
Mostree: Malicious Secure Private Decision Tree Evaluation with
Sublinear Communication

Jianli Bai

University of Auckland

Auckland, New Zealand

jbai795@aucklanduni.ac.nz

Xiangfu Song
∗

National University of Singapore

Singapore

songxf@comp.nus.edu.sg

Xiaowu Zhang

CloudWalk Technology

Beijing, China

zhangxiaowu@cloudwalk.com

Qifan Wang

University of Auckland

Auckland, New Zealand

qwan301@aucklanduni.ac.nz

Shujie Cui

Monash University

Melbourne, Australia

shujie.cui@monash.edu

Ee-Chien Chang

National University of Singapore

Singapore

changec@comp.nus.edu.sg

Giovanni Russello

University of Auckland

Auckland, New Zealand

g.russello@auckland.ac.nz

ABSTRACT
A private decision tree evaluation (PDTE) protocol allows a fea-

ture vector owner (FO) to classify its data using a tree model from

a model owner (MO) and only reveals an inference result to the

FO. This paper proposesMostree, a PDTE protocol secure in the

presence of malicious parties with sublinear communication. We

designMostree in the three-party honest-majority setting, where

an (untrusted) computing party (CP) assists the FO and MO in the

secure computation. We propose two low-communication oblivi-

ous selection (OS) protocols by exploiting nice properties of three-

party replicated secret sharing (RSS) and distributed point function.

Mostree combines OS protocols with a tree encoding method and

three-party secure computation to achieve sublinear communica-

tion. We observe that most of the protocol components already

maintain privacy even in the presence of a malicious adversary,

and what remains to achieve is correctness. To ensure correctness,

we propose a set of lightweight consistency checks and seamlessly

integrate them into Mostree. As a result, Mostree achieves sub-

linear communication and malicious security simultaneously. We

implementMostree and compare it with the state-of-the-art. Experi-

mental results demonstrate thatMostree is efficient and comparable

to semi-honest PDTE schemes with sublinear communication. For

instance, when evaluated on the MNIST dataset in a LAN setting,

Mostree achieves an evaluation using approximately 768 ms with

communication of around 168 KB.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
decision tree, privacy-preserving, sublinear, malicious security

ACM Reference Format:
Jianli Bai, Xiangfu Song, Xiaowu Zhang, Qifan Wang, Shujie Cui, Ee-Chien

Chang, and Giovanni Russello. 2023. Mostree: Malicious Secure Private

Decision Tree Evaluation with Sublinear Communication. In Proceedings of

∗
Corresponding author

ACM Conference (ACSAC’23). ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Decision trees have found extensive use in various real-world ap-

plications, including spam filtering [10], credit risk assessment [26],

and disease diagnosis [33]. In many scenarios, the tree model owner

and feature owner are distinct parties, and neither of them wants to

disclose data to the other due to commercial or privacy concerns.

Private decision tree evaluation (PDTE) protocols allow a feature

owner (FO) to learn a classification result evaluated using a decision
tree (DT) from a model owner (MO) without revealing anything

more. Recently, many PDTE protocols [6, 11, 14, 24, 25, 30, 35, 39]

have been proposed with different security and efficiency trade-offs.

Ideally, a PDTE protocol should achieve sublinear communication

in the tree size. However, as shown in Table 1, most existing PDTE

protocols [6, 11, 24, 25, 35, 39] require linear communication, which

can be impractical for real-world applications since commercial

DTs typically contain thousands or millions of nodes [27]. More-

over, almost all existing PDTE protocols are only secure against

semi-honest adversaries, where the adversary honestly follows the

protocol specification. Indeed, the adversary could maliciously be-

have. Achieving private and correct tree evaluation in the presence

of a malicious adversary is vital since PDTE protocols are usually

used for high-sensitive applications, e.g., healthcare or financial ser-
vices. Only the works proposed in [14, 30, 35, 39] achieve security

against malicious adversaries. In particular, the works [30, 35, 39]

only achieve security against a malicious FO, which we call one-side
malicious security. Besides, all four works require linear communi-

cation costs, limiting their scalability.

In this paper, we propose Mostree, a PDTE protocol that si-

multaneously achieves security against malicious adversaries and

sublinear communication. Mostree considers a three-party honest-

majority setting, where a malicious adversary can compromise one

party, and the compromised party could be anyone in the system.

The main application forMostree can be found in cloud-assisted

privacy-preserving machine learning (PPML) service, as considered

1

ar
X

iv
:2

30
9.

17
12

4v
1 

 [
cs

.C
R

] 
 2

9 
Se

p 
20

23

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


ACSAC’23, December 2023, Austin, Texas, USA Jianli Bai, Xiangfu Song, Xiaowu Zhang, Qifan Wang, Shujie Cui, Ee-Chien Chang, and Giovanni Russello

Table 1: Summary of Some Existing PDTE Protocols

Protocol Comparison Communication Sublinear Leakage Security Corruption Parties
Bost et al. [6] ⌈𝑚/2⌉ 𝑂 (𝑛 +𝑚) × 𝑚 # 1-out-of-2 2PC

Kiss et al. [25](GGG) 𝑑 𝑂 (𝑚ℓ) × 𝑚,𝑑 # 1-out-of-2 2PC

Kiss et al. [25](HHH) ⌈𝑚/2⌉ 𝑂 ((𝑛 +𝑚)ℓ) × 𝑚 # 1-out-of-2 2PC

Brickell et al. [11] 𝑑 𝑂 ((𝑛 +𝑚)ℓ) × 𝑚 # 1-out-of-2 2PC

Joye et al. [24] 𝑑 𝑂 (𝑑 (ℓ + 𝑛) + 2
𝑑 ) × 𝑑 # 1-out-of-2 2PC

Tueno et al. [36](ORAM) 𝑑 𝑂 (𝑑4ℓ) √
𝑑 # 1-out-of-2 2PC

Bai et al. [4] 𝑑 𝑂 (𝑑𝑛ℓ) √
𝑚,𝑑 # 1-out-of-2 2PC

Wu et al. [39] 2
𝑑 𝑂 (2𝑑 + (𝑛 +𝑚)ℓ) × 𝑚,𝑑 H# 1-out-of-2 2PC

Tai et al. [35] ⌈𝑚/2⌉ 𝑂 ((𝑛 +𝑚)ℓ) × 𝑚 H# 1-out-of-2 2PC

Ma et al. [30] 𝑑 𝑂 (𝑑𝑛ℓ) √
∖ 𝑚,𝑑 H# 1-out-of-2 2PC

Ji et al. [23] 𝑑 𝑂 (𝑑 (log𝑛 + log𝑚 + ℓ)) √
𝑚,𝑑 # 1-out-of-3 3PC

Damgård et al. [14] 𝑚 𝑂 (2𝑑𝑛ℓ) × 𝑚,𝑑  2-out-of-3 3PC

Mostree 𝑑 𝑂 (𝑑𝑛ℓ log𝑚) √
𝑚,𝑑  1-out-of-3 3PC

Comparison denotes the number of secure comparisons needed; Parameters:𝑚: number of tree nodes,𝑚: number of tree nodes in a

depth-padded tree, see [25], 𝑛: dimension of a feature vector, 𝑑 : the longest depth of a tree, ℓ : bit size of feature values. Symbols: ×: no,√
: yes,

√
∖: partially support: linear offline communication, sublinear online communnication; #: semi-honest, H#: one-side malicious,  :

malicious.

by Sharemind (https://sharemind.cyber.ee), TFEncrypted (https://tf-

encrypted.io) and SecretFlow (https://www.secretflow.org.cn/docs/

secretflow/latest/en-US). Mostree protects both the tree model and

the queried features from all parties using replicated secret shar-

ing (RSS). During the tree evaluation, protecting which node is

being accessed in each level, i.e. the tree access pattern, is also

imperative since the classification result is highly relevant to the

tree path. In particular, if a model holder knows which path is ac-

cessed for each query, it can learn the classification result directly,

which should be forbidden to protect the feature owner’s privacy.

Mostree uses oblivious selection (OS) protocols to hide the access

pattern from all parties, which allows the three parties to traverse

the decision tree collaboratively and obliviously, without learning

which node is being touched. We design two OS protocols. The first

OS protocol is purely based on RSS sharings, achieving constant

online communication and linear offline communication. We then

propose the second OS protocol by applying distributed point func-

tion (DPF) [22] over RSS sharings, achieving constant online and

sublinear offline communication.

The remaining challenge is how to achieve security against ma-

licious adversaries while ensuring sublinear communication. We

exploit the fact that most of our proposed semi-honest protocol

components already maintain privacy in the presence of a malicious

adversary; what we need to ensure is correctness.1 To this end, we

propose a set of lightweight consistency check techniques. Notably,

all of our check mechanisms are efficiency-oriented by exploiting

nice properties of underlying primitives, and they bootstrap exist-

ing RSS-based security mechanisms (e.g., low-level RSS-based ideal

functionalities) to ensure correctness and introduce low overhead.

By integrating these checks, Mostree simultaneously achieves sub-

linear communication and security against malicious adversaries.

1
Informally, privacy requires that a protocol reveals nothing except the protocol

output and any allowed information. Correctness requires the computation to be done

correctly.

We implement Mostree over different datasets and report effi-

ciency under different network settings. Our results demonstrate

that Mostree is highly competitive to the PDTE protocol proposed

in [23], which is the latest and most efficient existing solution de-

signed in semi-honest settings. In MNIST testing within a LAN

environment, Mostree requires only 4× online communication and

4× online computation compared to [23]. Compared with the mali-

cious security work given in [14], Mostree reduces up to around

311× and about 4× in communication and computation, respec-

tively. Furthermore, our experiments illustrate the scalability of

Mostree, particularly for large trees with high dimensions, due to

its sublinear communication property.

Contributions. We summarize our contributions as follows:

• We propose two oblivious selection protocols over a three-party

setting. The first protocol is based purely on RSS, and the second

is on DPF and RSS. Both of them are with low overhead, e.g.,
sublinear communication. The proposed OS protocol may apply

to applications in other areas, e.g., secure database processing.
• We enhance OS protocols with malicious security by proposing

lightweight consistency check techniques. We carefully combine

the proposed OS protocol, efficient consistency check, and three-

party secure computation to designMostree.Mostree achieves
sublinear communication and malicious security in the three-

party honest-majority setting. To our best knowledge,Mostree is
the first PDTE protocol that simultaneously achieves the above

two properties.

• We implementMostree and measure its performance. The exper-

iment results showMostree is highly communication-efficient

compared with the state-of-the-art.

2 RELATEDWORK
We categorize PDTE protocols based on the adversary models: semi-

honest PDTE protocols and malicious PDTE protocols. Table 1

provides a comprehensive comparison of some representative PDTE

2

https://sharemind.cyber.ee
https://tf-encrypted.io
https://tf-encrypted.io
https://www.secretflow.org.cn/docs/secretflow/latest/en-US
https://www.secretflow.org.cn/docs/secretflow/latest/en-US


Mostree: Malicious Secure Private Decision Tree Evaluation with Sublinear Communication ACSAC’23, December 2023, Austin, Texas, USA

schemes, e.g., PDTE in two-party settings [4, 6, 11, 24, 25, 30, 35, 36,

39] and PDTE in three-party settings [14, 23], taking into account

their performance and security guarantees.

Semi-honest PDTE Protocols. Most existing PDTE protocols,

e.g., [5, 6, 11, 17, 21, 25, 35, 39], are only secure against semi-honest

adversaries. Moreover, they come with heavy computation and/or

communication overhead. In [22], Ishai and Paskin evaluate DTs

via homomorphic encryption (HE), which brings huge computation

burden and linear communication cost. Protocols proposed in [11]

and [5] require linear communication overhead since the tree trans-

ferred can never be re-used due to the access pattern leakage. Later,

Bost et al. [6] encode the tree into a high-degree polynomial, sim-

plifying the communication process but requiring costly fully HE.

Wu et al. [39] avoid computing expensive polynomials used in [6]

by sending an encrypted permuted tree to FO. Tai et al. [35] adopt
the same strategies as [39], but rather than transmitting the entire

tree,MO computes and sends a value for each path, which they call

path cost. By doing so, they save communication costs. Following

path costs concept from [35], many subsequent works [17] [25]

have been proposed. The work proposed by Kiss et al. [25] mainly

concentrates on exploring the influence of different combinations

of HE and MPC on the performance of PDTE.

Sublinear complexity. As indicated in Table 1, most PDTE protocols

have linear complexity in both communication and computation.

This limitation renders them impractical for evaluating large deci-

sion trees containing millions of nodes [12]. Researchers are keen

to explore PDTE protocols with overhead sublinear to the tree size.

Tueno et al. [36] design the first sublinear protocol with semi-honest

security in the two-party setting. Their idea is to represent the tree

in an array. The tree construction allows MO to obliviously select

the tree node in each tree level if the node index is shared between

FO and MO. The selection process is called Oblivious Array Index

(OAI). They instantiate the OAI approach by ORAM, which results

in 𝑂 (𝑑4) communication cost and 𝑑2
rounds for complete trees.

Joye and Salehi [24] also work on a semi-honest two-party scenario

but employ a different strategy to achieve oblivious selection. They

observe there is only one node to be selected from each tree level,

and thus their method is obliviously selecting a node from 𝑛 = 2
𝑙

nodes where 𝑙 is the sitting tree level. For the whole tree evalua-

tion, only 𝑑 comparisons are required, where 𝑑 is the depth of the

tree. However, the communication is still linear to the tree size. Ma

et al. [30] follows the idea of [11] to send the encrypted tree to FO.
Rather than using a complex garbled circuit, they employ secret

sharing to protect the tree. In each level, FO performs Oblivious

Transfer (OT) withMO to retrieve the nodes to be evaluated, which

optimizes both communication and computation overhead of [11].

However, similar to [11], FO can still learn extra information from

the access pattern leakage. The work proposed in [23] achieves

sublinear communication by leveraging function secret sharing.

However, this work is only designed to defend against semi-honest

adversaries.

Malicious Secure PDTE Protocols. Existing works [30, 35, 39]

can protect the model from a malicious FO. The idea from [35, 39]

is FO additionally sends zero-knowledge proofs (ZKP) to MO to

prove the correctness of inputs. Both protocols result in heavy lin-

ear computation and communication overhead. In work [30], Ma

et al. replace Garbled Circuit (GC) protocol with its maliciously

secure version [2] and employ commitment and ZKP to constrain

the parties’ behavior. However, this protocol still suffers from linear

communication costs because the tree can never be reused after

evaluation. All the above three works cannot guarantee correctness

when MO is malicious. Damgård et al. [14] present a PDTE pro-

tocol using SPDZ
2
𝑘 in the dishonest majority setting (up to 𝑛 − 1

corruption out of 𝑛 parties). Similar to previous works [17, 35, 39],

they have MO and FO to securely perform attribute selection and

comparison for each tree node, resulting in 𝑂 (𝑚𝑛) computation

and communication, where𝑚 is the tree size, and 𝑛 is the feature

size. Notably, their protocol can protect both privacy and correct-

ness and achieves higher security than ours since they work in the

dishonest majority setting.

Recent DPF-over-RSS Techniques. We note several construc-

tions that utilize DPFs over RSS [15, 23, 37, 38] were proposed re-

cently.Waldo [15] useDPFs over RSSs to design a privacy-preserving

database query. However, Waldo relies on honest clients to generate

and distribute the DPF keys, whereas, inMostree, the keys are gen-
erated and distributed by a possibly malicious party, requiring ad-

ditional checks to ensure correctness. The DPF-over-RSS technique

is also used in [23] and [37], but they only achieve semi-honest

security. Pika [38] uses DPFs over ring-based RSS and achieves ma-

licious security. Our scheme operates specifically on boolean-based

RSS, which enables the design of more efficient error detection

mechanisms. We will show more in the following sections.

3 BACKGROUND
3.1 Decision Trees Evaluation
A decision tree is usually represented as a binary tree where its

inner nodes are decision nodes and its leaves are classification nodes.
A decision node consists of a threshold and the index of the cor-

responding feature attribute. A classification node contains a clas-

sification label. Given a feature vector, DTE starts from the root.

It compares a feature value with the threshold value and decides

which child to visit based on the result (i.e., 1 for the left child and 0
for the other). The evaluation continues until it reaches a leaf, from

which the evaluation outputs a label as the classification result.

3.2 Cryptographic Primitives
Notations. We use 𝑃𝑖 to denote the 𝑖th party, where 𝑖 ∈ {0, 1, 2} and
we write 𝑃𝑖−1 and 𝑃𝑖+1 as its “previous” and “subsequent” parties,

respectively. Typically, 𝑃𝑖−1 is 𝑃2 when 𝑖 = 0 and 𝑃𝑖+1 is 𝑃0 when

𝑖 = 2. We interchangeably use F𝑘
2
and F

2
𝑘 to represent the data in

{0, 1}𝑘 , depending on the context. Addition in F𝑘
2
and F

2
𝑘 corre-

sponds to bit-wise XOR operation. We write F
2
𝑘 � F[𝑋 ]/𝑓 (𝑋 ) for

some monic, irreducible polynomial 𝑓 (𝑋 ) of degree 𝑘 . We denote

the set {0, · · · , 𝑗 −1} as [ 𝑗]. Given two vectors ®𝑥 and ®𝑦, we use ®𝑥 ⊙ ®𝑦
to denote inner-product computation between ®𝑥 and ®𝑦.
Secret Sharing. We use secret sharing for secure computation.

• (𝑛𝑛 )-sharing J𝑥K. We use J𝑥K to denote 𝑥 ∈ F is shared in 𝑛

parties by (𝑛𝑛 )-sharing, where 𝑃𝑖 holds a share J𝑥K𝑖 ∈ F satisfying
𝑥 =

∑
𝑖∈[𝑛]J𝑥K𝑖 . We use 𝑛 = 2 and 3 in this paper.

• (3
2
)-sharing ⟨𝑥⟩.We use ⟨𝑥⟩ to denote 𝑥 is shared by (3

2
)-sharing,

also known as replicated secret-sharing (RSS). In RSS sharing, we

3



ACSAC’23, December 2023, Austin, Texas, USA Jianli Bai, Xiangfu Song, Xiaowu Zhang, Qifan Wang, Shujie Cui, Ee-Chien Chang, and Giovanni Russello

denote ⟨𝑥⟩ = (𝑥0, 𝑥1, 𝑥2), where each party 𝑃𝑖 (𝑖 ∈ {0, 1, 2})
holds two shares (J𝑥K𝑖 , J𝑥K𝑖−1) such that J𝑥K0 + J𝑥K1 + J𝑥K2 = 𝑥 .

Naturally, given a public value 𝑣 , it can be shared as ⟨𝑣⟩ = (0, 0, 𝑣).
Different from (3

3
)-sharing, any two parties in (3

2
)-sharing can

reconstruct the secret.

We extend the above definition to vectors. We use ®𝑥 ∈ F𝑚 to

denote an𝑚-dimensional vector. Accordingly, we use J®𝑥K and ⟨®𝑥⟩
to denote a (𝑛𝑛 )-sharing and (3

2
)-sharing of a vector ®𝑥 , respectively.

Secure Computation over RSS Sharing. RSS sharing supports
the following (semi-honest) addition and multiplication operations:

• ⟨𝑧⟩ ← ⟨𝑥⟩ + ⟨𝑦⟩: For 𝑖 ∈ [3], 𝑃𝑖 computes (J𝑧K𝑖 = J𝑥K𝑖 +
J𝑦K𝑖 , J𝑧K𝑖−1 = J𝑥K𝑖−1 + J𝑦K𝑖−1).
• ⟨𝑧⟩ ← ⟨𝑥⟩ + 𝑐: 𝑃0 computes (J𝑧K0, J𝑧K2) = (J𝑥K0 + 𝑐, J𝑥K2);
𝑃1 computes (J𝑧K1, J𝑧K0) = (J𝑥K1, J𝑥K0 + 𝑐); and 𝑃2 computes

(J𝑧K2, J𝑧K1) = (J𝑥K2, J𝑥K1).
• ⟨𝑧⟩ ← 𝑐 · ⟨𝑥⟩: For 𝑖 ∈ [3], 𝑃𝑖 computes (J𝑧K𝑖 , J𝑧K𝑖−1) = (𝑐 ·J𝑥K𝑖 , 𝑐 ·

J𝑥K𝑖−1).
• ⟨𝑧⟩ ← ⟨𝑥⟩ · ⟨𝑦⟩: 𝑃𝑖 computes J𝑡K𝑖 ← J𝑥K𝑖 · J𝑦K𝑖 + J𝑥K𝑖−1 ·

J𝑦K𝑖 + J𝑥K𝑖 · J𝑦K𝑖−1 for 𝑖 ∈ [3]. (J𝑡K0, J𝑡K1, J𝑡K2) forms a (3
3
)-

sharing J𝑡K. The parties additionally generate a (3
3
)-sharing of

zero, i.e., 𝑟 = J𝑟K0 + J𝑟K1 + J𝑟K2 = 0. 𝑃𝑖 computes and sends

J𝑧K𝑖 ← J𝑡K𝑖 + J𝑟K𝑖 to 𝑃𝑖+1, meanwhile receives J𝑧K𝑖−1 from 𝑃𝑖−1.

𝑃𝑖 sets ⟨𝑧⟩𝑖 ← (J𝑧K𝑖 , J𝑧K𝑖−1). A (3
3
)-sharing J𝑟K of zero can be

generated non-interactively using a PRF-based trick [18]: each

pair of parties (𝑃𝑖 , 𝑃𝑖−1) share a common key kprf
𝑖

for a PRF

𝐹 : K × D → F. Given a session identifier 𝑖𝑑 ∈ D, 𝑃𝑖 computes

J𝑟K𝑖 ← 𝐹 (kprf
𝑖

, 𝑖𝑑) − 𝐹 (kprf
𝑖+1, 𝑖𝑑). Clearly, J𝑟K0 + J𝑟K1 + J𝑟K2 = 0.

Malicious SecurityMechanisms for RSS.Mostree relies on some

malicious security mechanisms and functionalities for RSS. To start

with, we show a consistent property for RSS defined as below:

Definition 1 (Consistent RSS Sharing [29]). Let (𝑎1, 𝑏1),
(𝑎2, 𝑏2), (𝑎3, 𝑏3) be the RSS shares held by 𝑃0, 𝑃1, and 𝑃2, and 𝑃𝑖
be corrupted. Then the shares are consistent if and only if 𝑎𝑖+1 = 𝑏𝑖+2.

One can check that consistency preserves for addition and scalar

multiplication. Consistency also holds for secret-shared multipli-

cation (i.e., ⟨𝑥⟩ · ⟨𝑦⟩), despite the fact that a malicious party can

add an error (independent of the shared secrets) to resulting RSS

sharing;
2
such an attack is known as an additive attack in secure

computation. This is captured by Lemma 1 (from [29]).

Lemma 1. If ⟨𝑥⟩ and ⟨𝑦⟩ are two consistent RSS sharings and ⟨𝑧⟩
is generated by executing the multiplication protocol on ⟨𝑥⟩ and ⟨𝑦⟩
in the presence of one malicious party, then ⟨𝑧⟩ is a consistent sharing
of either 𝑥 · 𝑦 or of some element 𝑧∗ ∈ F.

Existing RSS-based 3PC relies on a triple verification [18, 31] to

check the correctness ofmultiplication. Given a triple of RSS sharing

(⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩) with 𝑎 · 𝑏 = 𝑐 , the parties first open ⟨𝑒⟩ = ⟨𝑥⟩ − ⟨𝑎⟩
and ⟨𝑓 ⟩ = ⟨𝑦⟩ − ⟨𝑏⟩. Then the parties compute ⟨𝑤⟩ ← 𝑒 · 𝑓 + 𝑓 ·
⟨𝑎⟩ + 𝑒 · ⟨𝑏⟩ + ⟨𝑐⟩ − ⟨𝑧⟩ and securely open ⟨𝑤⟩ to check if𝑤 = 0.

Mostree uses some assumed ideal functionalities to achieve ma-

licious security, including Frand, Fopen, Fcoin, Frecon, Fshare, F Fmul,

and FCheckZero from [13, 18, 29]. All these functionalities can be

securely computed with malicious security using well-established

2
Suppose 𝑃𝑖 is the corrupted party. 𝑃𝑖 can instead send 𝑧𝑖 ← 𝑡𝑖 + 𝑟𝑖 + 𝑒 to 𝑃𝑖+1 .The
parties will share ⟨𝑥 · 𝑦 + 𝑒 ⟩ instead of ⟨𝑥 · 𝑦⟩.

protocols [13, 18, 29]. We also provide the corresponding protocols

in Appendix B for completeness.

• Frand (F): sample a random 𝑟
$←− F and share ⟨𝑟 ⟩ between three

parties.

• Fopen (⟨𝑥⟩): on inputting a consistent RSS-sharing ⟨𝑥⟩, reveal 𝑥
to all the parties.

• Fcoin (F): sample a random 𝑟
$←− F and output 𝑟 to three parties.

• Frecon (⟨𝑥⟩, 𝑖): on inputting a consistent RSS-sharing ⟨𝑥⟩ and a

party index 𝑖 , send 𝑥 to 𝑃𝑖 .

• Fshare (𝑥, 𝑖): on inputting a secret 𝑥 held by 𝑃𝑖 , share ⟨𝑥⟩ between
the parites.

• F Fmul (⟨𝑥⟩, ⟨𝑦⟩, 𝑒): take two RSS-sharing ⟨𝑥⟩ and ⟨𝑦⟩ for 𝑥,𝑦 ∈ F
and an additive error 𝑒 ∈ F specificed by the adversaryA, share

⟨𝑥 · 𝑦 + 𝑒⟩ between three parties.

• FCheckZero (⟨𝑥⟩): take ⟨𝑥⟩ as input and output True if 𝑥 = 0 and

False otherwise.

In addition, whenever three-party RSS-based secure computa-

tion (3PC for short) is used in a black-box manner (e.g., secure
comparison and secure MUX inMostree), we will use a 3PC ideal

functionality F F3pc directly for simplicity, which ensures privacy

and correctness for secure computation over F against a malicious

adversary.

Distributed Point Function. A point function 𝑓𝛼,𝛽 : D → R
outputs 𝛽 only if 𝑥 = 𝛼 and outputs 0 for all 𝑥 ∈ R \ {𝛼}. A
two-party distributed point function (DPF) scheme [7, 8, 19] can

share a point function using two succinct correlated keys (with size

sublinear in |D|). Def. 2 shows the formal definition.

Definition 2 (Distributed Point Function). A two-party DPF
scheme Π

dpf
= (Gen, Eval, BatchEval) consists of three algorithms:

• (kdpf
0

, kdpf
1
) ← Gen(1𝜅 , 𝑓𝛼,𝛽 ). Given a security parameter 1

𝜅 and

a point function 𝑓𝛼,𝛽 : D → R, outputs a two keys (kdpf
0

, kdpf
1
),

each for one party.
• J𝑦K𝑖 ← Eval(kdpf

𝑖
, 𝑥). Given a key kdpf

𝑖
for party 𝑃𝑖 (𝑖 ∈ {0, 1}),

and an evaluation point 𝑥 ∈ D, outputs a group element J𝑦K𝑖 ∈ R
as the share of 𝑓 (𝑥) for 𝑃𝑖 .
• {J𝑦 𝑗 K𝑖 } 𝑗∈[𝐿] ← BatchEval(kdpf

𝑖
, {𝑥 𝑗 } 𝑗∈[𝐿] ). This algorithm per-

forms evaluation over a batch of 𝐿 inputs {𝑥 𝑗 } 𝑗∈[𝐿] , outputs a set
of shares {J𝑦 𝑗 K𝑖 } 𝑗∈[𝐿] , where J𝑦 𝑗 K𝑖 ← Eval(kdpf

𝑖
, 𝑥 𝑗 ).

A DPF scheme should ensure secrecy and correctness properties.

Roughly, secrecy requires that one party cannot learn any more

information from its DPF key. Correctness requires Eval(kdpf
0

, 𝑥) +
Eval(kdpf

1
, 𝑥) = 𝑓𝛼,𝛽 (𝑥) always holds. We refer to Appendix A for

the formal definition.

Verifiable Distributed Point Function. When the party responsi-

ble for generating and distributingDPF keys ismalicious, it may gen-

erate incorrect keys. To prevent this, verifiable DPFs (VDPFs) [16]

additionally provide a verifiable property, defined as follows:

Definition 3 (Verifiable DPF). A verifiable distributed point
function scheme VDPF = (Gen, Eval,BatchEval,Verify) contains
four algorithms. :

• Gen and Eval: Same as the definition in DPF.
4



Mostree: Malicious Secure Private Decision Tree Evaluation with Sublinear Communication ACSAC’23, December 2023, Austin, Texas, USA

• (J𝑦 𝑗 K𝑖 , 𝜋𝑖 ) ← BatchEval(kdpf
𝑖

, {𝑥 𝑗 } 𝑗∈[𝐿] ). This algorithm per-
forms batch evaluation with an additional output 𝜋𝑖 which is used
to verify the correctness of the output.
• Accept/Reject ← Verify(𝜋0, 𝜋1). This is a protocol run between
the DPF evaluators, which takes the proofs 𝜋0 and 𝜋1 as the inputs
and outputs either Accept or Reject.

Security Definition. We follow the simulation-based security

model in the three-party honest-majority setting [1, 18]. We re-

fer to Appendix A for a formal definition.

4 OVERVIEW OFMOSTREE
This section shows the threat model and overview of Mostree.

4.1 Threat Model
SystemModel.Mostree contains three parties: amodel owner (MO),
a feature owner (FO), and one assistant computing party (CP).
Mostree consists of a one-time setup protocol and an evaluation

protocol. In the setup protocol, MO uses RSS sharing to share a

tree model among the three parties. Whenever FO wants to per-

form a PDTE query, it shares its feature vector among the three

parties. The parties jointly run the evaluation and reconstruct the

classification result to FO, completing the PDTE task.

Mostree works in the three-party honest-majority setting [1, 18,

29, 34] where at most one party is malicious and other two parties

are honest. The same assumption is also accepted by many recent

privacy-preserving works [15, 28, 32, 34] in order to trade a better

efficiency that cannot be obtained by two-party protocols. Mostree
ensures privacy and correctness with abort in the presence of a

malicious adversary under this model.

Remark. A secure computation protocol ensures private and correct

computation once the inputs are fed into the protocol. We do not

consider attacks from manipulated inputs or leakage from PDTE

protocol output (e.g., inference attacks and model stealing attacks).

4.2 Approach Overview
Mostree first encodes a DT as an array, then transforms DTE to

a traversal algorithm over arrays. Mostree focuses on designing

protocols to securely evaluate the DT algorithm over the encoded

tree and feature arrays.

Evaluation over Encoded Tree Array. Mostree encodes a DT
as a multi-dimensional array

®T. Fig. 1 shows the tree encoding

method. Each array element corresponding to a tree node contains

five values: left child index 𝑙 , right child index 𝑟 , threshold value

𝑡 , feature ID 𝑣 , and classification label 𝑐 (only valid for leaf nodes).

One can perform DTE over the encoded tree array and a feature

vector. The evaluation runs at most 𝑑 iterations, where 𝑑 is the

maximal DT depth. The evaluation starts from
®T[0]. In each itera-

tion, the algorithm fetches ®X[𝑣] and compares it with the current

threshold value 𝑡 , and decides to go left or right child according to

the comparison result. The algorithm terminates and outputs its

label 𝑐 as the classification result when reaching a leaf.

Private and Correct Tree Evaluation. Mostree aims to evalu-

ate the tree privately and correctly in the presence of a malicious

adversary.

We address the following security issues with efficient solutions.

❶ Hiding secret values: a PDTE protocol should hide each element of

c4

x2<t0

x1<t1

x0<t2
c1

c2 c3

1

1

1

0

0

0
0/1

0/1 0/1

0/1

idx t l r v c

0 t0 1 2 2 *

1 t1 3 4 1 *

2 ⦁ 2 2 ∘ c4
3 ⦁ 3 3 ∘ c1
4 t2 5 6 0 *

5 ⦁ 5 5 ∘ c2
6 ⦁ 6 6 ∘ c3

idx=0

idx=1 idx=2

idx=3

idx=5 idx=6

idx=4

Figure 1: Encoding Tree as an Tree Array ®T by Breadth-First
Search (BFS): • ∈ [2𝑘 ], ◦ ∈ [𝑛] and ∗ ∈ [2𝑘 ] where 𝑘 is the bit
length of single value and 𝑛 represents feature dimension.

®T and ®X as well as all intermediate states/values. ❷ Hiding running
time: a PDTE protocol should hide the decision path length. If MO
learns the number of evaluation rounds, it can infer the accessed

path. ❸ Hiding access pattern: a PDTE protocol should hide access

pattern over
®T and ®X. Specifically, no party should learn which child

and feature are taken during each evaluation round. ❹ Ensuring
correct classification: the FO must receive a correct classification

result if the protocol completes.

To ensure ❶, we choose RSS-based boolean sharing to share all

data among three parties, since it matches well with bit-wise com-

putation. To ensure ❷, we use the encoding trick from Bai et al. [4].
As shown in Fig 1, the idea is to encode two circles for each leaf

node by setting children indexes as the leaf itself, thus the eval-

uation will be redirected back to itself once reached. The parties

always run 𝑑pad ≥ 𝑑 iterations for any query. This hides running

time meanwhile ensures the correctness of classification.

Achieving ❸ under the constraint of sublinear communication

and malicious security is challenging. What we want is a sublinear-

communication oblivious selection (OS) functionality that allows

the parties to obliviously select and share a desired tree node in a

secret-shared fashion. We propose two efficient OS protocols for

RSS sharing. However, both protocols are not totally maliciously se-

cure. They are all vulnerable to additive attacks, which compromise

the correctness property. To address this issue, we design a set of

lightweight consistency checks, exploiting some nice properties of

the proposed primitives and reusing existing RSS-based malicious

secure mechanisms and functionalities. Combining them together,

Mostree ensures ❹.

5 THE MOSTREE PROTOCOL
This section details techniques in Mostree. We first propose two

oblivious selection (OS) protocols both with constant online com-

munication. Then we combine OS protocols with our tree encoding

method and existing 3PC ideal functionalities to designMostree.

5.1 Oblivious Selection from Pure RSS
Mostree uses Oblivious Selection (OS) protocols to perform oblivi-

ous node selection. Our OS protocols aim to compute functionality

Fos securely: On inputting an RSS-shared vector ⟨®T⟩ and an RSS-

shared index ⟨idx⟩, receive an error 𝑒 ∈ F from the adversary, share

⟨®T[idx]+𝑒⟩ (with rerandomization) between the parties. Here Fos is
5



ACSAC’23, December 2023, Austin, Texas, USA Jianli Bai, Xiangfu Song, Xiaowu Zhang, Qifan Wang, Shujie Cui, Ee-Chien Chang, and Giovanni Russello

up to additive attacks. Looking ahead, this imperfect Fos definition
suffices for our purpose and achieves our efficiency goals.

Oblivious Selection Using Inner-product. We use inner product

computation for oblivious selection. Specifically, given an RSS-

sharing ⟨idx⟩ and an RSS-sharing vector ⟨®T⟩ and assume the parties

can somehow share a unit vector ⟨®𝑢⟩ such that ®𝑢 comprises all

0s except for a single 1 at idx, selection can be easily made by

computing ⟨®T[idx]⟩ ← ⟨®𝑢 ⊙ ®T⟩.
Achieve constant resharing communication. Inner-product com-

putation requires𝑚 multiplications. Multiplication between two

RSS sharings involves a resharing phase that reshares a (3
3
)-sharing

back to a (3
2
)-sharing. Resharing requires communication; thus, triv-

ially invoking𝑚 multiplications would incur linear communication.

We use an optimization trick to reduce the overhead: the parties

first sum all intermediate (3
3
)-sharings of𝑚 multiplication and then

perform resharing only once. Now we can achieve constant com-

munication for inner-product computation. However, generating

⟨®𝑢⟩ from ⟨idx⟩ requires linear communication: the parties compute

⟨®𝑢⟩ such that ®𝑢 [ 𝑗] ← ( 𝑗 == idx) for 𝑗 ∈ [𝑚], which requires𝑚

invocations of secure equality comparison with linear communica-

tion.

Achieve constant online communication. We use a derandomiza-

tion technique [3, 4, 9, 23] to further reduce online communication.

In particular, suppose the parties have already shared a unit vec-

tor ®𝑣 whose non-zero element appears at a random position rdx.
When obtained idx, the parties compute ⟨Δ⟩ ← ⟨rdx ⊕ idx⟩ and
open Δ by revealing shares to other parties. Note that the vector

length must be power-of-2 to enable this derandomization. Now the

parties can define ⟨®𝑢⟩ such that ⟨®𝑢 [ 𝑗]⟩ ← ⟨®𝑣 [ 𝑗 ⊕ Δ]⟩ for 𝑗 ∈ [𝑚].
Clearly, ®𝑢 [ 𝑗] = 1 only for 𝑗 = idx. Then they can use ⟨®𝑢⟩ and ⟨®T⟩ to
perform selection, as mentioned above. Since generating ⟨®𝑣⟩ can be

moved to the offline phase, the online communication is reduced

to constant.

Malicious Security with up to Additive Attacks. To achieve

malicious security for the offline phase, we rely on existing ma-

licious secure equality comparison protocol to generate the unit

vector ⟨®𝑣⟩. This part is not our focus and we use the existing ideal

functionality F F2

3pc directly. We also provide the concrete secure

equality comparison protocol Πeq in Appendix B for completeness.

The online phase requires opening ⟨Δ⟩ = ⟨rdx⟩ ⊕ ⟨idx⟩, adjust-
ing ⟨𝑣⟩, and performing an inner product computation. However,

a malicious party can add errors in the online phase to break cor-

rectness. First, we assume both ⟨idx⟩ and ⟨rdx⟩ are consistent RSS
sharing; we will show this assumption holds when using OS in

Mostree. Thus opening ⟨Δ⟩ can be done correctly using Fopen with

malicious security. The challenge is to check the correctness of𝑚

multiplications. Note that resharing for multiplication is subject

to additive attacks, allowing the adversary to inject an error into

the multiplication sharing. Existing malicious secure RSS-based

3PC protocols [18, 31] perform a triple-based correctness check

for each multiplication (refer to section 3.2), which incurs linear

communication for inner-product.

Our observation is that we can omit the correctness check for

multiplication at this stage, which explains whywe formally capture

this attack in the definition of Fos; we rely on a communication-

efficient mechanism to detect additive errors at a later stage. As a

Parameters: An RSS-sharing array ⟨®T⟩ where each element
®T[ 𝑗 ] ∈ F

2
ℓ

for 𝑗 ∈ [𝑚]; 𝑚 = 2
ℓ𝑚

where ℓ𝑚 denotes the number of bits of 𝑚; an

RSS-sharing index ⟨idx ⟩ for idx ∈ [𝑚]; a PRF 𝐹 : K × D → R where

K = D = {0, 1}𝜅 and R = F
2
ℓ . A common session identifier sid, and each

pair of two parties (𝑃𝑖−1, 𝑃𝑖 ) hold a common PRF key kprf
𝑖
∈ K for 𝑖 ∈ [3].

[Preprocess] The parties generate a random unit vector sharing ⟨®𝑣⟩ with
a non-zero index sharing ⟨rdx ⟩.
1. The parties call ⟨rdx ⟩ ← Frand (F2

ℓ𝑚 ) .
2. The parties call FF2

3pc to compute an RSS-shared unit vector ⟨®𝑣⟩, where
®𝑣 [rdx ] = 1 and ®𝑣 [ 𝑗 ] = 0 for all 𝑗 ≠ rdx.

3. The parties store (⟨rdx ⟩, ⟨®𝑣⟩) for online computation.

[Selection] Upon input (sid, ⟨®T⟩, ⟨idx ⟩) , do the following:

1. Fetch a preprocessed random unit vector RSS-sharing (⟨rdx ⟩, ⟨®𝑣⟩) .
2. Compute ⟨Δ⟩ ← ⟨rdx ⟩ ⊕ ⟨idx ⟩ and open Δ← Fopen (⟨Δ⟩) . If the open

fails, abort.

3. The parties define ⟨ ®𝑢 ⟩ where ⟨ ®𝑢 [ 𝑗 ] ⟩ ← ⟨®𝑣 [ 𝑗 ⊕ Δ] ⟩.
4. Compute oblivious selection using inner-product as follows:

1) The parties compute a (3
3
)-sharing J𝑡K← ∑

𝑗 ∈ [𝑚]J®T[ 𝑗 ] · ®𝑢 [ 𝑗 ]K using
⟨®T⟩ and ⟨ ®𝑢 ⟩.

2) For 𝑖 ∈ [3]: 𝑃𝑖 computes J𝑟K𝑖 ← 𝐹 (kprf
𝑖

, sid) − 𝐹 (kprf
𝑖−1

, sid) . 𝑃𝑖
defines J𝑠K𝑖 = J𝑡K𝑖 + J𝑟K𝑖 and sends J𝑠K𝑖 to 𝑃𝑖+1.

3) For 𝑖 ∈ [3], party 𝑃𝑖 defines ⟨𝑠 ⟩ such that ⟨𝑠 ⟩𝑖 ← (J𝑠K𝑖 , J𝑠K𝑖−1 ) .
5. Output ⟨𝑠 ⟩.

Figure 2: Protocol Πrss-os with Additive Attacks

benefit, the resulting OS protocol keeps constant online communi-

cation.

The RSS-based OS Protocol. The RSS-based OS protocol Πrss-os is

formally descripted in Fig. 2. Security of Πrss-os is from Theorem 1,

with a proof from Appendix C.1.

Theorem 1. Πrss-os securely computes Fos in the (Frand, F F2

3pc,

Fopen)-hybrid model in the presence of a malicious adversary in the
three-party honest-majority setting, assuming 𝐹 is a secure PRF.

5.2 Oblivious Selection from DPF and RSS
Protocol Πrss-os enjoys constant online communication but linear

offline communication. We propose another OS protocol with con-

stant online communication and sublinear offline communication.

A Semi-honest DPF-based OS Protocol. The idea is similar to

Πrss-os. The difference is we apply DPFs over RSS sharings to per-

form inner-product computation. We first review how to construct

a semi-honest OS protocol, then securely enhance it to realize Fos.
Apply DPF over RSS sharings. Recall that for an RSS-shared tree

array ⟨®T⟩, 𝑃𝑖 and 𝑃𝑖+1 hold a common share vector J®TK𝑖 . 𝑃𝑖 and
𝑃𝑖+1 can apply a DPF over the common J®TK𝑖 to perform OS oper-

ations. Specifically, a trusted dealer generates a pair of DPF keys

(kdpf
0

, kdpf
1
) ← Gen(1𝜅 , 𝑓idx,1) and sends kdpf

𝑏
to 𝑃𝑖+𝑏 for 𝑏 ∈ {0, 1},

respectively. Each party locally expands its DPF key over the do-

main [𝑚]. By doing this, 𝑃𝑖 and 𝑃𝑖+1 share a vector J®𝑢K in (2
2
)-

sharing, where ®𝑢 comprises all 0s except for a single 1 appear-

ing at coordinate idx. Each party locally computes inner-product

JJ®TK𝑖 [idx]K←
∑

𝑗∈[𝑚]J®𝑢 [ 𝑗]K · J®TK𝑖 [ 𝑗], a (2
2
)-sharing of J®TK𝑖 [idx]

between 𝑃𝑖 and 𝑃𝑖+1. The above process is repeatedly run for any

two parties out of three. At the end of the three-round execution,

6



Mostree: Malicious Secure Private Decision Tree Evaluation with Sublinear Communication ACSAC’23, December 2023, Austin, Texas, USA

Pi

Pi+1

Pi+2

T 𝑖 T 𝑖+2

T 𝑖
T 𝑖+1

T 𝑖+1 T 𝑖+2

T 𝑖+1[idx] 0

T 𝑖+1[idx] 1

T 𝑖[idx] 0

T 𝑖[idx] 1

T 𝑖+2[idx] 0

T 𝑖+2[idx] 1

Note:
1). We use to represent a DPF batch evaluation process with additional 𝑘!

"#$and
𝑘%
"#$ from two different parties as inputs where (𝑘!

"#$, 𝑘%
"#$)⟵Gen(1&,𝑓'"(,%).

2). Any two parties out of three jointly perform the DPF batch evaluation process.
3). Pi computes T 𝑖[idx] 0+ T 𝑖+2[idx] 0 and

Pi+1 computes T 𝑖+1[idx] 0+ T 𝑖[idx] 1 and

Pi+2 computes T 𝑖+1[idx] 1+ T 𝑖+2[idx] 1 to get a (3,3)-sharing of T [idx].
4). Three parties reshare (3,3)-sharing T [idx] to its RSS sharing.

Figure 3: OS from DPF and RSS

each party will hold two shares of (2
2
)-sharing (since each party

will run oblivious selection twice with the other two parties). After

that, the parties locally sum up two local shares of (2
2
)-sharing. In

this manner, three parties jointly produce a (3
3
)-sharing of ®T[idx],

which can be reshared back to an RSS-sharing ⟨®T⟩ using the PRF-
based re-sharing trick [18] (also refer to Section 3.2 and Fig. 2).

Fig. 3 sketches the DPF-based OS protocol.

To remove the trusted party, we let the non-involved party 𝑃𝑖+2
generate the DPF keys. However, we cannot let 𝑃𝑖+2 know idx
as this will violate privacy. We apply the same derandomization

technique used in Πrss-os to resolve the issue. Specifically, in the

offline phase, 𝑃𝑖+2 generates a pair of DPF keys for a point function

𝑓rdx,1 with a randomly chosen index rdx, and 𝑃𝑖+2 shares the DPF

keys as well as rdx (using (2
2
)-sharing) between 𝑃𝑖 and 𝑃𝑖+1. In the

online phase, 𝑃𝑖 and 𝑃𝑖+1 each expands its DPF key locally to share a
(2
2
)-sharing of a unit vector J®𝑣K. 𝑃𝑖 and 𝑃𝑖+1 then open Δ = rdx⊕ idx

and compute ⟨®𝑢⟩ such that ®𝑢 [ 𝑗] ← ®𝑣 [ 𝑗 ⊕ Δ] for 𝑗 ∈ [𝑚]. With J®𝑢K
and J®TK𝑖 , 𝑃𝑖 and 𝑃𝑖+1 can locally compute and share J®T𝑖 [idx]K in
(2
2
)-sharing. Note that the PDF keys are of size 𝑂 (𝜅 log𝑚) where

𝜅 is the security parameter, and the key generation can be moved

to the offline phase.
3
Efficiency-wise, this requires constant online

communication and sublinear offline communication.

Attacks. The DPF-based OS protocol involves three interactive

parts: 1) DPF key generation and distribution; 2) opening Δ; and 3)

DPF-based local evaluation and resharing. Now we discuss mali-

cious attacks for each part.

Firstly, we discuss attacks from a corrupted key generator 𝑃𝑖+2.
There are two possible attacks: 1) Incorrect DPF keys. Instead of

generating a pair of well-formed DPF keys, the corrupted party

may generate the keys for a point function 𝑓rdx,𝑠 with 𝑠 ≠ 1; Indeed,

the corrupted party may take arbitrary key generation strategies.

2) Incorrect index sharing. Even the DPF keys for 𝑓rdx,1 are correctly

generated and shared, the malicious 𝑃𝑖+2 may share an inconsistent

index rdx∗ ≠ rdx between 𝑃𝑖 and 𝑃𝑖+1. As a consequence, this

attack results in an incorrect opening of Δ← rdx ⊕ idx ⊕ 𝑒 where
the error 𝑒 = rdx ⊕ rdx∗; looking ahead, this corresponds to an

incorrect node being selected in Mostree. Secondly, we notice that

3
The concrete offline efficiency is poor for small trees. In this case, 𝑃𝑖+2 directly shares

the unit vector ®𝑣 between 𝑃𝑖 and 𝑃𝑖+1 instead of distributing a pair of DPF keys.

even if the DPF keys are correctly generated and the index rdx is

correctly shared, how to correctly reconstruct Δ to 𝑃𝑖 and 𝑃𝑖+1 is
still a question. If only 𝑃𝑖 and 𝑃𝑖+1 are involved in the reconstruction
of Δ, it is impossible to ensure correctness because an adversary

who corrupts either 𝑃𝑖 or 𝑃𝑖+1 can always add errors during the

reconstruction process. Lastly, a corrupted party may maliciously

add errors before resharing the (3
3
)-shared selected secret, resulting

in an additive attack. We note that the last attack is allowed by Fos.
Defences. The above attacks only compromise correctness, not pri-

vacy. We propose a set of consistency checks to ensure correctness

in the above protocol. Now we present intuitions, and the formal

description is shown by protocol Πdpf-os in Fig. 4.

Parameters: An RSS-sharing for array ⟨®T⟩ where each element
®T[ 𝑗 ] ∈ F

2
ℓ

for 𝑗 ∈ [𝑚];𝑚 = 2
ℓ𝑚

where ℓ𝑚 denotes the number of bits of𝑚; an RSS-

sharing index ⟨idx ⟩ for idx ∈ [𝑚]; point function 𝑓𝛼,𝛽 : [𝑚] → F
2
ℓ ; each

pair of two parties (𝑃𝑖 , 𝑃𝑖+1 ) hold a common key kprf
𝑖
∈ {0, 1}𝜅 for 𝑖 ∈ [3]

for a PRF 𝐹 : K × D → R where K = D = {0, 1}𝜅 and R = F
2
ℓ . A

common session identifier sid.
[Preprocess] The parties run the following protocol to generate suffi-

ciently many DPF keys.

1. 𝑃𝑖+2 samples a random value rdx
$←− Z𝑚 and locally computes a

pair of DPF keys (kdpf
0

, kdpf
1
) ← VDPF.Gen(1𝜅 , 𝑓rdx,1 ) . 𝑃𝑖+2 samples

JrdxK0 and JrdxK1 such that JrdxK0 + JrdxK1 = rdx over Z𝑚 . 𝑃𝑖+2 sends

(kdpf
0

, JrdxK0 ) and (kdpf
1

, JrdxK1 ) to 𝑃𝑖 and 𝑃𝑖+1, respectively.
2. 𝑃𝑖 and 𝑃𝑖+1 run the DPF key verification protocol from [16] to check

the well-formness of DPF keys. If the check fails, abort.

3. 𝑃𝑖 and 𝑃𝑖+1 each expand its DPF key over domain [𝑚] to jointly produce
a shared vector J®𝑣K in the (2

2
)-sharing. For 𝑏 ∈ {0, 1}, 𝑃𝑖+𝑏 locally

computes:

J𝑡K𝑏 ←
∑︁

𝑗 ∈ [𝑚]
J®𝑣 [ 𝑗 ]K𝑏 , J𝑠K𝑏 ← JrdxK𝑏 −

∑︁
𝑗 ∈ [𝑚]

𝑗 · J®𝑣 [ 𝑗 ]K𝑏 .

𝑃𝑖 and 𝑃𝑖+1 open J𝑡K and J𝑠K and check if 𝑡 = 1 and 𝑠 = 0. If the check

fails, abort.

4. 𝑃𝑖+2 stores (rdx, JrdxK0, JrdxK1 ) , 𝑃𝑖 stores (kdpf
0

, JrdxK0 ) , and 𝑃𝑖+1

stores (kdpf
1

, JrdxK1 ) .
[Selection] Upon input (sid, ⟨®T⟩, ⟨idx ⟩) , do:
1. For 𝑖 ∈ [3]:

1) For 𝑏 ∈ {0, 1}, 𝑃𝑖+𝑏 fetches a DPF key with the index share

(kdpf
𝑏

, JrdxK𝑏 ) distributed by 𝑃𝑖+2 in the offline phase. Then 𝑃𝑖 sets

⟨rdx ⟩𝑖 = (0, JrdxK0 ) , 𝑃𝑖+1 sets ⟨rdx ⟩𝑖+1 = (JrdxK1, 0) , and 𝑃𝑖+2 sets
⟨rdx ⟩𝑖+2 = (JrdxK0, JrdxK1 ) .

2) Three parties compute ⟨Δ⟩ ← ⟨rdx ⟩ ⊕ ⟨idx ⟩ and reconstruct Δ only
to 𝑃𝑖+1 and 𝑃𝑖+2 using Frecon. If reconstruction fails, abort.

3) 𝑃𝑖 and 𝑃𝑖+1 share a (2
2
)-sharing JJ®TK𝑖 [idx ]K ←

∑
𝑗 ∈ [𝑚]J®TK𝑖 [ 𝑗 ] ·

J®𝑣 [ 𝑗 ⊕ Δ]K; 𝑃𝑖+𝑏 holds JJ®TK𝑖 [idx ]K𝑏 for 𝑏 ∈ {0, 1}.
2. Now

®T𝑖 [idx ] is shared between (𝑃𝑖 , 𝑃𝑖+1 ) in (2
2
)-sharing for 𝑖 ∈

[3](each party will hold two (2
2
)-shares after the DPF-based evaluation).

Each party locally sums up its two shares of (2
2
)-sharing to generate a

(3
3
)-sharing J®T[idx ]K.

3. For 𝑖 ∈ [3], 𝑃𝑖 computes J𝑧K𝑖 ← J®T[idx ]K𝑖 +𝐹 (kprf𝑖
, sid) −𝐹 (kprf

𝑖−1
, sid)

and sends J𝑧K𝑖 to 𝑃𝑖+1. 𝑃𝑖 receives J𝑧K𝑖−1 from 𝑃𝑖−1.

4. For 𝑖 ∈ [3], 𝑃𝑖 defines ⟨𝑧⟩𝑖 ← (J𝑧K𝑖 , J𝑧K𝑖−1 ) .

Figure 4: Protocol Πdpf-os from DPF and RSS

7



ACSAC’23, December 2023, Austin, Texas, USA Jianli Bai, Xiangfu Song, Xiaowu Zhang, Qifan Wang, Shujie Cui, Ee-Chien Chang, and Giovanni Russello

Detect malicious DPF keys. We use a VDPF scheme to prevent a

corrupted DPF key generation party from distributing incorrect DPF

keys. A VDPF scheme additionally allows two key DPF receivers

to run an efficient check protocol to test whether the DPF keys are

correctly correlated without leaking any information other than

the validity of the keys. We use an existing VDPF construction [16]

to perform the check for DPF keys.

Unfortunately, the check method from [16] only ensures the DPF

keys correspond to a point function 𝑓𝛼,𝛽 for arbitrary 𝛽 ; it does

not check 𝛽 = 1. Besides, for our purpose, 𝑃𝑖 and 𝑃𝑖+1 must check

whether the (2
2
)-sharing JrdxK is consistent with the point function

𝑓𝛼,𝛽 shared by the DPF keys (i.e., ensuring rdx = 𝛼). To this, we

additionally propose the following lightweight checks. First, to

check 𝛽 = 1, 𝑃𝑖 and 𝑃𝑖+1 locally expand their DPF keys to produce

a shared a (2
2
)-sharing vector J®𝑣K, and they check the sum of all the

entries is equal to 1. Second, to check the shared index rdx is equal

to 𝛼 , the checking parties jointly compute 𝑠 = rdx − ∑
𝑗∈[𝑚] 𝑗 ·

®𝑣 [ 𝑗] in a shared fashion, open 𝑠 , and check if 𝑠 = 0.
4
With these

additional checks, we can ensure the correctness of DPF keys and

the consistency of the shared index. The detailed description can

be found from Πdpf-os (Step 2 - 3, preprocess protocol).

Reconstruct Δ correctly. To open Δ correctly, we observe that any

(2
2
)-sharing J𝑥K can be converted to an RSS sharing ⟨𝑥⟩ without

interaction, where J𝑥K is distributed by the dealer 𝑃𝑖+2 and is shared
between 𝑃𝑖 and 𝑃𝑖+1. Our insight is that the dealer 𝑃𝑖+2 knows 𝑥 as

well as the shares J𝑥K0 and J𝑥K1. Therefore, the parties can define

an RSS sharing ⟨𝑥⟩ from J𝑥K = {J𝑥K0, J𝑥K1} non-interactively as:

⟨𝑥⟩𝑖 = (0, J𝑥K0), ⟨𝑥⟩𝑖+1 = (J𝑥K1, 0), ⟨𝑥⟩𝑖+2 = (J𝑥K0, J𝑥K1).

Using this trick, the parties can define a consistent RSS-sharing
⟨rdx⟩ from JrdxK. Note ⟨idx⟩ is a consistent RSS sharing and ⟨Δ⟩ =
⟨rdx⟩⊕⟨idx⟩, then ⟨Δ⟩ is also consistent (see Def. 1 and its following
explaination). Since Δ is a consistent RSS sharing, the parties can

correctly reconstruct Δ to 𝑃𝑖 and 𝑃𝑖+1 using Frecon. Note that Δ is

only reconstructed to 𝑃𝑖 and 𝑃𝑖+1, 𝑃𝑖+2 cannot learn it; otherwise

𝑃𝑖+2 can learn idx = Δ ⊕ rdx.
After applying the above consistency checks, a corrupted party

is only limited to adding errors in the resharing phase.

DPF-based OS Protocol. The protocol is formally described in

Fig. 4. We note that Πdpf-os is subject to an additive attack in the

resharing phase; we will show how to handle additive errors at a

later stage. Theorem 2 shows the security of Πdpf-os, with the proof

from Appendix C.2.

Theorem 2. Πdpf-os securely computes Fos in the Frecon-hybrid
model in the presence of a malicious adversary in the three-party
honest-majority setting, assuming 𝐹 is a secure PRF.

5.3 The Mostree PDTE Protocol
Detecting Errors using MACs. Mostree uses Fos for oblivious
node selection, but Fos is subject to additive errors. We use SPDZ-

like MACs to detect errors.

4
When either 𝑃𝑖 or 𝑃𝑖+1 is corrupted, the party 𝑃𝑖+2 is assumed to be honest in honest-

majority setting. In view of this, the check protocol has no need to ensure correctness

as incorrect opening (either from a corrupted 𝑃𝑖 or 𝑃𝑖+1) only makes the protocol

abort.

SPDZ-like MACs. An SPDZ-like MAC 𝜎 (𝛼, 𝑥) is usually defined

as 𝜎 (𝛼, 𝑥) = 𝛼 · 𝑥 over a finite field F, where 𝑥 is the value to be

authenticated and 𝛼 is the MAC key. These MACs are additively

homomorphic: 𝛼 · (𝑥 + 𝑦) = 𝛼 · 𝑥 + 𝛼 · 𝑦. In the following, we

will drop 𝛼 and instead use 𝜎 (𝑥) or 𝜎𝑥 to denote the MAC for 𝑥

when the context is clear. A MAC 𝜎 (𝑥) is also shared along with its

authenticated secret 𝑥 . Secure computation is performed both for

𝑥 and 𝜎 (𝑥), and the protocol aborts if the output 𝑥 and the MAC

tag 𝜎𝑥 not satisfying 𝛼 · 𝑥 = 𝜎𝑥 . In order to achieve overwhelming

detection probability, the field F must be large enough, which is

vital to ensure overwhelming detection probability.

MACs over F
2
ℓ with low overhead. We use MACs over F

2
ℓ to au-

thenticate ℓ-bit secrets as a whole. We exploit the fact that Zℓ
2
is

compatible with F
2
ℓ over addition (i.e., bit-wise XOR). Therefore,

a secret shared over Zℓ
2
can be converted to a secret over F

2
ℓ for

free. We note that F
2
ℓ is incompatible with bit-wise multiplication.

Nevertheless, these MACs are only used for detecting errors from

oblivious selection rather than the whole computation. Another

benefit is that ℓ > 𝜆 for real-world decision-tree applications where

𝜆 is a statistical security parameter. Thus F
2
ℓ is large enough for

error detection. This means the MACs are at the same size as the

authenticated secrets, incurring only constant overhead. Notably,

our method does not require any expensive share conversion.

Parameters: Three parties denoted as 𝑃0, 𝑃1 and 𝑃2; statistical security

parameter 𝜆; a finite field F
2
ℓ where ℓ ≫ 𝜆; number𝑚 ∈ Z denotes the

number of RSS sharings to be checked.

[Check] On inputting 𝑚 RSS sharings {𝑥 𝑗 } 𝑗 ∈ [𝑚] , MAC values

{𝜎 (𝑥 𝑗 ) } 𝑗 ∈ [𝑚] and MAC key sharing ⟨𝛼 ⟩, outputs True if MAC check

passed and False otherwise.

1. The parties call ⟨𝑟 ⟩ ← Frand (F2
ℓ ) and ⟨𝜎 (𝑟 ) ⟩ ← F

F
2
ℓ

mul (⟨𝑟 ⟩, ⟨𝛼 ⟩) .
2. The parties call Fcoin (F𝑚

2
ℓ ) to receive random elements

𝜌1, 𝜌2, · · · , 𝜌𝑚 ∈ F2
ℓ \ {0}.

3. The parties locally compute ⟨𝑣⟩ ← ⟨𝑟 ⟩ + ∑𝑗 ∈ [𝑚] 𝜌 𝑗 · ⟨𝑥 𝑗 ⟩ and
⟨𝑤⟩ ← ⟨𝜎 (𝑟 ) ⟩ +∑𝑗 ∈ [𝑚] 𝜌 𝑗 · ⟨𝜎 (𝑥 𝑗 ) ⟩.

4. Securely open ⟨𝑣⟩ via Fopen. Abort if the open fails.

5. Call FCheckZero (⟨𝑤⟩ − 𝑣 · ⟨𝛼 ⟩) and abort if receives False.

Figure 5: Protocol for Batch MAC Check ΠMacCheck

Mostree authenticates the shared tree array ⟨®T⟩ by computing

their MACs (also shared) in the setup phase. In the online phase,

the parties run Fos over both the shared tree array and its MAC

array. The intuition is that any introduced errors will break the

relationship between the shared data and its MAC, which can be

detected by a MAC check protocol ΠMacCheck in Fig. 5. Such a

batch MAC check technique is previously used in [13, 20, 29], which

detects additive errors with probability 1−𝑂 (1/|F|), which is closed
to 1 except with negligible probability, for large enough field F.
The Mostree Protocol. Combining tree encoding, Fos, MAC over

F
2
ℓ and RSS-based secure computation, we propose Mostree for-

mally described in Fig. 6. Mostree intends to compute a PDTE

functionality Fpdte: On inputting a feature vector ®X from MO and

a decision tree
®T from MO, outputs a classification result to FO.

Mostree contains a one-time offline setup protocol and an online

evaluation protocol.

8



Mostree: Malicious Secure Private Decision Tree Evaluation with Sublinear Communication ACSAC’23, December 2023, Austin, Texas, USA

Parameters: Three parties denoted as 𝑃0, 𝑃1 and 𝑃2; statistical security

parameter 𝜆; F2 denotes the binary field for boolean sharing;𝑚 denotes

the number of tree nodes; ℓ𝑚 denotes the minimal value such that

𝑚 ≤ 2
ℓ𝑚

; 𝑛 denotes the dimension of feature vectors; 𝑘 denotes the

bit-length of values (e.g., left and right children index, threshold value,

and classification result); ℓ denotes the bit-length of tree nodes, i.e.,
ℓ = 4𝑘 + 𝑛; a finite field F

2
ℓ where ℓ ≫ 𝜆.

[Setup] Upon receiving a DT
®T , the setup protocol outputs (⟨ ®T⟩, ⟨ ®M⟩)

where ⟨®T⟩ is the RSS-sharing array for the tree and ⟨ ®M⟩ is the MAC

array for ⟨®T⟩ such that ®M = 𝜎 ( ®T) .
1. MO encodes

®T as an array
®T. The parties call Fshare in whichMO

inputs
®T. As a result, ⟨®T⟩ is shared between the parties.

2. The parties call ⟨𝛼 ⟩ ← Frand (F2
ℓ ) to share a MAC key 𝛼 ∈ F

2
ℓ .

3. Compute MACs: ⟨ ®M[ 𝑗 ] ⟩ ← FF2
ℓ

mul (⟨𝛼 ⟩, ⟨®T[ 𝑗 ] ⟩) for 𝑗 ∈ [𝑚].
4. The parties run ΠMacCheck (⟨ ®T⟩, ⟨ ®M⟩. If the check fails, abort.

5. Output (⟨ ®T⟩, ⟨ ®M⟩) .
[Evaluation] Upon receiving ®X from FO, do:

1. FO shares ⟨ ®X⟩ via calling Fshare.
2. Initialize ⟨𝑟𝑒𝑠𝑢𝑙𝑡 ⟩ ←⊥.
3. Parse ⟨𝑡 ⟩ | | ⟨𝑙 ⟩ | | ⟨𝑟 ⟩ | | ⟨ ®𝑣⟩ | | ⟨𝑐 ⟩ ← ⟨®T[0] ⟩.
4. For 𝑗 ∈ [𝑑

pad
]: // step 1) to 3) are executed by calling FF2

3pc.

1) ⟨𝑥 ⟩ ← ∑
𝑗 ∈ [𝑛] ⟨ ®X[ 𝑗 ] ⟩ · ⟨®𝑣 [ 𝑗 ] ⟩.

2) ⟨𝑏 ⟩ ← ⟨𝑥 ⟩ < ⟨𝑡 ⟩.
3) ⟨idx ⟩ ← ⟨𝑟 ⟩ ⊕ ⟨𝑏 ⟩ · (⟨𝑙 ⟩ ⊕ ⟨𝑟 ⟩) .
4) ⟨®T[idx ] ⟩ | | ⟨ ®M[idx ] ⟩ ← Fos (⟨idx ⟩, ⟨®T⟩ | | ⟨ ®M⟩) .
5) Parse ⟨𝑡 ⟩ | | ⟨𝑙 ⟩ | | ⟨𝑟 ⟩ | | ⟨ ®𝑣⟩ | | ⟨𝑐 ⟩ ← ⟨®T[idx ] ⟩.
6) Update ⟨𝑟𝑒𝑠𝑢𝑙𝑡 ⟩ ← ⟨𝑐 ⟩.

5. Use ΠMacCheck to check 𝑑𝑝𝑎𝑑 pairs of RSS sharings from Fos, abort
if the check fails.

6. Call Frecon (⟨𝑟𝑒𝑠𝑢𝑙𝑡 ⟩) to reconstruct 𝑟𝑒𝑠𝑢𝑙𝑡 to FO.

Figure 6: TheMostree Protocol Πpdte

Setup phase. The setup protocol requires linear communication

in the tree size. Setup is only run once thus the overhead can be

amortized across subsequent queries.

As a requirement of Fos, we need the dimension of
®T to be a

power of two (i.e.,𝑚 = 2
ℓ𝑚

for some ℓ𝑚). If this is not the case, the

tree holder can pad the array before sharing the encoded tree. In

particular, the holder computes the minimal ℓ𝑚 such that𝑚 ≤ 2
ℓ𝑚

and allocates an array of size 2
ℓ𝑚
. The holder randomly assigns

𝑚 nodes within the power-of-two-length array and modifies each

node’s left and right child correspondingly. Overall, this padding,

at most, doubles the storage overhead of the non-padded version.

Mostree relies on existing ideal functionality F F2
ℓ

mul for MAC

generation. Concretely, the parties first invoke Frand to obtain an

RSS-sharing ⟨𝛼⟩ for a random MAC key 𝛼
$←− F

2
ℓ (Step 2, Setup).

Then they call F F2
ℓ

mul 𝑚 times to compute an array sharings ⟨ ®M⟩
for MACs of ⟨®T⟩, where ®M[ 𝑗] = 𝛼 · ®T[ 𝑗] is defined over F

2
ℓ for

𝑗 ∈ [𝑚] (Step 3, Setup). Note that F F2
ℓ

mul also suffers from additive

attacks. To check whether these MACs are correctly generated, the

parties can run batch MAC check over (⟨®T⟩, ⟨ ®M⟩) at the end of the

setup protocol (Step 4, Setup); this means we can use ΠMacCheck to

uniformly handle leakage from the setup protocol and Fos.

Evaluation phase. The evaluation protocol, on inputting ⟨®T⟩, ⟨ ®M⟩
and an RSS-sharing feature vector ⟨ ®X⟩, outputs an RSS-sharing

⟨𝑟𝑒𝑠𝑢𝑙𝑡⟩, where result denotes the classification result and will be

reconstructed to FO. We stress that feature selection must also be

done obliviously. Certainly, we can resort to Fos again, but it turns
out that this approach is overkill in most cases because feature

vectors are usually with low-dimension. We instead use a much

simpler approach. Specifically, we modify the tree encoding method

by replacing each feature index 𝑣 ∈ Z𝑛 to a length-𝑛 unit bit vector

®𝑣 ∈ Z𝑛
2
, where ®𝑣 comprises all 0s except for a single 1 appearing at

coordinate 𝑣 . In this manner, the parties simply run RSS-based inner-

product computation for oblivious feature selection. Here the triple-

verification method from [18] is used to ensure the correctness of

each multiplication, incurring 𝑂 (𝑛) communication.

The evaluation protocol contains 𝑑𝑝𝑎𝑑 > 𝑑 iterations. In each it-

eration, the parties obliviously select the desired feature value, make

a secure comparison, and decide on the next node for evaluation.

All non-RAM computation (e.g., secure comparison) is performed in

a secret-shared fashion using 3PC ideal functionality F F2

3pc, in which

privacy and correctness are guaranteed in the presence of a ma-

licious adversary. After that, the parties call Fos (⟨®T⟩| |⟨ ®M⟩, ⟨idx⟩);
here we abuse the notation by calling Fos over ⟨®T⟩ and ⟨ ®M⟩ simous-

tionusly. Note that Fos is subject to additive attacks, the parties must

run MAC check to detect any error for each selection. Mostree de-
lays all these MAC checks in a batch, before reconstructing ⟨𝑟𝑒𝑠𝑢𝑙𝑡⟩
to the FO.
Complexity. The online communication complexity of Πpdte is

sublinear in𝑚 because either Πrss-os or Πdpf-os only requires con-

stant online communication, while the computation complexity

is linear since each party needs to perform a linear scan over its

local share. The linear scan is extremely cheap (i.e., bit-wise com-

putation). Thus, existing hardware acceleration can be applied to

optimize its performance. As for offline communication, the setup

protocol Πsetup requires linear communication but is only invoked

once in the initialization phase, which means all initialized RSS

sharings can be reused to perform subsequent evaluation queries,

among which the linear communication can be amortized. For OS

setup protocols, Πrss-os still requires linear communication while

Πdpf-os enjoys sublinear offline communication.

Security. We designMostree in a modular manner, making it easier

to analyze security in the hybrid model. Formally, we show the

security of Πpdte in Theorem 3 and prove it in Appendix C.3.

Theorem 3. Protocol Πpdte securely computes Fpdte in the (F F2

3pc,

Fos, Fcoin, Frand, Fopen F
F

2
ℓ

mul , FCheckZero)-hybrid model for ℓ > 𝜆

in the present of the malicious adversary in the 3PC honest-majority
setting.

6 EXPERIMENT
This section reports the implementation and performance of Mostree.

6.1 Implementation and Experiment Details
We evaluate the performance of Mostree using ABY3

[34] in C++.

Our implementation is available at https://github.com/Jbai795/Mostree-

9

https://github.com/Jbai795/Mostree-pub
https://github.com/Jbai795/Mostree-pub


ACSAC’23, December 2023, Austin, Texas, USA Jianli Bai, Xiangfu Song, Xiaowu Zhang, Qifan Wang, Shujie Cui, Ee-Chien Chang, and Giovanni Russello

Table 2: Parameters of Datasets

Dataset Depth 𝑑 Features 𝑛 #(Nodes)𝑚 #(Padded nodes)𝑚′

wine 5 7 23 32

breast 7 12 43 64

digits 15 47 337 512

spambase 17 57 171 256

diabetes 28 10 787 1024

Boston 30 13 851 1024

MNIST 20 784 4179 8192

pub. We test on 7 representative datasets from the UCI reposi-

tory (https://archive.ics.uci.edu/ml) as listed in Table 2. The trees

we trained vary in depth and size. Among them, wine, breast are
small example trees while Boston is a deep-but-sparse tree and

MNIST is a density tree with a high-dimensional feature vector.

We run benchmarks on a desktop PC equipped with Intel(R) Core

i9-9900 CPU at 3.10 GHz × 16 running Ubuntu 20.04 LTS with 32 GB

memory. We use Linux tc tool to simulate local-area network (LAN,

RTT: 0.1 ms, 1 Gbps), metropolitan-area network (MAN, RTT: 6 ms,

100 Mbps) and wide-area network (WAN, RTT: 80 ms, 40 Mbps).

We set the computational security parameter 𝜅 = 128, which deter-

mines the key length of a pseudorandom function, and statistical

security parameter 𝜆 = 40, with element size 𝑘 = 64. Note we do

not provide accuracy evaluation for Mostree as DTE only involves

comparison, and there is no accuracy loss if the comparison is

computed bit-wise in secure multiparty computation.

6.2 Comparison with Three-party Works
SinceMostree is the first three-party PDTE that considers honest

majority security settings, we compare it with two latest three-

party PDTE schemes [14, 23] with different security settings. The

former [14] works in a dishonest majority setting whose security

is a bit stronger thanMostree and the latter [23] works in a semi-

honest setting. We re-run protocols in [14] and [23], which we

name as SPDZ-tree and UCDT, respectively. We can build two

kinds of Mostree based on different OS protocols. However, the

online phases of them are identical. To this, we give two lines (RSS-

tree andMostree) in Fig. 7(a) for offline communication while we

only give one line (Mostree) for online communication in Fig. 7(b).

We additionally give the concrete performance of two OS protocols

in Appendix C.4. Since the DPF and RSS-based OS protocol outper-

forms the pure RSS-based OS,Mostree uses the DPF and RSS-based
OS protocol if there is no explicit statement in the following.

Communication Evaluation. Fig. 7 reports the communication

of Mostree, SPDZ-tree and UCDT. We obtain the communication

for all listed datasets under different protocols except SPDZ-tree as

we fail to compile the protocol over large trees. Its linear complexity

makes it run out of memory during execution.

As we can see, over online communication,Mostree significantly
outperforms SPDZ-tree. Specifically, SPDZ-tree requires the most

communication cost because it performs oblivious attribute selec-

tion and node comparison for each inner tree node. It is worth

noticing that Mostree only shows an acceptable increase in online

and offline communication overhead compared with UCDT (e.g.,
Mostree requires ∼4× online communication for MNIST). In the

offline phase, it is clear that RSS-tree (employs pure RSS-based OS)

requires more communication resources thanMostree.

w
ine

breast

digits

spam
base

diabetes

Boston

M
N
IST

10
2

10
3

10
4

10
5

10
6

10
7

10
8

C
o
m
m
u
n
i
c
a
t
i
o
n
(
K
B
)

(a) Offline

w
ine

breast

digits

spam
base

diabetes

Boston

M
N
IST

10
1

10
2

10
3

10
4

C
o
m
m
u
n
i
c
a
t
i
o
n
(
K
B
)

[14](SPDZ-tree)

[23](UCDT)

RSS-tree

Mostree

(b) Online

Figure 7: Online and Offline Communication Cost. 𝑦-axis is
in the logarithm scale. RSS-tree (Mostree) means we use pure
RSS-based (DPF and RSS-based) OS protocol.

Running Time.We evaluateMostree, SPDZ-tree and UCDT under

LAN, MAN, and WAN network settings in Fig. 8. Mostree shows

a lower running time in the LAN setting than SPDZ-tree since

Mostree only requires to perform oblivious node selection once

for each tree level. The significant difference between Mostree
and SPDZ-tree continues in the MAN and WAN network settings.

Compared with UCDT, Mostree reports a slightly more running

time (e.g., ∼4×) for all listed trees in all network settings.

Table 4 illustrates the total evaluation time of Mostree for differ-
ent trees. Although the total running time of Mostree is linear to
the tree size, the results in Table 4 shows it is more related to the

tree depth. We acknowledge the running time is very sensitive to

the latency. It can be highly improved by using batching techniques

to send independent data together. We leave this as our future work.

Scalability.We evaluate the scalability of Mostree in a LAN setting.

Following the approach in [36], we set the tree node number𝑚 =

25𝑑 and vary 𝑑 from 20 to 50. Table 5 shows the evaluation result.

We can see that while the tree depth increases, the communication

grows slowly and linearly to the tree size, showing the scalability

of Mostree. As for the running time, since the tree node number is

linear to the tree depth in our setting, it also rises with the depth

increase.

6.3 Comparison with Two-party Works
Most of the existing PDTE protocols focus on two-party settings. In

particular, we compareMostree with a comprehensive work [25]

and two latest efficient protocols [4, 30]. In particular, both commu-

nication and computation in work [25] are linear to the tree size,

while the communication in [4, 30] is sublinear. Table 3 reports

the online results. Since work [25] constructs PDTE modularly ei-

ther using GC or HE, we compareMostree with its two protocols:

computation-efficient GGG and communication-efficient HHH. The

table shows that GGG in [25] enjoys the best running time, and the

work in [30] shows the best communication for small trees like wine.

While it goes to big trees like MNIST, Mostree outruns others in
communication, including HHH. In particular, Mostree saves ∼3×
communication cost than the latest sublinear work [4]. The main

reason is that work [4] requires a two-party secure PRF evaluation

for each node selection, which incurs significant communication

overhead. In contrast, Mostree performs node selection mainly

10

https://github.com/Jbai795/Mostree-pub
https://archive.ics.uci.edu/ml


Mostree: Malicious Secure Private Decision Tree Evaluation with Sublinear Communication ACSAC’23, December 2023, Austin, Texas, USA

w
ine

breast

digits

spam
base

diabetes

Boston

M
N
IST

10
2

10
3

R
u
n
n
i
n
g
t
i
m
e
(
m
s
)

(a) LAN (1Gbps/0.1ms)

w
ine

breast

digits

spam
base

diabetes

Boston

M
N
IST

10
4

10
5

R
u
n
n
i
n
g
t
i
m
e
(
m
s
)

(b) MAN (100Mbps/6ms)

w
ine

breast

digits

spam
base

diabetes

Boston

M
N
IST

10
5

10
6

R
u
n
n
i
n
g
t
i
m
e
(
m
s
)

[14](SPDZ-tree)

[23](UCDT)

Mostree

(c) WAN (40Mbps/80ms)

Figure 8: Online Runtime in LAN/MAN/WAN Setting. 𝑦-axis is in the logarithm scale.

Table 3: Comparison with Two-party Protocols over Different Datasets and Networks

Protocols Security wine digits MNIST

LAN.T WAN.T Comm. LAN.T WAN.T Comm. LAN.T WAN.T Comm.

Kiss et al. [25][GGG] # 10.1 257.6 44.5 144.9 820.7 1499.2 2320.1 7088.4 23431.4

Kiss et al. [25][HHH] # 263.7 2083.5 90.2 1306.8 23554.6 990.7 13570.2 311726.9 -

Ma et al. [30] # 10.3 1300.4 1 28.2 4211.3 110.8 35.4 6493.5 270.3

Bai et al. [4] # 54.8 6295.8 336.6 152.1 18755.8 109.4 203.9 24997.3 369.4

Mostree  213.7 116868 34.6 685.5 350294 103.8 768.1 467116 138.4

LAN.T, WAN.T, and Commu. represent online running time under LAN, online running time under WAN, and online communication,

respectively. #: semi-honest,  : malicious. All running times are reported in milliseconds (ms), and communication in KB. The

minimum value in each column is bolded.

Table 4: Total Runtime (s) of Mostree under Different Net-
work Conditions

wine breast digits spambase diabetes Boston MNIST

LAN 0.37 0.56 1.21 1.27 1.74 1.87 1.29

MAN 16.90 23.70 50.81 57.79 94.87 101.61 67.95

WAN 202.65 283.56 607.77 688.81 1133.29 1213.21 934.52

Table 5: Mostree Running on Trees with Varies Depth

Tree Depth 20 25 30 35 40 45 50

TRT (ms) 1397.9 1745.9 2046.3 2537.7 2923.1 2829.4 3270.6

TC (KB) 362.0 446.3 530.6 614.9 699.1 783.4 594.3

TRT and TC represent total running time and total communication, respectively.

from cheap local evaluation, thus achieving better performance. We

do acknowledge that this is partially due to the three-party honest

majority setting, where Mostree exploits to design a more efficient

PDTE.

As for the running time, Mostree shows worse in some cases,

but please note that Mostree achieves a much stronger security

guarantee than other protocols. In some cases, GGG in [25] shows

the best running time. This is because it is evaluated purely based

on the Garbled Circuit with the high communication price. As

the tree size grows, work [30] outperforms others, yet it leaks

access patterns. In Table 3, we only compare Mostree with semi-

honest two-party because the existing two-party work [35] [39]

only supporting malicious FO can be seen as the malicious version

of HHH in [25] (with additional ZKP and COT), with worse running

time.We acknowledge that high computation inMostree alsomeans

high monetary costs for cloud-assisted applications. Reducing the

computation overhead further is our future work.

7 CONCLUSION
This paper presents Mostree, a communication-efficient PDTE pro-

tocol.Mostree proposes two OS protocols with low communication

by using RSS sharings and distributed point function.Mostree care-
fully combines oblivious selection protocols with data structure and

lightweight consistency check techniques, achieving malicious se-

curity and sublinear communication. Our experiment results show

that Mostree is efficient and practical.

Limitations and Future Works.Mostree achieves sublinear on-
line communication but still requires (super) linear computation

cost. Achieving low computation overhead is also important, which

we leave as our future work. In addition, we will extend mali-

cious OS to other privacy-preserving applications, e.g., privacy-
preserving inference using graph-based models.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their insightful comments

and suggestions. Bai and Russello would like to acknowledge the

MBIE-funded programme STRATUS (UOWX1503) for its support

and inspiration for this research. This research is supported by the

National Research Foundation, Singapore under its Strategic Capa-

bility Research Centres Funding Initiative. Any opinions, findings

and conclusions or recommendations expressed in this material

are those of the author(s) and do not reflect the views of National

Research Foundation, Singapore.

11



ACSAC’23, December 2023, Austin, Texas, USA Jianli Bai, Xiangfu Song, Xiaowu Zhang, Qifan Wang, Shujie Cui, Ee-Chien Chang, and Giovanni Russello

REFERENCES
[1] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-throughput semi-honest secure three-party computation with an

honest majority. In ACM CCS. 805–817.
[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More efficient oblivious transfer and extensions for faster secure computation.

In ACM CCS. 535–548.
[3] Nuttapong Attrapadung, Goichiro Hanaoaka, Takahiro Matsuda, Hiraku Morita,

Kazuma Ohara, Jacob CN Schuldt, Tadanori Teruya, and Kazunari Tozawa. 2021.

Oblivious Linear Group Actions and Applications. In ACM CCS. 630–650.
[4] Jianli Bai, Xiangfu Song, Shujie Cui, Ee-Chien Chang, and Giovanni Russello.

2022. Scalable Private Decision Tree Evaluation with Sublinear Communication.

In AsiaCCS. 843–857.
[5] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-

Reza Sadeghi, and Thomas Schneider. 2009. Secure evaluation of private linear

branching programs with medical applications. In ESORICS. Springer, 424–439.
[6] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Machine

learning classification over encrypted data. In NDSS, Vol. 4324. 4325.
[7] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function secret sharing. In

EUROCRYPTO. Springer, 337–367.
[8] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function secret sharing: Improve-

ments and extensions. In AMC CCS. 1292–1303.
[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure computation with prepro-

cessing via function secret sharing. In TCC. Springer, 341–371.
[10] Andrej Bratko, Bogdan Filipič, Gordon V Cormack, Thomas R Lynam, and Blaž

Zupan. 2006. Spam filtering using statistical data compression models. The
Journal of Machine Learning Research 7 (2006), 2673–2698.

[11] Justin Brickell, Donald E Porter, Vitaly Shmatikov, and Emmett Witchel. 2007.

Privacy-preserving remote diagnostics. In ACM CCS. 498–507.
[12] Jason Catlett. 1991. Overprvning Large Decision Trees.. In IJCAI. Citeseer, 764–

769.

[13] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda

Lindell, and Ariel Nof. 2018. Fast large-scale honest-majority MPC for malicious

adversaries. In CRYPTO. Springer, 34–64.
[14] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Marcel Keller, Peter Scholl,

and Nikolaj Volgushev. 2019. New primitives for actively-secure MPC over rings

with applications to private machine learning. In IEEE S&P. IEEE, 1102–1120.
[15] Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica. 2022. Waldo:

A private time-series database from function secret sharing. In IEEE S&P. IEEE,
2450–2468.

[16] Leo de Castro and Anitgoni Polychroniadou. 2022. Lightweight, Maliciously

Secure Verifiable Function Secret Sharing. In EUROCRYPT. Springer, 150–179.
[17] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti, Anderson CA Nasci-

mento, Wing-Sea Poon, and Stacey Truex. 2017. Efficient and private scoring of

decision trees, support vector machines and logistic regression models based on

pre-computation. IEEE TDSC 16, 2 (2017), 217–230.

[18] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-

throughput secure three-party computation for malicious adversaries and an

honest majority. In EUROCRYPT. Springer, 225–255.
[19] Niv Gilboa and Yuval Ishai. 2014. Distributed point functions and their applica-

tions. In EUROCRYPT. Springer, 640–658.
[20] Thang Hoang, Jorge Guajardo, and Attila A Yavuz. 2020. MACAO: A maliciously-

secure and client-efficient active ORAM framework. Cryptology ePrint Archive
(2020).

[21] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious

transfers efficiently. In CRYPTO. Springer, 145–161.
[22] Yuval Ishai and Anat Paskin. 2007. Evaluating branching programs on encrypted

data. In TCC. Springer, 575–594.
[23] Keyu Ji, Bingsheng Zhang, Tianpei Lu, Lichun Li, and Kui Ren. 2021. UC Secure

Private Branching Program and Decision Tree Evaluation. Cryptology ePrint
Archive (2021).

[24] Marc Joye and Fariborz Salehi. 2018. Private yet efficient decision tree evaluation.

In IFIP DBSec. Springer, 243–259.
[25] Ágnes Kiss, Masoud Naderpour, Jian Liu, N Asokan, and Thomas Schneider. 2019.

Sok: Modular and efficient private decision tree evaluation. PoPETs 2019, 2 (2019),
187–208.

[26] Hian Chye Koh, Wei Chin Tan, and Chwee Peng Goh. 2006. A two-step method

to construct credit scoring models with data mining techniques. International
Journal of Business and Information 1, 1 (2006), 96–118.

[27] Sotiris B Kotsiantis. 2013. Decision trees: a recent overview. Artificial Intelligence
Review 39, 4 (2013), 261–283.

[28] Phi Hung Le, Samuel Ranellucci, and S Dov Gordon. 2019. Two-party private

set intersection with an untrusted third party. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 2403–2420.

[29] Yehuda Lindell and Ariel Nof. 2017. A framework for constructing fast MPC over

arithmetic circuits with malicious adversaries and an honest-majority. In ACM
CCS. 259–276.

[30] Jack PK Ma, Raymond KH Tai, Yongjun Zhao, and Sherman SM Chow. 2021. Let’s

stride blindfolded in a forest: Sublinear multi-client decision trees evaluation. In

NDSS.
[31] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework

for machine learning. In ACM CCS. 35–52.
[32] Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos. 2023. PLASMA:

Private, Lightweight Aggregated Statistics against Malicious Adversaries with

Full Security. Cryptology ePrint Archive (2023).
[33] Vili Podgorelec, Peter Kokol, Bruno Stiglic, and Ivan Rozman. 2002. Decision

trees: an overview and their use in medicine. Journal of medical systems 26, 5
(2002), 445–463.

[34] Peter Rindal. [n. d.]. The ABY3 Framework for Machine Learning and Database

Operations. https://github.com/ladnir/aby3.

[35] Raymond KH Tai, Jack PK Ma, Yongjun Zhao, and Sherman SM Chow. 2017.

Privacy-preserving decision trees evaluation via linear functions. In ESORICS.
Springer, 494–512.

[36] Anselme Tueno, Florian Kerschbaum, and Stefan Katzenbeisser. 2019. Private

Evaluation of Decision Trees using Sublinear Cost. PoPETs 2019, 1 (2019), 266–
286.

[37] Adithya Vadapalli, Ryan Henry, and Ian Goldberg. 2022. Duoram: A Bandwidth-

Efficient Distributed ORAM for 2-and 3-Party Computation. Cryptology ePrint
Archive (2022).

[38] Sameer Wagh. 2022. Pika: Secure Computation using Function Secret Sharing

over Rings. Cryptology ePrint Archive (2022).
[39] David J Wu, Tony Feng, Michael Naehrig, and Kristin E Lauter. 2016. Privately

Evaluating Decision Trees and Random Forests. PoPETs 2016, 4 (2016), 335–355.

A SECURITY DEFINITION
Definition 4 (DPF Security). A two-party DPF satisfies the

following requirements:

• Correctness: for any point function 𝑓 : D → R and every
𝑥 ∈ D, if (kdpf

0
, kdpf

1
) ← Gen(1𝜅 , 𝑓 ) then Pr[Eval(kdpf

0
, 𝑥) +

Eval(kdpf
1

, 𝑥) = 𝑓 (𝑥)] = 1.

• Secrecy: For any two point functions 𝑓 , 𝑓 ∗, it holds that {kdpf
𝑏

:

(kdpf
0

, kdpf
1
) ← Gen(1𝜅 , 𝑓 )} 𝑐≡ {kdpf

∗
𝑏 : (kdpf∗0 , kdpf∗1 ) ← Gen(1𝜅 , 𝑓 ∗)}

for 𝑏 ∈ {0, 1}.

Definition 5 (Three-party secure computation). Let F be
a three-party functionality. A protocol Π securely computes F with
abort in the presence of one malicious party, if for every party 𝑃𝑖
corrupted by a probabilistic polynomial time (PPT) adversary A in
the real world, there exists a PPT simulator S in the ideal world with
F , such that,

{IDEALF,S(𝑧 ),𝑖 (𝑥0, 𝑥1, 𝑥2, 𝑛)}
𝑐≡ {REALΠ,A(𝑧 ),𝑖 (𝑥0, 𝑥1, 𝑥2, 𝑛)}.

where 𝑥𝑖 ∈ {0, 1}∗ is the input provided by 𝑃𝑖 for 𝑖 ∈ [3], and
𝑧 ∈ {0, 1}∗ is the auxiliary information that includes the public input
length information {|𝑥𝑖 |} 𝑗∈[3] . The protocol Π securely computes
F with abort in the presence of one malicious party with statisti-
cal error 2

−𝜆 if there exists a negligible function 𝜇 (·) such that the
distinguishing probability of the adversary is less than 2

−𝜆 + 𝜇 (𝜅).

B SUBPROTOCOLS USED IN MOSTREE
This section shows protocols used in Mostree, including protocols

that securely compute assumed RSS-based functionalities in sec-

tion 3 and others used inMostree, e.g., secure RSS-based equality

comparison.

Protocol Πrand for generating a random RSS sharing. Fig. 9
shows protocol Πrand for generating an RSS sharing ⟨𝑟 ⟩ for a ran-
dom value 𝑟 ∈ F. The protocol can be done non-interactively using

PRF 𝐹 after a one-time setup for sharing PRF keys.

12

https://github.com/ladnir/aby3


Mostree: Malicious Secure Private Decision Tree Evaluation with Sublinear Communication ACSAC’23, December 2023, Austin, Texas, USA

Parameters: Three parties {𝑃0, 𝑃1, 𝑃2}; a field F over which
the RSS sharing works; a PRF 𝐹 : K × D → R where K =

D = {0, 1}𝜅 and R = F.
[Setup] Upon input (setup), do:
1. For 𝑖 ∈ [3], 𝑃𝑖 samples a PRF key kprf

𝑖
∈ K and sends kprf

𝑖

to 𝑃𝑖−1. 𝑃𝑖 also receives kprf
𝑖+1 from 𝑃𝑖+1.

[Rand] Upon input (rand, sid), do:
1. for 𝑖 ∈ [3], 𝑃𝑖 defines J𝑟K𝑖 ← 𝐹 (kprf

𝑖
, sid) and J𝑟K𝑖+1 ←

𝐹 (kprf
𝑖+1, sid). 𝑃𝑖 defines ⟨𝑟 ⟩𝑖 ← (J𝑟K𝑖 , J𝑟K𝑖+1).

2. The parties output ⟨𝑟 ⟩.

Figure 9: Protocol Πrand for Securely Compute Frand

Parameters: Three parties {𝑃0, 𝑃1, 𝑃2}; a field F over which
the RSS sharing works; a PRF 𝐹 : K × D → R where K =

D = {0, 1}𝜅 and R = F.
[Open] Upon input (sid, ⟨𝑥⟩), do:
1. For 𝑖 ∈ [3], 𝑃𝑖 sends J𝑥K𝑖 to 𝑃𝑖−1 and J𝑥K𝑖−1 𝑃𝑖+1.
2. For 𝑖 ∈ [3], 𝑃𝑖 receives J𝑥K𝑖+1 from 𝑃𝑖+1 and 𝑃𝑖+2. If 𝑃𝑖+1

and 𝑃𝑖+2 send different values of J𝑥K𝑖+1, send abort to all

other parties.

3. If the protocol does not abort, for 𝑖 ∈ [3], 𝑃𝑖 computes

𝑥 =
∑
𝑖∈[3]J𝑥K𝑖 and outputs 𝑥 .

Figure 10: Protocol Πopen for Securely Compute Fopen

Parameters: Three parties {𝑃0, 𝑃1, 𝑃2}; a field F over which
the RSS sharing works; a PRF 𝐹 : K × D → R where K =

D = {0, 1}𝜅 and R = F.
[Coin] Upon input (sid), do:
1. The parties call Frand to generate a random RSS sharing ⟨𝑟 ⟩.
2. The parties call Fopen to open ⟨𝑟 ⟩. If the open does not abort,

each party outputs 𝑟 .

Figure 11: Protocol Πcoin for Securely Compute Fcoin

Protocol Πopen for securely opening an RSS sharing. We show

Πopen in Fig. 10 for securely opening an RSS sharing. The intuition

is that each party 𝑃𝑖 will receive the share J𝑥K𝑖+1 from both 𝑃𝑖−1

and 𝑃𝑖+1, which allows 𝑃𝑖 to do cross-check and abort if the values

are unequal.

Protocol Πcoin for securely generating random coins. Protocol
Πcoin in Fig. 11 outputs a random value 𝑟 ∈ F to all the parties. The
idea is that the parties first call Frand to generate a random ⟨𝑟 ⟩ and
then open ⟨𝑟 ⟩ using Fopen.
ProtocolΠrecon for secure secret reconstruction. ProtocolΠrecon
in Fig. 12 reconstructs a consistent RSS sharing ⟨𝑥⟩ to 𝑃𝑖 . To check

whether the reconstruction is correct or not, 𝑃𝑖 receives ⟨𝑥⟩𝑖+1 from
both 𝑃𝑖+1 and 𝑃𝑖−1, and abort if the two shares are unequal.

Protocol Πshare for sharing a secret from 𝑃𝑖 . Fig. 13 shows the

protocol Πshare. It shares a secret 𝑥 from 𝑃𝑖 among three parties.

In particular, Πshare first invokes Frand to generate a random RSS

Parameters: Three parties {𝑃0, 𝑃1, 𝑃2}; a field F over which
the RSS sharing works; a PRF 𝐹 : K × D → R where K =

D = {0, 1}𝜅 and R = F.
[Recon] Upon input (sid, ⟨𝑥⟩, 𝑖), do:
1. 𝑃𝑖 receives J𝑥K𝑖+1 from 𝑃𝑖+1 and 𝑃𝑖−1. If J𝑥K𝑖+1 from 𝑃𝑖+1

and 𝑃𝑖−1 do not match, abort.

2. Compute 𝑥 =
∑

𝑗∈[3]J𝑥K𝑗 .

Figure 12: Protocol Πrecon for Securely Compute Frecon

Parameters: Three parties {𝑃0, 𝑃1, 𝑃2}; a field F over which
the RSS sharing works; a PRF 𝐹 : K × D → R where K =

D = {0, 1}𝜅 and R = F.
[Share] Upon input (sid, 𝑥, 𝑖), do:
1. The parties call Frand to generate a random RSS sharing ⟨𝑟 ⟩.
2. The parties call Frecon over ⟨𝑟 ⟩ and reconstruct 𝑟 to 𝑃𝑖 . 𝑃𝑖

broadcasts 𝛿 = 𝑥 − 𝑟 to the other parties.

3. 𝑃𝑖+1 and 𝑃𝑖+2 check if they receive the same 𝛿 . If not, abort.

4. The parties output ⟨𝑥⟩ ← ⟨𝑟 ⟩ + 𝛿 .

Figure 13: Protocol Πshare for Securely Compute Fshare

Parameters: Three parties {𝑃0, 𝑃1, 𝑃2}; a field F over which
the RSS sharing works; a PRF 𝐹 : K × D → R where K =

D = {0, 1}𝜅 and R = F.
[Mul] Upon input (sid, ⟨𝑥⟩, ⟨𝑦⟩), do:
1. For 𝑖 ∈ [3], 𝑃𝑖 computes J𝑡K𝑖 ← J𝑥K𝑖 · J𝑦K𝑖 + J𝑥K𝑖−1 · J𝑦K𝑖 +

J𝑥K𝑖 · J𝑦K𝑖−1. (J𝑡K0, J𝑡K1, J𝑡K2) forms a (3
3
)-sharing J𝑡K.

2. The parties call Frand to generate a random RSS sharing ⟨𝑟 ⟩.
3. For 𝑖 ∈ [3], 𝑃𝑖 computes J𝑧K𝑖 ← J𝑡K𝑖 +J𝑟K𝑖 −J𝑟K𝑖−1. 𝑃𝑖 sends

J𝑧K𝑖 to 𝑃𝑖+1 and receives J𝑧K𝑖−1 from 𝑃𝑖−1.

4. For 𝑖 ∈ [3], 𝑃𝑖 defines ⟨𝑧⟩𝑖 = (J𝑧K𝑖 , J𝑧K𝑖−1).

Figure 14: Protocol Πmut for Securely Compute F Fmut

sharing ⟨𝑟 ⟩ between the parties. Then the parties securely recon-

struct 𝑟 to the party 𝑃𝑖 . 𝑃𝑖 broadcasts 𝛿 = 𝑥 − 𝑟 to the other two

parties. The other two parties cross-check whether they receive the

same 𝛿 . If yes, the parties jointly compute ⟨𝑥⟩ ← ⟨𝑟 ⟩ + 𝛿 .
Protocol Πmut for multiplication. Fig. 14 shows how to perform

multiplication with up to an additive attack. This protocol is essen-

tially a semi-honest multiplication protocol. We note a malicious

party can add an error 𝑒 in the resharing phase to produce an

incorrect RSS sharing ⟨𝑥 · 𝑦 + 𝑒⟩.
Protocol ΠCheckZero . In Fig. 15, we show a protocol ΠCheckZero. It

can check whether an RSS sharing ⟨𝑥⟩ is a sharing of 0. In particular,
the protocol first calls Frand to generate a random RSS sharing ⟨𝑟 ⟩.
The parties call F Fmut to compute ⟨𝑤⟩ ← ⟨𝑥⟩ · ⟨𝑟 ⟩. The parties then
open ⟨𝑤⟩ via Fopen and check if𝑤 = 0 and abort if not the case.

Protocol Πeq for secure equality test. In Fig. 16, we use an equal-

ity test protocol Πeq for securely comparing whether two shared

secrets are equal or not, and share the equality test result between

the parties. To achieve malicious security, the parties need to check

13



ACSAC’23, December 2023, Austin, Texas, USA Jianli Bai, Xiangfu Song, Xiaowu Zhang, Qifan Wang, Shujie Cui, Ee-Chien Chang, and Giovanni Russello

Parameters: Three parties {𝑃0, 𝑃1, 𝑃2}; a field F over which
the RSS sharing works; a PRF 𝐹 : K × D → R where K =

D = {0, 1}𝜅 and R = F.
[CheckZero] Upon input (sid, ⟨𝑥⟩), do:
1. The parties call Frand to generate a random RSS sharing ⟨𝑟 ⟩.
2. The parties compute ⟨𝑤⟩ ← ⟨𝑥⟩ · ⟨𝑟 ⟩ by calling F𝑚𝑢𝑙

mul .

3. The parties call Fopen to open ⟨𝑤⟩. If the open aborts or

𝑤 ≠ 0, return Flase; otherwise return True.

Figure 15: Protocol ΠCheckZero for Securely Compute
FCheckZero

Input: An RSS-sharing index ⟨idx ⟩ for idx ∈ [𝑛] and a public value 𝑗 .

Output: An RSS-sharing ⟨𝑢 [ 𝑗 ] ⟩ where 𝑢 [ 𝑗 ] is 1 if 𝑖𝑑𝑥 == 𝑗 , otherwise

𝑢 [ 𝑗 ] is 0.
1. The parties naturally share the public value 𝑗 as ⟨ 𝑗 ⟩ = (0, 0, 𝑗 ) and parse
⟨idx ⟩ = ⟨idx [𝑙 − 1] ⟩ · · · ⟨idx [0] ⟩ and ⟨ 𝑗 ⟩ = ⟨ 𝑗 [𝑙 − 1] ⟩ · · · ⟨ 𝑗 [0] ⟩.

2. The parties perform ⟨ℎ[𝑞 ] ⟩ ← ⟨idx [𝑞 ] ⟩ ⊕ ⟨ 𝑗 [𝑞 ] ⟩ for 𝑞 ∈ [𝑙 ].
3. Set ⟨𝑢 [ 𝑗 ] ⟩ ← ⟨ℎ[0] ⟩.
4. For 𝑞 ∈ {1, · · · , 𝑙 − 1},

1) The parties perform ⟨𝑢 [ 𝑗 ] ⟩ ← ⟨𝑢 [ 𝑗 ] ⟩ · ⟨ℎ[𝑞 ] ⟩.

Figure 16: Equality Test Πeq

the correctness of multiplications. This can be done by the triple-

based multiplication verification trick, where the triples used for

verification are generated by a cut-and-choose method from [18].

C SECURITY PROOF
C.1 Proof of Theorem 1

Proof. For any PPT adversary A, we construct a PPT simula-

tor S that can simulate the adversary’s view with accessing the

functionalities Frand, F F2

3pc and Fopen. In the cases where S aborts

or terminates the simulation, S outputs whatever A outputs.

Simulating preprocess phase. S plays the role of Frand and uses

the simulator ofFrand for simultation. For each 𝑗 ∈ [𝑚],S simulates

F F2

3pc in Πeq and receives an error from the adversary. S aborts if

A sends any non-zero error.

Simulating selection phase. We assume ⟨𝑟𝑑𝑥⟩ and ⟨®𝑣⟩ are cor-
rectly shared/simulated in the first stage. S plays the role of Fopen
and uses the simulator of Fopen for simulation and receives an error

from the adversary. S aborts if A sends any non-zero error. For

the local shifting and local multiplication computation, S is easy to

simulate. Towards the re-sharing phase, the simulation randomly

samples 𝑃𝑖+2’s share and sends it to A. In the real protocol exe-

cution, this is generated by a PRF 𝐹 . Therefore, the simulation is

computationally indistinguishable from real protocol execution due

to the security of PRF. Overall, the simulation is indistinguishable

from real-world execution. □

C.2 Proof of Theorem 2
Proof. For any PPT adversary A, we construct a PPT simula-

tor S that can simulate the adversary’s view with accessing the

functionality Fos. In the cases where S aborts or terminates the

simulation, S outputs whatever A outputs.

Simulating preprocess phase. When the corrupted party 𝑃𝑖 plays

the role of DPF key generator, S plays the role of honest parties

𝑃𝑖+1 and 𝑃𝑖+2, and receives a pair of DPF keys fromA. S can check

whether the keys are correct and abort if not. When an honest

party takes the turn for DPF key generation, S generates a pair

of DPF keys and samples a random share 𝑟𝑖
$←− Z𝑚 . S sends the

key (kdpf
𝑖

, 𝑟𝑖 ) toA. S runs VDPF verification protocol withA, and

aborts ifA aborts in the verification protocol. For all othermessages

sent from honest parties to the corrupted one, the simulator samples

them randomly.

The above simulation is indistinguishable from real-world exe-

cution. First, if A sends incorrect DPF keys, then the real-world

execution would have aborted due to VDPF check. In the ideal

world, S can check keys directly, thus the ideal world aborts with

indistinguishable probability. When the corrupted party plays the

role of DPF evaluator, the DPF keys are honestly generated by S.
If A follows the VDPF key verification protocol, the check will

always pass, otherwise the check protocol will abort. Therefore, S
just runs the check protocol with A as in the real-world protocol,

and it can always abort with indistinguishable probability.

Simulating selection phase. If the protocol does not abort after
the preprocessing stage, then all DPF keys generated by A in S
are correct. The only issue in the selection phase is whether A
follows the protocol honestly. Also, S has to successfully extract

the error term in the simulation. We assume ⟨®T⟩ and ⟨idx⟩ are
already correctly shared/simulated in the first place, which means

the honest parties hold correct and consistent RSS shares.

For all local computations, S is easy to simulate. S only needs to

simulate the view between honest parties and the corrupted party

and to abort with indistinguishable probability. Note that only a

few parts in the selection phase require interaction. The first part is

on securely reconstructing Δ. Since ⟨Δ⟩ = ⟨rdx⟩ ⊕ ⟨idx⟩ and both

⟨rdx⟩ and ⟨idx⟩ are correct RSS sharings, ⟨Δ⟩ is also a consistent

sharing by definition. This means that S can cross-check whether

A sends the correct value using the share of honest party 𝑃𝑖+2: 1)
if A sends incorrect share, S just aborts; 2) if A sends the correct

share,S samples a random Δ ∈ Z𝑚 and computes the shares of 𝑃𝑖+1
and 𝑃𝑖+2 according to Δ and the RSS shares of 𝑃𝑖 , and sends to A.

In this case, the parties open the random Δ to A. Another part is

from re-sharing the selection result from ®𝐴[idx] from (3
3
)-sharing

back to RSS sharing. Here A can add an error and S extracts the

error as follows: S receives the share 𝑧∗
𝑖
from the corrupted party

to an honest party and updates 𝑃𝑖+1’s local share correspondingly.
S also locally computes value 𝑧𝑖 , which is the correct value that

the corrupted party should send (S can do this since he knows all

necessary shares to compute 𝑧𝑖 ). Then, S computes 𝑑 ← 𝑧𝑖 − 𝑧∗𝑖 to

Fos. S sends 𝑑 to Fos, completing simulation.

Note that in simulating the open step of Δ, S only uses shares

of honest parties. These shares are either randomly simulated or

computed from available local data. Also, they are consistent with

the shares/data held by the corrupted party. Therefore, the simu-

lation is perfectly indistinguishable from real protocol execution.

Towards re-sharing phase, the simulation randomly samples 𝑃𝑖+2’s

14



Mostree: Malicious Secure Private Decision Tree Evaluation with Sublinear Communication ACSAC’23, December 2023, Austin, Texas, USA

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Array Length

R
u
n
n
i
n
g
T
i
m
e
(
m
s
)

10
−1

10
0

10
1

10
2

10
3

10
4

C
o
m
m
u
n
i
c
a
t
i
o
n
(
M
B
)

Time by ET

Time by DPF

Comm. by ET

Comm. by DPF

Figure 17: Unit Vector Generation. 𝑦-axis is in the logarithm
scale. ET and Comm. represent equality test and communi-
cation cost, respectively.

share and sends it to A. In the real protocol execution, this is gen-

erated by a PRF 𝐹 . Therefore, the simulation is computationally

indistinguishable from real protocol execution due to the security

of PRF. Overall, the simulation is indistinguishable from real-world

execution. □

C.3 Proof of Theorem 3
Proof. For any PPT adversary A who corrupts party 𝑃𝑖 , we

construct a PPT simulator S who can simulate the adversary’s view

with accessing the functionality Fos. In the cases where S aborts

or terminates the simulation, S outputs whatever A outputs.

Simulating setup. S samples random shares for
®T and hands the

shares toA. S also randomly samples shares for the honest parties

in order to perform subsequent simulations. S plays the role of

Frand and uses the simulator of Frand for simulation. For 𝑗 ∈ [𝑚],
S plays the role of F F2

ℓ

mul and receives 𝑑 𝑗 from the adversary. From

𝑑 𝑗 , S adds the error into the share of MAC value ⟨𝜎 (®T[ 𝑗])⟩ for
honest party 𝑃𝑖+1. S simulates Frand and FCheckZero in ΠMacCheck.

If there exists any 𝑗 ∈ [𝑚] such that 𝑑 𝑗 ≠ 0 or the simulation

aborts from Frand and FCheckZero in ΠMacCheck (S uses existing

simulation strategy for Frand and FCheckZero), S aborts.

The above simulation is indistinguishable from real protocol

execution. Since the protocol is designed in a hybrid model, existing

simulation strategy for Frand, F
F

2
ℓ

mul , and FCheckZero are available,
thus S uses them directly. S can also extract the strategy of A by

receiving the error term in F F2
ℓ

mul thus S can abort correspondingly.

Note that the MAC we use is over F
2
ℓ . In real protocol execution,

any additive error will incur MAC check fail except with probability

1

2
ℓ−1

. Overall, the above simulation is statistically indistinguishable

from the real-world execution, with statistical error
1

2
ℓ−1

.

Simulating evaluation. For all bit-wise secure computation (in-

cluding inner product, comparison and MUX), S directly uses ex-

isting simulation strategy for F F2

3pc directly. S plays the role of Fos
for each oblivious selection and receives an error term from A. If

S receives any non-zero error in simulating Fos, S aborts at the

end of the protocol. The simulation for bit-wise computation using

F F2

3pc is well-studied thus S can directly use existing simulation

strategy (see [18]). This part is indistinguishable from real-world

execution. The only issue is from Fos. Since S receives the error

terms from A per selection, S just aborts if A sends any non-zero

error. Overall, the above simulation is statistically indistinguishable

from real-protocol execution, with statistical error
1

2
ℓ−1

. □

C.4 Evaluation of Two OS Protocols
We show the performance of unit vector generation of two pro-

posed OS protocols in Fig. 17. The RSS-based OS employs equality

test to generate the unit vector, which requires three parties to

jointly compare each index with a given value, resulting in linear

computation and communication. The DPF-based OS needs to share

the keys. Due to the sublinear property of the DPF scheme, the

required communication is sublinear to the array length. However,

to expand the keys to the unit vector, each party needs to perform

local computation for each element, which also requires linear com-

putation. Note both of these two unit vector generations can be

moved offline.

15


	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Decision Trees Evaluation
	3.2 Cryptographic Primitives

	4 Overview of Mostree
	4.1 Threat Model
	4.2 Approach Overview

	5 The Mostree Protocol
	5.1 Oblivious Selection from Pure RSS
	5.2 Oblivious Selection from DPF and RSS
	5.3 The Mostree PDTE Protocol

	6 Experiment
	6.1 Implementation and Experiment Details
	6.2 Comparison with Three-party Works
	6.3 Comparison with Two-party Works

	7 Conclusion
	References
	A Security Definition
	B Subprotocols used in Mostree
	C Security Proof
	C.1 Proof of Theorem 1
	C.2 Proof of Theorem 2
	C.3 Proof of Theorem 3
	C.4 Evaluation of Two OS Protocols


