
have been examined twice. Clearly, half the table will be 
searched only if we replace the "fixed constmlt" by a 
number congruent to - Q/v2. However, even if this is done, 
there is still the problem that when Q ~- 0, only one table 
location is examined! 

To correct these problems, replace steps (3) and (4) of 
Bell's algorithm with: 

(3) Initialize A with C, where C is defined below. 
(4) Increment A by 2Q. 

For this algorithm, we have a = Q + C, b = Q. We must 
then choose C so that C ~ - Q i f Q  ¢ 0 a n d C  ¢ - Q i f  
Q ~- 0. The algorithm will then search (p + 1 )/2 locations 
if Q ~ 0, and will search all p locations if Q -= 0. 

The trouble with this algorithm is that it requires testing 
for Q ~ 0, which means performing an extra division. A 
seemingly possible way out is to observe that if (p - a)/vb 

- j ,  b ¢ 0, then the algorithm searchesj fewer locations 
before it starts re-examining locations. We can then try to 
choose C so that we get j to be small, thereby examining 
nearly half the table before repeating. However, this re- 
quires that we make C ~ - (j + 1)Q. There does not ap- 
pear to be any simple algorithm for choosing a C satisfying 
this congruence for a small j when Q fi 0, and choosing 
C ¢ - Q  when Q ~ 0. ~ It  seems that the division is neces- 
sary. 

The corrected version of Bell's algorithm still contains a 
gross inefficiency. For Q ~ 0, it decided that the search is a 
failure after p tries, instead of the necessary (p q- 1)/2 
tries. This is easily corrected by changing the criterion for 
failure. 

In summary, Bell's algorithm requires a correction which 
adds an extra division to the initialization procedure. This 
must be considered in evaluating its efficiency. Bell's table 
comparing the efficiency of his method with that of 
Maurer's indicates that this extra initialization cost is 
justified only if checking a single entry is a relatively time 
consuming operation. 
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REPLY BY BELL. Before discussing Lamport's comment 
in detail, let us consider the correct observation on which 
it is based: Although any quadratic search (including 
quadratic quotient) hits half of the table entries, some- 
times some entries are hit twice before others are hit once. 

In other words, K + ai + bi 2 may not have maximum 
period for an arbitrary a and b. The author proves that 
forcing a to zero will guarantee maximal period. 

A much simpler constraint is to let the constant in step 

1 Note added in proof: In his reply below, Bell gives a simple 
method of choosing j = 1. 

(8) of the original algorithm be zero. Then 

h~(K) = R + (Q/2)i + (Q/2)i' 

and we first return to our original hash address when 

R = R +  ( Q / 2 ) i ÷  (Q/2)i ~, 
that is, when 

i =  - 1  or i = O  or Q = 0 .  
The first two cases state that h (K) has a maximum perio- 
dicity. The third case is the degenerate one where the quo- 
tient is congruent to zero. We could use a division to spot 
the degenerate case. But by adopting the suggestion of 
paragraph 3 of Section 3c of the original article we can use 

(Q A lowbitmask) + 1 

in lieu of Q to guarantee that this case does not occur. 
Lamport has taken a more complicated approach. 
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1. Introduction 

Weeg proved in [3] that the number of automorphisms of 
a strongly connected finite automaton divides the number 
of states of the automaton. In [1, Th. 6], the author 
generalized this result to finite singly generated automata 
by proving that  the number of automorphisms of such 
an automaton A divides the number of generators of A. 
This brief note improves the latter result. The number of 
automorphisms of A is shown to divide the number of 
minimal-length generators of A. 

The improvement is of practical value not only in the 
more general case of singly generated automata but also 
in the strongly connected case, for the number of states 
whose length is minimal is usually much smaller than the 
number of states of the automaton. The improvement is 
particularly striking when the number of generators (states, 
in the strongly connected case) is large but only one of 
them is of minimal length; in that case, the only auto- 
morphism is the identity. But without the present result 
it may be necessary to examine up to half the number of 
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/,tes before the trivi~.flity of the automorphism group is 
dized. The utility of this result is e~fl~a~tced by the fact 
~lt the length of a state is eagiiy comp~tted [2]. 

P r e l im ina r i e s  

The notatiot~, definitions, and results ii~ this section are 
llected mostly from [1]. For a nonempty sat E, we denote 
Z* the free monoid over E, i.e. the set of ,all strings of 

ite length of members of E including the empty string e. 
An  automaton is a triple A = (S, E, ~), where S is a set 
i stales), E is a nonempty sat (the input  alphabet), ~md 
S X E* -~ S is the transition function satisfying: V8 ~ S 
d Vz , y  ~ E*, ~(s, xy) = ~t[~(s, z), y]; and ~(8,~) = s, 
~ S .  
An automaton B = (T, E, ~') is a 8ubautomaton of 
= (S, E, ~), written B << A, if and only if T ~ S and 

is the restriction of ~ to 7' X E*. We use ~ for ~', as no 
~biguity arises. S ,  denotes the set of states of an au- 
maton B. 
The set of successors of 8 ~ S is 8(8) = {~(s, x) : x ~ ~*}. 
~e automaton generated by s ~ S is <8} = (~i(8), Z, ~); 

the subautomaton whose set of states is the set of 
ceessors of s. An automaton A = (S, E, ~i) is singly 
,erated if and only if ~Is ~ S such that  A = (s} add in 
~t event s is a generator of (s). The set of generators of 
is gen (8) = {r E S<.~) : (r) = (s)}. 

An automaton is finite if and only if its set of states is 
ite. The cardinallty of a set S is denoted by IS I. 
Art automorphism of the automaton A = (S, E, ~) is a 
)nic mapping f of S onto S (and the identity mapping 
E*) satisfyingf[~(8, x)] = a[f(8), x], Vs ~ S, Vx ~ Z*. 

~e set (group) of automorphisms of an automaton A is 
noted by G(A) .  Where H is a subgroup of G(A)  and s 
a state of A = (S, E, ~), the H-orbit of 8 is0H(8) = 
(8):h ~ H}. 
For each u ~ Z*, where u = x~ . . .  x~ ~nd x¢ ~ Z, 
= (1, • . .  , k}, the length of u i s / u /  = /x~ . . .  Xk/ = k. 
~e length of a state s of A is 

/ 8 /  = nmx { min { / u / : ~ ( s , u )  = r}}; 
rES(s ) uEZ* 

:. the length of the shortest route to the state farthest 
)131 8. 

A Div i s ib i l i ty  B o u n d  o n  G((s)) 

The following three results are proved by the author in 

I. 
LEM.XIA 1. A n  automorphism of (8} i8 completely de- 
'm'ined by its value on 8. 
LEMMA 2. Where f is an automorphism of an automaton 
and 8 is a state of A ,  (f(s)} = f((s}). 
LEMMA 3. Let A = (S, ~, 8), let p, q C S, and let H 
a subgroup of G(A) .  Then OH(p) and OH(q) are either 

entieal or disjoint. 
With tim aid of the three lemmas we now have: 
THEOREM. Let (s) = (S, E, ~t) be a finite automaton, 

) lume 13 / N u m b e r  9 / S e p t e m b e r ,  1970 

let M = [m ~ g e n ( s } : / m /  =< /8/; ' Vs  C S} ,  and let 
H be a subgroup of G((8}). Then i H I divides f M ]. 

P~¢OOF. Let r ~ gen (8} aud l e t f  ~ G((8)). Tlmnf(r) C 
gen (s}, by Lemma 2. Thus, sirme geu (8) is finite, f(gen (8}) 
= gen (s}, i.e. automorphisms preserve generators. For 
troy t C S and any x,y ~ Z*, fib(t, x)] = f[5(t, y] if and 
only if 5(t, x) = 5(t, y) ~md hence If(t)~ = / t / ,  i.e. ~mto- 
morphisms preserve length. Thereforc, f(M) = M. 

By Lemma 1, distinct automorphisnls lIave disthmt 
images on members of gen (s) aild thus ]O,(t)  I = I H I, 
Wt ~ gen (8). Thus, by Lemma 3, H partitions M into 
disjoint subsets of the form O,(t) ,  and hence [ H I divides 
IMI.  I 
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Algorithms continue to be published in which undefined 
mathematical constants appear as a finite number of 
decimal digits. Such constants even appear in algorithms 
which explicitly claim to be of arbitrary precision; for 
example, Algorithm 349 [Comm. A C M  12 (Apr. 1969), 
213--214] has an undefined constant piq given to 48 decimal 
digits. Such algorithms are not useful in high precision 
unless the author defines all constants and tells how they 
can be obtained. It  should be requh'ed of all published 
algorithms that  all constants be defined or that working 
precision be explicitly stated. 

[EDITOR'S NOTE. I agree completely with the suggested 
requirement and will t ry  to enforce it in the future.--  
L.D.F.] 
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