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ABSTRACT
Third-party advertising libraries, which furnish mobile applications
with ads, offer a revenue stream for Android application developers.
However, the loaded ads potentially expose application users to
privacy infringements and security threats. For instance, tracking
scripts embedded in third-party ads monitor user behavior and
can entice users into downloading malicious files. Therefore, the
detection of advertising libraries in mobile applications is crucial
for mobile security protection and serves as the foundation for
preventing third-party ads from compromising user privacy.

In this paper, we propose ANDetect, a tool specifically designed
for identifying advertising libraries in Android applications. Utiliz-
ing static analysis of resource characteristics, ANDetect efficiently
uncovers advertising libraries embedded in Android applications,
thereby addressing the limitation of traditional third-party library
detection methods that struggle with encrypted applications. AN-
Detect leverages a manual collection of 833 unique versions of third-
party advertising libraries, combined with profiling and machine
learning techniques. This approach utilizes distinctive semantic
features in advertising and non-advertising libraries to identify
advertising libraries outside of the established ad network database.
We conducted an experiment using ANDetect on over 140,000 ap-
plications downloaded from Google Play and APPCHINA. Upon
manual verification, it was revealed that ANDetect had detected a
total of 16 noval advertising libraries, previously unregistered in the
database. This underlines ANDetect’s potency in enhancing mobile
application security by identifying potentially intrusive advertising
libraries.
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1 INTRODUCTION
Android, an ever-evolving ecosystem, has commanded a substantial
72.51% of the global mobile market as of July 2022 [42]. Within this
burgeoning platform, third-party libraries have become a prevalent
feature, particularly among developers of free applications. Premier
advertising network providers like AdMob [18] and Facebook Au-
dience Network [12], servicing over 34% of the top 500 U.S. apps,
underscore their pivotal role in the Android ecosystem. However,
their pervasiveness raises concerns, as the presence of malicious
advertising libraries could threaten user privacy.
Ad threats exhibited by real-time bidding. The rise of real-time
bidding (RTB) technology [19], despite its advantages in automat-
ing competition for high-value ads and efficient ad serving, has
facilitated the circumvention of ad platform oversight. Notwith-
standing Google’s restrictions [43] on in-app advertising within
Google Play (the largest Android appmarket) [16] applications, RTB
technology’s inherent limitations facilitate the circumvention of ad
platform oversight by ad publishers, thus exposing users to poten-
tial privacy breaches and fraud risks. Recent surveys [10, 37, 44, 45]
underscore the extent of privacy concerns associated with RTB
advertisers. Notably, Sung et al.’s research [45] illustrates how RTB
advertisers exploit local storage, index databases, cookies, IP ad-
dresses, and geographic locations for continuous, low-cost user
tracking, even in the face of user attempts to block such tracking.
The sharing of this tracked data with other data brokers can sub-
stantially infringe on user privacy. A 2020 ProPrivacy survey [37]
revealed that 31% of the UK’s most frequented charity websites har-
bored trackers from RTB platforms, capturing user data, including
age, gender, religion, and political affiliation, and shared this with
thousands of companies.
Challenges of identifying ad libraries. While the identification
of ad libraries has undeniable implications, particularly for user
privacy, the inherent challenges within this domain continue to be
formidable. (1)Main Challenge: Modern Android applications are
often complex, containing multiple libraries – some of which may
be incorporated inadvertently, perhaps imported by other libraries.
The typical behavior and absence of malicious code in ad libraries
make their large-scale detection difficult. To make matters worse,
official platforms such as Google Play do not expose most of the
third-party ad libraries they know. As a result, researchers strug-
gle with the static identification of these libraries to figure out the
correct attribution of ad fraud. (2) Technical Challenge: In the
current Android ecosystem, another challenge is the encryption of
apps, commonly used by developers to enhance security, protect
intellectual property, and deter reverse engineering. For example, as
showed in Figure 1, when an app is encrypted by Qihoo [2], its orig-
inal code, structure and the third-party libraries like “com.qq.e.ads”
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and “android.supported.v4” are modified to “com.qihoo.util”. Unfor-
tunately, the nature of state-of-the-art tools like LibD for identifying
the third-party libraries lies in extracting their original code or struc-
ture features which are completely lost after encryption. As a result,
analyzing the third-party libraries by generating relation pattern or
package hash, state-of-the-art tools couldn’t recognize any original
libraries but only “com.qihoo.util”, thus affecting the accuracy of ad
libraries detection. Therefore, the encryption nature introduces a
significant technical challenge to the accurate detection of libraries.
Shortcomings in current approaches. Under the constraints of
the above challenges, although prior studies [3, 11, 14, 20, 24, 26, 31,
36, 38] have enriched our understanding of ad fraud detection, their
collective efforts have fallen short of overcoming the fundamental
challenges, particularly in the realm of ad fraud attribution (the
Main Challenge). Innovative dynamic detection frameworks such
as FraudDroid, GFD, and FraudDetective [11, 24, 26] have emerged,
successfully extracting behavioral patterns of ad fraud through
heuristic rules and deep learning. However, they have conspicu-
ously omitted the issue of ad fraud attribution, leaving this critical
aspect unresolved. The exploitation of advertising libraries by devel-
opers, leading to deceptive advertisements, further highlights the
inadequacies of current approaches [9]. Notably, researchers have
uncovered adware disguised as a PDF reader, displaying full-screen
ads even during inactivity, sourced from well-established libraries
such as Facebook and Applovin[5]. While numerous studies [3, 31]
have utilized traffic, content, and ad behavior for classification
through machine learning algorithms, they have primarily concen-
trated on detecting malicious behavior, neglecting the crucial task
of ad attribution. Pioneering work by Rastogi et al. [38] on mali-
cious advertisement traceability introduced a model for identifying
advertising libraries within Android applications, associating de-
tected malicious ads with their initiating libraries. Yet, this model’s
limitation in attributing malicious ads in encrypted applications
further underscores the shortcomings of existing methodologies.
Furthermore, conventional detection schemes [14, 20, 36] that rely
on whitelist-based matching following module decoupling have
shown to be limited in recognizing a broader range of advertis-
ing libraries, reflecting an overall failure to effectively address the
outlined challenges associated with ad library identification.

To this end, we present ANDetect, an innovative tool designed to
accurately identify ad libraries embedded within Android app, the
capability persists regardless of app encryption. ANDetect lever-
ages an intricately curated advertising network database, aiming to
aid in the accurate attribution of malicious ad activities. Traditional
third-party library detection tools, such as LibD [29], LibScout [6],
and LibRadar [32], employ clustering or signature methods to dis-
cern third-party libraries contained within an app. Despite their
impressive accuracy in detecting such libraries in obfuscated apps,
they struggle with encrypted apps, often failing to identify the in-
cluded third-party libraries. ANDetect overcomes this limitation by
leveraging resource features within the app, bypassing the encryp-
tion issue and successfully identifying the contained ad libraries
(see § 3.5 for details). Furthermore, acknowledging the limitations
of whitelist-based methods, we extract unique behavioral patterns
from ad libraries, then construct an ad network discrimination
model to detect more ad libraries beyond those in whitelist.

Contributions: Our contributions are outlined as follows:
•We introduced a unique approach that addresses the challenges
of identifying ad libraries in encrypted Android applications by
using a collection of resource features and matches the accuracy of
code semantic-based identification with superior robustness.
•We built an ad network database, a comprehensive database of
833 versions of ad libraries from 162 ad network, ensuring accurate
identification across different library versions. Furthermore, we
collected over 140,000 apps from popular stores to test ANDetect.
Realizing the lack of standard test results, we synthesized detection
outcomes from LibD, LibScout, and LibRadar, creating the first
open-source test dataset [25] for ad library detection in apps.
•We designed and implemented ANDetect, the first static-analysis
based tool capable of identifying ad libraries in encrypted apps. It
not only maintains detection efficiency but also extends beyond tra-
ditional whitelist-based methods, using unique ad library behaviors
and package names for higher recognition accuracy. Additionally,
with the assistance of ANDetect, we checked 16 brand-new ad
network and 53 unmarked adware. Notably, we open-sourced AN-
Detect online on our website [25].

Figure 1: The technical challenge from state-of-the-art tools.

2 BACKGROUND
In this section, we provide an overview of the operational modes of
ANs, encompassing both the traditional in-app advertising model
and burgeoning programmatic real-time bidding mode. We elu-
cidate the prevailing methods of code obfuscation, resource ob-
fuscation, and encryption deployed within Android applications.

2.1 Advertising Networks
The traditional in-app advertising model is predicated on three
elements: advertising publishers, AN platforms, and application de-
velopers. Advertising publishers provide the advertising networks
(AN) platform with the requisite resources for the advertisement
such as images and HTML codes. Concurrently, the application de-
veloper is tasked with registering on the AN platform and invoking
the interface furnished by the AN library. When placing adver-
tisements, advertising publishers distribute rewards to application
developers based on the count of ad clicks within applications.

In recent years, the programmatic mobile advertising model —
colloquially known as real-time bidding advertising — has been
progressively encroaching upon the market share of the traditional
in-app advertising model. Owing to its elevated level of automation,
this model has garnered the approbation of both ad publishers and
application developers. Application developers merely have to put
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Figure 2: The workflow of ANDetect.

up the ad space within their applications for auction, and the AN
platform autonomously assists them in procuring advertisements
with higher bids, thereby bolstering the developer’s profit. In a
similar vein, advertising publishers place their ad resources on
the AN platform and engage in bidding. The platform, in turn,
locates suitable ad positions for them in line with their bids. The
programmatic mobile advertising model affords the feasibility of
collaboration between disparate AN platforms. To augment the
channels for securing ad space, the AN platform may opt to bid its
represented ad resources on the advertising exchange market.

Irrespective of whether a third-party library furnishes a tra-
ditional in-app advertising model or a programmatic advertising
model, we collectively designate it as a AL. This serves as the focal
point of our detection and security analysis in this study.
2.2 Application Obfuscation and Encryption
Obfuscation, implemented to reduce Android app size, employs
strategies from basic character renaming to intricate API hiding
through Java reflection and dynamic class loading technology, in-
creasing reverse analysis complexity [52]. Common obfuscation
tools include Allatori, dashO, DexGuard, DexProtector, ProGuard,
Stringer, and PreEmptive [6]. Third-party libraries, however, advise
against obfuscation due to potential invocation errors. For instance,
Flurry [13] instructs to exclude com.flurry classes from Proguard
obfuscation. Our profiling method in ANDetect allows for ad li-
brary detection even if obfuscated. Resource obfuscation, another
technique, is used to further compress app size [40]. Our analysis
shows that after obfuscation, resource file names in the res directory
become meaningless characters, while resource images’ names of
the third-party library remain unobfuscated.

In the realm of AP encryption, developers possess the ability to
encrypt the entirety of the DEX (Dalvik Executable) file. This file is
the compiled manifestation of the source code, a crucial component
encapsulated within AP, alongside resources, manifests, certificates,
and other necessary assets required for the application’s success-
ful operation on an Android device. Encryption can be applied to
user-defined functions and Android components, such as activities
and services. In this context, the protected classes are eliminated
from the original classes.dex file. This means that, unlike obfus-
cated APs, the source code of encrypted DEX files remains elusive,
inaccessible through conventional reverse engineering tools. The

encrypted application incorporates a decryption module. During
the application’s execution on the Android system, this decryption
module decrypts the DEX file, thus reinstating the original one.
3 MODEL DESIGN AND IMPLEMENTATION
In this section, we put forward the design of ANDetect, encompass-
ing the construction of the dataset and the identification methods
targeting both encrypted and non-encrypted Android applications.
3.1 Design Philosophy
Conversely, for non-encrypted apps, we first establish the presence
of advertising behavior before conducting ad library matching,
thus enabling the identification of a broader range of third-party ad
libraries beyond the advertising networks database (AN database).
Following this philosophy, we design ANDetect.

The workflow of ANDetect is illustrated in Figure 2. The iden-
tification process of ANDetect is mainly divided into two steps:
profiling and scoring. Profiling and scoring constitute two pivotal
processes in enhancing the efficiency and accuracy of ad library
(AL) detection in both encrypted and non-encrypted Android appli-
cations (APs). Profiling entails the extraction of critical components
from APs, thereby reducing the computational overhead associated
with the individual assessment of every AL. Meanwhile, scoring in-
volves determining the similarity between an app and an individual
AL, facilitating targeted analysis. Initially, we construct separate
resource and class profiles for each ad library, delineating the dis-
tinct characteristics pivotal for identification. Subsequently, we
categorize APs into encrypted and non-encrypted groups based on
variations in package name attributes, which undergo alterations
during the encryption process.

For encrypted AP, we generate a resources profile. For non-
encrypted AP, we generate a class profile for advertising modules
after decoupling. Subsequently, the profile will be matched with the
corresponding profile of each ad library and the matching result
determines whether the ad library is contained in this AP.
3.2 Preprocessing Data
Before delving into the detailed design of ANDetect, we present
the data preprocessing phase which aligns with ANDetect’s data
preprocessing process and will be subsequently discussed in detail.

The package name of the AL is updated to align with its package
structure. The original package name data in the dataset is derived
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from the identification results of LibD [29], LibRadar [32], and Lib-
Scout [6], as well as irregular names found on various websites
and datasets. However, these names might not accurately corre-
spond to each library’s package, necessitating an update. This not
only enhances the precision of each AN’s identification but also
standardizes the outcomes of third-party advertising traceability.
The ALs are usually released as jar or aar files. While jar files
can be directly decompressed using decompression software, aar
files require a change of suffix to zip prior to decompression. The
decompressed path of the jar file is recorded to update the corre-
sponding package name based on its packaging principle. While
the package name corresponding to the AL can be directly found
in the manifest file obtained after decompressing the aar.

3.3 Profiling
Prior to the identification of ALs within an AP, we construct both
resource and class profiles for each individual AL. In this subsection,
we delineate the processes involved in extracting resource and
class features, which are then used to formulate these profiles.
While code semantic features offer a visual representation of an AL,
the application of resource features to represent an AL remains a
relatively uncharted territory. Selecting the most suitable features
is a critical task. Accordingly, we will provide a comprehensive
explanation of the effective utilization of resource features.

Figure 3: The mapping of key-value.

Resources profiling: Given the comprehensive modification of
the original code and structure, identifying third-party libraries
in encrypted apps is more effectively achieved through analyzing
resource features, which is facilitated by the unique characteristics
that advertising libraries exhibit in resource files.

Resource files, which comprise the AndroidManifest.xml, as well
as files in the res and assets directories, are essential components of
jar and aar files. When packaging an aar file, all resource files are
included, whereas for a jar file, only assets is incorporated. Given
the structural discrepancies between jar and aar files, resource
profiles need to be generated through distinct methodologies.

To extract the effective feature set from aar files, we establish
key-value mappings for all resource files with xml extensions. In
these mappings, the key is made up of the resource file path and
name, elements path, and attribute, as shown in Figure 3. The corre-
sponding data of the attribute constitutes the value. As an excess of
features can lead to model overfitting, it is vital to judiciously select
the keys that constitute the final resource features set. The selection
of these keys should satisfy the following three conditions:

Universality: The key should generally exist in different ALs,
not unique to a certain AL.

Differentiation: The value of this key should be capable of
distinguishing different ALs. We utilize the TF-IDF algorithm [39]
to compute the differentiation of each key.

Insensitivity: The value of this key should be insensitive for
different versions of one AN. We evaluate the sensitivity of all keys
to different versions of the same ANs.

The computation procedure of universality, differentiation and
insensitivity is given in Appendix B. Based on the aforementioned
three dimensions, we generate three lists of keys, each sorted in
descending order. We then select the intersection of keys present in
the top 50 permutations of each list. Following this screening pro-
cess, we extract a total of 11 keys. These keys collectively comprise
the resource features of aar, as depicted in Appendix Table 5.

For jar files, extracting resource features similar to aar is
challenging, given that jar files do not contain AndroidMani-
fest.xml and the res directory. However, after extensive investiga-
tion of various developer documents, we discovered that when
these AN jar files are integrated into an AP, they often de-
fine values that align with their package name prefixes in the
manifest file elements. For instance, the developer documents
of Dangbei, a prominent AN in China, instructs the addition of
<receiver android:name="com.dangbei.euthenia.receiver.
NetworkChangeReceiver"> in the manifest when integrating this
library, while its package name is com.dangbei.euthenia. As such,
we employ the package name of a jar as 𝐹1 in Appendix Table 5.

Furthermore, we identified that image-type resources within
both aar and jar files could also serve as a distinctive category of
features to denote different advertising networks. To avoid image
overlay due to identical names during packaging an AP, ALs typi-
cally opt for meaningful names when designating important images.
Such significant image names are capable of distinguishing various
ALs, as exemplified by applovin_ic_mediation_applovin.png
in APPLOVIN. Analogous to the process of calculating distinction,
the significant image names are sifted via the TF-IDF algorithm and
build image pool for each AL.
Class Profiling: For non-encrypted applications, the unaltered
original code and structure facilitate effective adlib detection. We
decompile the DEX file to obtain the package structure and class
files, from which we extract the essential features to construct the
class profile. Procuring the structural features of an AP can rapidly
pinpoint the AL in the unobfuscated AP. The hierarchical character-
istics inherent in the package structure determine its suitability to
be represented by a tree, where the parent-child node pair signifies
the upper-lower relationship of the package hierarchy directory.
Additionally, edges and twigs serve as crucial elements of a tree,
enabling rapid location of an app’s adlib configuration.

Edges: In a package structure tree, the set of nodes denoted as
𝑁 depends on the hierarchy directory, while a pair of parent-child
nodes is denoted as < 𝑁𝑝 , 𝑁𝑐 >. The number of parent-child node
pairs is the same as all non-leaf nodes. Use edges 𝐸 to represent
the set of all parent-child node pairs in the package structure tree,
where 𝐸 = {< 𝑁𝑝 , 𝑁𝑐 >, 𝑝 ∈ Non-Leaves, 𝑐 ∈ Children of 𝑝}.

Twigs: A twig is defined as a branch within the package structure
tree, originating from the root node and extending to the leaf nodes
and is denoted as a set of these nodes. The total number of twigs
equates to all leaf nodes. Each class profile encapsulates a set of
twigs, which we express as 𝑇 = {𝑇𝑖 , 𝑖 ∈ Leaves}.
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The class file, once decompiled, contains comprehensive code
implementation logic. However, generating a class profile directly
from unprocessed class files would lead to significant time and
storage overheads. Consequently, when creating the class profile,
each class must be suitably compressed. The processed classes
must retain their functions while also resisting certain obfusca-
tion techniques, such as identifier renaming, string encryption, and
dead-code elimination, among others, for the purpose of which, we
select the following features. A class file encapsulates numerous
vital pieces of information, including the class name, parent class,
fields, methods, and called functions. When extracting code fea-
tures, our focus primarily falls on the fields, methods, and called
functions within the class. Given that a called function needs to be
implemented within a method, we categorize code features roughly
into two groups: field signatures and method signatures.

Field: We generate signatures for the fields, which are cate-
gorized into static and instance fields. Significant attributes that
characterize these fields include their access rights, such as private
or public, whether the field is static, and the field type. By concate-
nating these identifier strings, we obtain the field signature.

Method: Given that certain code obfuscation techniques can al-
ter the class name, and such modifications can significantly im-
pact the hash value, we utilize a string concatenation method for
method signing in this study. A method signature comprises the
method’s access rights, whether the method is a static code block,
the method’s parameter type list, the method’s return type, the
class of the function invoked in the method, and the function name.
The class of the functions within the method can be distinguished
as either a system function or a custom function, depending on
whether it’s defined in the application classes. We classify system
functions as those called from the Android SDK and JDK. We retain
the name of the invoked function and the order in which it appears
in the method, while disregarding the type and specific value of the
parameters passed into the function and the return value type.

The class profile, resilient to identifier renaming, string encryp-
tion, and dead-code elimination, is constructed from the set of
edges and twigs derived from the package structure, along with the
signatures of every class file.

3.4 Non-encrypted application detection
As depicted in Figure 2, AL detection strategies can be distinctly
categorized based on whether the AP is encrypted or not. Prior to
selecting an appropriate detection approach, it’s crucial to ascertain
the encryption status of the AP. As mentioned in section 2.2, the
centerpiece of AP encryption is the encryption of its dex file, a pro-
cess that drastically alters the package structure. Consequently, it
becomes impossible to locate the main class directed by the package
attribute of AndroidManifest.xml within an encrypted AP. Lever-
aging this observation, we subsequently apply suitable detection
methodologies. In this section, we focus on the detection strategies
for non-encrypted APs.
Decoupling: To mitigate the interference from the host application
during the decoupling process, we initially identify the host applica-
tion’s main model by selecting the value of the package attribute in
the manifest. We then segregate the remaining structure and class
files into distinct modules — referred to as sub-modules — through
Louvain [7] which is a community partition algorithm. Leveraging

the weak inter-library and strong intra-library association, Louvain
is capable of partitioning different libraries according to the call
relationship in an app. For each class, we extract the call and in-
heritance relationships, enabling the construction of a community
network. After partitioning different communities from the whole
package structure, we adopt a bottom-up merging strategy to gen-
erate sub-modules in accordance with the package structure tree,
and the strategy is stated in detail in Appendix A.
Advertising behavior: Upon partitioning the package structure
into sub-modules, we probe the advertising behavior of each sub-
module. Only sub-modules exhibiting advertising behavior proceed
to be matched with the Advertising Network (AN) database.

We categorize the Application Programming Interface (API) set
from the Android Software Development Kit (SDK) and Java Devel-
opment Kit (JDK) as systemAPIs. ANDetect discerns the advertising
behavior of sub-modules by statistically analyzing the system APIs’
call patterns, thereby abstracting the unique behavioral patterns
of advertising libraries. We introduce a binary classification model,
constructed with a dataset comprising of 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐴𝑁 (ad modules)
and 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑁𝐴𝑁 (non-ad modules) which is mentioned in sec-
tion 4.1, to differentiate between ad modules and non-ad modules.
The number and distribution of system API calls bear substantial
behavioral significance. Given that using the entire set of system
APIs as a feature set could induce model overfitting, we selected 210
APIs (which have surfaced in libraries from𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐴𝑁 ) as potential
feature sets. Ultimately, three types of features emerge: the number
of candidate API calls, the distribution of candidate APIs across
different classes, and the distribution of candidate APIs across dis-
tinct methods. For each of these feature types, we construct three
separate XGBoost models and employ a voting mechanism for the
classification results. Any sub-module identified as displaying ad-
vertising behavior is subsequentlymatched against the AN database.
Smith-Waterman Similarity: Sub-modules exhibiting advertising
behavior are precisely associated with a specific AL in the AN
database, or appended to the AN database as a novel AL. In the
case of the former, ANDetect identifies a specific library version.
Initially, we construct a set of candidate libraries from the AN
database to constrict the scope of libraries for association, thereby
accelerating the process. This candidate set may include libraries
of diverse versions from different ANs. Subsequently, we generate
a similarity matrix representing correlations between class profiles
from the sub-module and AL. Each matrix value reflects a pair of
class sequences’ similarity, as determined by the Smith-Waterman
algorithm [41] which performs local sequence alignment. Given
that the dead-code elimination may delete a part of an unused field
or method in class thus changing the original class sequence, the
local sequence alignment algorithm is more suitable than the global
sequence alignment algorithm. According to this similarity matrix,
we maximize the similarity of class sequence pairs, with the AL
exhibiting the highest similarity across all class sequence pairs
confirmed as the result.

Referring to the definition of node and edge in class profiling,
we define the node set in the package tree of a sub-module as 𝑁 𝑠 ,
the edge set as 𝐸𝑠 , and the set of twigs as 𝑇 𝑠 . The class set within
node 𝑁 𝑠

𝑖
is denoted as 𝐶𝑠

𝑖
. All nodes from an AL collectively form

the set 𝑁𝑎 , with the edge set represented as 𝐸𝑎 and the twig set as
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𝑇𝑎 . The class set within node 𝑁𝑎
𝑖
is denoted as 𝐶𝑎

𝑖
. It is crucial to

discern whether the sub-module is obfuscated when constructing
the candidate set. If it is obfuscated, we consider the possibilities
of dead-code elimination and package flattening. The ALs in the
candidate set must conform to these constraints:

|𝑁 𝑠 | ≤ |𝑁𝑎 |
|𝑁 𝑠 |∑︁
𝑖=1
|𝐶𝑠𝑖 | ≤

|𝑁𝑎 |∑︁
𝑖=1
|𝐶𝑎𝑖 | (1)

|𝑇 𝑠𝑖 | ≤ |𝑇
𝑎
𝑗 |, ∀𝑇

𝑠
𝑖 ∈ 𝑇

𝑠 , ∃𝑇𝑎𝑗 ∈ 𝑇
𝑎

In instances where multiple nodes within the sub-module possess
a discernible hierarchical relationship, thereby suggesting the ab-
sence of flattening, additional constraints are formulated as follows:{

|Children of 𝑁 𝑠
𝑖
| ≤ |Children of 𝑁𝑎

𝑗
|

|𝐶𝑠
𝑖
| ≤ |𝐶𝑎

𝑗
| (2)

∀𝑁 𝑠𝑖 ∈ 𝑁
𝑠 , ∃𝑁𝑎𝑗 ∈ 𝑁

𝑎

If the packages of sub-module are not renamed to a meaningless
strings, the following constraints are additionally defined:

𝐸𝑠𝑖 = 𝐸
𝑎
𝑗 ,∀𝐸

𝑠
𝑖 ∈ 𝐸

𝑠 , ∃𝐸𝑎𝑗 ∈ 𝐸
𝑎 (3)

Ad libraries that meet the constraint 1 are added into the can-
didate set, denoted as 𝐶𝐴. If 𝐶𝐴 is an empty set, it indicates that
the sub-module cannot match any library in AN database. Under
such circumstances, we verify the existence of the library in Maven,
and if found, download all versions of the library, subsequently
adding them to the AN database. In instances where 𝐶𝐴 contains
at least one AL, ANDetect carries out calculations based on the
Smith-Waterman (SW) similarity.
Algorithm 1 Local Maximum Similarity Algorithm.
Input: Matrix 𝑆𝑊 ∈ {𝑠𝑤}𝑠′×𝑎′
Output: The sum of local maximum value 𝑔 (𝑆𝑊 )
1: // Initialize the local maximum value.
2: 𝑔 (𝑆𝑊 ) ← 0;
3: // Initialize a set to record the matched class in𝐶𝑎 .
4: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 ← ⊘;
5: for (𝑖 = 1→ 𝑠′ ) ∧ ( |𝑀𝑎𝑡𝑐ℎ𝑒𝑑 | < 𝑎′ ) do
6: 𝑚 ← 0;
7: 𝑚𝑎𝑡𝑐ℎ 𝑗 ← 0;
8: for 𝑗 = 1→ 𝑎′ do
9: if (𝑠𝑤 (𝑖, 𝑗 ) >𝑚) ∧ ( 𝑗 ∉ 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 ) then
10: 𝑚 ← 𝑠𝑤 (𝑖, 𝑗 ) ;
11: 𝑚𝑎𝑡𝑐ℎ 𝑗 ← 𝑗 ;
12: end if
13: end for
14: 𝑔 (𝑆𝑊 ) ← 𝑔 (𝑆𝑊 ) +𝑚;
15: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 ←𝑚𝑎𝑡𝑐ℎ 𝑗 ;
16: end for
17: return 𝑔 (𝑆𝑊 )

If the sub-module is not obfuscated, 𝐶𝐴 should be built subject
to constraint 3. To construct a pair of class sequences, ANDetect
serializes the field and method signatures in the sub-module’s and
AL’s class profiles of the same name. Here, 𝑠𝑤 (𝑖, 𝑗) indicates the
Smith-Waterman similarity of a pair of sequences, derived from
class 𝑐𝑠

𝑖
and class 𝑐𝑎

𝑗
. The similarity of sub-module 𝑠 and AL 𝑎 is

denoted as 𝑆𝑖𝑚𝑠,𝑎 . When facing obfuscated sub-modules, ANDe-
tect generates similarity matrices using the class profiles of the
sub-module and all candidate libraries. If the sub-module contains
a single node, and this node houses all class files, ANDetect creates
a matrix 𝑆𝑊 ∈ {𝑠𝑤}𝑠′×𝑎′ , with 𝑠′ and 𝑎′ denoting |𝐶𝑠 | and |𝐶𝑎 |

respectively. Define the sum of local maximum similarities of 𝑆𝑊 as
𝑔(𝑆𝑊 ) and the calculation process is given in Algorithm 1. ANDe-
tect then gets the sum of similarities 𝑆𝑖𝑚𝑠,𝑎 across all pairs of class
sequences, in accordance with 𝑆𝑊 . If the sub-module consists of
multiple nodes, numerous similarity matrices are developed in line
with constraint 2. Initially, the node 𝑁 𝑠∗ containing the most classes
is selected, along with the node set 𝑁𝑎 from the AL that satisfies
constraint 2. Similarity matrices 𝑆𝑊 ∗, 𝑗 are constructed based on all
pairs of class sequences serialized from 𝑁 𝑠∗ and 𝑁𝑎𝑗 . The node 𝑁

𝑎
𝑗

associated with 𝑁 𝑠∗ is determined by the following equation:
argmax
𝑁𝑎

𝑗
∈𝑁𝑎

{𝑔(𝑆𝑊 ∗, 𝑗 )} (4)

After the exclusion of 𝑁 𝑠∗ from 𝑁 𝑠 and 𝑁𝑎
𝑗
from 𝑁𝑎 , ANDetect

selects the subsequent 𝑁 𝑠∗ and 𝑁𝑎𝑗 . This iterative process contin-
ues until all nodes within the sub-module have undergone simi-
larity computation. After obtaining all pairs of associated nodes,
ANDetect maximizes the similarity of all classes belonging to the
associated nodes, and then sums to get 𝑆𝑖𝑚𝑠,𝑎 .

In the end, the maximization of total similarity 𝑆𝑖𝑚𝑠,𝑎 between
the sub-module 𝑠 and the AL 𝑎 is pursued, thereby identifying the
corresponding AL:

max
𝑎∈𝐶𝐴

𝑆𝑖𝑚𝑠,𝑎, where 𝐶′ = {𝐶𝑠 ∩𝐶𝑎} (5)

𝑆𝑖𝑚𝑠,𝑎 =


∑
𝑐′∈𝐶′ 𝑠𝑤 (𝑐′(𝑠 ) , 𝑐′(𝑎) ) , if satisfy (1) and (3)∑
𝑁𝑎

𝑗
∈𝑁𝑎 𝑔(𝑆𝑊 ∗, 𝑗 ) , if satisfy (1) and (2)

𝑔(𝑆𝑊 ) , if only satisfy (1)
The name and certain version of AL 𝑎 is given by ANDetect as the
final result in non-encrypted application detection.

3.5 Encrypted application detection
Typically, encrypting an Android application does not modify the
resource files within it. Thus, even if the resources of the AP are
obfuscated, certain resource features persist. We abstract these
resource features to create a resource profile, which aids in com-
prehensive scoring to determine the presence of any AL within an
encrypted AP. As described in this section, the scoring methods
are categorized into “global search”, “full-path method”, “no-path
method”, and “image pool method”, each reflecting the characteris-
tic features outlined in Appendix Table 5.
Global search: The packaging of an AP entails merging the <man-
ifest> elements of the host application and third-party libraries.
In this process, only attributes with the highest priority persist.
Thus, the package attribute of the <manifest> element post-merging
refers to the host application’s entry class, making it unsuitable
to match 𝐹1 following the original path. Nevertheless, AL de-
veloper documents often explicitly require component declara-
tions in the AndroidManifest.xml. For instance, keymob requires
the android:name of the activity component to be configured as
com.keymob.sdk.core.KeymobActivity in the manifest file. The
values corresponding to the components are prefixed with the pack-
age name of the AL which is equivalent to 𝐹1 in the resource profile.
The package names of ALs are often distinct, even different types of
third-party libraries developed by the same company have different
package names. As an example, the package name of AL devel-
oped by Yandex is com.yandex.mobile.ads while its map library
is named as com.yandex.maps.mobile. Therefore, we assert that if
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an element’s android:name prefix precisely corresponds to an AL’s
package name, the AP undeniably incorporates this library. For 𝐹1,
ANDetect employs a global search approach. Specifically, it com-
pares the android:name prefix of all elements in an AP’s manifest
file against 𝐹1 in the resource profile of the AL.
Algorithm 2 Relaxation Matching Algorithm.
Input: Features 𝐹𝑃 from AP, 𝐹𝐿 from AL, Package name 𝑛 of AL
Output: The similarity 𝑠𝑖𝑚 between 𝐹𝑃 and 𝐹𝐿
1: if 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝐹𝑁 ) == 𝑛 then
2: 𝑃 ← delete 𝑛 in 𝑃𝑁 and split 𝑃𝑁 with ".";
3: 𝐿 ← delete 𝑛 in 𝑃𝐿 and split 𝑃𝐿 with ".";
4: let 𝐷 ( |𝐿 |+1)×(|𝑃 |+1) be a matrix;
5: 𝑠𝑖𝑚 ← 1;
6: for 𝑖 → [0, |𝐿 | ] do
7: for 𝑗 → [0, |𝑃 | ] do
8: if 𝑖 == 0 then
9: 𝐷 [𝑖 ] [ 𝑗 ] ← 2|𝑃 |− 𝑗∑|𝑃 |

𝑘=1 2
|𝑃 |−𝑘

;

10: else if 𝑗 == 0 then
11: 𝐷 [𝑖 ] [ 𝑗 ] ← 2|𝐿 |−𝑖∑|𝐿 |

𝑘=1 2
|𝐿 |−𝑘

;

12: else
13: 𝜌 ← (𝑃 [ 𝑗 ] ∈ AN list) ? 0 : 1
14: 𝑑 ← (𝐿[𝑖 ] == 𝑃 [ 𝑗 ] ) ? 0 : 1;
15: 𝑑𝑒𝑙 ← 𝐷 [𝑖 ] [ 𝑗 − 1] + 𝜌 2|𝑃 |− 𝑗∑|𝑃 |

𝑘=1 2
|𝑃 |−𝑘

;

16: 𝑖𝑛𝑠 ← 𝐷 [𝑖 − 1] [ 𝑗 ] + 2|𝑃 |− 𝑗−1∑|𝑃 |
𝑘=1 2

|𝑃 |−𝑘
;

17: 𝑟𝑒𝑝 ← 𝐷 [𝑖 − 1] [ 𝑗 − 1] + 𝑑𝜌 2|𝑃 |− 𝑗∑|𝑃 |
𝑘=1 2

|𝑃 |−𝑘
;

18: 𝐷 [𝑖 ] [ 𝑗 ] ←𝑚𝑖𝑛 (𝑑𝑒𝑙, 𝑖𝑛𝑠, 𝑟𝑒𝑝 ) ;
19: end if
20: end for
21: end for
22: 𝑠𝑖𝑚 ← 𝑠𝑖𝑚 − 𝐷 [ |𝐿 | ] [ |𝑃 | ];
23: else
24: 𝑠𝑖𝑚 ← 0
25: end if
26: return 𝑠𝑖𝑚

Full-path method: The paths, attributes, and values of 𝐹2, 𝐹3, 𝐹4,
𝐹5, 𝐹6, and 𝐹7 remain unaltered during packaging, enabling their
identical counterparts in the merged and original library mani-
fests to be identified. Consequently, ANDetect applies a full-path
approach to match 𝐹2 through 𝐹7, where ‘path’ denotes the file
path and elements path in the key of each feature. These features
are further divided into stable and variable features based on their
characteristics.

Stable features including 𝐹2, 𝐹3, and 𝐹4, maintain consistent
values despite version changes. Although these features are not
exclusively unique to individual ALs, and may recur across various
libraries, their combination can serve as a robust identification ref-
erence. 𝐹2 is a feature that represents permissions including custom
permissions, like com.goole.android.gms.permission.AD_ID,
named by the developer. 𝐹3 is a URI string comprising applica-
tionId and a custom name, indicating the user of FileProvider. 𝐹4
corresponds to the action of intent, which includes both system-
defined and custom actions. These three features may be added or
removed across different library versions, yet their string charac-
teristics typically persist. For these stable features, we perform a
complete feature comparison.

Variable features, such as 𝐹5, 𝐹6 and 𝐹7, undergo partial string
modifications with version changes. Given the possible alterations
in features values, a comprehensive comparison is unfeasible. In-
stead, ANDetect employs a relaxed matching approach. A variable

feature value is defined as a prefix and individual strings separated
by “.”, where the prefix refers to the package name. The method
assumes that version changes do not affect these feature prefixes,
and any changes to individual strings are minimal and highly cor-
related with the AN. We maintain a list of AN related words, such
as ad(s), network(s), adview, etc. We propose a weighted relaxation
matching algorithm outlined in Algorithm 2, to calculate the sim-
ilarity between each variable feature in the AP and the resource
profile from AL.
No-path method: For non-manifest resource files, the Android
Asset Package Tool assigns each non-assets resource an ID during
the xml file compilation before storing it to the R.java file, and gen-
erates resources.arsc to index resources assigned ID. The original
paths of 𝐹8, 𝐹9, 𝐹10, and 𝐹11 from AL are blurred during the packag-
ing process. These features are merged into the resources.arsc based
on their attributes, hence the feature path is disregarded during
the matching process. After parsing resources.arsc, we identify the
same values corresponding to the same attribute in the AL, em-
ploying a method known as “no-path”. Given that certain features
exhibit weak correlation with the corresponding AL — for instance,
𝐹9 of com.ironsource.sdk.mediation is app_name — it becomes
crucial to weight features using equation (8).
Image pool method: When a developer incorporates a third-party
library, the images from the assets and res directories are relocated to
their respective directories within the AP. The image pool method
involves verifying if the path in the AP encompasses the same
image name with the images present in the image pool of an AL.
Comprehensive scoring: Each of the aforementioned four match-
ing methods is assigned a specific scoring method to estimate the
similarity between the resource profiles of the AP and the AL. This
process allows the determination of whether the AP includes a
particular AL, and if so, which one. Here, 𝐹𝑛 represents the set of all
values correlating to feature𝑛 in the AL, while𝑉𝑛 symbolizes the set
of all values within the AP that satisfy the matching rules of 𝐹𝑛 . The
computation is detailed in Appendix C. The correlation between
individual features and the ad library, alongside the possibility of
feature elimination during the AP packaging process, allows us
to classify 𝐹1 to 𝐹11 and 𝑃𝑁 into strong association features and
weak association features. Strong association features (𝐹1, and 𝐹5
to 𝐹7) have the capacity to uniquely distinguish ad libraries. On the
other hand, weak association features (𝐹2 to 𝐹4, 𝐹8 to 𝐹11, and 𝑃𝑁 )
typically require a collective application to differentiate libraries.
Accordingly, we assign the weight 𝜔1 to the strong association fea-
tures and 𝜔2 to the weak association features. Upon scoring these
features according to their respective rules, ANDetect computes
the final similarity score between an AP and an AL via a process of
weighted summation and normalization.

Finally, ANDetect computes the similarity between the resource
profile of the AP and that of the AL. A threshold 𝜃 is established
with the comprehensive score exceeding 𝜃 indicative of the AP
containing the ad library. The selection of optimal weights 𝜔1 and
𝜔2, along with the threshold 𝜃 , is subsequently validated in § 4.2.

3.6 Implementation
When generating resource profiles for all ad libraries in AN data-
base, after decompressing the aar file, find all resource files in
the AndroidManifest.xml, res and assets directories if existing, and
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extract features 𝐹1 to 𝐹11 and build the image pool. After decom-
pressing the jar file, generate feature 𝐹1 according to the package
name where the core class is located, find the resource files located
in assets and build the image pool. When generating class profile,
find the classes.jar file in an aar file, and compile the classes.jar to
dex file with d8 [17], one of the Android Build Tools. For jar file,
we skip the decompression step and compile it to dex file directly.
And then use baksmali [21] to decompile the dex file into smali
files, ANDetect analyzes the structure and code features of each
advertising library to generate class profile. ANDetect analyzes An-
droid applications by using baksmali to decompile the classes.dex
obtained after decompression.

ANDetect implements the advertising behavior discrimination
model described in § 3.4 using xgboost4j [33] when identifying the
advertising behavior of non-encrypted applications. Train XGBoost
model based on 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐴𝑁 and 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑁𝐴𝑁 mentioned in § 4.1,
save to json file. When ANDetect detects the advertising behavior
of the sub-module, the XGBoost model saved in json is read and
binary classification is performed to generate recognition results.
4 EVALUATION
In this section, we conduct a comprehensive evaluation of AN-
Detect across multiple dimensions. Specifically, we scrutinize the
appropriateness of the hyperparameter settings within ANDetect,
the efficacy of ANDetect in detecting ad libraries in both exper-
imental and real-world environments as well as the capacity of
ANDetect to identify novel advertising libraries beyond those in
the AN database. Additionally, we verify the robustness of ANDe-
tect when handling encrypted applications in Appendix 4.4. To
accurately quantify ANDetect’s performance, we have established
the following evaluation metrics:
• Fine-grained True Positive (TP-FG): For Android applications
with advertising libraries, fine-grained true positive indicates
the probability that the predicted ALs can completely cover
the real ALs.
• Coarse-grained True Positive (TP-CG): For all Android appli-
cations, coarse-grained true positive suggests the probability
that successfully predicts there are advertising libraries in
an Android application as absence.
• Precision: Precision presents the probability that the pre-
dicted result is correct when a certain advertising library is
predicted to exist.
• Recall: Recall means the probability that the predicted re-
sult is correct among all advertising libraries existing in an
application.

Among the above metrics, TP-FG, precision and recall are fine-
grained and accurate to every ad library while TP-CG is coarse-
grained and accurate to every application.

4.1 Dataset construction
In this section, we introduce the construction process of the datasets
used in this paper and the different application approaches.
Android Application Dataset: We constructed the Android App
(AP) dataset from over 140,000 applications sourced from Andro-
Zoo [4], Google Play, and APPCHINA. 20,000 of these apps released
post-2016 and labeled as adware by MadDroid [31] were down-
loaded from the AndroZoo repository and the set was labeled as
𝐴𝑃adware. The remaining 125,401 unique applications, also released

after 2016, were collected from Google Play and APPCHINA to
form 𝐴𝑃truth. To facilitate an extensive analysis, we classified these
datasets into two categories based on the confidence in the labeling:
•Low-confidence labeled datasets: Crafted through the utilization of
tools such as LibD, LibScout, and LibRadar to pinpoint and label
the ad libraries in the 𝐴𝑃adware and 𝐴𝑃truth sets. Subsequently, we
amalgamated the results obtained from each tool to frame the labels
for each sample in the 𝐴𝑃∗adware and 𝐴𝑃

∗
truth datasets.

•High-confidence labeled datasets: Created by meticulously anno-
tating 300 applications from 𝐴𝑃adware and 𝐴𝑃truth respectively, of
which 200 were non-encrypted and 100 were encrypted. The an-
notation process involved: (1) Undertaking advertising UI tests, (2)
Employing Frida [35] to access the function call stacks and trace
them to third-party libraries, and (3) Recognizing them as adver-
tising libraries. We referred to these datasets as 𝐴𝑃200adware, 𝐴𝑃

200
truth,

𝐴𝑃100adware, and 𝐴𝑃
100
truth, respectively.

Ad Networks Dataset: As the ALs obtained from open-source
platforms often contain noise, we manually collected AL informa-
tion from various platforms such as Maven Central and Google
Play SDK Index. However, these platforms only provide a limited
number of popular ALs. To find more ALs, we used popular open-
source third-party library detection tools, namely LibScout, LibD,
and LibRadar, to detect 𝐴𝑃𝑎𝑑𝑤𝑎𝑟𝑒 and 𝐴𝑃𝑡𝑟𝑢𝑡ℎ . We then ranked
and filtered the detected third-party libraries and scripted a web
crawler to automatically search for third-party library informa-
tion. The collected SDK information was then matched with ad
network-related keywords. Following manual verification, we com-
piled 833 different versions of ALs provided by 162 AN platforms
into a third-party AL dataset, denoted as 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐴𝑁 . To learn the
unique behavior patterns of advertising libraries, we collected 2758
non-advertising libraries, classified as Testing Frameworks & Tools,
Android Packages, Logging Frameworks, and others from Maven
Central. This collection is denoted as 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑁𝐴𝑁 .

4.2 Hyperparameter setting
The areas in ANDetect that involve hyperparameter settings include
the XGBoost model constructed to detect advertising behavior in
§ 3.4 and the weights of strongly and weakly correlated features
and the thresholds of composite scores in § 3.5. We next describe
the evaluation of the hyperparameter settings in each of these two
sections and the integration of the most appropriate parameters in
ANDetect.

The hyperparameters of the XGBoost model include boost round,
learning rate, the maximum depth of the tree, and the proportion
of randomly sampled features. Here we consider that boost round
and learning rate are decisive for the performance of XGBoost in
detecting advertising behaviors. To evaluate the two hyperparame-
ters, we define accuracy as the metric and construct test datasets
from 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐴𝑁 and 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑁𝐴𝑁 , dividing the training and test
sets in a 7:3 ratio. As we remarked in § 3.4, based on three feature
sets, three XGBoost models were constructed separately. The model
evaluation on feature sets generated by the number of candidate
API calls (API count), the distribution of these candidate APIs across
different classes (DIST across classes) and the distribution of can-
didate APIs across different methods (DIST across methods) are
shown in Figure 4a, 4b and 4c respectively. It is not requisite for
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(a) API count (b) DIST across classes (c) DIST across methods (d) TP-FG (e) TP-CG (f) TN-FG

Figure 4: The influence of different hyperparameter setting in advertising behavior identification and resources profile scoring.
Based on three different feature sets, the accuracy of advertising behavior identification is shown in (a), (b) and (c). The three
metrics of evaluating encrypted applications detection are shown in (d), (e) and (f).

Table 1: The performance of ANDetect compared with other
three tools in the experimental environment.

Tools TP-CG TP-FG Precision Recall Time(s)/AP

LibD 46.08% 78.31% 99.72% 78.31% 58.14
LibRadar 48.04% 77.86% 99.50% 77.86% 29.37
LibScout 25.49% 72.64% 99.54% 72.64% 74.54
ANDetect 95.10% 95.97% 95.84% 95.97% 34.07

Table 2: The performance of ANDetect compared with other
three tools in the real-world environment.

Tools TP-CG TP-FG Precision Recall Time(s)/AP

LibD 47.40% 62.67% 98.73% 62.67% 153.45
LibRadar 43.35% 59.69% 98.26% 59.69% 65.11
LibScout 32.37% 53.47% 99.79% 53.47% 246.51
ANDetect 93.64% 93.08% 97.29% 93.08% 69.24

the hyperparameters to be identical. By selecting the optimal hy-
perparameters, detailed in Appendix Table 6, for different models,
ANDetect achieves outstanding performance on the test samples,
boasting an accuracy rate of 98.75%.

In detecting adware in encrypted applications, we need to set
the weight 𝜔1 for strong association features and 𝜔2 for weak asso-
ciation features, and satisfy 𝜔1 > 𝜔2, set the threshold value 𝜃 for
the composite score, and when the composite score is higher than 𝜃
the adware is detected. Here, we randomly select 1000 tagged sam-
ples of non-encrypted applications 𝐴𝑃1000

𝑎𝑑𝑤𝑎𝑟𝑒
from 𝐴𝑃∗

𝑎𝑑𝑤𝑎𝑟𝑒
, and

detect these non-encrypted samples using ANDetect’s encrypted
application detection module mentioned in § 3.5. Considering that
the composite score is normalized for the scores obtained from the
four categories of methods, setting the ratio of 𝜔2 to 𝜔1, denoted
as 𝑝𝜔 , has a substantial impact. In order to choose the appropriate
𝑝𝜔 and 𝜃 , we use the method of control variables to restrict 𝑝𝜔 and
𝜃 to belong to (0,1), and draw a heat map to find the most appropri-
ate 𝑝𝜔 and 𝜃 . Here, we define a new indicator Fine-grained True
Negative (TN-FG) which evaluates ANDetect’s detection accuracy
for encrypted apps without ad libraries to prevent over-detecting.
TP-FG, TP-CG and TN-FG are utilized as evaluation metrics to
comprehensively assess the two hyperparameters and the result is
shown in Figure 4d, 4e, 4f. As a result, given the variation of these
metrics based on 𝐴𝑃1000

𝑎𝑑𝑤𝑎𝑟𝑒
in an integrated way, it achieves the

optimal solution when 𝑝𝜔 as well as 𝜃 reach 0.1.
4.3 Performance of ANDetect
In this section, we assess ANDetect’s performance against LibD,
LibRadar, and LibScout, under both experimental and real-world

conditions, delineated in § 4.1 based on the dataset origins. The ex-
perimental analyses employed subsets of 𝐴𝑃𝑎𝑑𝑤𝑎𝑟𝑒 , while the real-
world evaluations utilized subsets of𝐴𝑃𝑡𝑟𝑢𝑡ℎ . An eShard study [47]
informs that 39% of Google Play Store apps employ obfuscation
and encryption for security. Leveraging a 2:1 mix of non-encrypted
and encrypted applications, ANDetect outperformed its peers, a
phenomenon detailed subsequently.

In the controlled setting, we integrated 𝐴𝑃100
𝑎𝑑𝑤𝑎𝑟𝑒

and 𝐴𝑃200
𝑎𝑑𝑤𝑎𝑟𝑒

— comprising 100 encrypted and 200 non-encrypted APs, respec-
tively. Table 1 presents the performance metrics of ANDetect and
other tools on the experimental dataset. Conversely, the real-world
assessment involved amalgamating 𝐴𝑃100

𝑡𝑟𝑢𝑡ℎ
and 𝐴𝑃200

𝑡𝑟𝑢𝑡ℎ
, with re-

sults depicted in Table 2. Following meticulous manual annotations,
we ensured high reliability for the datasets used in the evaluations.

We employed five metrics: TP-CG, TP-FG, precision, recall, and
processing time, facilitating a comprehensive evaluation. First four
metrics are described before, and the “time” metric reflects the
average processing duration for an app, recorded in seconds.

As observed from Table 1 and Table 2, ANDetect surpasses its
competitors in both coarse and fine-grained evaluations due to
its proficiency in detecting profit avenues from advertisements
and accurately identifying the corresponding AL. While it trails
slightly in precision, an offset owing to its broader scope encom-
passing emerging ALs and leading to potential false positives, it
boasts a significantly higher recall, particularly in real-world set-
tings. This is partly due to the competitors’ misclassification of
com.google.android.gms.ads, a prevalent library in the wild.
The rival tools, inherently focusing on the entire libraries, miss-
ing advertising sub-modules, impacting course-grained results ad-
versely. Despite ANDetect’s comprehensive approach cause a slight
delay compared to LibRadar, innovative strategies like profile extrac-
tion enable ANDetect to outspeed LibD and LibScout, presenting a
beneficial balance between speed and precision.

4.4 Robustness in encrypted AP detection
To assess the robustness of ANDetect in detecting encrypted appli-
cations, we assembled evaluation datasets 𝐴𝑃 ′

𝑎𝑑𝑤𝑎𝑟𝑒
and 𝐴𝑃 ′

𝑡𝑟𝑢𝑡ℎ
by randomly selecting 100 labeled non-encrypted applications each
from 𝐴𝑃∗

𝑎𝑑𝑤𝑎𝑟𝑒
and 𝐴𝑃∗

𝑡𝑟𝑢𝑡ℎ
that undergo resource obfuscation. As

delineated in Section 4.1, each tag in𝐴𝑃∗
𝑎𝑑𝑤𝑎𝑟𝑒

and𝐴𝑃∗
𝑡𝑟𝑢𝑡ℎ

derives
from the combined outputs of LibScout, LibD, and LibRadar.

Following the direct unzipping of the Android application, it is
deemed to have resource confusion if it meets any of the following
properties:
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Table 3: The result of encrypted application detection in
resource confused applications.

Dataset size TP-CG TP-FG Precision Recall
𝐴𝑃 ′

𝑎𝑑𝑤𝑎𝑟𝑒
100 94.00% 86.24% 81.84% 86.24%

𝐴𝑃 ′
𝑡𝑟𝑢𝑡ℎ

100 94.74% 91.50% 72.27% 91.50%

Table 4: The candidates of malicious ALs.

Candidate ALs VirusTotal’s Label Relevance

com.adsmogo Adware.ADWARE/ANDR.AdMogo 0.50
net.youmi.android Android.Adware.Youmi.A 0.47

com.mopub.mobileads AdLibrary:MoPub 0.45
com.inmobi.ads AdWare.AndroidOS.Inmobi 0.80
com.nd.dianjin Android.Dianjin.A (PUP) 0.50
cn.smartmad Android.Adw.SmartMad 0.12

cn.domob.android Android.Domob.A (AdWare) 0.26
com.kuguo.ad Andr.Adware.Kuguo-4 1.00

com.jirbo.adcolony Adware/AdColony!Android 0.50
com.sixth.adwoad.mraid ADWARE/ANDR.AdsWo.FAN.Gen 0.43

org.iqiyi.video AdWare.AndroidOS.IqiAd.a 1.00
com.revmob Adware.Revmob.1.origin 0.20

• The res directory is absent in the application.
• While the res directory is present, over half of the file names,
excluding suffixes, comprise fewer than 5 characters.
• The color or xml directories are found under the res directory,
and more than half of the file names within them, disregard-
ing suffixes, contain less than 5 characters.

Subsequently, the advertising libraries within the applications
are identified exclusively through ANDetect’s encrypted applica-
tion detection module. The effectiveness of this module, scrutinized
using four metrics on 𝐴𝑃 ′

𝑎𝑑𝑤𝑎𝑟𝑒
and 𝐴𝑃 ′

𝑡𝑟𝑢𝑡ℎ
, is documented in

Table 3. Clearly, ANDetect demonstrates commendable proficiency
in identifying the ad libraries pinpointed by LibScout, LibD, and
LibRadar.

Figure 5: The novel ad libraries detected by ANDetect. The
number of genuine ALs and false positives from 𝐴𝑃𝑎𝑑𝑤𝑎𝑟𝑒
and 𝐴𝑃𝑡𝑟𝑢𝑡ℎ are given respectively.

4.5 Novel ad libraries and adware
ANDetect’s non-encrypted application detection module is able to
explore more novel advertising libraries that are unregistered in
the AN database. ANDetect detects applications in 𝐴𝑃𝑎𝑑𝑤𝑎𝑟𝑒 and
𝐴𝑃𝑡𝑟𝑢𝑡ℎ separately, detecting 20 novel ad libraries from 𝐴𝑃𝑎𝑑𝑤𝑎𝑟𝑒 ,
and 10 from𝐴𝑃𝑡𝑟𝑢𝑡ℎ . Actually, due to the potential for false positives
generated by ANDetect, not all newly identified ad libraries exhibit
advertising characteristics or function as ad network platforms.
In order to discern the true ad libraries from original detection

result, we define the ad association weight to quantify the proba-
bility that the library is a real ad library as expected and uses the
library name as keywords to search ad association words in Google
to generate weight. Eventually, we proofread the authenticity of
whether this library is indeed an advertising library manually and
the contradistinction between the novel ad libraries recognized
by ANDetect and true ad libraries is shown in Figure 5. Although
ANDetect boasts a 98.75% accuracy rate in recognizing advertising
behaviors in the test dataset, as described in section 4.2, it is not
exempt from producing false positives in real-world environments.
We allow for false positives to identify more novel ad libraries and
ANDetect indeed helped us identify a total of 16 novel ad libraries.

VirusTotal [1] is a well-recognized platform aggregating security
analysis results from various vendors for applications and URLs.
In our study, we labeled all apps in 𝐴𝑃𝑎𝑑𝑤𝑎𝑟𝑒 using VirusTotal
results, further analyzing these labels statistically to explore the
relationship between advertising libraries and adware. Utilizing
VirusTotal’s labeling, we identified potential malicious ALs through
the correlation between “adware” labels and AL package names,
detailed in Table 4. The last column in the same table indicates the
relevance between each candidate and its label, derived from the
ratio of labeled apps containing the candidate to the total number of
apps featuring it, all sourced from𝐴𝑃𝑎𝑑𝑤𝑎𝑟𝑒 . This approach allowed
us to highlight apps incorrectly classified as benign by VirusTotal,
facilitating a deeper exploration into real-world adware. We exam-
ined 3000 randomly selected APs from 𝐴𝑃𝑡𝑟𝑢𝑡ℎ , eliminating those
without candidate ALs and those labeled “malicious” by VirusTotal,
resulting in 212 remaining applications. We then manually assessed
each for aggressive advertising behavior, following four properties
to designate an app as adware, thereby addressing the prevalence
of false negatives in VirusTotal’s classifications. The properties are
as follows:

• Ads within an AP cannot be closed.
• A substantial ad area hinders the normal usage of the soft-
ware’s functionalities.
• Ads automatically trigger a file download interface, even
without the user clicking on the ad’s download button.
• The user is forced to view an ad for a prolonged period
(exceeding three seconds) before being able to use the AP
normally.

Ultimately, after omitting apps hindered by network irregulari-
ties or system incompatibilities, we identified 53 brand new adware
instances, all labeled “benign” by VirusTotal. As illustrated in Ap-
pendix Table 7, a notable revelation is that each of these newly
discovered adware in the real-world environment contains one or
both of the following: “com.inmobi.ads” or “com.mopub.mobileads.”
This phenomenon could potentially be attributed to the pronounced
and intrusive advertising behaviormanifest in these twoALs, which,
notably, bypasses VirusTotal detection.

5 DISCUSSION
In section 4, we compare the performance of ANDetect with three
well-known third-party library detection tools in terms of advertis-
ing library detection. Despite some applications being encrypted,
ANDetect can detect some of these advertising libraries. For non-
encrypted applications, ANDetect outperforms other third-party
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library detection tools. One reason is that the ad behavior detection
method in ANDetect helps us identify additional ad libraries beyond
AN database, thus breaking through the limitations of traditional
whitelist-based detection.
Limitation. Although ANDetect performs well on the test dataset,
it still has certain constraints. Focusing on encrypted application
detection, even though ANDetect is robust to APKs after resource
obfuscation, the resource features of the ad library are restricted.
Resource features do not have a clear differentiation effect like class
features, which is reflected in different versions of ad libraries. Most
ad network platforms do not update resource files when updating
ad libraries, which makes resource features resilient and impossible
to precisely match to different versions of ad libraries. In addition,
not all advertising libraries have meaningful resource features.

To counteract the potential for malicious libraries to rename
themselves and thereby evade detection, we routinely download the
latest versions of ALs from the advertising platform. This process
reflects the typical approach undertaken by developers when incor-
porating ad libraries: they log in to the ad platform to retrieve the
necessary library, a procedure that is emulated within our dataset
maintenance regimen. Consequently, should a malicious library
undergo renaming to sidestep detection, our dataset is equipped
to capture its revised attributes through systematic downloads. In
our ongoing commitment to bolster detection efficacy, we pledge
to persistently update 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐴𝑁 with newly released ad libraries.

An approach based on static analysis can quickly identify an
advertising library in an application that has the potential to fraud
and track users with bypassing regulatory. Future work could focus
on attribution of third-party ad fraud and tracking, attributing
problems in third-party advertising to specific ad network platforms,
and contributing to the strict regulation of third-party advertising.

6 RELATEDWORK
Third-party library detection for Android applications has been
a high-profile research point for a long time. Most of the prior
research is based on whitelist with other techniques, including
clustering, machine learning, signatures, etc. Li et al. collected 240
different versions of ad libraries and compare the similarity with
1500k applications from GooglePlay to confirm the presence of ad
libraries [28]. Wukong [48] is a classic clustering-based third-party
library detection tool that detects suspicious third-party libraries
based on static semantic features. However, these researches are
based on the assumption that third-party libraries included in ap-
plications maintain their original package names, which ignore the
possibility of application obfuscation and is no longer applicable in
most current applications.

Same as [38], AMdLens’s [22] implementation is based on 164 ad-
vertising network collected manually by the author, extracts the fea-
ture vectors of calling APIs in third-party libraries, and uses Jaccard
coefficients to map the decoupled sub-modules of the application
to different advertising libraries. Nevertheless, both [38] and [22]
utilize a set of API vectors as a mapping of third-party libraries,
and these detection models fail when dead-code elimination appli-
cations are encountered. AdDetect [34] and PEDAL [30] extract
bytecode features, including Android components, permissions,

and APIs to build feature vectors and perform binary classifica-
tion with Support Vector Machines (SVM), which can achieve high
recognition accuracy, but are also limited by dead-code elimination
applications.

LibD [29], LibRadar [32], LibScout [6], LibDetect [15], LibDX [46],
LibID [53], LibPecker [54] and ORLIS [50] all extract class depen-
dencies and sign the bytecode to speed up the matching of semantic
features and resist a certain degree of application obfuscation. How-
ever, these tools are not resistant to packet flattening attacks, result-
ing in susceptibility to false negatives [52]. LibRoad [51] improves
LibPecker by using the package name matching method for non-
obfuscated applications and the signature method for obfuscated
applications, thus speeding up the third-party library identifica-
tion process on top of the original one. However, these methods
are based on identifying non-encrypted applications and do not
contribute to recognizing third-party libraries in encrypted applica-
tions. Whitelist-based methods cannot escape from the limitations
imposed by it when detecting ad libraries in applications, which
means they cannot detect other ad libraries outside the whitelist.
In Section 4, we demonstrate that ANDetect can not only escape
the limitations of whitelisting and identifying more advertising
libraries that exist outside the database, but also be able to resist
application encryption attacks to some extent.

Privacy leakage risks in third-party libraries have been analyzed,
with evidence suggesting that most ad libraries collect private in-
formation [20]. Techniques have been developed to assess this risk
by extracting sensitive APIs from apps [23] and detecting covert
data collection by various libraries [49]. Malicious third-party li-
brary variants can be identified to spot repackaged applications,
which often contain non-original libraries. Methods used include
Jaccard coefficients to identify malicious libraries variants based on
shared code [8], feature fingerprinting to detect repackaged appli-
cations [55], and the multi-level framework SimiDroid for Android
application comparison [27].

7 CONCLUSION
We introduced ANDetect, a pioneering tool designed to efficiently
identify ad libraries in Android applications, overcoming the limita-
tions of existing methods especially when dealing with encrypted
apps. Through leveraging a comprehensive collection of 833 unique
versions of ad libraries and using advanced profiling and novel
machine-learning techniques, ANDetect has proven effective in
uncovering previously undetected ad libraries. The experiment of
ANDetect to over 140,000 apps has resulted in the detection of
16 novel ad libraries, substantiating its contribution to improving
mobile application security. These advancements mark a signifi-
cant step towards ensuring user privacy and security in the face of
rapidly evolving ad libraries.
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8 APPENDICES
A DECOUPLING IN DETAILS
Assuming that both class_A and class_B are declared in the AP,
we define a call relationship as a scenario where a method from
class_A calls a method from class_B and define an inheritance
relationship as class_A inheriting from class_B. Notably, we ex-
clude classes defined in the Android SDK and JDK when construct-
ing the community network to avoid the introduction of irrelevant
noise.

Each node within the community is designated by the package
name, under which all classes included in the node fall. Edges are
drawn connecting one node to another, their direction dictated by
the call and inheritance relationships between the classes from the
two nodes. The weight of each edge is determined by the number
of calls between all classes associated with the two nodes and the
existence of an inheritance relationship between any two classes.
Referring to the definition of node and edge in class profiling, We
designate the weighted directed edge from node 𝑁𝑖 to node 𝑁 𝑗
as < 𝑁𝑖 , 𝑁 𝑗 ,𝑊𝑖 𝑗 >, where𝑊𝑖 𝑗 denotes the edge’s weight. Assum-
ing only class_A is contained in 𝑁𝑖 and class_B is contained
in 𝑁 𝑗 , and method_a from class_A calls method_b from class_B
once while method_c from class_A calls method_b twice, the edge
from 𝑁𝑖 to 𝑁 𝑗 would be represented as < 𝑁𝑖 , 𝑁 𝑗 , 3 >. Extending

this, if class_A inherits from class_B, the edge is represented
as < 𝑁 𝑗 , 𝑁𝑖 , 𝜌 >, where 𝜌 signifies the weight of the inheritance
relationship. To partition this community network, we utilize single-
Louvain [7]. Given that the marked nodes in the community are
primarily nodes containing class files - mostly leaf nodes in the
package structure tree - we adopt a bottom-up merging strategy
in accordance with the package structure tree. All nodes in the
package structure tree are marked as communities before grouping
nodes belonging to the same community into the same module for
decoupling. The bottom-up merging strategy follows these rules:
• If the node to be merged has a parent node and the parent
node is marked, the community number of the node to be
merged is the same as that of the parent node.
• If neither the node to be merged nor its parent node is
marked, the community of the node to be merged is deter-
mined by the community of its child nodes. If the child nodes
belong to the same community, the node to be merged is also
marked as the community. Once the child nodes belong to
different communities, take the community with the highest
probability of occurrence and greater than 𝜎 as the result.
If there is no community whose occurrence probability is
greater than 𝜎 , it is considered that the node does not belong
to any community and stop merging the branch where the
node belongs to. Here, we define 𝑐 as the set of communities
which child nodes belong to and the definition of 𝜎 is as
follows:

𝜎 =
1
|𝑐 | (6)

• Starting from the leaf node, merge along the parent node
to the root node. Until the communities to which all nodes
belong no longer change, nodes belonging to the same com-
munity are merged as sub-module according to the package
structure tree. If all nodes of the same community form a
sub-tree, it is regarded as a sub-module. If the nodes of the
same community come from different branches of the tree,
a new node is created as the common parent of all branches,
constituting the sub-module.

B FEATURES IN RESOURCE PROFILE
The selection of the keys in resources profiling should satisfy the
universality, differentiation and insensitivity. Details about how
these metrics are calculated are given in the following equations.

We define the universality of key 𝑘 as𝑈𝑘 in which 𝐾 represents
the key set of an aar file and 𝑙 represents total of all aar files:

𝑈𝑘 =

∑𝑙
𝑖=1 𝐼𝑛𝑘,𝐾𝑖

𝑙
, 𝐼𝑛𝑘,𝐾𝑖

=

{
1, 𝑘 ∈ 𝐾𝑖
0, 𝑘 ∉ 𝐾𝑖

(7)

We utilize the TF-IDF algorithm [39] to compute the differentia-
tion of each key. Initially, we fragment each value into individual ele-
ments based on punctuation. For instance, “com.yandex.mobile.ads”
is divided into “com”, “yandex”, “mobile” and “ads”. It means that
every value is regarded as a set of elements. Subsequently, we con-
struct a corpus from these elements. The differentiation 𝑑𝑣,𝑖 of value
𝑣 in the i-th aar is given by the max differentiation of element 𝑒
belonging to it, where 𝑓𝑒,𝑖 symbolizes the frequency of 𝑒 in the
i-th aar and 𝒆𝑖 represents all elements in the i-th aar. We denote
𝑀𝑘,𝑖 as a set of values mapped from key 𝑘 in the i-th aar and the
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Table 5: The key, universality, differentiation and insensitivity of each feature.

Feature Key 𝑈𝑘 𝐷𝑘 𝐼𝑆𝑘

𝐹1 AndroidManifest.xml_manifest_package 1.0000 0.7294 0.7913
𝐹2 AndroidManifest.xml_manifest uses-permission_android:name 0.5385 0.1122 0.3215
𝐹3 AndroidManifest.xml_manifest application provider_android:authorities 0.1186 0.0517 0.7953
𝐹4 AndroidManifest.xml_manifest application receiver intent-filter action_android:name 0.1602 0.0648 0.7222
𝐹5 AndroidManifest.xml_manifest application activity_android:name 0.3960 0.4886 0.4251
𝐹6 AndroidManifest.xml_manifest application service_android:name 0.1609 0.3541 0.5326
𝐹7 AndroidManifest.xml_manifest application receiver_android:name 0.1943 0.3261 0.6667
𝐹8 res\values\values.xml_resources dimen_name 0.1350 0.1666 0.1018
𝐹9 res\values\values.xml_resources string_name 0.3770 0.2886 0.2112
𝐹10 res\values\values.xml_resources declare-styleable attr_name 0.1302 0.3541 0.1628
𝐹11 res\values\values.xml_resources style_name 0.2529 0.1062 0.3273

final differentiation of 𝑘 symbolized as 𝐷𝑘 is given by the average
differentiation of values in𝑀𝑘,𝑖 :

𝑑𝑣,𝑖 = max
𝑒∈𝑣
{

𝑓𝑒,𝑖∑
𝑒′∈𝒆𝑖 𝑓𝑒′,𝑖

× ln 𝑙

1 +∑𝑙𝑗=1 𝐼𝑛𝑒,𝒆 𝑗 } (8)

𝐷𝑘 =

∑𝑙
𝑖=1

∑
𝑣∈𝑀𝑘,𝑖

𝑑𝑣,𝑖∑𝑙
𝑖=1 |𝑀𝑘,𝑖 |

(9)

We evaluate the sensitivity of all keys to different versions of the
same ANs. We define 𝑎𝑛𝑘 as the set of all ANs who own libraries
of different versions and contain key 𝑘 in resource files. The i-th
AN in 𝑎𝑛𝑘 is represented as 𝑎𝑛𝑘,𝑖 . We traverse every AL in 𝑎𝑛𝑘,𝑖 ,
find the values of 𝑘 and form the set 𝑣𝑘,𝑖 . The insensitivity of 𝑘 is
defined as 𝐼𝑆𝑘 :

𝐼𝑆𝑘 =

∑ |𝑎𝑛𝑘 |
𝑖=1

1
|𝑣𝑘,𝑖 |

|𝑎𝑛𝑘 |
(10)

C COMPREHENSIVE SCORING IN DETAILS
The following methods are utilized to score the features mentioned
in Table 5. For different features, we use different methods depend-
ing on how they are presented. The score of 𝐹1 is given by global
search. The scores of 𝐹2 to 𝐹4 is generated by full-path limitation
method.

The scoring result of 𝐹1 in the global search is denoted as 𝑆𝑐𝑜𝑟𝑒𝑔 :

𝑆𝑐𝑜𝑟𝑒𝑔 =

{
1, ∃ 𝑣 ∈ 𝑉1, 𝑠 .𝑡 . Prefix of 𝑣 = 𝐹1
0,∀ 𝑣 ∈ 𝑉1, 𝑠 .𝑡 . Prefix of 𝑣 ≠ 𝐹1

(11)

For stable features 𝐹2 to 𝐹4 in full-path limitation, complete
matches are required for all values if a feature contains multiple
values. To constrain the score within the range of 0 to 1, we define
the activation function as follows:

𝑓 (𝑥) =
{

0, 𝑥 = 0
1

1+𝑒1−𝑥 , 𝑥 ≥ 1 (12)

The scoring result of stable features is denoted as 𝑆𝑐𝑜𝑟𝑒𝑠 :

𝑆𝑐𝑜𝑟𝑒𝑛𝑠 = 𝑓 (
∑︁
𝑖∈𝐹𝑛

𝑠𝑖 ), where 𝑛 ∈ {2, 3, 4} (13)

𝑠𝑖 =

{
1, ∃ 𝑣 ∈ 𝑉𝑛, 𝑠 .𝑡 . 𝑣 = 𝑖
0, ∀ 𝑣 ∈ 𝑉𝑛, 𝑠 .𝑡 . 𝑣 ≠ 𝑖

Table 6: The final hyperparameters of advertising behaviors
detection model based on different feature sets.

Feature Set Boost Round Learning rate
API calls 150 0.05

distribution across classes 250 0.025
distribution across methods 100 0.1

For variable features 𝐹5 to 𝐹7 in full-path method, we define
the relaxation similarity between 𝑉𝑛 and 𝐹𝑛 as 𝑅𝑆𝑛 and denote the
scoring result as 𝑆𝑐𝑜𝑟𝑒𝑣 . And the details about how these metrics
were generated

𝑆𝑐𝑜𝑟𝑒𝑛𝑣 =
𝑅𝑆𝑛

|𝐹𝑛 |
,where 𝑛 ∈ {5, 6, 7} (14)

The weight of each value in the feature 𝐹8 to 𝐹11 with no-path
method is given by equation (8). The score of each feature is denoted
as 𝑆𝑐𝑜𝑟𝑒𝑜 :

𝑆𝑐𝑜𝑟𝑒𝑛𝑜 =

∑
𝑖∈𝐹𝑛 𝑠𝑖
|𝐹𝑛 |

, where 𝑛 ∈ {8, 9, 10, 11} (15)

𝑠𝑖 =

{
𝑑𝑖 , ∃ 𝑣 ∈ 𝑉𝑛, 𝑠 .𝑡 . 𝑣 = 𝑖
0, ∀ 𝑣 ∈ 𝑉𝑛, 𝑠 .𝑡 . 𝑣 ≠ 𝑖

In the image pool method, we define 𝑃𝑁 as the collection of all
image names present in the ad library and 𝑉𝑝 as the equivalent
set in the Android application. The score, represented as 𝑆𝑐𝑜𝑟𝑒𝑟 ,
adheres to the scoring procedure outlined in equation (13).

𝑆𝑐𝑜𝑟𝑒𝑟 = 𝑓 (
∑︁
𝑖∈𝑃𝑁

𝑠𝑖 ), 𝑠𝑖 =
{

1, ∃ 𝑣 ∈ 𝑉𝑖 , 𝑠 .𝑡 . 𝑣 = 𝑖
0, ∀ 𝑣 ∈ 𝑉𝑖 , 𝑠 .𝑡 . 𝑣 ≠ 𝑖

(16)
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Table 7: The brand-new adware detected by ANDetect. The sha256 of each adware and malicious ALs it contains are provided.

sha256 Malicious ALs
0002CA163461C26D3EA1D7384DB1833D4002CA679D0BA1906494E1BB24A95896 com.mopub.mobileads
00120DAD331324ED394118079BCB91D2B3F69C42E3C5135303DA50272FAE45F7 com.inmobi.ads;com.mopub.mobileads

00154456B10D6BF1F16DA14267D6063DAABEC20FFD28ABAB942D7BBD266D430F com.mopub.mobileads
0134CE0FC74B7DDD800CF772A1742F7966FA4D5762359D2E6D15BED8728CC779 com.mopub.mobileads
0120397B85BFF474D554F82BEC39A5AB9827F93B68FD505AF89B935497860BAE com.mopub.mobileads
0137F1EBE1F012BF454F78FE2452C1D39E0105AD0A00AC9E90F799EC96D09406 com.mopub.mobileads

7C90D85F5E08639CA32A5473CBDBE1B60334634B5CDB5AA7274FFF7A3B7B9BEA com.mopub.mobileads
7C98A973971958D54D69D04C504A14EE8BF9CD709882BA544743F6D272C18955 com.mopub.mobileads
7CC341B217FA38C3C12BFA008166F6F7229ABE3CB765D4AD5455925D5EB20632 com.mopub.mobileads
7CE87F293FDDCA68C5786976B7F9AF9CF37D2598B383424086066BF41814372F com.mopub.mobileads

7CF7F9D84FEA8DE117088FDAA4A3148DE301AFB21EA64BF3DEF244F93FF1B637 com.mopub.mobileads
7CD48EA847234C09C2D5EB60C8950005AE38674DDE24D9F5EBBD6043D533A10D com.mopub.mobileads
7CC61FA9A5E041957CFA9F5434E540624988D6E139DCC71D85348F793AFEA475 com.mopub.mobileads
A4E9D3649543CF6246EEA45BFE15894C2C0430FDB4CA2787B3DEF2CECDF84521 com.mopub.mobileads
A4FD6B5E2E6F0FE0CBE89230FA9122647FF22D2DB814C247B3F8532614E347B0 com.mopub.mobileads

A552F35988EE74751A650C5AEB74FB1B2EEFD1231851D19AD23DB91923BBC7A8 com.mopub.mobileads
A56A45FBA78F4E785593F747E6FE9A7F3BFF7A94EAF1D08428D67959629C538F com.inmobi.ads;com.mopub.mobileads

A58772EAAA85CB507003199F0129AB918BCEB6120CDD202C6CE4EBAC52A6C5BE com.mopub.mobileads
A5A46FDC7879DC0210ECEF7ECC29D2369A1B00165BBAA668115B6BD863AF600C com.mopub.mobileads
A5CAFB80BCF17912772C72C3DAB41D439B8EA06DD42A174A01C6864491F1F22D com.mopub.mobileads
A5C2D903596DA9A8880BA97B3B9A9783391B1552D3B605FFF9134C3ED4B82E0E com.mopub.mobileads
B33A5CD6AF62E8865DD7C2127CDDB9B96813AE6DE365EC6F0DF135E127C35BE6 com.inmobi.ads
B33949FA901C3227FD46416201AB2E219AEE15C804A8471D8213551E44E1C33A com.mopub.mobileads
B34E6C6178B1FC6A3EAA4BFF12EB9BB6493F7F44E39BAA8ED44C91890BC92B04 com.mopub.mobileads
B3548B219682E7E739E32DE22B35BA1997EF3B6C74D1E7C6218F907059A29771 com.mopub.mobileads

B3C2ED36A1CBC3E921DAC8072E3E907A4E82E25FF223133963A3872A15A9B4DB com.mopub.mobileads;com.inmobi.ads
B40C89446F073C6DCE610714181E4FB891342144E367EF05AE8A0D671ABC520F com.mopub.mobileads
B3E8A1BA25B18226E542814BB066DF89364A09FC8021CA70D5698210A088DF4C com.mopub.mobileads
B3EE48851086FE4F66186AF69461FD8A559D4AC87E8596AA2DF06F877F28005A com.mopub.mobileads
B40C0F97811AE225EAE17BC8DE6ED3188A2F7219652A495ED161C23F35FEE55A com.mopub.mobileads

B4215B5FF02FDC76788062ED7C1CAA69A2C7CCD5B4031E9F51DAC5CB7DEFFEC2 com.mopub.mobileads
B42CD94A973F1A2CC48B324EFF9F7E7648EA01C9B6FA11489EBBC6BA2754A855 com.mopub.mobileads
7D042F1D52DD9BF078B04353340F63753A14A62D5FFE838AA4B36AF7EAB27E9D com.inmobi.ads;com.mopub.mobileads
7CE4CB61A91D3A960C14D996E24729965ACCE2BD465B9941C2479186ADF2D170 com.mopub.mobileads;com.inmobi.ads
7CF0724873BC4464FCF0D8F99D675DCB22F1CBA97017BD8545E44FDDAAE0CD52 com.mopub.mobileads
7D39817880B7ACAAFA7A05B6864D30CC89CD4DAC16AE64235FDD15DAA82178DE com.inmobi.ads
7D1247A2391A9A9FB08C1F77682ED16AE8885C1D10385A1D7D7B788AF0A2A2A5 com.inmobi.ads
10856950A97C189B5458B537BE2DB5555202A50B15345E97F1D733DA97EE21DF com.mopub.mobileads
A5EBC5A1052546C781513698F8BF1E6ADF2F87B0AD203C8282C07F93C4F68F1D com.mopub.mobileads

A5DCBD35B67D47BCA804225A34DCFF3E2AFBD7544BBEFDAB54BBCD64D19A4125 com.mopub.mobileads
A5F5AB473F93203D78F078CAC4580561609FB40D35A39CB5B78DEDCDFDBCE843 com.mopub.mobileads
A624B80E79BDA4535298DB9A6B0BDC6A265BDA521926079687E4C79BDD325CE0 com.mopub.mobileads
B4744416B37E89D94B865BACF3CF8D76CF23B0504F571C89A1E4AEA38A2F7C6D com.mopub.mobileads
11F0B6F0FC2BE6F5826D53EA5685307201FEDAED7FEB789123D2C07E03D03B68 com.mopub.mobileads
B4BBC4CB843C4501E79DEA682425AED436C2168A1EAC057099E0A8A2A1357729 com.inmobi.ads;com.mopub.mobileads
11EC680264465AA2E07D0E46DE62E6CDB449208BE53FB281DF39FE5E944D43F8 com.mopub.mobileads

B527EF6798ECA6FBD4C1A43FBB7BACCAC1ACDCEB144F504C314E91B5A7589939 com.mopub.mobileads
B436E30ADFFC7C4FD75FF38FC91014A181978348ADB6B04F2B34389CF6DA5926 com.mopub.mobileads
B491A9266968E3687CE258D0163A7B458D2B0DB5207FD843CD5C71CFAC63BA4C com.mopub.mobileads;com.inmobi.ads
B3FEE4445B1D5F1D7D45FA98E0DF32FBB74ABFE8572E413B0EEE1E5767FB4A4D com.mopub.mobileads
7CE6103DFC87DC72EB0BDFAAAC872467E7A893C6007D7C378CED6D8F3584F462 com.mopub.mobileads
7C9C220C986580B07A9A2E2241349E75F8F91FB310CF2F87EB9A100896C4FF22 com.mopub.mobileads
B43E0E61180E5CD03590CFC172D4627F0E321D4A58ED538901ABCE7023968657 com.mopub.mobileads
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