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On machines with slow or no division, it is preferable to use an
iterative scheme for the square root different from the classical
Heron scheme. The problem of optimal initial approximants is
considered, and some optimal polynomial initial approxima-
tions are tabulated.
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Introduction

A number of papers in the past few vears [1, 3, 5, 6, 7]
have dealt with the problem of obtaining optimal starting
approximations for the Heron or classical Newton-Raphson
iteration scheme for square root. For machines where the
ratio of multiplication speed to division speed is large, or
where there is no divide, the “no division” iteration scheme

Ynit = Yn @ - (g) yz) n=012 - (1)

i

which converges to x4, if it converges, is preferable. As-
suming convergence, z* is simply

x-Hm y, .
n-—>0

In this paper, optimal starting approximations for (1)
and some computational procedures are discussed, and
tables of optimal polynomial initial approximants are
given,

A number of minor points should be made. In the con-
text of slow or no division, rational initial approximants
make little sense. The quantity (z/2) required in the itera-
tions can be obtained once, generally without division.
Finally, the iteration scheme (1) is the general Newton-
Raphson scheme for finding a zero of f(y) = x — 1 Jyt

Added in proof: In papers to appear by D. L. Phillips (Math. of
Comput.) and G. D. Taylor (J. of Approx. Theory), it has been
shown that the optimal polynomial above is a constant multiple
of the best relative polynomial to X~4.
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Optimal Initial Approximations

On the range [a, b], 0 < o < b < @, let yo(z) be an ap-
proximant of some specified form. The relative error of the
nth iterate y,.(x) 1s then

B.(z) = lylz) — x4/ /2" = aby(z) — 1. (2)

One can then easily show that

Boii(z) = —3RAE, + 3) (3)
(by manipulating (1) and (2)).
Fxamining the nature of the function f(£) = —32(¢t + 3)
shows: '

() if =3 <Ro(z) <1 then —2 < Ry(z) < 0;

(i) if —2 < Ry(z) < 0 then —2 < R.u(z) < 0,
n=2012 -,

Given some method of measuring the error of an ap-
proximant, we say that the approximant (of specified form)
is a best fit if it minimizes the maximum magnitude of the
error curve. As pointed out by Moursund [5], it is logical
to choose yo(z) to be the best fit for the relative error of the
Lth iterate (where L is the number of iterations we plan
to use). Taking yo(z) as a best absolute or relative fit to
x4 (see James and Jarratt [2]) does not do this. On the
other hand, an approximant yo(z) is said to be optimal if it
is a best fit for each iterate y, , 4o, - - -

Tueorem. If yo(z) is a best fit for the relative error of
the first iterate, and if 0 > Ry(z) > —2 or 1 > Ry(z) >
—2, then the approximant is optimal.

Proor. The function f(t) = —21(3 + ¢) is monotonic
on {~2, 0], mapping [—2, 0] onto [—2, 0]. Hence, each
point of {a, b] giving a maximum for | Ry(z) | gives a maxi-
mum for |Ri(z) |, k = 2, 3, -+ . Consequently, if yo(z)
is & best relative fit for Ry(x), it follows from the mono-
tonicity and a contradiction type argument that it is the
best relative fit for By(z), and similarly, for each suceeed-
ing iterate. Thus y(2) is optimal under the hypothesis.

Note that, like King and Phillips {3], we can define the
logarithmic error of each iterate. The analog of their
theorem 2 can then be proved for the iteration scheme (1),
but unfortunately, the analog of their theorem 1 does not
hold.

Computing Optimal Approximants
Expressing Bi(2) in terms of y4(z), we obtain.
Ry(2) = [2lyo(2)/2][3 — ayo(x)] — 1 (4)

from which we can create a generalized weight function
and apply the methods of Moursund [4, 5, 6].
However, differentiating, we obtain

R () = 2 (1 — wyd(@)llyele) + 2 ()]
4

Setting 1 — ayo*(x) = 0, we find each root of this equation
gives a zero of By(z). Looking for maxima of | By(2) |, we
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can ignore these. Candidates for maxima of | Ryz) | are
then the roots of the equation

-..\
-

Yo + 2$y0’ =0 “5,.

and the two endpoints a, b of the interval. If we let yo(x)
be a polynomial of degree i, (5) has m roots and we have
m + 2 maxima (hopefully on {a, b]) of Bi(z), nicely match-
ing the m 4 2 “critical points” of the theory (see Moursund
{4, 50).

We used a Remes-type algorithm for finding the coef-
ficients of the optimal polynomials, leveling the eritical
point errors to four significant figures. Equation (5) and a
polynomial root-finder were used to solve for the new set of
“critical points” for each iteration. For a given set of
critical points, a = by, 1, -+ -, tw, tws1 = b, we found
the new coefficients A;, 7 = 0,1, --- |, m, by solving the
nonlinear system of equations

R[(ii)=7', 1,=(),1,,m+1

using a gradient descent method on the function

m+1

s Am, ) = E (Ry(ts) — m™

=0

g(AU:A17

For the initial approximation of the polynomial and
the critical points, we used a polynomial of best relative
fit to - on [a, b] on a set of 64 equidistant discrete points.
In all cases reported, we had convergence in at most 5
iterations.

For the constant or degree O optimal polynomial, we
used the formula

vo = [(3/(a + alb? + B)]
with max | R’ | given by
| B(3ab)i(a? + b¥/[2(a + @'} + b)Y — 1]
If we let
max | By(2) | (6)

z¢ [a,b]

Th =

then, given 7o, or r;, the maximum relative errors can be
obtained by using the recurrence (derived from (3))

Tap1 = T2(3 — 72)/2 . (7

(which indicates a slightly lower convergence than that
obtained from the classical Heron scheme).

Table I gives the coeflicients of the optimal linear,
quadratic, and eubic polynomials for the ranges [, 1],
[3, 1], [4, 1]. Since we need to know accuracy obtained
for subroutine design, Table II gives, for the optimal
polynomials of Table I, the values e, = —log,(rx), the
number of “binary figures of agreement” of the kth
iterate. The same design philosophy and range reduction
schemes utilized for the Heron scheme (see Fike [1,
Ch. 2]) are applicable to this iteration.
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TABLE 1. Comprrcisnts oF Volo) = Ay + Az + 4.0 + Ay
Range Dezree As Az A+ EE -
— e L
{1 2.9024188
/16, 114 2 3.7646031 4.45348728
L 3 4.4623652 20.141078 —49. 717326
[ 2.1301512 ~1.2172292
/4, 114 2 26705750 —5.2850400 16384100
L3 3.11231%5 —5.9108538 5.2298015  —2.4384336
{1 178757499 —0.80991997
1172, 14 2 2.2339132 —2.0662030 0.83514363
L 3 2.6053117 —3.6396485 2.9905306  —0.9586732;

TABLE II. Numser oF Binary FIGURES OF AGHEEMENT, ¢

Range Degree €5 ei ez €3 s €5
,{ 1 1.695 2.961 5.400 10.227 15.869 39.152
{1/16, 1¥ 2 2.663 4.818 9.069 17.354¢ 34.523  6B.461
| 3 3,580  6.616 12.652 24.720 48.835 97.224

{ 1 3.522  6.501 12.422 24.258 47.032  95.270 185.972
{1/4, 114 2 5.372 10.171 19.758 38.932 77.279 153.972
i\ 3 7.148 13.715 26.846 33.106 105.627

{ 1 5.481 10.33¢ 20,204 33.823 79.061 157.537
1/2, 1] J, 2 8.293 16.002 31.418 62.252 123.918
\ 3 11.028 21.470 42.356 84.127 167.668

Finally, it should be pointed out that the iteratios
scheme

Yni1 = 3Yal3 — (ya*/2)]

also found in the literature, which converges to 2!, if
converges, is essentially an “inverse” image to the schews
(1), in that the transformation z = 1/z yields (1). The 1=
currence scheme (3), for relative error, is the same.
optimal polynomials are transforms of those given here.
And it costs one initial division to utilize!
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