2310.02113v1 [cs.CR] 3 Oct 2023

arXiv

FLEDGE: Ledger-based Federated Learning Resilient to Inference
and Backdoor Attacks

Jorge Castillo
jorge.a.castillo01@utrgv.edu

Phillip Rieger
phillip.rieger@trust.tu-darmstadt.de

Hossein Fereidooni
hossein.fereidooni@kobil.com

The University of Texas Rio Grande Technical University of Darmstadt KOBIL GmbH?
Valley' Germany Germany
USA

Qian Chen
guenevereqian.chen@utsa.edu
The University of Texas at San

Antonio
USA

ABSTRACT

Federated learning (FL) is a distributed learning process that uses
a trusted aggregation server to allow multiple parties (or clients)
to collaboratively train a machine learning model without having
them share their private data. Recent research, however, has demon-
strated the effectiveness of inference and poisoning attacks on FL.
Mitigating both attacks simultaneously is very challenging. State-
of-the-art solutions have proposed the use of poisoning defenses
with Secure Multi-Party Computation (SMPC) and/or Differential
Privacy (DP). However, these techniques are not efficient and fail
to address the malicious intent behind the attacks, i.e., adversaries
(curious servers and/or compromised clients) seek to exploit a sys-
tem for monetization purposes. To overcome these limitations, we
present a ledger-based FL framework known as FLEDGE that allows
making parties accountable for their behavior and achieve reason-
able efficiency for mitigating inference and poisoning attacks. Our
solution leverages crypto-currency to increase party accountability
by penalizing malicious behavior and rewarding benign conduct.
We conduct an extensive evaluation on four public datasets: Reddit,
MNIST, Fashion-MNIST, and CIFAR-10. Our experimental results
demonstrate that (1) FLEDGE provides strong privacy guarantees
for model updates without sacrificing model utility; (2) FLEDGE can
successfully mitigate different poisoning attacks without degrad-
ing the performance of the global model; and (3) FLEDGE offers
unique reward mechanisms to promote benign behavior during
model training and/or model aggregation.

CCS CONCEPTS

« Security and privacy — Domain-specific security and pri-
vacy architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC °23, December 4-8, 2023, Austin, Texas

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Ahmad-Reza Sadeghi
ahmad.sadeghi@trust.tu-
darmstadt.de
Technical University of Darmstadt
Germany

KEYWORDS

blockchain, federated learning, homomorphic encryption, security
and privacy

ACM Reference Format:

Jorge Castillo, Phillip Rieger, Hossein Fereidooni, Qian Chen, and Ahmad-
Reza Sadeghi. 2023. FLEDGE: Ledger-based Federated Learning Resilient
to Inference and Backdoor Attacks . In Proceedings of Annual Computer
Security Applications Conference (ACSAC °23). ACM, New York, NY, USA,
17 pages. https://doi.org/XXXXXXX . XXXXXXX

1 INTRODUCTION

In recent times Machine Learning (ML) has gained high popularity
and it is used for an increasing number of applications. However,
the need to collect a large amount of data to train ML models raises
security and privacy concerns in applications where sensitive data
(i.e., text messages typed on mobile phones, personal medical infor-
mation) is constantly stored and manipulated. Federated Learning
(FL) allows multiple parties holding private data to collaboratively
train ML models. Rather than collecting all data on a central server,
each party (client) trains a model locally (local model) and only
shares its parameters with the coordinating server that aggregates
the parameters from all individual clients. Afterward, this aggrega-
tion server distributes the aggregated model (global model) back to
the clients for further training rounds.

This privacy feature, in combination with the performance gained
by outsourcing the training process from one server to multiple
clients, made FL the ideal training framework for different real-
world applications, e.g., word suggestions in the mobile keyboard
GBoard [37], brain tumor segmentation [57], risk detection on mo-
bile devices [16], or identification of malware infected devices [47].

However, recent work challenges the security and privacy of
FL, raising concerns about its practical applicability. For example,
it was recently demonstrated that, given the model’s parameters
or predictions, model inference attacks could extract information
about the training data from a model. Therefore by exploiting the
model’s memorization capabilities (or over-fitting), it is possible to
reconstruct samples from the training data or determine if a certain

! Affiliated with The University of Texas at San Antonio during the research and
preparation of this paper.

2 Affiliated with Technical University of Darmstadt during the research and preparation
of this paper.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ACSAC °23, December 4-8, 2023, Austin, Texas

sample was used for training [33, 59], negating the privacy gains of
FL. The most prominent example of this attack is the Membership
Inference Attack [59]. FL is particularly vulnerable to inference
attacks executed by a curious server, as it has access to the local
models before aggregation. While the aggregation anonymizes the
individual clients’ contributions and makes inference attacks sig-
nificantly harder [17], the server’s access to individual local models
poses a significant threat to the clients’ privacy and raises concerns
for applications with privacy-sensitive data [57]. To mitigate in-
ference attacks, state-of-the-art defenses use one of the following
approaches: Secure Multi-party Computation (SMPC) [2, 17, 54],
Differential Privacy (DP) [38, 42], or Multi-Key Homomorphic En-
cryption (MKHE) [55].

In terms of security, recent work [5, 58] has demonstrated the
high vulnerability of FL systems against Poisoning Attacks. In this
type of attack, adversaries leverage the distributed property of FL
to take control of one or more training clients. Malicious clients can
alter their behavior and skew the convergence of the global model.
Poisoning attacks can be divided into two categories: untargeted
and targeted attacks. Untargeted attacks aim to degrade the utility
of the global model [25]. In targeted (or backdoor) attacks [5, 66],
however, an adversary guides the global model to a well-defined
outcome. One example of an effective backdoor attack is where a
malicious model is carefully trained to maintain a high accuracy
for the main task but triggers backdoor behavior if specific patterns
are detected during inference. Examples for such backdoor behav-
ior include, e.g., injecting advertisement into an FL-based word
suggestion system or creating a backdoor that makes an FL-based
network intrusion detection system fail to detect network traffic of
certain malware. A major threat of these attacks is that models are
still black boxes. Thus, in practice, it is still an unsolved problem to
determine if a model contains a hidden backdoor. The unique be-
havior makes backdoor attacks more important compared to other
poisoning attacks. State-of-the-art defenses aim to minimize the
threat of poisoning attacks using techniques such as model filtering
[6, 58] to detect and exclude poisoned models from aggregation,
and/or model clipping [48, 53] to limit poisoned updates’ impact.
These approaches, however, are limited by the underlying assump-
tions imposed by SMPC, e.g., availability during computations, and
more importantly, they fail to address the motivation behind client
misbehavior, i.e., accountability. Without crediting the contribu-
tions of individual clients, a malicious client may continuously try
to poison the model until it is successful in one round. Further,
mitigating poisoning and inference attacks at the same time is a
complex task and existing approaches [27, 48] are not efficient.

To overcome the limitations of existing solutions, we tackle the
following questions: i) how to achieve a privacy-preserving aggrega-
tion framework that penalizes malicious intent during the aggrega-
tion process, ii) how to discriminate poisoned from benign updates
to dynamically reward or punish client’s behavioral patterns.
Goals and Contributions. In this paper, we present the design,
implementation, and evaluation of FLEDGE, a fully-decentralized
crypto-system that provides resiliency to inference and poisoning
attacks. FLEDGE is a 3-layer blockchain FL framework powered by
smart contracts, where each layer operates specific components,
i.e., training clients (client layer), smart contracts (computation
layer), and ledger (data layer). Our primary motivation to use smart

Jorge Castillo, Phillip Rieger, Hossein Fereidooni, Qian Chen, and Ahmad-Reza Sadeghi

contracts is to provide a decentralized and immutable environment
to protect the security and privacy of models. By using smart con-
tracts, we achieve reasonable efficiency and are able to mitigate
poisoning and inference attacks. FLEDGE leverages blockchain’s
decentralization to yield high computation availability and ledger
immutability (i.e., committed data cannot be changed) to prevent
data alterations that could lead to unexpected results such as inac-
curate model filtering or incorrect distributions of rewards.

To address the first question and perform privacy-preserving
aggregation, we have to consider the following factors: private
computation framework and aggregator compensation. To design a
privacy-preserving computation platform, FLEDGE introduces the
concept of Blockchain Two Contract Computation (BT2C). BT2C is
defined as a semi-honest relationship® between two smart contracts
using Homomorphic Encryption (HE), in particular, we rely on the
CKKS* encryption scheme [11].

Compared to SMPC and MKHE, BT2C is a decentralized crypto-
system based on HE that leverages the blockchain ledger to improve
trust among smart contracts, where one contract (Defender) acts
as a decryption service and the other contract (Gateway) acts as
a computation hub. For our implementation, we develop a secure
decryption method that includes a compensation algorithm to eval-
uate a reward for the aggregation service based on its behavior.
Our approach operates as a semi-honest cryptographic service such
that the Gateway contract receives encrypted models from train-
ing clients and performs computations; and the Defender contract
evaluates model characteristics (e.g., cosine distance) and provides
incentives (i.e., crypto-currency, tokens) for benign behavior.

To address the second question and discriminate poisoned mod-
els, we first separate it into the following components: poisoning
detection and client compensation. To implement the poisoning
detection, FLEDGE calculates the cosine distances between local
and global models, and utilizes the Gaussian Kernel Density Estima-
tion (G-KDE) function to divide them into different clusters. Here, a
cluster is identified by the location of local minimums®. This infor-
mation is leveraged as a breaking point to separate the distances into
different clusters. After benign and malicious clusters have been cor-
rectly identified, FLEDGE implements a round-based client compen-
sation algorithm to provide additional incentives to benign training
behavior, and to penalize those who attempt model poisoning.

In summary, FLEDGE’s contributions are threefold:

(1) FLEDGE offers strong privacy guarantees by operating mod-
els in cipher text using the proposed BT2C protocol. Our approach
is shown to be resilient against white-box inference attacks with
a probability of success of %, where m represents the number of
ciphers generated per model (Sect. 6.1).

(2) FLEDGE mitigates poisoning attacks using the proposed
G-KDE clustering method to analyze the distribution of cosine
distances and remove poisoned models. Our extensive evaluation
on four public datasets (i.e., Reddit, MNIST, Fashion-MNIST, and
CIFAR-10) indicates that FLEDGE is resilient against untargeted
and targeted poisoning attacks (Sect. 6.2).

3The semi-honest setting is a well-established security model that dictates how in-
volved parties must adhere to the pre-established protocol

“Note that we use the term HE to refer to CKKS in the rest of this paper.

5A local minimum is a point on the associated function (e.g., G-KDE) whose value is
less than every other point in its vicinity.

FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks

(3) FLEDGE relies on our proposed aggregation and training
compensation algorithms to offer incentives to benign aggrega-
tion services and benign training clients. Our results indicate that
the proposed compensation algorithms automatically adjust the re-
wards to deter malicious intent from the training process (Sect. 6.3).

2 REQUIREMENTS AND CHALLENGES

This section presents the security and privacy requirements that
FLEDGE fulfills and the challenges to be tackled in achieving them.

2.1 Privacy for FL

During model submission, clients upload trained models to the ag-
gregation server such that the server generates a new global model
(see App. A for details on the FL process). At this point, the server
has complete access to each model (e.g., model weights, structure
and hyperparameters), which increases the threat of white-box
inference attacks. To mitigate the attack, the defender has to satisfy
the following requirements:
P1: Utility Retention. The defense must provide resiliency against
inference attacks that are executed by curious servers while main-
taining the utility of the model, i.e., main task accuracy (MA) re-
mains the same with or without defense. Therefore, the perfor-
mance of the new global model must not be compromised with the
increase of privacy levels.
P2: Computation Availability. The defense must remain avail-
able to process and analyze encrypted models®. Therefore, every
model computation shall not fail due to limited resource availability.
To the best of our knowledge, existing solutions for inference
attacks that also preserve model utility rely on frail computation
infrastructures, e.g., SMPC [17, 48] or MKHE [55]. Thus, they suffer
from the requirement of high availability of the system’s compo-
nents to use privacy-preserving computations (SMPC and MKHE)
[55] and also from a high computation complexity to detect poi-
soned models when using privacy-preserving computations. Our
scheme combines blockchain (see App. B) and HE, in particular,
the scheme of Cheon-Kim-Kim-Song (CKKS) [11] (see App. C), to
introduce a unique privacy-preserving computation framework,
overcoming current limitations. However, the use of blockchain
brings additional concerns. Thus, FLEDGE addresses the following
challenges:
C1: How to leverage blockchain to improve trust between compu-
tation parties.
C2: How to effectively combine HE and blockchain to limit the
ledger’s transparency effect and increase privacy to model updates.

2.2 Security for FL

FL is a distributed learning approach that allows numerous clients to
participate in the training process through model submissions. An
adversary who controls a fraction of the clients can then use their
influence to poison the new global model. To mitigate poisoning
attacks, the defender has to fulfill the additional requirements:

$1: Effective Poisoning Mitigation. The defense must detect
poisoning attempts, e.g., untargeted and targeted attacks, minimize
their impact on the global model, and preserve model utility. For
example, for targeted (backdoor) attacks, a defense should maintain

An encrypted model is a collection of ciphers that represent encrypted weights.

ACSAC °23, December 4-8, 2023, Austin, Texas

the backdoor accuracy (BA) at the same level as without the attack.
In addition, similar to P1, the defense must not negatively affect the
training process, e.g., decrease MA by removal of benign models.
$2: Autonomous Behavior. The defense must be flexible to adjust
automatically to different strategies without manual configuration.
Like existing solutions, FLEDGE leverages the cosine distance
between local models and the global model to cluster their scores
dynamically. Our approach, however, leverages this information to
apply a deterrent to malicious clients, which adds another layer of
security. Therefore, FLEDGE addresses the additional challenges:
C3: How to solve the dilemma of preventing the server from ana-
lyzing the local models against inference attacks while the server
has to inspect the local models to detect/mitigate poisoned models.
C4: How to discriminate poisoned models s.t. malicious clients can
be correctly identified to receive disciplinary actions.
C5: How to credit the clients over multiple training rounds to make
malicious clients accountable for their attacks.

3 ADVERSARY MODEL AND ASSUMPTIONS

In this section, we describe the threat model and assumptions used
for the rest of the paper. We highlight the adversary’s capabilities
and main objectives.

3.1 Privacy Threat

Classic FL implementations rely on an aggregation server to com-
pute new global models every training round (see App. A). However,
amalicious aggregation server can extract private information from
each of the local models, thus, raising privacy concerns.
White-box Inference Attack Goal. Aligned with previous re-
search [17, 48], the honest-but-curious aggregator instantiates the
attack on local models W; before aggregation. In other words, an ad-
versary AP is aware of any process happening in the aggregator, but
remains honest, i.e., continues to perform the aggregator’s benign
tasks, to avoid detection. However, A? is also curious, having the
ability to infer private information about the training data D; while
processing W;. Formally, AP leverages W; to learn if a given input x
was used as part of D, allowing AP to extract sensitive information
from every local model. Aligned with previous work [3, 17, 27], we
focus on inference attacks on the local models, as the aggregation
anonymizes the individual contributions.

AP Capabilities. We assume .A? is in full control of the aggrega-
tion server s.t. AP has access to every local model submitted by
clients. We also assume A? cannot compromise clients directly or
affect any of the training processes.

3.2 Security Threat

Multiple clients are selected to improve model accuracy. This collab-
oration allows one or more clients to conduct malicious activities
in any training round.

Targeted Poisoning Attack Goals. In a targeted poisoning at-
tack, the adversary .A° has the following goals: poisoning injection
and defense evasion. For poisoning injection, .A* manipulates local
model W; to produce poisoned local model W/. W is then used to
alter the behavior of global model G;. In state-of-the-art targeted
poisoning attacks (also called backdoor attacks), A® guides poi-
soned global model G; to behave normally all the time except when

ACSAC °23, December 4-8, 2023, Austin, Texas

a specific set of conditions or triggers are present in the input. To
achieve its secondary goal, A*® manipulates W/ s.t. it remains as
close as possible to W;, e.g., adapting the loss function [5].

AS Capabilities. Similar to recent studies [3, 5, 30, 52], we assume
A® maliciously controls f compromised clients, which should be
less than half of the total number of clients n (f < 7). We also
assume A° cannot observe benign clients’ local data or their sub-
mitted local updates. To introduce a backdoor into the global model,
A® can launch a combination between data poisoning [58] and
model manipulation attacks[5]. Data poisoning is when A* adds
poisoned data to the existing training sets during model training,
e.g., for an image classification task, A® can poison an image by
drawing a shape into a specific corner. This attack allows A’ to
change model predictions to its desired outputs every time a trigger
is identified during inference. In contrast, the model manipulation
attack lets .A° control the training algorithm to alter the conver-
gence point of a model. This attack can be implemented through
model scaling, modifying the loss function and/or adapting dedi-
cated hyperparameters.

3.3 Assumptions

FLEDGE provides numerous security and privacy benefits under
the following assumptions.

A1: Consensus Protocol is not Compromised. Since blockchain
is the underlying platform to exchange information and execute
smart contracts, we assume the consensus process to be not com-
promised.

A2: Non-colluding Servers (Smart Contracts). During the ma-
nipulation of encrypted data, deployed smart contracts engage in
a semi-honest relationship to enable a privacy-preserving aggre-
gation infrastructure. Therefore, to preserve privacy guarantees,
we assume an adversary cannot control both contracts and their
storage components, simultaneously.

A3: Clients Perform Encryption. Training clients affiliated to
FLEDGE are assumed to have sufficient computational resources to
perform encryption.

4 DESIGN

This section first provides a high-level overview of FLEDGE and
then describes its components in detail.

4.1 High-level Overview

FLEDGE is designed to fulfill privacy requirements (P1, P2) and
security requirements (S1, $2). This is achieved by a layered frame-
work that we will detail below. To detect poisoned models and
satisfy S1 and S2, FLEDGE uses a Gaussian Kernel Density Esti-
mation (G-KDE) function to partition the received model updates
into distinct clusters based on their pairwise distance. Since the
cosine determines the angle, it reveals the changes that were ap-
plied to the local model. Compared to other metrics such as the
Euclidean distance, it is more stable against manipulations. To sat-
isfy P1 and S1 FLEDGE uses HE to encrypt models and perform
privacy-preserving computations, i.e., private aggregation and/or
private distance between models. In addition, FLEDGE leverages
blockchain, in particular, smart contracts to meet P2 and S2. In-
formally, FLEDGE is a 3-layer blockchain framework regulated

Jorge Castillo, Phillip Rieger, Hossein Fereidooni, Qian Chen, and Ahmad-Reza Sadeghi

by smart contracts that provides FL services to train models on
arbitrary learning tasks, e.g., image classification, and/or word pre-
diction. For every new learning task, a session reward is set by the
owners of the task s.t. interested parties (clients and/or contracts)
who join can be rewarded for their benign efforts. In other words,
FLEDGE operates a crediting system to encourage participants to
avoid malicious attempts to break the system, e.g., white-box in-
ference or poisoning attacks. To manage every reward, FLEDGE
registers training clients by generating unique cryptographic iden-
tities via its Membership Service Provider (MSP).” Fig. 1 presents
the different layers of FLEDGE.

Client Layer. This is the base layer of FLEDGE, and it is where
training clients reside. As discussed in Sect. 3.2 some of the clients
can be controlled by the poisoning attacker .A°.

Computation Layer. This layer illustrates the logical components
that enable FLEDGE to operate autonomously. It is formed by two
smart contracts, namely Gateway and Defender contracts. The Gate-
way contract acts as the access gateway where clients submit their
local models. Its core functions, e.g., model process, model analysis
and model aggregate, provide privacy-preserving computations
for encrypted models, addressing C1. The Defender contract, on
the other hand, provides support to the Gateway in the form of
security and privacy mechanisms, e.g., model privacy and model
security, thus, allowing FLEDGE to defend against multiple threats.
We define this blockchain infrastructure as Blockchain Two Con-
tract Computation (BT2C). The goal of our BT2C implementation is
to enable HE-based computations and secure decryption functions
tailored to provide privacy-preserving FL (as defined in Sect. 3.1).
Further details about the internal methods of both smart contracts
can be found in Steps 2-5 of Sect. 4.2.

Data Layer. The following layer represents the storage compo-
nents of FLEDGE which constitutes two storage oracles, namely A
and B, and a blockchain ledger. The storage oracles (i.e., external
databases) are used to manage encrypted models and decryption
keys for Gateway and Defender contracts, respectively, and the
blockchain ledger stores information about FLEDGE (e.g., model
information, session information) using the following transactions
types (TT1 - TT7).

Init Transactions (TT1) are generated for each learning task to deter-
mine the owner of the task, the encryption keys to be used (i.e., HE
public key P;), the number of rounds T required, and the reward
amount R for the full training session.

Storage Transactions (TT2) are generated for every encrypted local
model W, submitted by K clients to save the client ID (e.g., wallet
address to receive payments), model ID, and the encrypted offset
value 37, where i € [1,K]. The offset § is a random value generated
based on the standard deviation of local model W; that is injected
before model encryption to further obfuscate W;*. Further informa-
tion about the use of § is found in Step 1 of Sect. 4.2.

Analysis Transactions (TT3) are created for every TT2 to compute
the cosine distance between W;* and the current encrypted global
model G}, where t € [1,T]. TT3 is used to store model ID and its
respective score ¢;, i.e., cosine distance.

Privacy Transactions (TT4) are generated when a malicious contract

7In Fabric, an MSP provides verifiable identities to members of the blockchain network.

FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks

Blockchain

‘ _.Ledger __
1Transaction 5
V. Init
Data ! . storage :
! « Analysis !
Layer + .« Privacy
|« Security ,
. Appra1sa1 :
Storage === Storage
oracle A @ 0rac1e B
Computation | Gateway
Layer @ :Mode'l Process: ' ®
Q| Model Ana1ys1s del L
(G} Mode1 Aggregate Model security; @
— - Benign
Client . ﬂh i = 2 ctient
Layer @ 5

Training Clients

Figure 1: FLEDGE System Overview. Annotated steps illus-
trate the operation of FLEDGE during a training round ¢.

(ie., Gateway) is attempting to break the privacy of W;*. TT4 in-
cludes the computed aggregation reward Rc for a given training
session. Further information for Rc is found in Step A of Sect. 4.2.
Security Transactions (TT5) are created after FLEDGE evaluates ev-
ery ¢; from TT3 to classify clients into two categories: benign or
malicious. This is represented in TT5 as a list of benign IDs and a
list of malicious IDs.

Appraisal Transactions (TT6) are determined after TT5 to calculate
the round reward R; for benign clients. Additional details for R,
can be found in Step 4 of Sect. 4.2.

Global Transactions (TT7) are determined after model aggregation
has occurred. TT7 includes the global ID, the decrypted weights
of the new global model G4+1, and the corresponding encrypted
global weights G},

4.2 FLEDGE Details

To initialize FLEDGE, the smart contracts seen in the computa-
tion layer are deployed and initialized to the blockchain network.
The initialization process for the smart contracts is completed af-
ter generating TT1. To avoid the possibility of data modification
(or forks) at run-time, we refer back to assumption A1. Similarly,
each smart contract takes into consideration assumption A1l to
protect the integrity of the contracts before/after deployment into
the blockchain, and assumption A2 to prevent an adversary from
gaining full control over the system. Finally, to achieve privacy-
preserving computations (as defined in Sect. 3.1), clients are bound
to assumption A3 to protect the privacy of local updates.

The annotated steps seen in Fig. 1 illustrate the learning pro-
cess of FLEDGE during a training round t. Here, we separate the
learning process into 6 steps, i.e., 5 main steps (Step 1 — Step 5) and

ACSAC °23, December 4-8, 2023, Austin, Texas

1 intermediary step (Step A). After multiple clients have joined a
learning task, they first download the previous global model G;—1
and the corresponding encryption key Py from TT1 at the Gateway
contract. Note that for every Py, a corresponding secret key S is
generated and maintained by the Defender contract. Furthermore,
every Py includes an encryption context, which is provided to the
clients. The encryption context contains the degree of the polyno-
mial (PolyDeg) used to generate P and Si. This value determines
the size of P; and the size of produced ciphers in terms of bytes.
Clients may continue to use the same P; unless a new public key
is required by the system.

Model Encryption (Step 1). Each client i starts to train the model
using local data D; for a predefined number of epochs. After train-
ing, clients generate and inject an offset constant §; such that
W/ = W; + §;. More specifically, §; is generated from the multi-
plication of two random elements: the model’s standard deviation
ow; after training, and a scaling factor f; € [-100,100] s.t. fs # 0.
Note that f; is bounded to [—100, 100] to avoid exceedingly large
numbers (positive or negative) as model weights. This is primarily
because we are interested in shifting (left or right) the distribution
of W; using the inherently random properties of each local model.
Contrary to DP, §; is recorded to be used in Step 3. The offset is
applied to mask W; and obfuscate the model during private com-
putations. At this stage, an attacker would require to brute force
every d; in order to break the privacy of a single local update. Then
clients start the encryption process of W and &;. Once a client has
generated its encrypted local model W;* and encrypted offset &},
the client proceeds to submit them to the Gateway contract for
further analysis. By this, FLEDGE addresses C2.

Due to the limitations of HE, a client is required to first separate
W/ into multiple chunks of data s.t. W/ = w}...wy,, where n is the
number of chunks per model. To calculate n, we first determine
the capacity for every cipher z, i.e., the maximum amount of ele-
ments each cipher is able to contain. We define the capacity to be
PolyDeg / 2, e.g., a PolyDeg of 2048 yields a capacity of 1024 ele-
ments per cipher. Thus, the number of ciphers required to encrypt
W/ is directly proportional to the number of trainable parameters
given PolyDeg. This is further illustrated by Eq. 1:

len(W/)

—_— 1
PolyDeg/2 W

z1...zn = Encrypt(wy...wy,, P), n =

Algorithm 1: BT2C - Private Cosine Distance

Input:§* < encrypted offset
G* < encrypted global model
W* < encrypted local model
1 Zp « PrivateDotProduct(G* + §*, W*)
2 Xp < SecureDecryption(Zp) < defender function
3 Zg « PrivateMagnitudeSquared(G* + §*)
4 Xg < SecureDecryption(Zg)
5 Zp « PrivateMagnitudeSquared(W™)

6 X1 « SecureDecryption(Zy)
Z,"l:1 XDZ-
VIt X6, # Vit XL

8 UpdateScoreToLedger(c) < new TT3

7¢c—1-—

ACSAC °23, December 4-8, 2023, Austin, Texas

Algorithm 2: BT2C - Secure Decryption
Input :zy,...,z; < computation ciphers
Output: X <array of decrypted numbers
p < array of decrypted model chunks
1 51‘, e (SI*< « ReadOffsetFromLedger() < from TT2
2 Sp < ReadKeyFromStorage()

3 t < 0.05 < array variation tolerance
4 for each cipheri in [1,m] do

5 pi < Decrypt(zi, Sg)

6 v «—| %W | « compute variation

7 if v < t then

8 ‘ X « Average(p;)

9 else if K > 1 then

10 for each offset j in [1,K] do

11 ‘ 0j « Decrypt(éjf, Sk)

12 end

K

13 pi — % < offset removal/injection

14 else

15 R < ReadRewardFromLedger() < from TT1

16 s « CountSessionsFromLedger() < # TT1

17 ¢ «— CountAnomaliesFromLedger() < # TT4
18 Re — 0.1%Rxe (9tD)/s 4 calculating reward
19 UpdateContractRewardToLedger(Rc) < new TT4
20 pi < 0 < empty set

21 end
22 end

23 return X or p < output type dependent on process

For FLEDGE, we have determined a minimum PolyDeg of 4096
is required to successfully compute the desired private functions.
Model Process (Step 2) is the initial function that receives ev-
ery W/ provided by the clients. In this step, the Gateway contract
stores W;* into storage oracle A to avoid public visibility to any
other contract deployed in the network. The storing process saves
the ciphers as encoded text into a single document. Every pair of
W and &} is used to generate and submit a new TT2 to the ledger.
Model Analysis (Step 3) uses the previously submitted TT2 to
retrieve the encrypted model from storage and its corresponding
encrypted offset. &} is used to offset the encrypted global model
Gj_,, where G;_, can be easily downloaded from TT7 of the pre-
vious round. This process aligns encrypted models to compute an
accurate cosine distance as given by Alg. 1.

Formally, the private cosine distance function seen in Alg. 1
requires as inputs the encrypted global model G*, the encrypted
local model W* and the corresponding encrypted offset §*. Its goal
is to compute the cosine distance score ¢ between G* and W*. To
calculate the distance, the computation process is segmented into
three BT2C rounds. This is to overcome the practical limitations of
HE, e.g., inability to compute roots. The first round (lines 1-2) starts
by computing the encrypted dot product Zp between G* + §* and
W*, where Zp is a collection of ciphers z1, . . ., z, that represent the
encrypted value of the dot product operation. Zp is then delivered
to Defender contract to perform secure decryption. Note that Zp

Jorge Castillo, Phillip Rieger, Hossein Fereidooni, Qian Chen, and Ahmad-Reza Sadeghi

might be in any order to add randomness to the decryption process.
This process returns Xp, a collection of numbers x1, ..., x, that
represents the results of ;G - W. Similarly, the two remaining
rounds (lines 3-4 and 5-6) are used to generate Xg (3 G?) and X1
(3 L?), respectively. To finalize the computation process, the values
for all three rounds are combined to calculate ¢ and submitted to
the ledger (TT3), as seen in line 7-8.

Model Privacy (Step A) relies on TT1, TT2 and previous TT4 to
enable the secure decryption function seen in Alg. 2. This function
includes two unique operations: limitation of data decryption (lines
1-13) and reward adjustment (lines 15-20). The former analyzes the
information in every cipher to either return a collection of numbers
X (see Step 3) or a collection of model chunks p (see Step 5). The
latter regulates the contract reward Rc using the information stored
in the ledger. The use of R¢ enables FLEDGE to incentivize benign
aggregation behavior in the framework while penalizing malicious
conduct such as attempting to access local models. Note that in
FLEDGE, Rc is set to be 10% (max) of the session reward R by
default.

Alg. 2 requires as inputs only the computation ciphers z1, . . ., zm,
where m is the number of submitted ciphers in the BT2C round.
Note that for secure decryption, m is independent from the number
of ciphers n in an encrypted model such that m < n.8 Our approach
returns decrypted data, which is represented by an array of num-
bers X or an array of model chunks p. To initiate the decryption
process and address C3, the Defender contract retrieves (lines 1-2)
every encrypted offset &7, .. ., 8¢ from TT2, and the corresponding
secret key Sy from storage oracle B. The variation tolerance value
in line 3 is set to ¢t = 0.05 (or 5%) as it is required to discriminate
summation operations, e.g., >, G - W, from model operations, e.g.,
model aggregation. More specifically, summation operations are de-
termined by a low array variation, which indicates that all elements
are the same or closely related’; and model operations are charac-
terized with high variations as these are represented by distinct
values within the decrypted array. After decryption (line 5), the
data is analyzed w.r.t. the array variation factor v (line 6), where v
is defined as the absolute percent difference between the maximum
and minimum elements within p;. At this step, if v < ¢, the elements
inside p; are considered to be the result of a summation operation,
thus, generating X; to represent its average as shown in line 8. Oth-
erwise, the function proceeds to consider p; as a model operation,
where p; is then adjusted by every §; and divided by the number of
available models K (from TT2) to complete the aggregation process
Zszl % as defined by lines 9-13.

Lines 15-20, however, are used to assess K since aggregation
must be performed with a minimum of K = 2 models. If K < 1, it
adjusts Rc to penalize the contract for attempting to bridge the con-
fidentiality of the first local model as this would not be obfuscated by
multiple offset constants. This subroutine is performed by gathering
the current session reward R and the number of successful train-
ing sessions s from TT1 (lines 15-16), and the number of privacy
anomalies ¢ previously registered from TT4 (line 17). Note that ¢

8 A practical example is when the aggregation contract (Gateway) divides its compu-
tations into multiple rounds s.t. Z,,, € Z, to prevent the Defender from potentially
accessing full data.

9Array symmetry comes natively in HE to maintain optimum conditions during
computations.

FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks

ACSAC °23, December 4-8, 2023, Austin, Texas

Algorithm 3: Poisoning Defense

Algorithm 4: BT2C - Private Aggregation

Input:(c;, ..., ck) < distance scores

1 f « 2000 < resolution factor for smooth curves

2 (x1,. ..,xf), (y1, - ..,yf) «— GaussianKDE([c;j, . .
compute gaussian kernel density estimation

3 (I1,...,IN) < LocalMinimums([y1, . . ., y7]) < I, is the
index of local minimum found in y

4 G {[x1,xy ..., [xpy_p, %15], [x1y, Xp]} < group set
based on local minimums

5 M « N +1 < maximum number of available groups

ekl f) <

¢ for each group m in [1, M] do

7 for each scorei in [1,K] do

8 if ¢; € G, then

9 ‘ gm < i <append model index i to a group
10 end

11 end
12 end

13 UpdateGroupsToLedger(g) < new TT5. g; is closest to G;—1
14 R « ReadRewardFromLedger() < from TT1

15 T « ReadTotalNumberOfRoundsFromLedger() < from TT1
16 Rc < ReadContractRewardFromLedger() < from TT4

17 Ry « Tﬁ;—f(;) < training reward

18 UpdateTrainingRewardToLedger(R;) < new TT6

increases every time K < 1. To finalize the penalization process, the
new Rc is generated and added to the ledger (TT4) as seen in lines
18-19, and p is set to empty to avoid leaking information (line 20).
Model Security (Step 4) collects the cosine distance scores ¢; from
TT3, applies the proposed clustering technique to filter poisoned
models, and determines the client reward R; to promote benign
training behavior. To remove poisoned updates and address C4,
our clustering method uses the Gaussian Kernel Density Estima-
tion (G-KDE) function to identify the number of data distributions
within the distance scores c;, and selects models according to their
assigned distribution. If models are determined to be malicious,
they are removed from the aggregation process and penalized by
receiving a reward of 0 for that round. These leftover rewards are di-
vided evenly among other clients, thus, addressing C5. Additional
information related to the use of G-KDE to generate clusters is
discussed in App. D.

The poisoning defense is presented in Alg. 3. The defense re-
quires distance scores cy, . . ., cx as input to generate model clusters
(or groups). To produce an accurate representation of the distri-
bution between scores, we set a resolution factor f of 2000 (line
1), where f denotes the number of data points used to fit the G-
KDE function. Note that we empirically found that f = 2000 pro-
vides the necessary resolution to find local minimums. In line 2,
c1,...,cx and f are used to compute G-KDE, thus, generating 2000
(x, y) data points, where x is bounded between min(cy, . .., cx) and
max(cy,. .., k), and y is the density estimation obtained from the
process. Density values y1, ..., y ¢ are used in line 3 to calculate the
location or index of every local minimum y, ..., [N found in the
distribution of scores. These locations are used to generate a group
set G that contains N +1 (M) groups of models (line 4). At this stage,

Input: W, .. "WI*\I < selected models
1 Z « W[<encrypted base model
2 for each update i in [2, N] do
3 | Z e« AddZW))
4 end
5 G; « SecureDecryption(Z) < defender function
6 Py < ReadKeyFromLedger() < from TT1
7 G; « Encrypt(Gy, Pg)
8 UpdateGlobalToLedger(G;, G;) < new TT7

each score is allocated inside specific groups g to separate benign
models from malicious (lines 6-12). These groups are committed
to the ledger as part of TT5 in line 13. Finally, to calculate R, the
process retrieves R and the number of training rounds T from TT1,
the current Re from TT4, and the group closest to G;—1 (g1) are
combined by the defense as seen in lines 14-17. The updated R; is
committed to the ledger as a new TT6 (line 18).

Model Aggregate (Step 5) selects the models defined by TT5 from
storage oracle A to compute a new global model G;. The private
aggregation (Alg. 4) uses a single BT2C computation round to create
Gy.

Formally, Alg. 4 requires as inputs every selected local model
Wl*, o WI*V, where N is the number of admitted models selected
in Step 4. Models are simply added (lines 1-4) into a single en-
crypted model Z, where Z = (z1,...,z,). Inline 5, Z is submitted
to Defender contract to complete the aggregation process, which
returns a collection of arrays denoted as G;. The new model is then
encrypted (lines 6-7) using the available Py to produce the new
encrypted global model G;. G; and G} are compiled into a new TT7
and committed into the ledger (line 8) to prepare FLEDGE for the
next training round.

5 EXPERIMENTAL SETUP

The following sections illustrate our testbed, and describe the
datasets and models used during evaluation. Note that a detailed
list of evaluation metrics is provided in App. E.

Experimental Testbed. We simulate a generic blockchain using
Hyperledger Fabric (HLF) to illustrate the practicality of our ap-
proach for other blockchain implementations. For experimental
setup, we abstract away the complexities introduced by the consen-
sus protocol, and instead focus on the computational entanglements
added by FLEDGE. This is because FLEDGE relies solely on smart
contracts rather than the underlying blockchain platform. To in-
stantiate the simulation environment, we deploy docker containers
on a Windows PC with Intel Core i7-9750H and 32 GB RAM. The
blockchain test network is formed by a single ordering node op-
erated by single organization with two peers transacting under a
single communication channel.

To fit multiple encrypted models within a single block, we in-
crease the block size to 100MB. Note that this is 100 times larger
than a Bitcoin block (1MB) [45]. We implement the gateway and
defender contracts (chaincodes) using Node]JS and the Node-SEAL
library. Node-SEAL is a Node]S wrapper library used to interface

ACSAC °23, December 4-8, 2023, Austin, Texas

Table 1: Dataset description for different learning tasks.

Application IC wpP
Datasets | MNIST Fashion CIFAR-10 Reddit
#Records 70K 70K 60K 20.6M

Model CNN CNN ConvMixeryse 3 | LSTM
#params | ~ 23K ~ 29K ~ 234K ~ 20M
#ciphers 12 15 115 ~10.1K

with Microsoft SEAL [10], an efficient and open-source HE library
available in C++. Our HE setup uses a PolyDeg of 4096 to encrypt
local models. To evaluate models, we use Pytorch in an Ubuntu 20
server with 2 AMD EPYC 7302, 480 GB RAM, and 6 NVIDIA A100
(40 GB RAM each).

Datasets and Models. To assess FLEDGE, we use two popular FL
applications: word prediction (WP) [36, 38], and image classifica-
tion (IC) [12, 31, 57]. Note that every model used for evaluation has
been pre-trained to reach an acceptable accuracy level. Tab. 1 de-
scribes the dataset types (Dataset), the rounded number of records
per dataset (#Records), the AI models used for training (Model),
the number of trainable parameters (#params) and the number of
ciphers (#ciphers) found per model. We use smaller models with
fewer trainable parameters for IC datasets, compared with WP, to
evaluate how model complexity impacts FLEDGE.

Word Prediction (WP). We use the Reddit dataset as example of
WP for Natural Language Processing (NLP) applications, e.g., the
real-world FL application G-Board [37]. The dataset contains over
20M records of reddit users’ posts from November 2017. Following
previous work [5, 53] we use a 2-layer LSTM model.

Image Classification (IC). We selected three popular IC datasets of
different image complexity: MNIST, Fashion-MNIST (or Fashion
for short) and CIFAR-10. They all consist of 10 evenly divided cat-
egories, where MNIST contains 70K handwritten digits, Fashion
has 70K images of articles of clothing (i.e., shoe, dress, shirt), and
CIFAR-10 has 60K pictures of objects (i.e., frog, airplane, car). For
MNIST and Fashion, we use a simple CNN model comprised of
1 and 2 CNN layers, respectively. We customized the ConvMixer
model [62] to train CIFAR-10 with a width of 256.

Backdoor Attacks. Aligned with earlier work [3, 5, 48] we use the
constrain-and-scale attack of Bagdsaryan et al. [5]. Note that we
focus on adaptive attacks, e.g., adversary adapts the loss function
using the same metric as the defensive strategy. In other words,
our adversary model leverages the cosine distance in an attempt to
evade our defense. For the Reddit dataset, the adversary aims to
make the model predicting the word "delicious" after the trigger
"pasta from astoria tastes" [5]. The CIFAR-10 backdoor shall make
all cars in front of a striped background being classified as birds [5].
For MNIST and Fashion MNIST, the backdoor forces models to
predict the number 0, and t-shirt/top, respectively, when the image
trigger is detected. The trigger is simply a white rectangle located
at the bottom left corner of each poisoned image.

Jorge Castillo, Phillip Rieger, Hossein Fereidooni, Qian Chen, and Ahmad-Reza Sadeghi

le=7
4

® L)
\? 2.0 1 AN -@- Success Rate /‘ 10 b5
=) AY 4
~ N -#- Number of ciphers ~ ,* ﬁ
o 1.5 \ L, 8=
*5 \\\ e O
TR B K
% \\ L, 5 o
8] \ A 10”8
5] 05 Y ’,4’ E
= \ /a’ =
R T e S—— 7 S— o] Z

MNIST Fashion CIFAR-10 Reddit

Figure 2: Probability of success for white-box inference attack
w.r.t. model complexity.

6 EXPERIMENTAL RESULTS

The following sections evaluate the privacy of FLEDGE under a
naive setup, the security aspect of FLEDGE against poisoning at-
tacks, and the behavior of the reward system in FLEDGE for aggre-
gation services and clients. We also provide a run-time performance
analysis of FLEDGE in App. F, which is used to illustrate the in-
creased complexity of our learning process.

6.1 White-box Inference Attack Resiliency

Evaluation Baseline. To evaluate the privacy of FLEDGE, we step
outside A2 to explore a limited collaboration between the Gateway
and Defender contracts. In this scenario, the Gateway is in full
control of the attacker and attempts aggregation when there is only
one model in FLEDGE (K = 1), disregarding its potential reward
Rc. The Defender, however, is only partially compromised allowing
the attacker to observe p; during secure decryption such that the
attacker can reverse the offset from local model Wj.

Effectiveness of FLEDGE. We evaluate the effectiveness of the
obfuscation techniques implemented in FLEDGE to prevent white-
box inference attacks. To breach the privacy of Wi, a Defender
requires to find the correct order of ciphers, since this is random
for every BT2C computation round. We define such a brute force

Table 2: Effectiveness of FLEDGE against multiple poisoning
attacks in terms of Backdoor Accuracy % (BA) and Main Task
Accuracy % (MA).

Poisoning Attack Dataset No Defense | FLEDGE
BA | MA |BA| MA

Reddit - 15.8 | - | 22.7

MNIST - 915 | - | 983

Untargeted [23] Fashion | - 41.1 | -]90.0
CIFAR-10| - 289 | - | 83.0

Reddit 100 | 22.6 | 0.0 22.7

MNIST | 98.0 | 87.7 | 0.4]983

Constrain-and-Scale [5] | Fashion |100.0| 69.3 | 2.4 | 90.6
CIFAR-10 | 100.0 | 66.1 | 0.0 | 83.8

Reddit |100.0| 22.6 |0.0| 22.7

MNIST | 82.6 | 77.2 | 0.1]98.3

DBA [66] Fashion | 99.7 | 36.7 |1.0 | 983
CIFAR-10| 85.2 | 67.4 | 2.1 83.8

FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks

Table 3: Comparison of FLEDGE and five state-of-art de-
fenses’ efficiency to mitigate backdoor. BA refers to Backdoor
Accuracy % and MA refers to Main Task Accuracy %.

Defenses Reddit MNIST | Fashion | CIFAR-10

BA| MA| BA| MA| BA| MA| BA| MA
Benign Setting | 0.0 | 22.7| 0.5| 98.3 3.7 90.9 0| 83.9
No Defense 100.0 | 22.7 | 98.0 | 87.7100.0 | 69.2 | 100.0 | 66.1
Krum [6] 100.0 | 22.6| 0.6 |98.3 2.8190.1| 0.0 83.0
FoolsGold [18] | 0.0|22.7| 0.5|98.3 3.0/ 90.7| 0.0 83.6
Auror [58] 100.0| 22.5| 0.5(98.3 2.5/90.9| 0.0(83.9
AFA [43] 100.0 | 22.6 {83.1| 94.2| 97.9| 87.3|100.0 | 66.5
DP [38] 77.0] 22.0(26.5| 97.3| 52.2| 88.6| 60.0| 76.6
FLEDGE 0.0(22.7| 0.4|98.3| 24|90.6| 0.0]|83.8

process to be equivalent to m!, where m is the number of ciphers for
the BT2C round. Therefore, the probability of an attacker finding
the right combination of ciphers to generate the correct model W;
is given by 1/m!. Fig. 2 illustrates the potential success rate (1/m!)
of an attacker to extract Wi, and its contrast w.r.t. m for every
dataset. Here, we observe that the probability of success decreases
from 2.08e—7% to 0% as the number of ciphers increases from 12
(MNIST model) to ~ 10.1K (Reddit model), i.e., large models provide
better resiliency. Therefore, FLEDGE is 1/m! resilient to white-box
inference attacks even during a limited collaboration outside A2.

6.2 Poisoning Mitigation

Evaluation Baseline. We set PMR=0.5, non-IID=0.7, PDR=0.5 and
a=0.7 as baseline parameters for untargeted and targeted attacks
(unless otherwise indicated). PMR (or Poisoned Model Rate) indi-
cates the influence level of an attacker to the system, i.e., PMR of
0.5 denotes an attacker maliciously controls 50% of training clients.
Non-IID data (or non-Independent and Identically Distributed) rep-
resents the number of training samples dispersed to a client that
belongs to a specific class within a pre-defined group, i.e., non-IID
of 0.7 means that clients should use 70% of training data from their
given class while the rest 30% is from the remaining classes. We
follow the approach in [15] to prepare each dataset according to the
number of output classes. PDR (or Poisoned Data Rate) determines
the fraction of poisoned samples with respect to benign samples
during training, i.e., PDR of 0.5 defines 50% of training data from
a target class are poisoned samples. A higher PDR increases the
success rate of the attacks. Similarly, the regularization term «,
as defined by Bagdasaryan et al. [5], balances the loss function of
client models aiming at limiting the distance between local and
global models. A high value of « allows the attacker to increase its
success rate at the cost of visibility.

Effectiveness of FLEDGE. We evaluate the resiliency of FLEDGE
against different poisoning attacks such as untargeted poisoning [23],
constrain-and-scale [5] and DBA [66]. The experimental results
illustrated in Tab. 2 show that FLEDGE successfully mitigates these
attacks without sacrificing benign performance (MA). For untar-
geted poisoning, the adversary successfully degrades model per-
formance when no defenses are in place, reaching as low as 15.8%
(22.7% original) for Reddit, and 28.9% (83.9% original) for CIFAR-10.

ACSAC °23, December 4-8, 2023, Austin, Texas

P -#- Rc¢ --o-: ¢ g

g H

= 100 { m—=_ e |3 &

S 751 P e I

g . g e L P

& 50 - 3

3} r----0---- F1 .8

§ 251 o 5

g 00— A T T T T T T —-0 3

O 1 2 3 4 5 6 7 8 9 10 =
Number of Training Sessions <
(a) Rc behavior under ¢

. --#- Benign Ry --e-- Malicious Rt —»- PMR Level

X

= 200 P 0.5

< S \»\‘

z 1501 PR AN a o~

o s AN PN -

& 100 m----a / X.\ - -l a—a [03 E

o0 . L/ ., e

£ 50 AN X N X Lo.1

£ SV SV VP WSSV

&= 1 2 3 4 5 6 7 8 9 10

Number of Training Rounds
(b) R¢ behavior under PMR

Figure 3: Behavior of rewards (a) R¢, (b) R; in FLEDGE.

During constrain-and-scale attacks, the adversary is able to inject
a backdoor into the model with almost 100% accuracy. Similarly,
for DBA, the backdoor is injected into the global model with 80+%.
These attacks, however, are not effective against FLEDGE as BA~0
for every evaluated dataset.!? Moreover, FLEDGE maintains or even
increases MA. Note that for the rest of the evaluation, we focus on
targeted (or backdoor) attacks since they are the most sophisticated
type of poisoning attacks.

Comparison to Existing Work. Tab. 3 compares the effective-
ness of FLEDGE with five state-of-the-art defense approaches [6,
18, 36, 43, 58]. Notably, several defenses such as Krum [6] cannot
handle non-IID scenarios. FoolsGold is the most resilient defense
that mitigates backdoors for all four datasets as its BAs are very
closed to 0, but still a little higher than FLEDGE’s BA rates. Similar
to FoolsGold, the other four defenses’ BA rates are much higher
than or equal to FLEDGE’s while MA rates are much lower than or
equal to ours. Auror [58] works well for the image datasets, where
the clients’ local datasets overlap and show similar distributions but
fails for the intrinsic non-IID Reddit dataset. Therefore, FLEDGE is
shown to provide the most resilient defense to mitigate state-of-the-
art backdoors. Appendix H and I provide further experiment results
for WP and IC tasks respectively, showing FLEDGE’s performance
for different PDRs, PMRs, further attack strategies, and IID rates.

6.3 Reward Analysis

The reward systems implemented in FLEDGE are an additional
layer of security designed to discourage malicious actions during
the learning process. However, a defensive strategy is only as good
as its weakest component. In other words, FLEDGE’s reward mech-
anisms are constrained by the efficiency of its white-box inference
resiliency (see Sect. 6.1) and its poisoning defense (see Sect. 6.2).
Thus, the following section investigates the rewarding mechanism

101n some applications, misclassifications are counted in favor of the BA if MA< 100%.
For this reason, the BA is greater than 0%, e.g., 2.4% for Fashion, although the aggregated
model does not contain the backdoor.

ACSAC °23, December 4-8, 2023, Austin, Texas

behind FLEDGE. Fig. 3 shows the behavior of the contract reward
Rc and the training reward R;.

Effect of ¢ in Rc. We assume FLEDGE has received the first local
model W (K = 1), and that the adversary has control over the Gate-
way contract. Fig. 3a illustrates how Rc is adjusted by the Defender
every time an attempt to access private models (¢) is registered
during secure decryption. In other words, ¢ represents the number
of TT4 in FLEDGE, where a new TT4 is generated every time secure
decryption is attempted for K < 1 as seen in Step A of Sect. 4.1.
Note that we have simulated three attempts (Session 3, 5 & 7) to
access Wi, which forces the Defender to adjust Re. In particular,
we observe that R¢ is severely affected by ¢ in comparison to the
number of training sessions (s). This indicates that to increase Rc,
the contract must behave normally for a large number of training
sessions such that the ratio ¢/s approximates 0.

Effect of PMR in R;. For this experiment, we vary the PMR to
{0.1,0.3,0.5} to observe the behavior of the training reward R;.
Fig. 3b shows the benign R; and malicious R; under different PMR
levels. Note that the process to determine R, for each client is based
on the number of malicious models found during a training round.
In other words, the Defender forces malicious clients to transfer
their potential rewards to benign ones, i.e., benign clients get 140%
(Round 8), 160% (Round 4) and 200% (Round 3) for PMR of 0.1, 0.3
and 0.5, respectively. This process promotes benign training behav-
ior since R; is reduced to 0 for every client detected as malicious
during a training round.

7 SECURITY AND PRIVACY ANALYSIS

The following sections provide a security and privacy analysis
to further explore the resiliency against white-box inference and
poisoning attacks under different adversary configurations. We
also discuss the robustness of FLEDGE against clients randomly
dropping from the learning process in App. G.

7.1 FLEDGE Privacy Analysis

FLEDGE uses a decentralized crypto-system maintained by Gate-
way and Defender contracts. This allows FLEDGE to manage and
analyze ciphers. FLEDGE adopts a semi-honest security model such
that only one (out of 2) entity could be compromised at the time as
discussed in assumption A2. Therefore, to undermine the privacy
of FLEDGE according to Sect. 3.1, an adversary .A? may formulate
one of the following scenarios.

AP Compromises Gateway Contract. If A” maliciously controls
the Gateway contract, A? would have access to every encrypted
model. However, A” cannot decrypt any model directly as the
private key is only held by the Defender contract. To access local
updates, AP may try the following strategies.

Direct Decryption Request. AP directly requests decryption of en-
crypted models by submitting the appropriate ciphers to Defender.
This initial approach yields ineffective results as the decryption
process follows secure decryption (Step A in Sect. 4.2), where this
process can identify the type of computation (i.e., summations or
model operations) by analyzing data composition after decryption.
To mitigate this attack, our approach identifies each cipher as a
model operation and returns decrypted arrays with injected random
noises §. Consequently, attempts to decrypt local updates result

Jorge Castillo, Phillip Rieger, Hossein Fereidooni, Qian Chen, and Ahmad-Reza Sadeghi

in random shifts to the distribution of each model. Therefore, this
defense can effectively obfuscate local updates when an adversary
attempts to decrypt them directly.

Reverse Engineer from Computations. A sophisticated .A? may con-
sider to reverse engineer encrypted local updates from the result
of specific computations, i.e., Gy + 5? - WI* Wi*z. However, this
approach is also found ineffective since any type of model operation
is constrained by secure decryption, resulting in data arrays being
indirectly affected by 4.

FLEDGE Aware Decryption Request. AP attempts decryption of the
first (K = 1) encrypted model committed to FLEDGE during a
training round to bypass the security measures imposed by secure
decryption. Put differently, AP aims to extract the first local model
before other § values skew the results. However, this approach is
also ineffective because the Defender contract is aware of the num-
ber of models currently present in FLEDGE. As a consequence, the
Defender contract leverages that information to adjust the contract
reward Rc to penalize the attempt and address curious behavior as
illustrated in Sect. 6.3.

AP Compromises Defender Contract. For the following scenario,
AP attempts to visualize local weights during secure decryption as
Defender holds the private key. To achieve this goal, AP requires
the assistance of Gateway contract as the latter is the one that holds
every encrypted model. Put differently, A” needs the Gateway to
send encrypted models rather than encrypted computations, which
breaks assumption A2. Therefore, FLEDGE is resistant to A? given
assumption A2 holds.

AP Under Limited Collaboration. In this scenario, A? is aware
of FLEDGE’s limitation and aims to retrieve the first local model
(K = 1) as described in Sect. 6.1. However, our evaluation showed
that FLEDGE is also resilient to this scenario, since .A”’s probability
of success reaches ~0% as defined by 1/m!.

7.2 FLEDGE Security Analysis

FLEDGE efficiently filters state-of-the-art backdoor injections with
the defense deployed in Defender contract. To bypass FLEDGE, an
adversary A°® should inject a poisoned model such that FLEDGE
cannot distinguish benign models from poisoned ones. The fol-
lowing elaborate the methodologies that could be used by .A° to
achieve this goal.

A® manipulates a. A® continuously monitors and adjusts client’s
loss function to reduce the distance (i.e., cosine or L2 norm) between
the client model and the current global model, a larger value of a
means more aggressive attacks. Sect. sec:eval-backdoorMitigation
demonstrates that FLEDGE can eliminate poisoning attempts ef-
ficiently under different values of @ for WP and IC applications,
respectively.

A® manipulates PMR. A°® would minimize its visibility by increas-
ing the level of control over (or the number of) malicious clients.
However, this approach cannot defeat FLEDGE as we empirically
proved that FLEDGE maintains high performance w.r.t. changes in
PMR for WP (App. H) and IC learning tasks (App. I).

A* manipulates PDR. A° can also limit the number of poisoned
samples by decreasing the PDR value during training to generate
less suspicious models. As a result, backdoors (BA) will be reduced.

FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks

Additionally, regardless of PDR, FLEDGE continuously filter poi-
soned models efficiently as shown in App. I.

8 RELATED WORK

Privacy-Preserving Defenses. Multiple approaches have been
proposed to protect the privacy of the clients’ training data. Passerat
et al. use a blockchain for privately aggregating the individual
models [51]. Ryffel et al. propose a framework that eases the use
of Secure-Multi-Party Computation (SMPC) for secure aggrega-
tion [54], while Fereidooni et al. rely only on SMPC [17]. Sav et al.
use Multiparty Homomorphic Encryption (HE) for collaboratively
training a model [55]. Bonawitz et al. propose a multi-party-compu-
tation scheme based on Shamir’s secret sharing [7]. However, as
this approach prevents the server from analyzing the local mod-
els, it also prevents analyzing them to identify poisoned models.
FLEDGE uses Blockchain Two Contract Computation (BT2C) to
engage in decentralized privacy-preserving computations based on
smart contracts and HE (see Step A in Sect. 4.2). FLEDGE raises
accountability by including a reward system that promotes benign
contract behavior (see evaluation in Sect. 6.1 and Sect. 6.3).

Poisoning Defenses. Existing defenses against data and model
poisoning attacks aim at distinguishing malicious and benign model
updates [28, 63] utilizing filter-based approaches (i.e., clustering
techniques). However, all of these defenses make specific assump-
tions about the distribution of benign and malicious data or the
characteristics of injected models, causing them to fail if any of these
assumptions do not hold. Moreover, such defenses cannot detect
stealthy attacks, e.g., where the adversary constrains their poisoned
updates within benign update distribution such as constrain-and-
Scale attack [5]. Yin et al. [68] and Guerraoui et al. [20] propose to
change aggregation rules to mitigate the effect of malicious model
updates. They utilize median parameters from all local models as
the global model parameters. Other approaches validate the local
models or the aggregated model [61, 64, 69]. However, they cannot
detect stealthy backdoors that have only minimal impact on the
Main Task Accuracy (MA). Weak Differential Privacy (DP) tech-
niques [39, 46, 65] have also been used to mitigate the effects of
poisoning attacks. DP-based defense dilutes the impact of poisoned
models by clipping model weights and adding noise to individual
clients’ model updates. DeepSight provided an efficient filtering
that works even in non-IID data scenarios [53] but does not credit
the individual contributions and requires a central server than can
inspect the model updates. Kalapaaking et al. use smart-contract
to verify the client-side training process [26] but cannot prevent
attackers from manipulating the training data [49]. The use of
blockchain implementations [13, 24, 32, 70] have managed to pro-
vide defenses against poisoning attacks, however, these solutions
only consider untargeted attacks and/or rely on specific assump-
tions about the distribution of training data. In contrast, FLEDGE
effectively removes poisoned models by instantiating a filtering
approach based on Gaussian Kernel Density Estimation (G-KDE)
function (see Step 4 in Sect. 4.2). The poisoning resiliency of our
solution is empirically evaluated on Sect. 6.2, which demonstrates
that FLEDGE is an effective solution to mitigate poisoning attacks.
In addition, our solution allows us to treat the underlying problem
of poisoning attacks, i.e., client training misbehavior, by imposing

ACSAC °23, December 4-8, 2023, Austin, Texas

monetary deterrents for detected poisoning attempts. This is illus-
trated in Sect. 6.3.

Hybrid Defenses. A number of existing works recently focused
on poisoning attacks while preserving the privacy of the indi-
vidual model updates. Two works implemented Krum [6] using
SMPC [17, 27]. However, Krum focuses on untargeted poisoning at-
tacks and fails to effectively mitigate backdoor attacks (see Sect. 6.2),
and SMPC is vulnerable to attacks that limit availability (i.e., DoS
attacks). Similarly, FLAME [48] leverages DP with model filtering
to provide an efficient defense against backdoors. However, FLAME
also relies on SMPC to provide privacy-preserving computations.
Several approaches utilize Trusted Execution Environments (TEE)
to realize a privacy-preserving poisoning detection [21, 40, 41].
However, requiring TEEs restricts their application to a few sce-
narios as mobile devices often do not have a TEE, while FLEDGE
does not make any assumption about the hardware. Biscotti [56],
BEAS [42] and the work of Lu et al. [35] are blockchain-based frame-
works that target secure and private FL. The first two approaches
use Multi-Krum [6] (a Krum variant) to reduce the impact of back-
doors in the system, where Multi-Krum also focuses on untargeted
poisoning. In particular, Biscotti uses DP and Shamir secrets to
preserve privacy of local updates during aggregation. BEAS and
the work of Luet al, on the other hand, leverages DP to obfuscate
model weights and provide resiliency against inference attacks. In
comparison, FLEDGE provides (1) strong privacy guarantees to
client models by obfuscating them using our BT2C protocol (see
Sect. 6.1), (2) an effective defense using G-KDE functions to filter
different poisoning attacks (see Sect. 6.2), and (3) compensation
algorithms to automatically adjust the reward and deter malicious
behavior (see Sect. 6.3). Liu et al. proposed a smart-contract-based
FL framework that utilizes a server-side validation dataset to detect
untargeted poisoning attacks [34]. However, assuming a server-
side dataset is not practical [53], while FLEDGE detects poisoning
attacks without making such an assumption and also includes a
reward mechanism to penalize malicious clients.

9 CONCLUSION AND FUTURE WORK

In this paper, we illustrated the current research gaps facing FL
systems in terms of security and privacy. To fill in those gaps, we
propose FLEDGE, a 3-layer blockchain FL framework powered by
smart contracts and HE. Our proposed HE infrastructure, BT2C,
enables the analysis and operation of model weights in cipher text
through the use of a semi-honest collaboration between smart
contracts. BT2C is shown to provide resiliency against white-box
inference attacks with a decreased adversarial probability of suc-
cess of % where m is the number of ciphers inside an encrypted
model. Furthermore, our extensive evaluation shows that FLEDGE
also offers high resiliency against numerous poisoning strategies
(BA~0) with minimal impact on benign accuracy. Our solution to
both white-box inference and poisoning attacks allows us to ef-
fectively embed incentives or penalizations to both aggregation
contracts (e.g., Gateway) and training clients in an effort to mini-
mize adversarial intent via behavior accountability.

Limitations. Although the use of blockchain technology and HE
enable the security properties in FLEDGE, they also contribute to

ACSAC °23, December 4-8, 2023, Austin, Texas

the growth in computation costs of its learning process. For in-
stance, training round latency increases from 15.86s (MNIST model)
to 76.6s (CIFAR10 model). This indicates that FLEDGE has an in-
crease in latency of approximately five-times (4.82) for a model that
is ten-times larger (10.17). Put differently, FLEDGE offers limited
scalability given that its learning process slows down as both model
complexity and the number of clients/models increases in the sys-
tem. Furthermore, the reward mechanism embedded in FLEDGE is
directly related to the performance of its defensive strategies. For
example, an attacker capable of avoiding FLEDGE’s poison defense
(i.e., G-KDE Defense) may continue to receive credit even though
its model negatively contributes to the learning process.

Future Work. A formal in-depth analysis aimed into the scalability
of FLEDGE, e.g., transaction fees, storage costs, computation costs
and communication costs, is needed to generate additional insights
into the limitations and efficiency of FLEDGE, specifically those
imposed by the use of different blockchain platforms.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Department of En-
ergy/National Nuclear Security Administration (DOE/NNSA) #DE-
NA0003985, Intel through the Private Al Collaborate Research In-
stitute (https://www.private-ai.org/), BMBF and HMWK within
ATHENE, as well as from the OpenS3 Lab, the Hessian Ministry
of Interior and Sport as part of the F-LION project, following the
funding guidelines for cyber security research, the Horizon Europe
framework program of the European Union under grant agree-
ment No. 101093126 (ACES). We extend our appreciation to KOBIL
GmbH for their support and collaboration throughout the course
of this project. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of any of these funding agencies.

REFERENCES

[1] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. 2018. A survey on
homomorphic encryption schemes: Theory and implementation. ACM Computing
Surveys (Csur) 51, 4 (2018), 1-35.

[2] Abbas Acar, Z Berkay Celik, Hidayet Aksu, A Selcuk Uluagac, and Patrick Mc-
Daniel. 2017. Achieving secure and differentially private computations in multi-
party settings. In IEEE Symposium on Privacy-Aware Computing (PAC). IEEE.

[3] Sebastien Andreina, Giorgia Azzurra Marson, Helen Méllering, and Ghassan
Karame. 2021. BaFFLe: Backdoor Detection via Feedback-based Federated Learn-
ing. In ICDCS.

[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In EuroSys conference.

[5] Eugene Bagdasaryan, Andreas Veit, Yiging Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How to backdoor federated learning. In AISTATS. PMLR.

[6] Peva Blanchard, E1 Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Machine learning with adversaries: Byzantine tolerant gradient descent.
Advances in Neural Information Processing Systems (NIPS) (2017).

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical secure aggregation for privacy-preserving machine learning. In CCS.

[8] Joppe W Bos, Kristin Lauter, and Michael Naehrig. 2014. Private predictive
analysis on encrypted medical data. Journal of biomedical informatics 50 (2014).

[9] Hao Chen, Ilaria Chillotti, and Yongsoo Song. 2019. Improved bootstrapping for

approximate homomorphic encryption. In Annual International Conference on

the Theory and Applications of Cryptographic Techniques. Springer.

Hao Chen, Kim Laine, and Rachel Player. 2017. Simple encrypted arithmetic

library-SEAL v2. 1. In International Conference on Financial Cryptography and

Data Security. Springer.

[11] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic encryption for arithmetic of approximate numbers. In International

[10]

Jorge Castillo, Phillip Rieger, Hossein Fereidooni, Qian Chen, and Ahmad-Reza Sadeghi

[12

[18

[19]

)
=

[21

[22

[23

[24

[26

[27

[28

[29

&
=

[31

(32]

[33

[34

@
2

[36

[37

conference on the theory and application of cryptology and information security.
Springer, 409-437.

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project adam: Building an efficient and scalable deep learning training
system. In USENIX OSDL

Harsh Bimal Desai, Mustafa Safa Ozdayi, and Murat Kantarcioglu. 2021. Block-
fla: Accountable federated learning via hybrid blockchain architecture. In ACM
conference on data and application security and privacy.

Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomor-
phic encryption. Cryptology ePrint Archive (2012).

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local Model Poi-
soning Attacks to {Byzantine-Robust} Federated Learning. In USENIX Security.
Hossein Fereidooni, Alexandra Dmitrienko, Phillip Rieger, Markus Miettinen,
Ahmad-Reza Sadeghi, and Felix Madlener. 2022. Fedcri: Federated mobile cyber-
risk intelligence. In NDSS.

Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Helen
Mollering, Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza Sadeghi, Thomas
Schneider, Hossein Yalame, et al. 2021. SAFELearn: Secure aggregation for
private FEderated learning. In IEEE Security and Privacy Workshops (SPW). IEEE.
Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2020. The limitations of
federated learning in sybil settings. In International Symposium on Research in
Attacks, Intrusions and Defenses (RAID).

Arthur Gervais, Ghassan O Karame, Karl Wiist, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjan Capkun. 2016. On the security and performance of proof of
work blockchains. In CCS.

Rachid Guerraoui, Sébastien Rouault, et al. 2018. The Hidden Vulnerability of
Distributed Learning in Byzantium. In ICML. PMLR.

Hanieh Hashemi, Yongqin Wang, Chuan Guo, and Murali Annavaram. 2021.
Byzantine-robust and privacy-preserving framework for fedml. arXiv preprint
arXiv:2105.02295 (2021).

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.

Md Tamyjid Hossain, Shafkat Islam, Shahriar Badsha, and Haoting Shen. 2021.
Desmp: Differential privacy-exploited stealthy model poisoning attacks in feder-
ated learning. In International Conference on Mobility, Sensing and Networking
(MSN). IEEE.

Gaofeng Hua, Li Zhu, Jinsong Wu, Chunzi Shen, Linyan Zhou, and Qingqing Lin.
2020. Blockchain-based federated learning for intelligent control in heavy haul
railway. IEEE Access 8 (2020), 176830-176839.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning 14, 1-2 (2021), 1-210.

Aditya Pribadi Kalapaaking, Ibrahim Khalil, and Mohammed Atiquzzaman. 2023.
Smart Policy Control for Securing Federated Learning Management System. IEEE
Transactions on Network and Service Management (2023).

Youssef Khazbak, Tianxiang Tan, and Guohong Cao. 2020. MLGuard: Mitigating
poisoning attacks in privacy preserving distributed collaborative learning. In
ICCCN. IEEE.

Yein Kim, Huili Chen, and Farinaz Koushanfar. 2022. Backdoor Defense in
Federated Learning Using Differential Testing and Outlier Detection. arXiv
preprint arXiv:2202.11196 (2022).

Sunny King and Scott Nadal. 2012. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, August 19, 1 (2012).

Kavita Kumari, Phillip Rieger, Hossein Fereidooni, Murtuza Jadliwala, and Ahmad-
Reza Sadeghi. 2023. BayBFed: Bayesian Backdoor Defense for Federated Learning.
In IEEE S&P.

Huimin Li, Phillip Rieger, Shaza Zeitouni, Stjepan Picek, and Ahmad-Reza Sadeghi.
2023. FLAIRS: FPGA-Accelerated Inference-Resistant & Secure Federated Learn-
ing. International Conference on Field-Programmable Logic and Applications (FPL)
(2023).

Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng, and Qiang
Yan. 2020. A blockchain-based decentralized federated learning framework with
committee consensus. [EEE Network 35, 1 (2020).

Pengrui Liu, Xiangrui Xu, and Wei Wang. 2022. Threats, attacks and defenses to
federated learning: issues, taxonomy and perspectives. Cybersecurity 5, 1 (2022).
Yi Liu, Jialiang Peng, Jiawen Kang, Abdullah M Iliyasu, Dusit Niyato, and
Ahmed A Abd El-Latif. 2020. A secure federated learning framework for 5G
networks. IEEE Wireless Communications 27, 4 (2020), 24-31.

Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang.
2019. Blockchain and federated learning for privacy-preserved data sharing in
industrial IoT. IEEE Transactions on Industrial Informatics 16, 6 (2019), 4177-4186.
Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In AISTATS. PMLR.

Brendan McMahan and Daniel Ramage. 2017. Federated learning: Collaborative
Machine Learning without Centralized Training Data. Google AL

https://www.private-ai.org/

FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks

[38] HBrendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning
differentially private recurrent language models. ICLR (2017).

[39] LuMiao, Wei Yang, Rong Hu, Lu Li, and Liusheng Huang. 2022. Against Backdoor
Attacks In Federated Learning With Differential Privacy. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.

[40] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. 2021. PPFL: privacy-preserving federated learning with trusted
execution environments. In Annual international conference on mobile systems,
applications, and services.

[41] Arup Mondal, Yash More, Ruthu Hulikal Rooparaghunath, and Debayan Gupta.
2021. Flatee: Federated learning across trusted execution environments. arXiv
preprint arXiv:2111.06867 (2021).

[42] Arup Mondal, Harpreet Virk, and Debayan Gupta. 2022. BEAS: Blockchain
Enabled Asynchronous & Secure Federated Machine Learning. arXiv preprint
arXiv:2202.02817 (2022).

[43] Luis Mufioz-Gonzalez, Kenneth T Co, and Emil C Lupu. 2019. Byzantine-robust

federated machine learning through adaptive model averaging. arXiv preprint

arXiv:1909.05125 (2019).

Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can homo-

morphic encryption be practical?. In ACM workshop on Cloud computing security

workshop.

[45] Satoshi Nakamoto. 2019. Bitcoin: A peer-to-peer electronic cash system. Technical
Report. Manubot.

[46] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. 2022. Local and
central differential privacy for robustness and privacy in federated learning.
NDSS (2022).

[47] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein Fereidooni,
N. Asokan, and Ahmad-Reza Sadeghi. 2019. DIoT: A Federated Self-learning
Anomaly Detection System for IoT. In ICDCS.

[48] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Méllering,
Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza
Zeitouni, et al. 2022. FLAME: Taming Backdoors in Federated Learning. USENIX
Security (2022).

[49] Thien Duc Nguyen, Phillip Rieger, Markus Miettinen, and Ahmad-Reza Sadeghi.
2020. Poisoning attacks on federated learning-based iot intrusion detection
system. In NDSS Workshop on Decentralized IoT Systems and Security.

[50] Diego Ongaro and John Ousterhout. 2015. The raft consensus algorithm. (2015).

[51] Jonathan Passerat-Palmbach, Tyler Farnan, Robert Miller, Marielle S Gross,

Heather Leigh Flannery, and Bill Gleim. 2019. A blockchain-orchestrated

federated learning architecture for healthcare consortia. arXiv preprint

arXiv:1910.12603 (2019).

Phillip Rieger, Torsten Krauf3, Markus Miettinen, Alexandra Dmitrienko, and

Ahmad-Reza Sadeghi. 2024. CrowdGuard: Federated Backdoor Detection in

Federated Learning. NDSS (2024).

Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-Reza Sadeghi.

2022. DeepSight: Mitigating Backdoor Attacks in Federated Learning Through

Deep Model Inspection. NDSS (2022).

[54] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel
Rueckert, and Jonathan Passerat-Palmbach. 2018. A generic framework for
privacy preserving deep learning. arXiv preprint arXiv:1811.04017 (2018).

[55] Sinem Sav, Apostolos Pyrgelis, Juan R Troncoso-Pastoriza, David Froelicher,
Jean-Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. 2021. POSEIDON:
privacy-preserving federated neural network learning. NDSS (2021).

[56] Muhammad Shayan, Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2020.

Biscotti: A blockchain system for private and secure federated learning. IEEE

Transactions on Parallel and Distributed Systems 32, 7 (2020), 1513-1525.

Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin, and Spyridon

Bakas. 2018. Multi-institutional deep learning modeling without sharing patient

data: A feasibility study on brain tumor segmentation. In International MICCAI

Brainlesion Workshop. Springer.

Shiqi Shen, Shruti Tople, and Prateek Saxena. 2016. Auror: Defending against

poisoning attacks in collaborative deep learning systems. In Annual Conference

on Computer Security Applications.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-

bership inference attacks against machine learning models. In IEEE S&P. IEEE.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[61] Dimitris Stripelis, Marcin Abram, and Jose Luis Ambite. 2022. Performance

Weighting for Robust Federated Learning Against Corrupted Sources. arXiv

preprint arXiv:2205.01184 (2022).

Asher Trockman and J Zico Kolter. 2022. Patches Are All You Need? arXiv

preprint £:2201.09792 (2022).

[63] Yongkang Wang, Dihua Zhai, Yufeng Zhan, and Yuanqing Xia. 2022. RFLBAT: A

Robust Federated Learning Algorithm against Backdoor Attack. arXiv preprint

arXiv:2201.03772 (2022).

Binhan Xi, Shaofeng Li, Jiachun Li, Hui Liu, Hong Liu, and Haojin Zhu. 2021.

BatFL: Backdoor Detection on Federated Learning in e-Health. In IEEE/ACM

[44

[52

[53

[57

[58

o
X

[60

[62

=
&

ACSAC °23, December 4-8, 2023, Austin, Texas

International Symposium on Quality of Service IWQOS). IEEE.

[65] Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. 2021. Crfl: Certifiably robust

federated learning against backdoor attacks. In ICML. PMLR.

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2019. Dba: Distributed backdoor

attacks against federated learning. In ICLR.

[67] Xun Yi, Russell Paulet, and Elisa Bertino. 2014. Homomorphic encryption. In
Homomorphic encryption and applications. Springer.

[68] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. In
ICML. PMLR.

[69] Lingchen Zhao, Shengshan Hu, Qian Wang, Jianlin Jiang, Chao Shen, Xiangyang
Luo, and Pengfei Hu. 2020. Shielding collaborative learning: Mitigating poisoning
attacks through client-side detection. IEEE Transactions on Dependable and Secure
Computing 18, 5 (2020).

[70] Sicong Zhou, Huawei Huang, Wuhui Chen, Pan Zhou, Zibin Zheng, and Song
Guo. 2020. Pirate: A blockchain-based secure framework of distributed machine
learning in 5g networks. IEEE Network 34, 6 (2020).

APPENDIX
A BACKGROUND ON FEDERATED LEARNING

Federated Learning (FL) [36] is a round-based machine learning
protocol with the purpose of providing a collaborative learning
surface between K clients and a central aggregation server S. For
a training round ¢t € [1,T] in FedAVG [36], each client downloads
an initial deep learning model from S known as the global model
G¢-1. Clients begin training using its local data D; and send local
updates W;, where i € [1,K] to be averaged by S resulting in a new
global model G¢, such that G; = Zfil %Wi, where n; = ||Dj||, and
n= ZzK:I n;i. The process continuously repeats for T rounds until
the model performance reaches an appropriate/target level. Similar
to previous work [5, 58], we weight all clients equally such that

K W
Gr=2i1 &

[66

B BACKGROUND ON BLOCKCHAIN

Blockchain is a decentralized storage system sustained over a vast
network of computers (peers) with the common goal to serve as
an immutable record [45]. The record is formed from a series of
cryptographically linked blocks, where each block contains multiple
transactions (or data samples). The transaction order is defined
by a systematized ordering protocol. The protocol is also known
as the consensus process (i.e., proof of work (PoW) [19] or proof
of stake (PoS) [29]) that uses a subset of peers to approve and
validate new blocks of data. Informally, the blockchain participants
broadcast data received by consensus nodes as transactions. These
nodes gather different transactions to formulate a new block during
the consensus process. After consensus is reached, the block is
distributed to every other participant so that it can be validated
and appended to the ledger.

Smart contracts of blockchain systems allow authorized users
to retrieve any data from and submit any data to the underlying
blockchain system. They provide a verifiable and transparent envi-
ronment dedicated to build trust among untrusted parties without
an intermediary. The use of smart contracts in the FL context en-
ables a decentralized storage to merge and analyze client models in
an automated fashion. Currently, blockchains can be categorized
as either a public or private.!! For our solution we consider a pri-
vate blockchain to have additional control over the visibility of
the ledger as only specific entities are selected to join the network.

Ppyblic (or permissionless) blockchains allow anyone to join and verify the system,
whereas private (or permissioned) blockchains do not.

ACSAC °23, December 4-8, 2023, Austin, Texas

Hyperledger Fabric (HLF) offers high degree of flexibility and
scalability [4] while utilizing a modular approach that is easy-to-
use. We use HLF as the blockchain platform in this study because
of the following reasons.

o Scalability. Compared with public blockchains that require
every consensus node to validate newly appended blocks,
Fabric controls the number of consensus nodes to improve
its throughput and significantly reduce the communication
latency.

o Leader-based consensus process. HLF uses Raft [50], a fault-
tolerant algorithm that requires nodes to elect a leader to pro-
cess and distribute data. This leader-based approach reduces
data processing times and makes the blockchain systems
time/computational efficient.

C BACKGROUND ON HOMOMORPHIC
ENCRYPTION

Homomorphic Encryption (HE) [1, 67] is a special public key en-
cryption. It allows the application of mathematical functions on
encrypted data so that data can remain confidential while being pro-
cessed. HE has two main branches, namely fully homomorphic en-
cryption (FHE) and partially homomorphic encryption (PHE). FHE
allows users to compute any mathematical function while PHE only
allows some functions to be applied [9, 14]. Prominent examples
of PHE are Cheon-Kim-Kim-Song (CKKS) [11] and Brakerski/Fan-
Vercauteren (BFV) [14] schemes.

CKKS Encryption Scheme. Computing only addition and multi-
plication operations is a prominent example of practical PHE [9].
Unlike other PHE (i.e., BFV [14]), CKKS allows floating point oper-
ations, which makes it applicable for encrypting data and models
for FL systems. In typical CKKS implementations, the encryption
process begins when a client first generates a key pair, a secret-key
Sk and a public-key Pi. The client uses Py to encrypt its data D;
before sharing it to an untrusted server S, to perform private com-
putations on encrypted data D}. Computed data is then returned to
the client for decryption with Sy, unveiling the real result after com-
putation. Previous research [8, 44] demonstrated the practicality of
HE in applications where privacy is preferred over efficiency.

D INTUITION FOR G-KDE CLUSTERING

Poisoning attempts are known to generate a sufficiently large gap
between the distance scores of benign models and malicious updates
such that our G-KDE clustering is able to filter malicious models
regardless of the obfuscation technique used by an adversary (e.g.,
manipulation of loss function [5]). This hypothesis is validated
and shown in Fig. 4, where four subfigures illustrate the distance
score distribution found for both word prediction tasks (WP) on
the left, and image classification tasks (IC) on the right. Fig. 4a
uses a histogram to prove the existence of a gap within distance
scores of WP tasks. Similarly, Fig. 4b displays a similar gap between
the malicious and benign scores obtained from an IC task. These
gaps indicate that it is possible to discriminate models based on
where they reside within the data distribution regardless of model
complexity, making this approach generic enough to be applicable
as a poisoning defense. Fig. 4c and d illustrate how the use of G-KDE

Jorge Castillo, Phillip Rieger, Hossein Fereidooni, Qian Chen, and Ahmad-Reza Sadeghi

L

Q .

Ry Distance

=20 Gap

(=}
. T, - - - L
1 2 3 4 0.0000 0.0005 0.0010

Anomaly Scores ~ '¢® Anomaly Scores

(a) Gap for WP task. (b) Gap for IC task.
i i
1 1
i i
[} r92 g1 | 92

i i
] .]
[1 ! local min local min |

- Lo ¥ _ -7 - ~_~~ 1 - ——p~

K- < -
1 2 3 4 0.0000 0.0005 0.0010

Anomaly Scores '3 Anomaly Scores

(c) Groups for WP task. (d) Groups for IC task.

Figure 4: Distribution analysis of anomaly scores for WP and
IC datasets. (a) A gap between malicious and benign models
for WP. (b) A gap between malicious and benign models for
IC. (c) Groups found during WP analysis. (d) Groups found
during IC analysis.

functions finds multiple distributions inside the distance scores,
thus, generating two groups, e.g., g1 (benign) and g (malicious).

E EVALUATION METRICS

We consider the following metrics to define the effectiveness of
poisoning attacks:

o Main Task Accuracy (MA). It indicates the accuracy level of a
model when performing its main (or benign) task. The goal
of an adversary is to minimize its impact such that MA is
not degraded during malicious training.

e Backdoor Accuracy (BA). It is used to measure the accuracy of
the backdoor injected into a model. The goal of the attacker
is to maximize BA during a training round.

o True Positive Rate (TPR). It indicates the accuracy of the de-
fenses for detecting poisoned models such that True Posi-
tives (TP) are models correctly identified as malicious, and
False Negatives (FN) are those mislabeled as benign: TPR =
TP/TP+FN . A high TPR suggests poisoned models are being
removed:

o True Negative Rate (TNR). It determines the accuracy of the
defense for detecting benign models such that True Nega-
tives (TN) are models correctly labeled as benign, and False
Positives (FP) are those incorrectly classified as malicious:
TNR = TN/TN+FP. TNR increases as the defense removes
less benign models.

F RUNTIME-PERFORMANCE

To assess the latency aspects of FLEDGE during any given round,
we evaluate the following processes in terms of latency: model
encryption, model upload, model filtering and model aggregation.
Model encryption determines the time required to fully produce
an encrypted model. Model upload defines the average time an
encrypted model is committed and analyzed by FLEDGE such that

FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks

it produces the distance score that corresponds to the uploaded
encrypted model. Model filtering evaluates how long the poison
defense takes to analyze anomaly scores to remove models from
aggregation. Model aggregation determines the time it takes to pro-
duce a new global model. We perform experiments using MNIST,
Fashion, and CIFAR-10 datasets.

Effect of Model Complexity. For the following experiment we
set the number of clients to be 50 to assess the impact of model
complexity on system latency. Table 4 compiles the preliminary
evaluation of FLEDGE. For model encryption, we found there is
negligible impact on latency with values of 0.12, 0.14, 0.56 and
1.03 seconds for each of the models evaluated. Note that model
encryption behaves as O(n?) as the number of trainable param-
eters increases, i.e., ~ 20.4M params are encrypted (10K ciphers)
in ~110s. Moreover, model upload shows an average latency of
5.23, 5.85, and 17.57 seconds for MNIST, Fashion, and CIFAR-10
tasks. The increased latency is mainly attributed to the distance
score computation, where we use three BT2C rounds to compute
the cosine distance. The values displayed for model filtering are
close to 2s in each evaluated task. The reason is because this is the
only process where HE is not used, as the Defender contract only
analyzes the anomaly scores previously computed during model
upload. In contrast, model aggregation is determined to be the most
computationally expensive process in FLEDGE, showing values
of 8.44, 9.73, and 56.09 seconds, respectively. As a consequence,
FLEDGE successfully completes a single training round in 15.86s
(MNIST), 17.7s (Fashion), and 76.6s (CIFAR-10). Therefore, the use
of FLEDGE is best suited to protect the privacy of constrained
environments, where local clients do not have the computational
resources (e.g., GPU) to train a robust model with millions of param-
eters such as ResNet [22] and VGG [60]. However, they can operate
lite models, i.e., lite-CNN and/or ConvMixer, to achieve good model
performance while delegating every intensive computational task
to blockchain via smart contracts.

Effect of Number of Clients. In this experiment, we narrow our
focus to the model aggregation process since it was determined to be
the most computationally expensive process in FLEDGE. To further
inspect this process, we vary the number of clients to {10, 30, 50}.
Fig. 5 shows the impact of model aggregation for the distinct learn-
ing tasks using a different number of clients. Here, we can visualize
that not only does model aggregation scales according to model
complexity, but it also shows a linear dependency w.r.t. the num-
ber of clients. Put differently, model aggregation is the major con-
tributor of latency in FLEDGE as other components (i.e., model
encryption, model upload) are only defined by the computational
requirements of HE.

G ROBUSTNESS AGAINST CLIENT DROPOUTS

The goal of the training client is to train and submit its local update
to the Gateway contract. Uploading the model can be seen as an
automatic operation, either the model is completely received and
further processed or it is ignored. Once a local model is successfully
uploaded, a TT2 is formulated to generate a record in the ledger.
At this stage, the model is now considered to be part of FLEDGE.
Otherwise, the encrypted model is ignored during the training
round. After the record for a model is part of the ledger, a client

ACSAC °23, December 4-8, 2023, Austin, Texas

Table 4: Training round efficiency of FLEDGE for the follow-
ing processing tasks in seconds: Model Encryption, Model
Upload, Model Filtering, and Model Aggregation.

Dataset | MNIST | Fashion | CIFAR-10
Model Encryption | 0.12 0.14 1.03
Model Upload | 5.23 5.85 17.57
Model Filtering | 2.07 1.98 1.91
Model Aggregation | 8.44 9.73 56.09
Total | 15.86 17.7 76.6

dropout does not affect FLEDGE anymore. FLEDGE takes advantage
of the visibility of blockchain to consistently account for the number
of encrypted models currently present. This allows our approach
to perform the aggregation using only the available models. Thus,
making it robust against dynamic dropouts.

H BACKDOOR EVALUATION FOR WP TASK

The following section evaluates the effect of PMR and « in FLEDGE
for the WP task. We analyze the behavior of FLEDGE during 10
training rounds. The attacker attempts to inject backdoored models
in different training rounds to compromise the global model. We
analyze FLEDGE in terms of MA, BA, TPR and TNR, and draw a
comparison with a typical No Defense scenario using a FL environ-
ment with 30 training clients. The results of the direct comparison
are shown in Fig. 6, and are elaborated as follows.

Effect of PMR Rate. In this experiment, we modify the con-
trol ratio of the attacker in the system by setting PMR values of
{0.1,0.3,0.5} (or 6, 9 and 15 malicious clients). In Fig. 6a, we ob-
serve the ability of the adversary to successfully inject backdoors
(BA=100% for No Defense) into the model regardless on the number
of malicious clients it controls. In contrast, FLEDGE is demonstrated
to effectively remove the threat of backdoors (BA=0%) while pre-
serving the benign accuracy of MA=22.7%. FLEDGE achieves a TNR
and TPR values of 100% in the process, which denotes that FLEDGE
is able to defend against multiple malicious clients.

Effect of o Rate. Further, we modified the level of intensity for
backdoor injection such that @={0.2, 0.5, 0.9}. Fig. 6b shows that BA
and MA (No Defense) are not affected by & with an average value of
100% and 22.6%, respectively. FLEDGE effectively mitigates every
backdoor attempt (BA=0%, TPR=100%). TNR is 86.66% when a=0.2,

50| T MNIST (]
- [Fashion
S 401 [CIFAR-10
3
8 304
[}
g 201
£
il
0 - - .
10 30 50
Number of Clients

Figure 5: Effect of number of training clients on Model Ag-
gregation process.

ACSAC °23, December 4-8, 2023, Austin, Texas

=->- No Defense MA
->&- No Defense BA

—&— FLEDGE BA
—— FLEDGE TNR

—&— FLEDGE MA --gp-+ FLEDGE TPR
e
)
.2
=]
é’ 0.1 02 03 04 05 02 04 06 038
2 PMR a
© (a) Reddit task for PMR. (b) Reddit task for a.
Bioo{EF - o g
< 2 o
= .

50 .. K .,
0 1 T T T T ‘V
1 2 3 4 5

Number of Training Rounds
(c) Reddit task for different rounds.

Figure 6: Effect of backdoors on evaluation metrics for WP
task. Effect of (a) PMRs, (b) @, (c) multiple injections.

and this value increases to 100% when «={0.5,0.9}. FLEDGE filters
2 out of 15 (13.34%) benign models when defending against =0.2,
and it continues to provide an effective defense against different
levels of aggression when « value increases.

Effect of Backdoor Injections for Multiple Rounds. For this
experiment, we set PMR=0.5 and the number of rounds to be 5,
where rounds 1,3 and 4 are poisoned, and rounds 2 and 5 are benign.
This is because we are interested in testing the efficacy of FLEDGE
w.r.t. multiple attack rounds. Fig. 6c illustrates the operation of
FLEDGE under multiple attack rounds. Note that for all 5 rounds,
FLEDGE continues to maintain BA=0%, whereas the No Defense
setup has BA=100%. Further, TNR values are always 100%, however,
TPR values differ depending if the round is benign (TPR~0%) or
malicious (TPR=100%). This behavior indicates that FLEDGE ad-
justs its filtering mechanics to only remove poisoned models and
avoid benign models.

I BACKDOOR EVALUATION FOR IC TASK

In this section, we evaluate the effect of PMR, PDR, non-IID rate and
a on IC tasks during a single training round. We illustrate the differ-
ence in behavior for FLEDGE and No Defense system during multiple
attack settings. We use MA, BA, TPR, and TNR as metrics for com-
parison. For the purposes of demonstration, we focus on CIFAR-10
as it is the most complex IC task. We select 50 as the total number
of clients. The results of the experiments are illustrated in Fig. 7.

Effect of PMR Rate. The following experiment changes the in-
fluence of the attacker over the system by setting PMR values of
{0.1,0.3,0.5}. Fig. 7a shows the evaluation for PMR. At the No De-
fense setup, we clearly observe the attacker negatively affects MA
from 83.9% to 66.1% to reach an appropriate BA level (BA=100%).
Nevertheless, FLEDGE efficiently mitigated this, since FLEDGE
continues to filter malicious updates (BA~0%), reaching TNR and
TPR of 100%. Consequently, this elevates MA to a benign level,

Jorge Castillo, Phillip Rieger, Hossein Fereidooni, Qian Chen, and Ahmad-Reza Sadeghi

=->¢- No Defense MA —&— FLEDGE BA
->¢- No Defense BA —- FLEDGE TNR
—&— FLEDGE MA -.qp-. FLEDGE TPR
. - \
~~~~~ N
e K== X =il
50 1 50 - X
< \
s X
B oote———— Otk
15} 0.1 02 03 04 05 02 04 06 08
E PMR PDR
o (a) CIFAR-10 task for PMR (b) CIFAR-10 task for PDR
2 100
G — e *
S Semmmmm N
50 D€~
0 1 2 * 0 1k . *
02 04 06 08 02 04 06 08

non-IID Rate

a
(c) CIFAR-10 task for non-IID Rate (d) CIFAR-10 task for a

Figure 7: Effect of backdoors on evaluation metrics for IC
task. Effect of (a) PMRs, (b) PDRs, (c) non-IID rates, (d) a.

i.e., MA=83.94%. Therefore, we further demonstrate that FLEDGE
is resistant to backdoor injections where the adversary is able to
change the number of clients it controls.

Effect of PDR Rate. In this experiment, we evaluate the influence
of PDR in FLEDGE by setting PDR={0.1,0.5,1} as illustrated in
Fig. 7b. Similar to previous experiments, Fig. 7b shows the evalua-
tion metrics for different PDR values. Here, we observe the follow-
ing BA behaviors. First, it shows a mild drop in performance for
PDR=0.1, i.e., BA=80% and MA=81.96%. Second, it shows a signifi-
cant degradation in performance when PDR=1, i.e., BA=20% and
MA=54.8%. This is, however, filtered by FLEDGE which effectively
reduces BA to 0% with TNR=100% and TPR=100%. Therefore, we
consider FLEDGE to be resistant to changes in PDR.

Effect of non-IID Data. For the following experiment, we aim
to analyze FLEDGE under different data concentrations such that
non-IID is set to {0, 0.5, 1}. Fig. 7c show that backdoors continue to
be effective for every non-IID value, with BA of 100%. These results
also show that MA increases from 52.8% to 66.5% for non-IID of
0 and 1, respectively. However, FLEDGE minimizes the impact of
backdoors (BA~0%) for every non-IID setting with TNR and TPR
of 100%. This indicates that FLEDGE is highly resilient to changes
caused by different non-IID rates.

Effect of o Rate. For the next experiment, we set « to be
{0.2,0.5,0.9} in order to test the performance of FLEDGE under
different intensity levels. Similar to previous experiments, Fig. 7d
shows the evaluation metrics. In here, we observe how BA is directly
proportional to a, i.e., BA of 40% (@=0.2) increases to 100% (a=0.9).
Consequently, this also has an impact on MA, yielding reduced
values of 60.5% when «=0.9. FLEDGE removed poisoned models
(TPR=100%) while preserving benign ones (TNR=100%) such that



FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks ACSAC °23, December 4-8, 2023, Austin, Texas

BA=0% and MA is returned to its benign level, i.e., 83.8%. Hence,
we further determine that FLEDGE is robust against changes in a.



	Abstract
	1 Introduction
	2 Requirements and Challenges
	2.1 Privacy for FL
	2.2 Security for FL

	3 Adversary Model and Assumptions
	3.1 Privacy Threat
	3.2 Security Threat
	3.3 Assumptions

	4 Design
	4.1 High-level Overview
	4.2 FLEDGE Details

	5 Experimental Setup
	6 Experimental Results
	6.1 White-box Inference Attack Resiliency
	6.2 Poisoning Mitigation
	6.3 Reward Analysis

	7 Security and Privacy Analysis
	7.1 FLEDGE Privacy Analysis
	7.2 FLEDGE Security Analysis

	8 Related Work
	9 Conclusion and Future Work
	References
	A Background on Federated Learning
	B Background on Blockchain
	C Background on Homomorphic Encryption
	D Intuition for G-KDE Clustering
	E Evaluation Metrics
	F Runtime-Performance
	G Robustness Against Client Dropouts
	H Backdoor Evaluation for WP Task
	I Backdoor Evaluation for IC Task

