sates before the tiviality of the automorphism group is rewized. The utility of this result is enhanced by the fact that the length of a state is easily computed [2].

3. Preliminaries

The notation, definitions, and results in this section are uplected mostly from [1]. For a nonempty set Σ, we denote by Σ^{*} the free monoid over Σ, i.e. the set of all strings of finte length of members of Σ including the empty string ϵ.
In automaton is a triple $A=(S, \Sigma, \delta)$, where S is a set
(n) \&ales), Σ is a nonempty set (the input alphabet), and
$\hbar: S \times \Sigma^{*} \rightarrow S$ is the transition function satisfying: $\forall s \in S$ nd $\forall x, y \in \Sigma^{*}, \delta(s, x y)=\delta[\delta(s, x), y]$; and $\delta(s, \epsilon)=s$, \forall \& S.
In automaton $B=\left(T, \Sigma, \delta^{\prime}\right)$ is a subautomaton of $\therefore=(S, \Sigma, \delta)$, written $B \ll A$, if and only if $T \subseteq S$ and δ^{\prime} the restriction of δ to $T \times \Sigma^{*}$. We use δ for $\overline{\delta^{\prime}}$, as no ambiguity arises. S_{B} denotes the set of states of an automaton B.
The set of successors of $s \in S$ is $\delta(s)=\left\{\delta(s, x): x \in \Sigma^{*}\right\}$. The automaton generated by $s \in S$ is $\langle s\rangle=(\delta(s), \Sigma, \delta)$; .e. the subautomaton whose set of states is the set of sutcessors of s. An automaton $A=(S, \Sigma, \delta)$ is singly Guerated if and only if $\exists s \in S$ such that $A=\langle s\rangle$ and in that event s is a generator of $\langle s\rangle$. The set of generators of \therefore is gen $\langle s\rangle=\left\{r \in S_{\langle s\rangle}:\langle r\rangle=\langle s\rangle\right\}$.
dr automaton is finite if and only if its set of states is mite. The cardinality of a set S is denoted by $|S|$.
In antomorphism of the automaton $A=(S, \Sigma, \delta)$ is a momic mapping f of S onto S (and the identity mapping on $\mathbf{\Sigma}^{*}$) satisfying $f[\delta(s, x)]=\delta[f(s), x], \forall s \in S, \forall x \in \mathbf{\Sigma}^{*}$. The set (group) of automorphisms of an automaton A is dented by $G(A)$. Where H is a subgroup of $G(A)$ and s is a state of $A=(S, \Sigma, \delta)$, the H-orbit of s is $O_{H}(s)=$ $\eta(s): h \in H\}$.
For each $u \in \Sigma^{*}$, where $u=x_{1} \cdots x_{k}$ and $x_{i} \in \Sigma$, is $\{1, \cdots, k\}$, the length of u is $/ u /=\left|x_{1} \cdots x_{k}\right|=k$. The length of a state s of A is

$$
/ s /=\max _{r \in S_{\langle s\rangle}}\left\{\min _{u \in \Sigma^{*}}\{/ u /: \delta(s, u)=r\}\right\} ;
$$

i.e the length of the shortest route to the state farthest fromes.

3. A Divisibility Bound on $G(\langle s\rangle)$

The following three results are proved by the author in 11.

Lemms 1. An automorphism of $\langle s\rangle$ is completely detrmined by its value on s.
Lemin 2. Where f is an automorphism of an automaton
t and s is a state of $A,\langle f(s)\rangle=f(\langle s\rangle)$.
Lemma 3. Let $A=(S, \Sigma, \delta)$, let $p, q \in S$, and let H be a subgroup of $G(A)$. Then $O_{H}(p)$ and $O_{H}(q)$ are either identical or disjoint.
With the aid of the three lemmas we now have:
Theorem. Let $\langle s\rangle=(S, \Sigma, \delta)$ be a finite automaton,
let $M=\{m \in \operatorname{gen}\langle s\rangle: / m / \leqq / s /, \forall s \in S\}$, and let H be a subgroup of $G(\langle s\rangle)$. Then $|H|$ divides $|M|$.

Proof. Let $r \in$ gen $\langle s\rangle$ and let $f \in G(\langle s\rangle)$. Then $f(r) \in$ gen $\langle s\rangle$, by Lemma 2. Thus, since gen $\langle s\rangle$ is finite, $f(\operatorname{gen}\langle s\rangle)$ $=$ gen $\langle s\rangle$, i.e. automorphisms preserve generators. For any $t \in S$ and any $x, y \in \Sigma^{*}, f[\delta(t, x)]=f[\delta(t, y]$ if and only if $\delta(t, x)=\delta(t, y)$ and hence $/ f(t) /=/ t /$, i.e. automorphisms preserve length. Therefore, $f(M)=M$.

By Lemma 1, distinct automorphisms have distinct images on members of gen $\langle s\rangle$ and thus $\left|O_{H}(t)\right|=|H|$, $\forall t \in \operatorname{gen}\langle s\rangle$. Thus, by Lemma 3, H partitions M into disjoint subsets of the form $O_{H}(t)$, and hence $|H|$ divides | $M|$.

References

1. Bavel, Z. Structure and transition-preserving functions of finite automata. J. ACM 15, 1 (Jan. 1968), 135-158.
2. --. Algorithms in the structure and transition-preserving functions of finite automata. Submitted to a technical journal.
3. Weeg, G. P. The structure of an automaton and its operation preserving transformation group. J. ACM 9, 3 (July 1962), 345-349.

ALGORITHMS

Remarks on Algorithms with Numerical Constants

C. B. Dunham
University of Western Ontario,* London, Canada

Keywords and Fhrafes: numicel secrithm, numerical con stants
CR Categories: 5.10

Algorithms continue to be published in which undefined mathematical constants appear as a finite number of decimal digits. Such constants even appear in algorithms which explicitly claim to be of arbitrary precision; for example, Algorithm 349 [Comm. ACM 12 (Apr. 1969), 213-214] has an undefined constant piq given to 48 decimal digits. Such algorithms are not useful in high precision unless the author defines all constants and tells how they can be obtained. It should be required of all published algorithms that all constants be defined or that working precision be explicitly stated.
[Editor's note. I agree completely with the suggested requirement and will try to enforce it in the future.L.D.F.]

[^0]
[^0]: * Computer Science Department

