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On machines with slow or no division, it is preferable to use an 
iterative scheme for the square root different from the classical 
Heron scheme. The problem of optimal initial approximants is 
considered, and some optimal polynomial initial approxima- 
tions are tabulated. 
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I n t r o d u c t i o n  

A number of papers in the past few years [1, 3, 5, 6, 7] 
have dealt with the problem of obtaining optimal starting 
approximations for the Heron or classical Newtot>Raphson 
iteration scheme :for square root. For machines where the 
ratio of multiplication speed to division speed is large, or 
where there is no divide, the "no division" iteration scheme 

y,~+t = y~ - y,~ , n = 0 ,1 ,2 ,  . . .  (1) 

which converges to x-t,  if it converges, is preferable. As- 
suming convergence, x~ is simply 

x. lira y,~ . 

In this paper, optimal starting approximations for (1) 
and some computatim~al procedures are discussed, and 
tables of optimal polynomial initial approximants are 
given. 

h. m~mber of minor points should be made. In  the con- 
text of slow or no division, rational itfitial approximants 
make little sense. The quant i ty  (x/2) required in the itera- 
tions can be obtained once, generally without  division. 
Finally, the iteration scheme (1) is the general Newton- 
Raphson scheme for finding a zero of f(y) = x - -  1/y ~. 

Added in proof: in papers to appear by D. I,. Phillips (Math. of 
Co~nput.) and G, D. Taylor (J. of Approx. Theory), i t  has been 
shown that the optiinal polynomial above is a constant multiple 
of the best relative polynomial to X -~. 
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( )p~imal  li~fitiatt A p p r o x i m a t i o n s  

()n ~;hc ravage in, b], 0 < a < b < ~ ,  let y0(x) be an ap- 
proxim~nt of s,m~e speei~i(,,d form. t ~c *'~ m~t*vc er:ror of the 
n th  iI;cr~.~,te y,~(x) is {:[:~e~l 

l<(z) = [>.(z)  - x - q / z - ~  = :c~.>,,(z) -- 1, (2) 

O~e ,can. them e~sily show that 
") 

(by maT:fipulating (1) a~d (2)). 
Lx:mm:mlg the nature of the function f(t) . . . . . . .  ½t~(t + 3) 

8bows: 

(i) if --3 ~ Ro(X) :< 1 then --2 ~ R~(z) 5 0; 

(ii) if --2 _< R,,(x) £ 0 then - 2  £ R>~(x) ~ O, 
n = 0, 1 , 2 ,  . . . .  

Given some method of measuring tile error of an ap- 
proximant, we say tha t  the approximant (of specified form) 
is a bestfit if it minimizes the maximum magnitude of the 
error curve. As pointed out by Moursund [5], it  is logical 
to choose yo(x) to be the best fit for the relative error of the 
L th  iterate (where L is the number of iterations we plan 
to use). Taking yo(x) as a best absolute or relative fit to 
x-~ (see James and Jar ra t t  [2]) does not do this. On the 
other hand, an approximant y0(x) is said to be optimal i f  it 
is a best fit for each iterate y~, y~, - • • 

THEORm,. If  yo(x) is a best fit for the relative error of 
the first iterate, and if 0 >_ R,(x) > - 2  or 1 > Ro(x) > 
- 2 ,  then the approximant is optimal. 

PaOOF. The functionf(t)  = --½t2(3 -k t ) i s  monotonic 
on [ - 2 ,  0], mapping [--2, 0] onto [--2, 0]. Hence, each 
point of [a, b] giving a maximum for l R,(x) I gives a maxi- 
mum for I Rk(x) [, k = 2, 3, . . . .  Consequently, if yo(x) 
is a best relative fit for Rt(x), it follows from the mono- 
tonieity and a contradiction type argument that  it is the 
best relative fit for R2(x), and similarly, for each succeed- 
ing iterate. Thus yo(x) is optimal under the hypothesis. 

Note that,  like King and Phillips [3], we can define the 
logarithmic error of each iterate. The analog of their 
theorem 2 can then be proved for the iteration scheme (1), 
but  unfortunately,  the analog of their theorem 1 does not 
hold. 

C o m p u t i n g  O p t i m a l  A p p r o x i m a n t s  

Expressing R~(x) in terms of yo(x), we obtain. 

R l ( x )  = [ z g o ( x ) / 2 ] [ 3  - zy0~(x)]- I (4) 

from which we can create a genera,lized weigh t fimction 
and apply the methods of Moursund [4, 5, 6]. 

However, differentiating, we obtain 

R ( ( x )  = ~ 3  [1 - xyo~(x)][yo(x) + 2xv0 ' ( , ) ] .  

Setting 1 - xyo~(x) = O, we find each root of this equation 
gives a zero of Rl(x). Looking for maxima of ]R~(x) l, we 
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can ignore these. Candidates for maxima of ]R,(x) I are 
then the roots of the equat ion 

yo + 2 X y o '  0 ~ ~' = \0]  

and the two endpoints a, b of the interval. If we let yo(x) 
be a polynonfial of degree m,  (5) has m roots and we have 
m + 2 maxima (hopefully on  [a, b]) of Rl(x), nicely match- 
ing the m + 2 "  critical points" of the theory (see Moursund 
[4, 51). 

We used a Remes-type algorithm for finding the coef- 
ficients of the optimal polynomials ,  leveling the critical 
point errors to four significant figures. Equation (5) ~nd a 
polynomial root-finder were used to solve for the new set of 
"critical points" for each iteration. For a given set of 
critical points, a = t0, h ,  - ' -  , t~, t ~  = b, we found 
the new coefficients A i ,  j = 0, 1, . . -  , m, by solving the 
nonlinear system of equations 

Rl(ti) = r, i = O, 1 , . . .  , m  + 1 

using a gradient descent m e t h o d  on the function 

m+l 

g(Ao,  A~ , . . .  , A , , ,  r) = E (R~(t,) -- r)h 
i=0 

For the initial approximation of the polynomial and 
the critical points, we used a polynomial of best relative 
fit to x - i  on [a, b] on a set of 64 equidistant discrete points. 
In  all cases reported, we had  convergence in at most 5 
iterations. 

For the constant or degree 0 optimal polynomial,  we 
used the formula 

Y0 = [ (3/ (a  + a~b~ + b)]i 

with max [R' ] given by 

] [3(3ab)i(al + b i ) / [2 (a  + a~bi + b)q - 1 ]. 

If we let 

r. = m a x  IRa( x ) l  (6) 
x E  i n , b ]  

then, given r0, or r~, the m a x i m u m  relative errors can be 
obtained by using the recurrence (derived from (3)) 

r.+~ = r.~(3 -- rn)/2 (7)  

(which indicates a slightly lower convergence than that 
obtained from the classical Heron scheme). 

Table I gives the coefficients of the optimal linear, 
quadratic, and cubic polynomials  for the ranges i-iv, 1], 
[i, 1], [½, 1]. Since we need  to know accuracy obtained 
for subroutine design, Table  II gives, for the optimal 
polynomials of Table I, the  values e~ = - log~(r~) ,  the 
number of "binary figures of agreement" of the kth 
iterate. The same design philosophy and range reduction 
schemes utilized for the Heron scheme (see Fike [1, 
Ch. 2]) are applicable to this iteration. 
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TA]-~Li:; I.  (3o~F~c~i<x<~s o~ ~ Yo(=) = A0-}-  A~:~ 5- A~.~; ~ + .~ :~= 

Range D e g r e e  A ~ ~l z A ~ A a 

2°9024186 -2.2113666 :~ 
3.79460~I --7.0994720 4.454872~ 
4.4623652 --13,969731 20.141076 --9,7i7320: 

1 
[~/16, 1] 2 

3 

( 1 2 . 1 3 0 1 5 1 2  --1.2172292 
[1/4, 1] 2 2.6705780 --3.28504L~ 1.638.1100 

3 3.1123485 - 5 .  9108558 6. 2298915 --2. ~3~433# 

1 
q/2 1] 2 

i 3 --0.95667326 

T A B L E  I I .  N U M B E R  OF B[NAICY F I G U R E S  OF AGREEMENT, ~ 

Range Degree e~ e~ e~ ea e~ e5 e~ 

( 1 1.695 2.961 5.400 10.227 19.g69 39.152 77.720 !54 ~5: 

1.7875799 --0.8099D97 
2.2339i32 --2,0662030 0.83544569 
2.6053117 --a.6396~85 2.9905309 

:i[i 

=:i 

<:~': :!i 

[1/16, 1]{ 2 2.663 4.818 9.069 17.554 34.523 68.461 136.337 
L 3 3.580 6.616 12.652 2-t.720 48.855 97.22~i t93.6(~3 

( 1 3.522 6.501 12.422 2:t.258 47.932 95.~7~ 189.9~2 
[1/4, 1] ~ 2 5.372 10.171 19.758 38.932 77.279 153.972 

L 3 7.148 13.715 26.8,t6 53.106 105.627 
( 
J 

[I/2.11 
( 

1 5.48t 10.391 20.204 33.823 79.061 157.537 
2 8.293 16.002 31.418 62.252 123.918 
3 11.028 21.470 ,i2.356 84.127 167.668 

Finally, it should be pointed out that the  ite,-ati<, 
scheme 

~ r 3 y,+~ = ~ y , t .  - ( y j / z ) ]  

also found in the literature, which c o n v e r g e s  to z~, if i~ 
converges, is essentially an " i n v e r s e "  i n m g e  to t lw zch~:~ 
(1) ,  in that the transformation z = 1 / x  yie lds  (1) .  The  r~ 
currence scheme (3), for relative error, is the same.  It- 
optimal polynomials are transforms of those given i~:~> 
And it costs one initial division to utilize! 
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