
have been examined twice. Clearly, half the table will be
searched only if we replace the "fixed constmlt" by a
number congruent to - Q/v2. However, even if this is done,
there is still the problem that when Q ~- 0, only one table
location is examined!

To correct these problems, replace steps (3) and (4) of
Bell's algorithm with:

(3) Initialize A with C, where C is defined below.
(4) Increment A by 2Q.

For this algorithm, we have a = Q + C, b = Q. We must
then choose C so that C ~ - Q i f Q ¢ 0 a n d C ¢ - Q i f
Q ~- 0. The algorithm will then search (p + 1)/2 locations
if Q ~ 0, and will search all p locations if Q -= 0.

The trouble with this algorithm is that it requires testing
for Q ~ 0, which means performing an extra division. A
seemingly possible way out is to observe that if (p - a)/vb

- j , b ¢ 0, then the algorithm searchesj fewer locations
before it starts re-examining locations. We can then try to
choose C so that we get j to be small, thereby examining
nearly half the table before repeating. However, this re-
quires that we make C ~ - (j + 1)Q. There does not ap-
pear to be any simple algorithm for choosing a C satisfying
this congruence for a small j when Q fi 0, and choosing
C ¢ - Q when Q ~ 0. ~ It seems that the division is neces-
sary.

The corrected version of Bell's algorithm still contains a
gross inefficiency. For Q ~ 0, it decided that the search is a
failure after p tries, instead of the necessary (p q- 1)/2
tries. This is easily corrected by changing the criterion for
failure.

In summary, Bell's algorithm requires a correction which
adds an extra division to the initialization procedure. This
must be considered in evaluating its efficiency. Bell's table
comparing the efficiency of his method with that of
Maurer's indicates that this extra initialization cost is
justified only if checking a single entry is a relatively time
consuming operation.

REFERENCES :

I. BELL, JAMES R. The quadratic quotient method: a hash code
eliminating secondary clustering. Comm. ACM 13, 2 (Feb.
1970), 107-109.

2. Ma_URER, W. D. An improved hash code for scatter storage.
Comm. ACM 11, 1 (Jan. 1968), 35-38.

REPLY BY BELL. Before discussing Lamport's comment
in detail, let us consider the correct observation on which
it is based: Although any quadratic search (including
quadratic quotient) hits half of the table entries, some-
times some entries are hit twice before others are hit once.

In other words, K + ai + bi 2 may not have maximum
period for an arbitrary a and b. The author proves that
forcing a to zero will guarantee maximal period.

A much simpler constraint is to let the constant in step

1 Note added in proof: In his reply below, Bell gives a simple
method of choosing j = 1.

(8) of the original algorithm be zero. Then

h~(K) = R + (Q/2)i + (Q/2)i'

and we first return to our original hash address when

R = R + (Q / 2) i ÷ (Q/2)i ~,
that is, when

i = - 1 or i = O or Q = 0 .
The first two cases state that h (K) has a maximum perio-
dicity. The third case is the degenerate one where the quo-
tient is congruent to zero. We could use a division to spot
the degenerate case. But by adopting the suggestion of
paragraph 3 of Section 3c of the original article we can use

(Q A lowbitmask) + 1

in lieu of Q to guarantee that this case does not occur.
Lamport has taken a more complicated approach.

SCIENTIFIC APPLICATIONS

On the Number of Automorphisms of a
Singly Generated Automaton

ZAMIi~ B~.VEL

University of Kansas,* Lawrence, Kansas

Key Words and Phrases: automata, finite automata, singly gen-
erated automata, automorphisms, generators, le, ngth of state,
minimal-length generators, orbit.
CR CATEGORY: 5.22

1. Introduction

Weeg proved in [3] that the number of automorphisms of
a strongly connected finite automaton divides the number
of states of the automaton. In [1, Th. 6], the author
generalized this result to finite singly generated automata
by proving that the number of automorphisms of such
an automaton A divides the number of generators of A.
This brief note improves the latter result. The number of
automorphisms of A is shown to divide the number of
minimal-length generators of A.

The improvement is of practical value not only in the
more general case of singly generated automata but also
in the strongly connected case, for the number of states
whose length is minimal is usually much smaller than the
number of states of the automaton. The improvement is
particularly striking when the number of generators (states,
in the strongly connected case) is large but only one of
them is of minimal length; in that case, the only auto-
morphism is the identity. But without the present result
it may be necessary to examine up to half the number of

* Department of Computer Science. This work was supported in
part by the National Science Foundation under Grant GJ-639.

574 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 13 / Number 9 / September , 1970

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362736.362767&domain=pdf&date_stamp=1970-09-01

/,tes before the trivi~.flity of the automorphism group is
dized. The utility of this result is e~fl~a~tced by the fact
~lt the length of a state is eagiiy comp~tted [2].

P r e l im ina r i e s

The notatiot~, definitions, and results ii~ this section are
llected mostly from [1]. For a nonempty sat E, we denote
Z* the free monoid over E, i.e. the set of ,all strings of

ite length of members of E including the empty string e.
An automaton is a triple A = (S, E, ~), where S is a set
i stales), E is a nonempty sat (the input alphabet), ~md
S X E* -~ S is the transition function satisfying: V8 ~ S
d Vz , y ~ E*, ~(s, xy) = ~t[~(s, z), y]; and ~(8,~) = s,
~ S .
An automaton B = (T, E, ~') is a 8ubautomaton of
= (S, E, ~), written B << A, if and only if T ~ S and

is the restriction of ~ to 7' X E*. We use ~ for ~', as no
~biguity arises. S , denotes the set of states of an au-
maton B.
The set of successors of 8 ~ S is 8(8) = {~(s, x) : x ~ ~*}.
~e automaton generated by s ~ S is <8} = (~i(8), Z, ~);

the subautomaton whose set of states is the set of
ceessors of s. An automaton A = (S, E, ~i) is singly
,erated if and only if ~Is ~ S such that A = (s} add in
~t event s is a generator of (s). The set of generators of
is gen (8) = {r E S<.~) : (r) = (s)}.

An automaton is finite if and only if its set of states is
ite. The cardinallty of a set S is denoted by IS I.
Art automorphism of the automaton A = (S, E, ~) is a
)nic mapping f of S onto S (and the identity mapping
E*) satisfyingf[~(8, x)] = a[f(8), x], Vs ~ S, Vx ~ Z*.

~e set (group) of automorphisms of an automaton A is
noted by G(A) . Where H is a subgroup of G(A) and s
a state of A = (S, E, ~), the H-orbit of 8 is0H(8) =
(8):h ~ H}.
For each u ~ Z*, where u = x~ . . . x~ ~nd x¢ ~ Z,
= (1, • . . , k}, the length of u i s / u / = /x~ . . . Xk/ = k.
~e length of a state s of A is

/ 8 / = nmx { min { / u / : ~ (s , u) = r}};
rES(s) uEZ*

:. the length of the shortest route to the state farthest
)131 8.

A Div i s ib i l i ty B o u n d o n G((s))

The following three results are proved by the author in

I.
LEM.XIA 1. A n automorphism of (8} i8 completely de-
'm'ined by its value on 8.
LEMMA 2. Where f is an automorphism of an automaton
and 8 is a state of A , (f(s)} = f((s}).
LEMMA 3. Let A = (S, ~, 8), let p, q C S, and let H
a subgroup of G(A) . Then OH(p) and OH(q) are either

entieal or disjoint.
With tim aid of the three lemmas we now have:
THEOREM. Let (s) = (S, E, ~t) be a finite automaton,

) lume 13 / N u m b e r 9 / S e p t e m b e r , 1970

let M = [m ~ g e n (s } : / m / =< /8/; ' Vs C S} , and let
H be a subgroup of G((8}). Then i H I divides f M].

P~¢OOF. Let r ~ gen (8} aud l e t f ~ G((8)). Tlmnf(r) C
gen (s}, by Lemma 2. Thus, sirme geu (8) is finite, f(gen (8})
= gen (s}, i.e. automorphisms preserve generators. For
troy t C S and any x,y ~ Z*, fib(t, x)] = f[5(t, y] if and
only if 5(t, x) = 5(t, y) ~md hence If(t)~ = / t / , i.e. ~mto-
morphisms preserve length. Thereforc, f(M) = M.

By Lemma 1, distinct automorphisnls lIave disthmt
images on members of gen (s) aild thus]O,(t) I = I H I,
Wt ~ gen (8). Thus, by Lemma 3, H partitions M into
disjoint subsets of the form O,(t) , and hence [H I divides
IMI. I

[~.EFERENCES

1. B*W:L, Z. Structure and transitio~t-preserviug fmlctions of
fin.ite automata. J. A C M 15, 1 (Jan. 1968), 135458.

2. - - - - . Algorithms ht the st, ructure aad tr~msiti(m-preservh~
flmctions of finite a~ltomata. Stflmfitte:[to a teclmical jo/tr-
rml.

3. WE~,:G, G.P. The structure of an automaton and its operation
preservh/g transformation group. J. ACM 9, 3 (July 1962),
345-3,V3,

ALGORITHMS

Remarks on Algorithms with

Numerical Constants

C. B. DUNHAM
University of Western Ontario,* London, Canada

Keywords and t:hrs~,:es: ~t:nt~i(~d ~'!~crillm, nt]~:('rical con
staIgs
CR Categories: 5.10

Algorithms continue to be published in which undefined
mathematical constants appear as a finite number of
decimal digits. Such constants even appear in algorithms
which explicitly claim to be of arbitrary precision; for
example, Algorithm 349 [Comm. A C M 12 (Apr. 1969),
213--214] has an undefined constant piq given to 48 decimal
digits. Such algorithms are not useful in high precision
unless the author defines all constants and tells how they
can be obtained. It should be requh'ed of all published
algorithms that all constants be defined or that working
precision be explicitly stated.

[EDITOR'S NOTE. I agree completely with the suggested
requirement and will t ry to enforce it in the future.--
L.D.F.]

* Computer Science Department

Communicat ions of the ACM 575

