
DeepTaster: Adversarial Perturbation-Based Fingerprinting to
Identify Proprietary Dataset Use in Deep Neural Networks

Seonhye Park1, Alsharif Abuadbba2, Shuo Wang2, Kristen Moore2, Yansong Gao2,
Hyoungshick Kim1, Surya Nepal2,

1Sungkyunkwan University, Republic of Korea
{qkrtjsgp08,hyoung}@skku.edu

2CSIRO’ Data61, Australia
{sharif.abuadbba,shuo.wang,kristen.moore,garrison.gao,surya.nepal}@data61.csiro.au

ABSTRACT

Training deep neural networks (DNNs) requires large datasets and
powerful computing resources, which has led some owners to re-
strict redistribution without permission. Watermarking techniques
that embed confidential data into DNNs have been used to protect
ownership, but these can degrade model performance and are vul-
nerable to watermark removal attacks. Recently, DeepJudge was
introduced as an alternative approach to measuring the similarity
between a suspect and a victim model. While DeepJudge shows
promise in addressing the shortcomings of watermarking, it primar-
ily addresses situations where the suspect model copies the victim’s
architecture. In this study, we introduce DeepTaster, a novel DNN
fingerprinting technique, to address scenarios where a victim’s data
is unlawfully used to build a suspect model. DeepTaster can effec-
tively identify such DNN model theft attacks, even when the sus-
pect model’s architecture deviates from the victim’s. To accomplish
this, DeepTaster generates adversarial images with perturbations,
transforms them into the Fourier frequency domain, and uses these
transformed images to identify the dataset used in a suspect model.
The underlying premise is that adversarial images can capture the
unique characteristics of DNNs built with a specific dataset. To
demonstrate the effectiveness of DeepTaster, we evaluated the
effectiveness of DeepTaster by assessing its detection accuracy
on three datasets (CIFAR10, MNIST, and Tiny-ImageNet) across
three model architectures (ResNet18, VGG16, and DenseNet161).
We conducted experiments under various attack scenarios, includ-
ing transfer learning, pruning, fine-tuning, and data augmentation.
Specifically, in the Multi-Architecture Attack scenario, DeepTaster
was able to identify all the stolen cases across all datasets, while
DeepJudge failed to detect any of the cases.
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1 INTRODUCTION

Organisations looking to commercialise their proprietary Deep
Neural Network (DNN) models via Machine Learning as a Service
(MLaaS) must be wary of the potential security risks entailed, no-
tably the potential theft of DNN models or datasets [37]. DNN
models are constructed on huge datasets, which are meticulously

collected, processed, organised, and labelled, usually requiring sig-
nificant expense. Therefore, ensuring the protection of model and
dataset ownership becomes crucial.

We need to consider several attack scenarios related to the model
and data theft. A recent data breach at “Capital One” showed the
risk of insider attacks on cloud platforms, where someone with
unauthorised access could steal data stored on the cloud server [31].
This security incident highlights the potential misuse of datasets
by insider attackers, who could covertly steal a proprietary dataset
and incorporate it into their own DNN models without the owner’s
consent. Another risk is external attackers stealing a DNN model
by querying it through MLaaS APIs. Recent studies (e.g., [33, 40,
46]) have shown that DNN model theft attacks can be effectively
conducted, even within real-world services.

Existing DNN intellectual property (IP) protection mechanisms
fall into two categories: DNN watermarking and DNN fingerprinting.
DNN watermarking involves embedding the owner’s information
(i.e., a watermark) into a proprietary model [1, 2, 6, 7, 9, 20, 38, 41,
47]. Model ownership can be verified by extracting an identical or
similar watermark from a suspected model. There have been many
proposals for developing effective DNN watermarking schemes.
However, DNN watermarking presents two inherent limitations:
(a) DNN watermarking is invasive by design, as it necessitates
modifications to the original DNN model to embed a watermark,
potentially altering the model’s behaviour [42, 47]. (b) DNN water-
marking lacks sufficient resilience to adversarial attacks [32, 45].
Aiken et al. [3] showed that attackers could effectively manipulate
neurons or channels in DNN layers that contribute to the embedded
watermark for most state-of-the-art DNN watermarking schemes.
Lukas et al. [27] recently demonstrated that transfer learning could
remove nearly all of the tested 11 watermarking schemes.

In contrast, DNN fingerprinting is non-invasive by design as it
leverages the unique characteristics (i.e., fingerprinting features)
of each DNN model without modifying the model itself. A veri-
fier can identify the model by examining these fingerprinting fea-
tures [5, 28]. Generally, a single fingerprinting feature is insufficient
to identify a model constructed through model theft and adaptive
attacks [8]. Chen et al. [8] recently introducedDeepJudge, a state-of-
the-art fingerprinting scheme that leverages multiple fingerprinting
features to protect a model’s copyright. However, as DeepJudge
utilises fingerprinting features tied to the model’s parameters, it
may struggle to detect unauthorised use of the protected training
dataset if a suspect DNN model comprises different parameters or
uses a distinct model architecture. Moreover, DeepJudge is not suf-
ficiently effective in detecting models constructed through transfer
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learning [39]. Our experimental results indicate that DeepJudge’s
detection accuracy is significantly degraded for models constructed
through transfer learning. Consequently, DeepJudge may fail to
identify instances where a victim’s data is illicitly used to construct
a suspect model with an architecture that differs from the original
model of the victim. To tackle such attack scenarios, we propose a
novel DNN fingerprinting scheme dubbed DeepTaster.

In this paper, we demonstrate that the spectra of gradient-based
adversarial examples can be used to identify the characteristics of
a dataset used to train a DNN model, particularly regarding the
model’s decision boundaries. The adversarial perturbation images
generated by gradient-based attacks preserve both the dataset and
model characteristics, indicating a commonality among models
trained on the same dataset. Our empirical analysis reveals that ad-
versarial images’ characteristics are more distinctively conserved in
the Discrete Fourier Transform (DFT) domain compared to the spa-
tial domain. Adversarial images typically contain more noise than
standard images, a consequence of the adversarial perturbation pro-
cess. We have observed that these noises are more noticeable in the
frequency and spatial domains. As depicted in Appendix A, adver-
sarial examples derived from three different architectures (ResNet18,
VGG16, and Densenet161) on identical datasets (CIFAR10, MNIST,
or Tiny-ImageNet) display significant similarity within the DFT
domain. In contrast, adversarial examples within the spatial domain
appear completely blacked out, making them visually indistinguish-
able across datasets. Inspired by these findings, we introduce Deep-
Taster, a method for detecting DNN model theft attacks. Deep-
Taster generates multiple adversarial images with perturbations,
transforms them into the DFT domain, and uses their statistical
properties as features to identify the dataset used to train a suspect
model. Our experimental findings confirm that DeepTaster can
accurately identify the dataset used to construct a suspect model,
given that the architecture of the suspect model is known in ad-
vance. Our key contributions are summarised as follows:

• We introduce DeepTaster, a novel DNN fingerprinting method
designed to identify knownmodel architectures trained on stolen
datasets. DeepTaster generates adversarial images, transforms
them into the DFT domain, and uses these transformed images
to discern the unique characteristics of the dataset used to train
a suspect model.

• We evaluate the resilience of DeepTaster against eight attack
scenarios, including multi-architectures, data augmentation, re-
training, transfer learning, fine-tuning, pruning, transfer learning
with data augmentation, and transfer learning with pretrained
model. These evaluations are conducted across three datasets
(CIFAR10, MNIST, and Tiny-ImageNet) and three model architec-
tures (ResNet18, VGG16, and DenseNet161). Our experimental
results indicate that DeepTaster considerably outperformsDeep-
Judge in most scenarios. For example, in the Multi-Architecture
Attack scenario, DeepTaster successfully detected all the stolen
cases across all datasets. In contrast, DeepJudge failed to detect
four attack cases including transfer learning and data augmenta-
tion for the CIFAR10 dataset.

2 BACKGROUND

2.1 Adversarial Perturbation and Attack

An adversarial perturbation refers to an intentionally created per-
turbation of an input sample that can lead to its misclassification by
a machine learning model [12, 30, 44]. Gradient-based adversarial
attacks are well-known for generating such perturbations, includ-
ing the fast gradient sign method (FGSM) [12]. Gradient-based
adversarial attacks generate a minimal perturbation to the input
sample in a direction that most significantly impacts the prediction
of the target classifier. This “small modification,” which might be
as subtle as changing a single pixel’s color, can potentially disrupt
the model’s decision boundaries. For DeepTaster, we have chosen
to use FGSM for its simplicity and satisfactory performance in gen-
erating adversarial images. We employ Foolbox [34], a commonly
used library, to facilitate our experiments.

FGSM is a gradient-based adversarial attack algorithm [12]. Let
us consider 𝑥 as the original image and ▽ as a slight perturbation
applied to 𝑥 , which leads to the creation of an adversarial sample,
denoted as 𝑥 . The training process seeks to maximize the loss func-
tion 𝐽 (𝑥,𝑦) to derive the adversarial sample 𝑥 , which no longer
belongs to class 𝑦. The entire optimization process has to fulfill
the 𝐿∞ constraint ∥𝑥 − 𝑥 ∥∞ ≤ 𝜖 . Accordingly, FGSM adversarial
examples can be produced using the following equation:

𝑥 = 𝑥 + 𝜖 · 𝑠𝑔𝑛 (▽𝑥 𝐽 (𝑓 (𝑥), 𝑦)) (1)
Here, 𝑠𝑔𝑛 is the sign function, 𝐽 (𝑓 (𝑥), 𝑦) is the loss function of

the model’s prediction for input 𝑥 and the true label 𝑦, and 𝜖 is a
small constant which controls the magnitude of the perturbation.

2.2 Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) is a tool used to transform
a sequence of numbers {𝑥0, 𝑥1, ..., 𝑥𝑁 } in the time domain into
another sequence of numbers {𝑦0, 𝑦1, ..., 𝑦𝑁 } in the frequency do-
main. The transformation is achieved through the equation 𝑦𝑘 =∑𝑁
𝑛=0 𝑥𝑛 ·𝑒

− 𝑖2𝜋
𝑁

𝑘𝑛 . Upon application to an image, the DFT translates
its spatial content into a frequency spectrum. This spectrum can
be represented as an image, often revealing patterns imperceptible
in the spatial domain.

Adversarial images are typically noisier than natural images.
These noises are a byproduct of the adversarial perturbation process.
We found that the frequency domain shows these noises more
clearly than the spatial domain. This is aligned with the findings
of Harder et al. [16], who showed that small changes in the spatial
domain are hard to detect because they appear random. However,
the same changes can lead to systematic changes in the frequency
domain, which are then detectable. Our experimental results show
that observing adversarial perturbations in the Fourier domain can
be more advantageous than the spatial domain in identifying DNN
models built with a specific dataset.

3 THREAT MODEL

Overview. We examine the issue of dataset leakage in the context
of DNN models. High-profile incidents, such as the theft of over
5.6 million fingerprint records from the US Office of Personnel
Management (OPM) [13] and the “Capital One” data breach [31],
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have highlighted the risks posed by both external and insider threats.
If a dataset is leaked, an adversary could use it to create a new DNN
model or improve an existing one. In another scenario, an adversary
could steal models from the victim’s private cloud or use the MLaaS
API of the victim model to extract them. In this case, the adversary
could use fine-tuning, pruning, and transfer learning to improve
the performance of the stolen model and hide the signs of theft.
Therefore, we considered the following threat models.
Assumptions. We make the following assumptions: (a) The adver-
sary can steal the dataset used to train a victim’s DNN model or the
model itself. Malicious insiders can access unencrypted databases,
while external threats could employ advanced techniques (e.g., SQL
injection) to obtain plaintext data from databases. (b) The adversary
aims to build a model with the illegally obtained dataset and evade
copyright verification. (c) The surrogate model, as crafted by the
adversary, provides sufficient accuracy that the adversary can profit
from its sale or commercialisation.
Settings. In our experiments, we considered the following different
adversarial settings. Table 1 summarises these attacks along with
the assumptions about the attacker’s access level. None of the exist-
ing DNN IP protection mechanisms has considered attack scenarios
(1), (2), (7), and (8).

Table 1: Summary of Adversarial Settings. The “Access” col-

umn indicates the access required by an attacker.

N Attack

Access

Dataset Model
1 Multi-Architecture Attack (MAA) Full None
2 Data Augmentation Attack (DAA) Full None
3 Model Retraining Attack (SAA) Partial None
4 Transfer Learning Attack (TLA) None Full
5 Model Fine-tuning Attack (MFA) Partial Full
6 Model Pruning Attack (MPA) Full Full
7 Data Augmentation and Transfer Learning Attack (DATLA) Full Full
8 Transfer Learning with Pretrained mode Attack (TLPA) Full None

(1) Multi-Architecture Attack (MAA). The attacker steals the
victim’s dataset. The attacker trains a model with an architecture
different from the original victim model using the stolen data.
(2) Data Augmentation Attack (DAA). The attacker steals the
victim’s dataset and creates a new one by combining the stolen data
with new data. The attacker is aware of the structure of the victim’s
model. The attacker trains a model that mirrors the victim’s model
structure using the combined data.
(3) Same Architecture Attack (SAA) [27]. The attacker steals
part of the victim’s dataset. The attacker is aware of the structure
of the victim’s model. The attacker trains a model mirroring the
victim’s model structure using the stolen data.
(4) Transfer Learning Attack (TLA) [27]. The attacker steals the
victim’s model. The attacker uses transfer learning to fine-tune it
on another dataset.
(5) Model Fine-tuning Attack (MFA) [27]. The attacker steals
part of the victim’s dataset and the victim’s model. The attacker
fine-tunes the model using the stolen dataset.
(6) Model Pruning Attack (MPA) [27]. The attacker steals the
victim’s model. The attacker prunes the model and redistributes it.
(7) DataAugmentation andTransfer LearningAttack (DATLA).

The attacker steals the victim’s dataset and model. They then create

a new dataset by combining the stolen data with new data. The
attacker uses transfer learning to fine-tune the stolen model using
the combined dataset.
(8) Transfer Learning with Pretrained model Attack (TLPA).

The attacker steals the victim’s dataset. The attacker uses transfer
learning to fine-tune the pretrained model with another dataset on
the victim’s dataset.

4 DEEPTASTER SYSTEM DESIGN

In this section, we present DeepTaster, a DNN IP tracking tool
that verifies whether an attacker’s model has been trained using
a victim’s dataset or model. We first present an overview of the
system design and then detail the system’s three main components:
adversarial perturbation generation and transformation, classifier
generation, and verification.

4.1 DeepTaster Overview

DeepTaster operates in two stages: (a) constructing a classifier
using adversarial images in the DFT domain from a set of representa-
tive models trained on the victim dataset, and (b) verifying a suspect
model by testing it using its adversarial images in the DFT domain.
Figure 1 provides a schematic representation of this process.

Figure 1: Overview of DeepTaster.

4.1.1 Adversarial PerturbationGeneration and Transformation. Given
a victim dataset, the dataset proprietor uses Algorithm 1 to gener-
ate adversarial images from a target model𝑀 constructed with the
dataset. That is, the FGSM attack is performed on the target model
𝑀 to generate adversarial images as dictated by Equation 1.

We use the Foolbox library [34] to generate adversarial images
using the FGSM method. We use the ℓ2-norm metric to calculate
the distance and set the epsilon value to 0.09. The same seed images
are used for all victim models tested to generate adversarial images.
When the seed image domain differs from the victim model’s image
domain, we apply the FGSM method by re-labeling the seed im-
ages with the prediction value of the model. Adversarial images are
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Algorithm 1 Adversarial Image Generation and Transformation.
Input: Sample image 𝐼 and target model𝑀
Output: Adversarial DFT image 𝐴𝑑𝑣
1: procedure 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑑𝑣(𝑀 ,𝐼 )
2: 𝐴𝑑𝑣𝑟𝑎𝑤 ← 𝐹𝐺𝑆𝑀 (𝑀, 𝐼 )
3: 𝐴𝑑𝑣𝑝𝑒𝑟 ← 𝐴𝑑𝑣𝑟𝑎𝑤 − 𝐼
4: 𝐴𝑑𝑣𝐷𝐹𝑇 ← 𝐹𝑜𝑢𝑟𝑖𝑒𝑟𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝐴𝑑𝑣𝑝𝑒𝑟 )
5: 𝐴𝑑𝑣 ← 𝐿𝑜𝑔(𝑆ℎ𝑖 𝑓 𝑡 (𝐴𝑑𝑣𝐷𝐹𝑇 ))
6: return 𝐴𝑑𝑣

7: end procedure

selected when they successfully fool a victim model into produc-
ing an incorrect prediction. The adversarial perturbation 𝐴𝑑𝑣𝑝𝑒𝑟
is the pixel-wise difference between the original image 𝐼 and its
adversarial image 𝐴𝑑𝑣𝑟𝑎𝑤 . We then transform the adversarial im-
age 𝐴𝑑𝑣𝑟𝑎𝑤 into the frequency domain, resulting in the adversarial
DFT image 𝐴𝑑𝑣𝐷𝐹𝑇 . To more accurately capture the characteristics
of the dataset intelligence using the adversarial DFT images, we
generate a centered DFT image, denoted as 𝐴𝑑𝑣 , by applying a shift
operation and a logarithm function sequentially to the adversarial
DFT image 𝐴𝑑𝑣𝐷𝐹𝑇 . Figure 2 illustrates the process of generating
a centered DFT image. However, for improved readability, we will
refer to 𝐴𝑑𝑣 as the adversarial DFT image throughout the rest of
the paper instead of using the term centered DFT images.

Apply Shift
and Logarithm

Centered DFT
(𝐀𝒅𝒗)

Adversarial DFT
(𝑨𝒅𝒗𝑫𝑭𝑻)

DFT

Adversarial Perturbation
(𝑨𝒅𝒗𝒑𝒆𝒓)

Seed Dataset (𝑫)

Chose

Victim Model 
(𝐌)

FGSM Generate

Adversarial Sample
(𝑨𝒅𝒗𝒓𝒂𝒘)

Extract

Sample image (I)

Figure 2: Adversarial Image Generation.

4.1.2 Classifier Construction. We have constructed a one-class
classifier that is trained on adversarial DFT images generated from
multiple model architectures, all of which are trained on the same
dataset. Our goal is to build a robust detector that can determine
whether a stolen dataset has been used to build a target model, even
when the target model differs from the original one. To achieve
this goal, we have chosen the Deep Support Vector Data Descrip-
tion (DeepSVDD) model [35] as our classifier from among several
one-class classification models. DeepSVDD is an anomaly detec-
tion model that is widely used in different domains. It uses a deep
neural network structure to find a hypersphere in the feature space.
Therefore, we use DeepSVDD to extract data features from the

adversarial discrete Fourier transform (DFT) images for models
trained on a specific (victim) dataset. These features can then be
used effectively by DeepSVDD to identify such models.

We construct a one-class classifier for DeepTaster using a seed
dataset𝐷 and a set of victim models𝑉 , which are trained on the vic-
tim dataset. To determine the optimal threshold of the classifier, we
use a set of benign models 𝐵𝑣𝑎𝑙 trained on a different dataset than𝑉 .
We split𝐷 into two parts:𝐷𝑡𝑟𝑎𝑖𝑛 and𝐷𝑣𝑎𝑙 . Similarly, we split𝑉 into
𝑉𝑡𝑟𝑎𝑖𝑛 and𝑉𝑣𝑎𝑙 . We use𝐷𝑡𝑟𝑎𝑖𝑛 and𝑉𝑡𝑟𝑎𝑖𝑛 to train the one-class clas-
sifier and𝐷𝑣𝑎𝑙 ,𝑉𝑣𝑎𝑙 , and 𝐵𝑣𝑎𝑙 to optimize the classifier’s threshold 𝜏 .

To train the classifier, we generate adversarial samples 𝐴𝑑𝑣𝑡𝑟𝑎𝑖𝑛
from 𝐷𝑡𝑟𝑎𝑖𝑛 using Algorithm 1 for the victim models in 𝑉𝑡𝑟𝑎𝑖𝑛 .
We then use 𝐴𝑑𝑣𝑡𝑟𝑎𝑖𝑛 to train a DeepSVDD model as a one-class
classifier.

To validate the classifier, we generate adversarial samples𝐴𝑑𝑣𝑣𝑎𝑙
from 𝐷𝑣𝑎𝑙 for the victim models in𝑉𝑣𝑎𝑙 using Algorithm 1. We then
evaluate the classifier’s ability to distinguish between𝑉𝑣𝑎𝑙 and 𝐵𝑣𝑎𝑙
using 𝐴𝑑𝑣𝑣𝑎𝑙 to determine the threshold 𝜏 . The classifier is used
to check whether a suspect model is built on 𝑉 or another dataset,
and we set the threshold 𝜏 to maximize the classifier’s accuracy.

For testing, the one-class classifier uses the threshold 𝜏 to verify
if a suspect model is built on the victim’s dataset. The details of the
model verification process are given in Section 4.1.3. Using a larger
set of victim models with different architectures leads to higher
accuracy for the one-class classifier.

We surmise that any random images could be used as seed im-
ages for the victimmodel. In our experiments, we randomly selected
samples from CIFAR10 as seed images to generate adversarial im-
ages for models built on not only CIFAR10 but also other datasets
such as MNIST and Tiny-ImageNet. However, analyzing the effects
of seed samples and developing an algorithm to select effective seed
samples would be an interesting area for future work.

4.1.3 Verification. We test whether a suspect model 𝑆 was built
using the victim dataset with the constructed one-class classifier us-
ing𝐷𝑣𝑎𝑙 . This dataset𝐷𝑣𝑎𝑙 is used both for optimizing the threshold
and generating the adversarial DFT images 𝐴𝑑𝑣𝑡𝑒𝑠𝑡 for verification.
Algorithm 2 provides a detailed description of the verification pro-
cedure of DeepTaster. The algorithm inputs include the classifier
M, its threshold value 𝜏 , the dataset 𝐷𝑣𝑎𝑙 , and a suspect model 𝑆 .
The output is a verification result indicating whether the suspect
model contains part of the victim dataset.

In order to verify the suspect model 𝑆 , we initially generate the
adversarial DFT images from 𝐷𝑣𝑎𝑙 for 𝑆 using the steps described
in Section 4.1.1, as shown in lines 1–3. Next, we put these images
to the test by feeding them into the one-class classifier, as shown
in lines 4–7. If the fraction of samples that fall below the classifier’s
threshold 𝜏 exceeds 50%, we classify the suspect model as having
been trained on stolen data, as shown in lines 8–12. The default
criterion for DeepTaster is set at 50% to simplify the decision-
making process and ensure an unbiased assessment. The “theft
image detection rate” refers to the proportion of tested adversarial
samples that fall below the classifier’s threshold 𝜏 .

5 EXPERIMENTS

We implemented DeepTaster as a self-contained toolkit in Python.
In this section, we evaluate the performance of DeepTaster against



DeepTaster: Adversarial Perturbation-Based Fingerprinting to Identify Proprietary Dataset

Algorithm 2 Validation using DeepTaster.
Input: ClassifierM, the threshold 𝜏 , the dataset 𝐷𝑣𝑎𝑙 , and the
suspect model 𝑆 .
Output: Verification results
1: 𝐴𝑑𝑣𝑡𝑒𝑠𝑡 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑑𝑣 (𝑆, 𝐷𝑣𝑎𝑙 )
2: 𝑋 ← 0
3: 𝑘 ← 𝑙𝑒𝑛(𝐴𝑑𝑣𝑡𝑒𝑠𝑡 )
4: while 𝑘 ≠ 0 do

5: 𝑋 ← 𝑋 +M(𝐴𝑑𝑣𝑡𝑒𝑠𝑡 [𝑘]) <= 𝜏

6: 𝑘 ← 𝑘 − 1
7: end while

8: if 𝑋 > 𝑙𝑒𝑛(𝐴𝑑𝑣𝑡𝑒𝑠𝑡 ) ∗ 1
2 then

9: 𝑆 is a stolen model
10: else
11: 𝑆 is a benign model
12: end if

an extensive list of eight attacks mentioned in Section 3. Some of
these attacks, such as fine-tuning and pruning, are well-studied
in watermarking [27]. We also examine DeepTaster against more
challenging adaptive attack scenarios such as transfer learning, re-
training, and the most challenging – multi-architecture – which has
never been considered before in the literature. To ensure the gener-
alisability of DeepTaster, we generate three classifiers that track
CIFAR10, MNIST, and Tiny-ImageNet. We also compare our results
to the best state-of-the-art fingerprinting technique, DeepJudge [8].

5.1 Experimental Setup

Datasets and victim models. We use four datasets, including
CIFAR10 [21], MNIST [25], Tiny-ImageNet [23], and ImageNet [10].
The first three datasets are used as both victim and suspect datasets.
The ImageNet dataset is used as a suspect dataset only. All datasets
are image classification datasets with a varying number of classes,
ranging from 10 classes in CIFAR10 andMNIST to up to 1000 in Ima-
geNet, as described in Appendix B. We note that we use only half of
the Tiny-ImageNet dataset (i.e., 100 classes) to run the experiments
in order to reduce the experimental computation time.

We trained victim models using three popularly used DNN ar-
chitectures, ResNet18 [17], VGG16 [36], and DenseNet161 [18], on
each of the victim datasets. Appendix C provides a summary of the
information about those models.

5.2 Classifier Evaluation Settings

Training configuration. We utilized the procedures described in
Section 4.1.2 to construct a classifier capable of detecting whether
a proprietary dataset has been used to build a model. In all experi-
ments, we used a seed dataset consisting of 1888 randomly chosen
images from CIFAR10, regardless of the datasets utilized for creat-
ing victim and suspect models. Subsequently, we generated 1888
adversarial DFT images for each victim model. These adversarial
DFT images were split into two groups: 1600 images were used to
train the classifier, and the remaining 288 images were used to deter-
mine the classifier’s threshold and for testing purposes. We discuss
the effects of training dataset size and dimensions in Appendix D.

Effects of the threshold for the classifier. In Section 4.1.2, we
discussed the process for determining the optimum threshold for a
classifier using the validation dataset. We conducted experiments
to investigate how the threshold value of the classifier impacts the
performance of DeepTaster using nine models constructed from
three datasets and three model architectures. We built a dedicated
classifier for each dataset and evaluated its performance using bal-
anced accuracy. Appendix E shows the relationship between each
classifier’s threshold value and balanced accuracy. We observed
that increasing the threshold value for all classifiers tends to lead
to a significant increase in balanced accuracy, reaching a certain
point (i.e., 0.0025 for CIFAR10, 0.0005 for MNIST, and 0.003 for
Tiny-ImageNet) before decreasing. We selected the threshold value
for each classifier that maximises its balanced accuracy.

5.3 Resilience against Data/Model Theft Attacks

We evaluate the resilience of DeepTaster against the eight attack
scenarios presented in Section 3. We repeated each attack scenario
ten times. The mean values for Model Accuracy (Model Acc.) and
Theft image detection Rate (Theft Image Rate) are presented, along
with the standard deviation values in parentheses. The same format
is used in the remaining tables throughout this paper.

5.3.1 Multi-Architecture Attack (MAA). We test DeepTaster against
the MAA scenario. In this scenario, the attacker uses part of the
stolen dataset to train a model with an architecture different from
the original victim model. We chose three victim datasets – CI-
FAR10, MNIST, and Tiny-ImageNet – and trained each of them
using three different model architectures (ResNet18, VGG16, and
DenseNet161). We designate one dataset as the victim and assign
the other datasets as benign. Additionally, the models trained on
ImageNet [10] are used as benign models for MNIST and CIFAR10.
Efficacy. Table 2 presents DeepTaster’s performance against the
MAA scenario. DeepTaster completely distinguishes attack cases
from benign cases for all datasets. The results demonstrate that
DeepTaster is highly effective against MAA under both stolen and
benign scenarios. Figure 3 visually demonstrates the effectiveness
of a classifier used for DeepTaster. The figure displays the dis-
tribution of output scores produced by the classifier for CIFAR10
across 12 distinct models, each representing a combination of the
three architectures (ResNet18, VGG16, and DenseNet161) and the
four datasets (CIFAR10, MNIST, Tiny-ImageNet, and ImageNet).
The bold line in the figure represents the chosen threshold for the
classifier, which is trained on the CIFAR10. The classifier can suc-
cessfully distinguish the DNN model using the CIFAR10 dataset
from the models using the other datasets.

Remark 1: DeepTaster is effective in detecting DNN model theft

attacks across various model architectures.

5.3.2 Data Augmentation Attack (DAA). In the DAA scenario, we
assume that an attacker tries to obscure the use of a stolen dataset by
augmenting it with new data. For example, if the CIFAR10 dataset
is used as a victim dataset, we added five new classes from the
CIFAR100 dataset to create a new dataset dubbed CIFAR15. The
added classes include apples, bicycle, can, roses, and clock, which
are distinct from any classes in the original CIFAR10 dataset. We
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Table 2: MAA results for CIFAR10, MNIST, Tiny-ImageNet

classifiers with 12 suspect models, each representing a combi-

nation of three architectures – ResNet18 (RN), VGG16 (VGG),

and DenseNet161 (DN) and four datasets – CIFAR10, MNIST,

Tiny-ImageNet, and ImageNet. The “CopyDetection (%)” field

values represent the successful copy detection rate. The same

format is used in the remaining tables throughout the paper.

Victim Suspect Ground
Truth

Archi
tecture

Theft Image
Rate

Copy
Detection (%)

RN 93.01 (5.34) 100
VGG 84.65 (9.72) 100CIFAR10 Stolen
DN 94.55 (4.11) 100
RN 9.17 (16.02) 100
VGG 0.0 (0.0) 100MNIST Benign
DN 9.8 (11.48) 100
RN 7.15 (8.01) 100
VGG 0.21 (0.52) 100Tiny-

ImageNet Benign
DN 3.64 (4.33) 100
RN 4.24 (7.25) 100
VGG 0.14 (0.23) 100

CIFAR10

ImageNet Benign
DN 6.88 (12.94) 100
RN 98.13 (3.51) 100
VGG 92.40 (9.62) 100MNIST Stolen
DN 95.97 (7.13) 100
RN 4.69 (10.66) 100
VGG 0.0 (0.0) 100CIFAR10 Benign
DN 0.28 (0.72) 100
RN 1.35 (2.14) 100
VGG 0.0 (0.0) 100Tiny-

ImageNet Benign
DN 0.14 (0.42) 100
RN 5.14 (9.02) 100
VGG 10.03 (15.90) 100

MNIST

ImageNet Benign
DN 6.27 (13.26) 100
RN 92.71 (9.04) 100
VGG 72.61 (16.96) 100Tiny-

ImageNet Stolen
DN 90.70 (7.07) 100
RN 6.01 (13.51) 100
VGG 11.35 (13.15) 100CIFAR10 Benign
DN 4.20 (7.21) 100
RN 1.32 (2.61) 100
VGG 1.36 (3.52) 100

Tiny-
ImageNet

MNIST Benign
DN 7.43 (12.62) 100

train ResNet18 using the augmented CIFAR15 dataset as the attack
case. The goal here is to evaluate whether DeepTaster can detect
the usage of stolen CIFAR10 data, even when this data has been aug-
mented with new classes. To test the effectiveness of DeepTaster
at different stages of model training, we examine the performance
of DeepTaster at five different epochs (20, 40, 60, 80, and 100),
which can reveal if DeepTaster’s detection ability changes as the
model becomes more trained.
Efficacy. Table 3 presents DeepTaster’s performance against the
DAA scenario. The theft image detection rate slightly increases
as the training epoch of the model increases. While DeepTaster
failed to detect one or two attack cases, DeepTaster is still effective
against DAA for large training epochs.

Remark 2: DeepTaster is effective in detecting cases where a

model has been trained on a mixed dataset of stolen data and new

data, especially when using large training epochs.

5.3.3 Same Architecture Attack (SAA). In the SAA scenario, an
attacker trains the ResNet18 model on 10%, 30%, 50%, 70%, and 90%

RN VGG DN RN VGG DN RN VGG DN RN VGG DN
CIFAR10                 MNIST             Tiny-ImageNet        ImageNet

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07 threshold

Figure 3: Distribution of output scores produced by the clas-

sifier for CIFAR10 across 12 different models, each represent-

ing a combination of three architectures – ResNet18 (RN),

VGG16 (VGG), and DenseNet161 (DN) and four datasets – CI-

FAR10, MNIST, Tiny-ImageNet, and ImageNet. The bold line

represents the threshold chosen for DeepTaster.

Table 3: DAA results for CIFAR10 classifier.

Suspect Ground
Truth Epochs Model

Acc.
Theft Image

Rate
Copy

Detection (%)
20 72.61 (0.39) 77.12 (35.66) 80
40 72.56 (0.69) 74.10 (33.34) 80
60 72.67 (0.59) 72.01 (33.34) 90
80 72.5 (0.57) 86.88 (16.50) 90

CIFAR10 Stolen

100 72.67 (0.49) 77.99 (26.51) 90

of a victim dataset. We use CIFAR10 and MNIST, respectively, as
victim datasets. We split the dataset uniformly, including an equal
number of samples from every class. We examine the performance
of DeepTaster at 10 epochs.
Efficacy. Table 4 presents the performance of DeepTaster against
the SAA scenario. The experimental results indicate that for the
MNIST dataset, DeepTaster can perfectly detect attacks when the
portion of the stolen dataset used for training the model is 30% or
more. However, in the case of CIFAR10, only 80% of the attacks were
detectedwhen the portion of the stolen dataset used for trainingwas
70%. This suggests that the likelihood of an attack being detected
by DeepTaster increases with the amount of stolen data used for
training. This observation is consistent with our intuition, as we
expect a model to exhibit more characteristics of the stolen data
when a larger portion is used for training.

Remark 3: DeepTaster is effective in detecting DNN model theft

attacks when a significant portion (more than 70%) of the stolen

dataset is used for training the model.

5.3.4 Transfer Learning Attack (TLA). In the TLA scenario, an at-
tacker steals the victim’s ResNet18 model trained on CIFAR10 and
performs transfer learning with the MNIST dataset using a learn-
ing rate of 0.1 while freezing the lower 30% layer. We examine the
performance of DeepTaster at four different epochs (2, 4, 6, and 8).
Efficacy. Table 5 presents the performance of DeepTaster against
the TLA scenario. DeepTaster failed to detect four attack cases
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Table 4: SAA results for CIFAR10 and MNIST classifier when

the different amount of dataset is used.

Victim Suspect Ground
Truth

Used Dataset
Size (%)

Theft Image
Rate

Copy
Detection (%)

10 48.86 (24.56) 40
30 57.05 (27.07) 70
50 64.41 (29.02) 60
70 80.03 (23.32) 80

CIFAR10 CIFAR10 Stolen

90 79.10 (26.55) 90
10 65.56 (11.26) 90
30 80.35 (9.53) 100
50 82.40 (8.59) 100
70 93.61 (5.41) 100

MNIST MNIST Stolen

90 95.14 (3.82) 100

when the attacker trained the model for only two epochs. However,
DeepTaster was able to completely distinguish attack cases as
stolen at 8 epochs.

Table 5: TLA results for CIFAR10 classifier.

Suspect Ground
Truth Epochs Model

Acc.
Theft Image

Rate
Copy

Detection (%)
2 98.42 (0.21) 54.31 (11.10) 60
4 98.65 (0.12) 62.09 (6.56) 100
6 98.50 (0.27) 64.76 (12.08) 90

CIFAR10 to
MNIST Stolen

8 98.92 (0.21) 69.93 (7.72) 100

Remark 4: DeepTaster shows robust effectiveness in identifying

cases where a stolen model has been further trained with new data

through transfer learning when the model is fully trained.

Table 6: MFA results for CIFAR10 classifier.

Suspect Ground
Truth

Dataset
Size Model Acc. Theft Image Rate Copy

Detection (%)
500 (0.01%) 74.67 (0.39) 99.93 (0.14) 100
1000 (0.02%) 74.77 (0.22) 99.93 (0.14) 100CIFAR10 Stolen
2500 (0.05%) 75.06 (0.04) 99.83 (0.23) 100
500 (0.01%) 99.46 (0.0) 0.0 (0.0) 100
1000 (0.02%) 99.48 (0.0) 0.0 (0.0) 100MNIST Benign
2500 (0.05%) 99.48 (0.0) 0.0 (0.0) 100

5.3.5 Model Fine-tuning Attack (MFA). In the MFA scenario, an
attacker steals the ResNet18 model trained on CIFAR10 and the
CIFAR10 dataset itself. The attacker then uses fine-tuning to train
the stolen model using part of the CIFAR10 dataset, consisting of
either 500, 1000, or 2500 samples, respectively, using the learning
rate of 0.00005. For comparison, a benign model is trained on only
the MNIST dataset using the same architecture. We examine the
performance of DeepTaster at 60 epochs.
Efficacy. Table 6 presents the performance of DeepTaster against
the MFA scenario. DeepTaster completely distinguishes all MFA
cases from benign cases, irrespective of the used dataset size.

Remark 5: DeepTaster shows robust effectiveness in identifying

cases where a stolen model has been further trained using a subset

of the dataset used to train the stolen model.

5.3.6 Model Pruning Attack (MPA). In the MPA scenario, an at-
tacker steals the ResNet18 model trained on CIFAR10 and prunes
20%, 40%, and 60% of the stolen model. Then the attacker fine-tunes
the model for five epochs with a learning rate of 0.00005. For CI-
FAR10, we examine the performance of DeepTaster at 5 epochs.
For comparison, a benign model is trained on only the MNIST
dataset using the same architecture. For MNIST, we examine the
performance of DeepTaster at 5 epochs.
Efficacy. Table 7 presents the performance of DeepTaster against
the MPA scenario. DeepTaster completely distinguishes all MPA
instances from benign cases, regardless of the degree of pruning
applied to the model.

Table 7: MPA results for CIFAR10 classifier with three posi-

tive models and three negative models.

Suspect Ground
Truth

Pruned
Percentage

Model
Acc.

Theft Image
Rate

Copy
Detection (%)

20 63.09 (0.12) 100 (0.0) 100
40 42.73 (0.07) 99.97 (0.11) 100CIFAR10 Stolen
60 21.44 (0.08) 100 (0.0) 100
20 98.53 (0.01) 4.62 (7.22) 100
40 87.54 (0.11) 1.25 (3.75) 100MNIST Benign
60 43.18 (0.13) 4.83 (14.48) 100

Remark 6: DeepTaster is robust against MPA regardless of the

percentage of neurons pruned.

5.3.7 Data Augmentation and Transfer Learning Attack (DATLA).
In the DATLA scenario, an attacker creates the CIFAR15 dataset
using the method explained in Section 5.3.2. The attacker then uses
a stolen ResNet18 model trained on the CIFAR10 dataset and fine-
tunes it on the CIFAR15 dataset the attacker created. We examine
the performance of DeepTaster at five different epochs (20, 40, 60,
80, and 100).
Efficacy. Table 8 shows DeepTaster’s performance against the
DATLA scenario. DeepTaster failed to distinguish one or three
cases when the training epoch is 20, 40, 60, and 80. However, Deep-
Taster successfully distinguished all attack cases when the training
epoch is 100. This highlights the effectiveness of DeepTaster when
using larger training epochs while also suggesting areas for poten-
tial improvement in handling cases with minimal training epochs.

Remark 7: DeepTaster is effective in detecting cases where a

stolen model has been trained on a mixed dataset that combines

stolen data with new data while suggesting areas for potential

improvement in handling cases with minimal training epochs.

5.3.8 Transfer Learning with Pretrained model Attack (TLPA). In
the TLPA scenario, an attacker uses a pretrained model on a pub-
lic dataset, such as MNIST. The attacker then steals the CIFAR10
dataset of 60,000 samples and uses transfer learning to fine-tune
the pretrained model using the stolen dataset. Similar to the TLA
scenario, the attacker performs transfer learning using a learning
rate of 0.1 while freezing the lower 30% layers. We examine the
performance of DeepTaster at 10 epochs by varying the dataset
size used to generate the pretrained model.
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Table 8: DATLA results for CIFAR10 classifier.

Suspect Ground
Truth Epochs Model

Acc.
Theft Image

Rate
Copy

Detection (%)
20 73.51 (0.74) 84.62 (27.83) 90
40 73.53 (0.50) 83.26 (24.61) 90
60 73.56 (0.47) 82.92 (19.55) 90
80 73.63 (0.51) 62.60 (36.40) 70

CIFAR10 Stolen

100 73.24 (0.51) 81.25 (11.36) 100

Efficacy. Table 9 shows DeepTaster’s performance against the
TLPA scenario. The theft Imagdetection rate decreases as the dataset
size used for the pre-trained model increases. DeepTaster can
completely detect TLPA attacks when at least 30% of the MNIST
dataset is used for pretraining. However, if the dataset used for the
pretrained model exceeds 50%, DeepTaster may fail to detect some
stolen cases.

Table 9: TLPA results for CIFAR10 classifier.

Suspect Ground
Truth

Used Dataset
Size (%)

Model
Acc.

Theft Image
Rate

Copy
Detection (%)

10 67.66 (1.13) 99.51 (1.46) 100
30 68.43 (0.63) 99.58 (0.62) 100
50 68.74 (0.86) 77.99 (23.71) 90
70 68.74 (0.86) 84.65 (13.94) 100

MNIST
to CIFAR10 Stolen

90 69.22 (0.64) 85.28 (23.90) 80

Remark 8: DeepTaster shows robust effectiveness in identifying

cases where a pretrained model has been further trained using a

stolen dataset via transfer learning.

5.4 Comparison with Existing Fingerprinting

Comparison settings. We conduct experimental comparisons
with DeepJudge [8], the state-of-the-art fingerprinting technique.
DeepJudge generates four metrics for white-box evaluation and
two metrics for black-box evaluation. It uses majority voting, where
3 out of 4 metrics have to produce values < threshold to support
the correct final judgment of being stolen. DeepJudge has been
designed to provide architecture-dependent protection; namely, all
model parameters need to be the same, including the number of
classes. On the other hand, DeepTaster is designed to be archi-
tecture insensitive to enable the dataset intelligence to be tracked
even when the model architecture is changed. Hence, DeepJudge is
not able to detect MAA as stolen models owing to its design limitation.
Therefore, we compare DeepJudge with DeepTaster in the other
seven attacks in addition to direct cloning. For the transfer learning
attack, we observe that DeepJudge only considered the same num-
ber of classes between the original model and the transfer-learned
model, which might not always be the case. Thus, we use the scripts
released with DeepJudge and apply small modifications to run the
data augmentation and transfer learning attacks when the number
of classes is different. We set the target model of DeepJudge as the
ResNet18 model trained on CIFAR10, MNIST, and Tiny-ImageNet.
For the CIFAR10 dataset, we test with five attack models, using a
ResNet18 model trained on MNIST and Tiny-ImageNet as the “Be-
nign” cases. In other cases, we only check the theft image detection
rate for two negative cases trained on other datasets. We used the

optimal threshold for DeepJudge, which was optimized based on
the testing results. These thresholds may be infeasible to achieve
in practice, but it is ideal for comparison purposes. We only used
four white-box metrics from DeepJudge.

Table 10: Detection results of DeepJudge [8]. DeepJudge

uses a majority voting mechanism to determine whether a

stolenmodel is being used. Specifically, DeepJudge classifies

a model as stolen if at least three out of four metrics produce

values < threshold.

Victim Ground
Truth Suspect Metric1 Metric2 Metric3 Metric4 Copy

Detection (%)
Threshold 0.0137 0.0542 0.3544 0.4255

CIFAR10 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100
CIFAR10
DAA

0.0055
(0.0032)

0.0241
(0.0116)

0.5681
(0.3179)

0.5771
(0.3503) 40

CIFAR10
SAA

0.0050
(0.0023)

0.0213
(0.0084)

1.0198
(0.3477)

1.0123
(0.3324) 10

CIFAR10
TLA

0.0306
(0.0)

0.1215
(0.0002)

0.3463
(0.0)

0.3188
(0.0) 0

CIFAR10
MFA

0.0005
(0.0)

0.0018
(0.0005)

0.0
(0.0)

0.0
(0.0) 100

CIFAR10
MPA

0.0108
(0.0001)

0.0433
(0.0005)

0.0830
(0.0)

0.0775
(0.0) 100

CIFAR10
DATLA

0.0071
(0.0027)

0.0293
(0.010)

0.1958
(0.0717)

0.1846
(0.0687) 100

Stolen

CIFAR10
TLPA

0.0101
(0.0022)

0.0453
(0.0076)

1.5621
(0.4715)

1.5654
(0.4720) 0

MNIST 0.0925
(0.0331)

0.3724
(0.1317)

0.8535
(0.3554)

0.8597
(0.3503) 100

MNIST
SAA

0.0806
(0.0328)

0.2399
(0.1316)

1.1233
(0.5622)

1.1528
(0.5460) 100

MNIST
MFA

0.0846
(0.0)

0.3408
(0.0)

1.003
(0.0)

1.032
(0.0) 100

MNIST
MPA

0.664
(0.0)

0.2705
(0.0004)

0.8244
(0.0)

0.8810
(0.0) 100

CIFAR10

Benign

Tiny
ImageNet

0.0164
(0.0050)

0.0643
(0.0193)

1.2067
(0.4641)

1.2083
(0.4415) 90

Threshold 0.0407 0.1846 0.3022 0.3094

MNIST 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100
Stolen MNIST

SAA
0.042

(0.0279)
0.17

(0.1106)
0.489

(0.3336)
0.491

(0.3338) 40

CIFAR10 0.0964
(0.0343)

0.3860
(0.1371)

0.8980
(0.5226)

0.9060
((0.5413)) 100

MNIST

Benign Tiny
ImageNet

0.1027
(0.3327)

0.4111
(0.1329)

0.9823
(0.2940)

0.9848
(0.2979) 100

Threshold 0.0020 0.0095 0.3660 0.3660

Tiny
ImageNet 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100

Stolen Tiny Image
-Net SAA

0.0030
(0.0024)

0.0131
(0.0091)

0.5111
(0.3003)

0.5111
(0.3003) 30

CIFAR10 0.0052
(0.0019)

0.0223
(0.0069)

0.9156
(0.3672)

0.9156
(0.3672) 100

Tiny-
ImageNet

Benign
MNIST 0.0047

(0.0013)
0.0196
(0.0052)

0.8433
(0.3290)

0.8433
(0.3290) 100

Results. Table 10 presents the comparison results. For CIFAR, Deep-
Judge was ineffective in identifying most instances of theft against
DAA (40%), SAA (10%), TLA (0%), and TLPA (0%). However, under
the same settings, DeepTaster effectively detected those attacks
(DAA (90%), SAA (90%), TLA (100%), and TLPA (100%)). For MNIST,
the detection rate dropped to 40% under the SAA scenario. Similarly,
for Tiny-ImageNet, the detection rate dropped to 30% under the
SAA scenario.

5.5 Robustness of DeepTaster with a

Large-Sized Model Architecture

To evaluate the robustness of DeepTaster on large-sized model
architectures, we used AlexNet [22] as a representative architec-
ture and Tiny-ImageNet as the victim dataset. We constructed a
classifier with four victim models: AlexNet, ResNet18, VGG16, and
DenseNet161, all trained on the Tiny-ImageNet dataset. We then
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evaluated the constructed classifier using twelve models, including
the four victim and eight benign models trained on CIFAR10 or
MNIST. As a result, DeepTaster remains effective in detecting ad-
versarial images for large-scale model architectures such as AlexNet
(see Appendix F). We only conducted this experiment once due to
the significant time required for experiments on AlexNet.

5.6 Ablation Study on DFT

We conducted an ablation study to assess DFT’s impact on Deep-
Taster’s performance. We built a classifier identical to DeepTaster
but without DFT, and tested its performance under the Multi-
Architecture Attack scenario described in Section 5.3.1. We used
four datasets (CIFAR10, MNIST, Tiny-ImageNet, and ImageNet) and
three architectures (ResNet18, VGG16, and DenseNet161) for this
evaluation. Table 11 indicates a significant degradation in accuracy
when DFT is not applied. Without DFT, the classifier incorrectly
classified all stolen cases as benign, except for one case in each CI-
FAR10 and MNIST dataset when the DenseNet161 architecture was
used. Conversely, as shown in Table 2, DeepTaster could correctly
detect benign and stolen cases with DFT. These findings underscore
the critical role of DFT in maintaining the efficacy of DeepTaster.

Table 11: Ablation study on DFT results.

Victim Suspect Ground
Truth

Archi
tecture Theft Image Rate Copy

Detection (%)
RN 4.62 (11.82) 0
VGG 5.35 (13.98) 0CIFAR10 Stolen
DN 11.25 (22.62) 10
RN 4.55 (10.19) 100
VGG 0.0 (0.0) 100MNIST Benign
DN 1.39 (4.17) 100
RN 0.0 (0.0) 100
VGG 0.14 (0.42) 100Tiny-

ImageNet Benign
DN 1.04 (2.09) 100
RN 15.97 (25.64) 90
VGG 8.09 (17.51) 90

CIFAR10

ImageNet Benign
DN 12.78 (23.02) 90
RN 4.51 (10.05) 0
VGG 0.0 (0.0) 0MNIST Stolen
DN 11.08 (29.77) 10
RN 0.42 (0.95) 100
VGG 0.17 (0.42) 100CIFAR10 Benign
DN 2.40 (5.99) 100
RN 0.035 (0.105) 100
VGG 0.0 (0.0) 100Tiny-

ImageNet Benign
DN 0.35 (0.93) 100
RN 1.15 (2.64) 100
VGG 0.35 (0.71) 100

MNIST

ImageNet Benign
DN 0.56 (1.35) 100
RN 0.07 (0.14) 0
VGG 0.0 (0.0) 0Tiny-

ImageNet Stolen
DN 0.10 (0.22) 0
RN 0.07 (0.14) 100
VGG 0.04 (0.11) 100CIFAR10 Benign
DN 0.04 (0.11) 100
RN 0.17 (0.32) 100
VGG 0.35 (0.11) 100

Tiny-
ImageNet

MNIST Benign
DN 0.0 (0.0) 100

5.7 Detection Latency Results

We assessed the detection latency of DeepTaster by analyzing the
time taken by the classifier to identify a suspect model. The process
consisted of three steps, as shown in Table 12.

Table 12: Mean time taken for each step in DeepTaster.

Step Task Time (Sec)
1 Adversarial DFT Generation 668.0
2 Classifier Training 766.8
3 Suspect Model Verification 9.78

The first step involved the generation of adversarial images in
the DFT domain. This took approximately 668 seconds, equivalent
to 0.3 seconds per image. The second step comprised training the
classifier, taking about 766.8 seconds. It is important to note that
the first two steps are one-off tasks, meaning they are not repeated
for each verification. The final step was verifying the suspect model,
taking around 9.78 seconds, equivalent to 0.03 seconds per image.
The entire process, including generation, training, and verifica-
tion, took approximately 1444.51 seconds. These latency results are
comparable to those of DeepJudge, which took 1937.79 seconds.

We plan to optimize the verification process by reducing the
number of adversarial images tested. We aim to use only a few
images for verification. This approach should enable DeepTaster
to verify a suspect model within 1 second while still maintaining
reasonable detection accuracy.

6 DISCUSSION

Usefulness of DeepTaster. DeepTaster exhibits usefulness in
various aspects. First, to ensure robustness, DeepTaster effectively
detected DNN model theft attacks under various conditions. For
example, DeepTaster was able to detect attacks on models trained
on different datasets, attacked with different adversarial attack
methods, and even attacked by models trained with a small subset
of the victim dataset. Second, to ensure fidelity, DeepTaster has
zero impact on model accuracy as it uses a fingerprinting technique
rather than invasive watermarking. This means that DeepTaster
can be used to protect models without sacrificing their performance.
Third, to ensure efficacy, DeepTaster can distinguish most of the
attack cases against benign models, except for some extreme cases
(i.e., trained with small epochs or trained with less than 70% of the
victim dataset). This means that DeepTaster is a highly effective
tool for detecting DNN model theft attacks. Overall, DeepTaster is
a robust, reliable, and effective tool for protecting machine learning
models from theft.
Robustness against unseen architectures. DeepTaster was
specifically designed to detect DNN model theft attacks across
various architectures. However, our experiments suggest that Deep-
Taster may not be effective in detecting models trained using
completely new or unseen architectures (see Table 13).

To evaluate the effectiveness of DeepTaster against models
with an unseen architecture, we built a classifier using the CIFAR10
dataset as the victim dataset. We then tested the classifier’s ro-
bustness against six different models, three of which were trained
using ResNet101 and the other three using SqueezeNet [19]. The
evaluation results are presented in Table 13.

Unfortunately, our experiments revealed that DeepTaster was
ineffective in detecting the use of a stolen dataset (CIFAR10) for both
ResNet101 and SqueezeNet models. This is because the generated
adversarial images are influenced not only by the dataset used but
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Table 13: Performance of DeepTaster with unseen architec-

tures when the victim dataset is CIFAR10.

Architecture dataset ground
truth

Theft Image
Rate

Copy
Detection(%)

ResNet101
CIFA10 stolen 0.0 0
MNIST benign 0.0 100

Tiny-ImageNet benign 0.0 100

SqueezeNet
CIFA10 stolen 0.0 0
MNIST benign 0.0 100

Tiny-ImageNet benign 0.0 100

also by the underlying model architecture. Based on these findings,
we conclude that DeepTaster may not be effective in detecting
models trained using completely new or unseen architectures.

To overcome this limitation, we need to build a more diverse and
comprehensive classifier that includes a broader range of architec-
tures. As demonstrated in Section 5.5, our experimental results indi-
cate that DeepTaster effectively detects dataset theft using AlexNet
when the classifier is constructed using the same architecture (i.e.,
AlexNet). However, the effectiveness of DeepTaster declines when
the attacker’s model is not included in the classifier construction
phase. Nonetheless, it is worth noting that DeepTaster is currently
the only fingerprinting scheme that can operate across multiple
architectures.
Robustness against watermark removal attacks.Various water-
mark removal attacks have been introduced to evaluate the robust-
ness of DNN watermarking techniques [3]. Traditional watermark
removal attacks are ineffective because DeepTaster does not rely on
specialized watermark-triggered input samples. However, a recent
study by Guo et al. [15] introduced a newwatermark removal attack
technique that uses preprocessing. They discovered that watermark
samples are less robust than normal samples and designed a prepro-
cessing function to compromise the watermark verification output
without affecting the normal output. This approach employs a series
of transformations, such as scaling, embedding random impercepti-
ble patterns, and spatial-level transformations, to effectively disable
watermark-triggered input samples while maintaining the model’s
accuracy. The preprocessing methods used in this scheme could
make it more challenging to find effective adversarial examples for
DeepTaster. We plan to explore this possibility in future work.
Robustness against adversarial training. To evaluate the im-
pact of adversarial training on DeepTaster’s effectiveness, we
conducted experiments using the ResNet18 architecture and the
CIFAR10 dataset. We used an adversarial training method [4] than
the method introduced by Madry et al. [30]. While Madry et al.’s
method was originally designed to improve robustness, the method
we used focuses on maintaining model accuracy when training on
adversarial examples. As a result, our model maintains its accuracy
after adversarial training. In this attack scenario, an attacker steals
the CIFAR10 dataset and generates adversarial examples using the
FGSM attack with an epsilon of 0.001. Our method, on the other
hand, aims to maximize model accuracy. The attacker then trains
the ResNet18 model on these adversarial examples, which comprise
1%, 3%, 5%, 7%, and 9% of the original CIFAR10 dataset, respectively.
We assessed DeepTaster’s performance over 10 epochs, repeating
the same experiments 10 times for each configuration to avoid bias.

Table 14 presents the results. We found that DeepTaster’s per-
formance decreased as the proportion of adversarial examples in the
training data increased. Even when only 1% of adversarial examples
were used, DeepTaster failed once out of 10 attempts. When 5% or
more of the training data consisted of adversarial examples, Deep-
Taster failed as many as four times. This result is not surprising,
as DeepTaster relies on the characteristics of adversarial examples
to determine the model’s decision boundary. When new adversarial
examples are introduced during training, the existing examples
used for fingerprinting struggle to accurately reflect the model’s
decision boundary. To overcome this limitation, future research
could explore pretraining victim models with adversarial training
before applying DeepTaster.

Table 14: Performance of DeepTaster against adversarial

training.

Suspect Ground
Truth

Used Dataset
Size (%)

Model
Acc.

Theft Image
Rate

Copy
Detection (%)

1 70.45 (0.96) 75.04 (16.70) 90
3 70.15 (1.02) 66.74 (30.32) 80
5 70.52 (0.88) 56.67 (26.60) 60
7 70.53 (0.59) 54.83 (23.21) 60

CIFAR10 Stolen

9 70.24 (0.64) 43.20 (31.46) 60

Comparison to membership inference attacks. DeepTaster
andmembership inference attacks are bothmethods to inferwhether
a target model contains samples from a dataset. Therefore, conven-
tional membership inference attacks could potentially be used as a
model fingerprinting technique.

To discuss the effectiveness of DeepTaster in detecting stolen
datasets against membership inference attacks, we conducted ex-
periments using TrajectoryMIA [26], a state-of-the-art membership
inference attack method. TrajectoryMIA generates 𝑘 different dis-
tillation models based on a target model and its shadow model,
both trained on different datasets, during 𝑘 epochs. The trajectory
losses of a sample through each distillation model are computed to
determine whether the sample is a member of the target model. Tra-
jectoryMIA’s membership inference results can be used for model
fingerprinting. If a sample from a victim dataset is a member of a
suspect model, we can conclude that the suspect model was built on
the victim dataset. To evaluate the performance of TrajectoryMIA,
we used a VGG16 model trained on CIFAR10 as the suspect model.
We used the same VGG16 model for its shadow and distillation
models with the settings presented in [26]. The accuracy achieved
by TrajectoryMIA on all CIFAR10 samples used as testing data was
60.52%. To compare the effectiveness of DeepTaster with Trajec-
toryMIA, we built a classifier of DeepTaster consisting of three ar-
chitectures: ResNet18, VGG16, and DenseNet161. We evaluated the
performance of DeepTaster using 288 adversarial images as test-
ing samples for the victim model (i.e., VGG16 trained on CIFAR10),
and it achieved a 98.26% accuracy. Although this comparison may
not be entirely fair, we argue that utilizing a membership infer-
ence method in a straightforward manner might be insufficient for
model fingerprinting. Moreover, DeepTaster is expected to bemore
efficient than TrajectoryMIA when testing multiple suspect mod-
els simultaneously since TrajectoryMIA requires creating several
distillation models for each suspect model, whereas DeepTaster
requires building a classifier only once for all suspect models.
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Effects of the type of adversarial examples. The type of adver-
sarial example can affect the performance of DeepTaster. To inves-
tigate this, we experimented with two popular attacks: PGD [29]
and FGSM [12]. We compared the accuracy of the classifier on CI-
FAR10 using suspect models trained on CIFAR10, MNIST, and Tiny-
ImageNet. DeepTaster using FGSMwas about 7.73% more accurate
than DeepTaster using PGD. Therefore, we recommend using the
FGSM attack to build DeepTaster. Finding the most effective ad-
versarial DFT images for a given suspect model is a challenging
problem. As part of our future work, we plan to develop an algo-
rithm to identify effective adversarial examples for DeepTaster.
On the high standard deviation of theft image detection rate:

We observed a high standard deviation in the theft image detec-
tion rate, particularly for models trained from scratch compared
to pre-trained models. This variance was prominent in specific at-
tack scenarios: DAA (Table 3), SAA (Table 4), TLPA (Table 9), and
adversarial training (Table 14). An exception is DATLA (Table 8),
which requires transfer learning on a dataset with different classes,
demanding more parameter adjustments. This may explain why
DeepTaster can occasionally fail to detect theft images in these
scenarios, resulting in an inflated standard deviation. However, the
standard deviation is not as elevated when considering only suc-
cessful instances of DeepTaster. For example, DAA reduced from
28.05% to 13.12%, SAA from 26.10% to 12.65%, DATLA from 23.95%
to 11.5%, TLPA from 12.73% to 7.32%, and adversarial training from
25.66% to 12.96%. The high standard deviation can be attributed to
the small sample size (10 experiments) and the inclusion of signifi-
cantly lower detection rate outliers from failed cases. These findings
indicate that the performance of DeepTaster can be inconsistent in
specific attack scenarios. To address this limitation in the future, we
may consider adopting more customized and optimized detection
decision criteria than the fixed 50% threshold.

7 RELATEDWORK

DNN watermarking. The first stream of related work uses water-
marking to protect the copyright of DNNmodels [2, 9, 20, 24, 41, 47].
As in classical multimedia watermarking, DNN watermarking in-
cludes two stages: embedding and verification. In the embedding

stage, the DNN model owner inserts a secret watermark (e.g., signa-
ture or a trigger) into the model during the training phase. Existing
watermarking techniques can be categorized as either white-box
or black-box based on how much knowledge is available during
the verification stage. White-box techniques assume the model
parameters are available [9, 41, 43]. They insert a string of bits (sig-
nature) into the model parameter space via several regularization
terms. The ownership of the IP could be claimed when the retrieved
string of bits from the suspect model matches the owner’s signature.
Black-box techniques only have access to model predictions during
verification. They leverage backdoor attacks [11, 14] to embed a
watermark (backdoor samples) into the ownership model during
the training process, where the class of each backdoor sample is
relabelled to a secret class [24, 47]. The ownership could be veri-
fied by querying the suspect model using the predefined backdoor
samples and receiving the correct secret class for each sample.
DNN fingerprinting. DNN fingerprinting mechanisms have been
recently introduced as an alternative approach to verify model

ownership via two stages called fingerprint extraction and ver-
ification. Fingerprinting methods [5, 8, 28, 48] are all black-box
techniques. They are non-invasive, as opposed to watermarking
techniques that are invasive. Rather than altering the training pro-
cess to inject the watermark, fingerprinting directly retrieves a
unique property/feature of the owner’s model as its fingerprint.
The ownership can then be validated if the fingerprint matches
with the one extracted from the suspect model. In general, there
are two streams of work under this category: single and multiple

fingerprinting. Single fingerprinting uses one feature/property as
an identifier. For example, IPGuard [5] uses data points close to
the model’s decision boundaries as that identifier. Lukas et al. [28]
propose a conferrable adversarial example that transfers a target
label from a source model to its stolen model. They use that as
a model identifier. Multiple fingerprinting leverages multiple fea-
tures/metrics as a fingerprint to handle different types of model
stealing and adaptive attacks. For example, Chen et al. [8] recently
introduced DeepJudge, a multi-level metrics mechanism that can
be used as a DNN model fingerprinting technique.

Existing DNNwatermarking and fingerprinting techniques often
suffer from two main limitations: architecture dependence and
the inability to detect models trained on a combination of stolen
and other datasets. In real-world settings, transfer learning and
fine-tuning allow stolen models to be retrained on new datasets.
This paper empirically demonstrates that DeepTaster is a robust
technique against nine attack scenarios, including those that exploit
transfer learning and fine-tuning.

8 CONCLUSION

We propose a novel DNN fingerprinting technique, DeepTaster,
that uses adversarial perturbations in the Fourier frequency do-
main to effectively identify DNN models. We found that the spectra
of gradient-based adversarial perturbations on DNNs can capture
unique characteristics of models trained on a specific dataset. To
demonstrate the efficacy of our approach, we conducted a compre-
hensive evaluation of DeepTaster’s detection accuracy on three
datasets and three model architectures, subject to various attack
scenarios, including multi-model architectures, data augmentation,
transfer learning, fine-tuning, pruning, transfer learning with pre-
trained model, and adversarial learning. Our experimental results
show that DeepTaster is highly robust against these attacks.
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A ADVERSARIAL PERTURBATION IMAGES

IN BOTH THE DFT AND SPATIAL DOMAINS

This section presents adversarial perturbation images for nine
distinct models with three different architectures (ResNet18, VGG16,
and DenseNet161) that were trained on three different datasets
(CIFAR10, MNIST, and Tiny-ImageNet). These perturbations are
presented in both the DFT domain (see Table 15) and the spatial
domain (see Table 16).

Table 15: Adversarial perturbation images in the DFT domain

for three architectures (ResNet18, VGG16, and DenseNet161)

trained on three datasets (CIFAR10, MNIST, and Tiny-

ImageNet).

ResNet18 VGG16 DenseNet161

CIFAR10

MNIST

Tiny-

ImageNet

Table 16: Adversarial perturbation images in the spatial

domain for three architectures (ResNet18, VGG16, and

DenseNet161) trained on three datasets (CIFAR10, MNIST,

and Tiny-ImageNet).

ResNet18 VGG16 DenseNet161

CIFAR10

MNIST

Tiny-

ImageNet

We evaluated the similarity between adversarial images within
the same dataset but different architectures using the Mean Squared
Error (MSE)metric in both the DFT and spatial domains. Specifically,
we analyzed 18 different adversarial images generated from nine
models, consisting of all combinations of three distinct architectures

(ResNet, VGG, and DenseNet) and three different datasets (CIFAR10,
MNIST, and Tiny-ImageNet), with nine images for each domain.
Our results showed that the average MSE of images from models
trained on the same dataset was 0.0074 in the DFT domain, which
is about seven times lower than the average MSE of 0.0505 found
in the spatial domain.

B DATASETS USED IN EXPERIMENTS

In Section 5, we conduct experiments on the four image classifica-
tion datasets. Table 17 described the number of classes and usage
of each dataset.

Table 17: Description of the datasets for experiments.

Dataset # Classes Usage
CIFAR10 10 Victim / Suspect
MNIST 10 Victim / Suspect
Tiny-ImageNet 100 Victim / Suspect
ImageNet 1000 Suspect

C MODELS USED IN EXPERIMENTS

Table 18 reports the number of parameters and accuracy of models
used in the experiment in Section 5.

Table 18: Datasets, models, and parameters we used andmean

values along with the standard deviation values of baseline

accuracy.

Dataset Architecture # Params Accuracy (%)
ResNet18 11181642 74.15 (0.37)

CIFAR10 VGG16 134301514 82.62 (2.81)
DenseNet161 26494090 70.80 (0.82)
ResNet18 11181642 99.47 (0.04)

MNIST VGG16 134301514 99.47 (0.04)
DenseNet161 26494090 99.26 (0.08)
ResNet18 11181642 35.27 (0.63)

Tiny-ImageNet VGG16 134301514 39.46 (0.40)
DenseNet161 26494090 33.13 (2.18)

D EFFECTS OF TRAINING DATASET SIZE AND

DIMENSIONS

The performance of a classifier may depend on the training dataset.
Generally, a larger training dataset might facilitate the production
of a higher-performance model. In our case, generating large ad-
versarial DFTs samples dataset might mean higher time cost. For
generating a balanced model, we test the relationship between per-
formance and dataset size. The training dataset is generated with
various sizes: 2400, 4800, 7200, and 9600 images. These four training
datasets are generated from ResNet18, VGG16, and DenseNet161
models trained on CIFAR10, and we use the same seed dataset of
adversarial DFT samples for consistency. The balanced accuracy
results of the classifier are 97.28%, 98.50%, 96.28%, and 96.82%, re-
spectively, when the training dataset size is 2400, 4800, 7200, and
9600. Based on these results, we recommend 4800 for the training
dataset size for DeepTaster.

We also observe that the performance of DeepTaster can vary
depending on the adversarial image dimensions. The smaller the
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size of the adversarial image, the smaller the perturbation that could
be captured from the model dataset intelligence, and the lower the
performance of the DeepTaster might be. If the size of the image is
32 · 32 · 3, the model exhibits almost indistinguishable performance,
but if the size of the image is 224 · 224 · 3, as currently used in the
experimental setting, the detection performance is high. Therefore,
we recommend generating large-dimensional adversarial images
when using DeepTaster.

E EFFECTS OF THRESHOLD

DeepTaster is sensitive to how the threshold is determined.
Figure 4 shows the balanced accuracy of the classifier for each
dataset with their corresponding thresholds.
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CIFAR10
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Figure 4: Performance of classifiers with thresholds.

F EXPERIMENTAL RESULTS OF DEEPTASTER

WITH A LARGE-SIZED MODEL

ARCHITECTURE

We evaluated the effectiveness of DeepTaster with a large-scale
model architecture (AlexNet) by building a classifier using the Tiny-
ImageNet as the victim dataset. As shown in Table 19, the classifier
can effectively detect all 12 suspect models correctly.

When using AlexNet as the architecture, we observed a high
theft image rate of over 95% for both stolen and benign cases. This
suggests that DeepTaster operates effectively with large-scale
model architectures such as AlexNet.

Table 19: Performance of DeepTaster with AlexNet when

the victim dataset is Tiny-ImageNet.

Suspect ground
truth architecture Theft Image

Rate
Copy

Detection(%)

Tiny-
ImageNet stolen

Alexnet 95.83 100
ResNet18 94.10 100
VGG16 93.06 100

DenseNet161 94.79 100

CIFAR10 benign

Alexnet 100 100
ResNet18 75.69 100
VGG16 71.53 100

DenseNet161 74.31 100

MNIST benign

Alexnet 100 100
ResNet18 100 100
VGG16 100 100

DenseNet161 76.39 100


	Abstract
	1 Introduction
	2 Background
	2.1 Adversarial Perturbation and Attack
	2.2 Discrete Fourier Transform (DFT)

	3 Threat Model
	4 DeepTaster System Design
	4.1 DeepTaster Overview

	5 Experiments
	5.1 Experimental Setup
	5.2 Classifier Evaluation Settings
	5.3 Resilience against Data/Model Theft Attacks
	5.4 Comparison with Existing Fingerprinting
	5.5 Robustness of DeepTaster with a Large-Sized Model Architecture
	5.6 Ablation Study on DFT
	5.7 Detection Latency Results

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Adversarial Perturbation Images in both the DFT and spatial domains
	B Datasets used in experiments
	C Models used in experiments
	D Effects of training dataset size and dimensions
	E Effects of threshold
	F Experimental results of DeepTaster with a large-sized model architecture

