excep-
tion occurs due to the high 𝐴𝐴 generated for some independent
policies used during the fingerprint generation phase. To generate
each 𝒓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (see Algorithm 1, line 4), FLARE randomly selects
100 states and computes the average gradient using those states.
During verification, based on the window size (40) and the number
of fingerprints (10), the suspected models are queried 400 times in

xiii

Figure 6: The effect of the threshold for individual finger-
print’s decision on the verification. Results are computed
over 10 fingerprints used for the verification of victim poli-
cies, randomly selected independent policies and fine-tuned
policies.

total with the additional fingerprint. Table 7 also shows the average
ratio of states with an additional fingerprint to the total number of
states observed during verification episodes. Based on these results,
we confirm that verification episodes include only a small number
of states (up to 5%) with the additional fingerprint.

A.3 Receiver Operating Characteristic of FLARE
Figure 6 shows the receiver operation characteristic (ROC) curve
produced by the verification results of individual fingerprints over
multiple thresholds 𝜏𝐴𝐴 , where the 𝑖-th fingerprint votes “stolen”
when 𝐴𝐴𝑖 ≥ 𝜏𝐴𝐴 . For each victim policy, we calculated true posi-
tive and false positive rates (TPR and FPR) on 10 fingerprints that
are used to verify the victim policy itself, 3 randomly selected in-
dependent policies, and 3 fine-tuned versions of the victim policy
incurring a small impact on utility. We found the optimal 𝜏𝐴𝐴 that
maximizes TPR and minimizes FPR to be 0.5 and 0.68 in Pong and
MsPacman, respectively. We set the threshold value at 0.5 in all our
experiments, but it would be beneficial to analyze the ROC for each
environment, as the choice of 𝜏𝐴𝐴 affects the overall effectiveness
and integrity of FLARE.

A.4 Impact of Verification
As discussed in Section 3.1, utility is not a necessary requirement
in fingerprinting methods, as fingerprints typically trigger abnor-
mal behavior. However, the impact on agent performance is still
important, since verification might also be carried out in a stealthy
way to avoid raising any suspicion. Moreover, if the agent fails
to perform the task quickly during verification, then the collected
information may not be sufficient to correctly calculate the action
agreement 𝐴𝐴. Therefore, we computed the impact of verification
on agent performance and summarized the results in Table 8. In
Pong, the impact is almost zero, while we experienced an average
impact of 0.22 in MsPacman agents due to the high complexity

Table 8: Impact of verification (averaged over 10 verification
episodes) on victim agent performance.

DRL Method Pong MsPacman
A2C 0.02 ± 0.02 0.20 ± 0.21
DQN 0.01 ± 0.02 0.28 ± 0.19
PPO 0.02 ± 0.02 0.18 ± 0.28

of the game. The impact in MsPacman can be further improved
by adding fingerprints in non-critical states that do not affect the
return if the agent replaces one action with another.

xiv

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Reinforcement Learning
	2.2 Adversarial Examples
	2.3 Ownership Verification via Fingerprinting

	3 Methodology
	3.1 Adversary Model
	3.2 Universal Adversarial Masks as Fingerprints

	4 Empirical Analysis
	4.1 Experimental Setup
	4.2 Effectiveness and Integrity
	4.3 Robustness

	5 Transferability of Universal Masks
	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Training DRL Agents
	A.2 Hyperparameter Selection in FLARE
	A.3 Receiver Operating Characteristic of FLARE
	A.4 Impact of Verification

