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before ~bc tvixqaiitv of tile automorphism group is 
: >.dized. The utili ty of this resuPc is ea}-maced by the fact 
: : !  ] Z  r i l e  } f a l l a t i i -  ( ) f  a s tate is easily comported [2]. 

2. Prel iminar ies  

ii'}w uotatioa, defi~itions, arid results in this section are 
~.,~:.~.r~,d.~ . . . . .  mostly from [1]. For a nonempty set ~," we denote 

~ i.e. the set of all strings of -'* the ~q'ee monoid over ~, 
~iength.. of members of E including the empty, string e. 

,.. automalot~ is a triple A = (S, 2, a) where S is a set 
2 K [ [  " " ' 

~( .!ales'), 2 is a. nonempty set (the input  alphabet), and 
~:5 Y. "2* ~ S is the transition fltnction satisfying: Vs ~ S 
:~:d gz,y ~ S*, 5(s, xy) = ~[~(s, x), y]; and 5(s, e) = s, 

g:~ :! S. 
:\n automaton B = (T, E, /~') is a subautomalon of 
-- ,'< ~" a) w r i t t e n B < < A  if and only if 7 ' C S a n d  

~'i~,~'  =' restriction o f 6 t o  T X .~'~*. We use 6 for ~ , as no 
:~a~biguity arises. S~, denotes the set of states of an au- 

%<~mton B. 
The set of successors of s ~ S is 6(s) = {6(s, x) • x ~ Z*}. 

T!>~ mcto maton generated by s ~ S is (s) = (6(s), Z, 6); 
the subautomaton whose set of states is the set of 

<i<e~sors of s. An automaton A = (S, E, ~i) is singly 
:.~e,'ated if and only if ~s  ~. S such that  A = (s) and in 
:~a~ event s is a generator of (s}. The set of generators of 

/ : " , . ~ .  . ~  ~ \ • . 

'~ ak t tomaton  is f in i te  if and only if its set of states is :k t -~  o 

~i:fi>. The cardinality of a set S is denoted by iS  !. 
:'t~ a~tomorphism of the automaton A = (S, E, 5) is a 

><~ic mapping f of S onto S (and the identity mapping 
~,~_ ~ zatisfyingf[5(s, x)] = 5If(s), x] Vs ~ S, Vx ~ Z* 
"[~}~:: ::~ (group) of automorphisms of an automaton A is 
i~:~:<cd by G(A) .  Where H is a subgroup of G(A)  and s 

::~.~ate of A = ( S , ~ ,  ~ ~), the H-orbit o f s  is OH(s) = 
}~(s) - h ~ H }. 

For each u <2 2 " ,  where u = x~ --" x~ and x¢ ~ 2, 
i : t, . . .  , I:}, the length of u i s / u /  = /x~ • ..  Xk/ = k. 
?h~:~ h:.~.g& of a state s of A is 

/ s /  = max I m i n  { / u / ' 6 ( s , u )  = r}}; 
r~S(.~.) uEZ* 

i.,-, the length of the shortest route to the state farthest 

3. A Div i s ib i l i ty  B o u n d  o n  G((s)) 

Tile following three results are proved by the author in 

L~:v:~!.a 1. A'n automorphism of (s} is completely de- 
>~<L,,:ed by its value on s. 

[.E:<~t, 2. Where f "is an automorphism of an automaton 
A '~nd s is a state of A,  ( f ( s ) )  = f ( ( s ) ) .  

LE:~IaI:t 3. Let A = (S, 2, ~), let p, q C S, and let H 
~<~ c~ subgroup of G(A) .  Then On(p) and On(q) are either 
i&ntical or disjoint. 

With the aid of the three Iemmas we now have: 
Tr~EORESi. Let (s) = (S, ~, 6) be a finite automaton, 
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let 3 f  ~ " ( s } ' ' m '  = ;,~ (~ o ev ~ < /s / ,  V s  C S}, and let 
H be a subg,'oup of G((s}). Then [H  i divides i M 1. 

PROOF. Let ~" :C gen {s} ai~d l e t f  ~ G({s}). Thenf(r)  C 
gen (s}, by  Lemma 2. Thus, since gen (s} is finite, f(gen (s}) 
= gen (s}, i.e. automorphisms preserve generators. For 
any t ~ S and any x,y ~ 2* , f [6 ( t , x ) ]  = ff[~(t,y] if and 
only :if fi(t, x) = 6(t, y) and hence / f ( t ) / '  = / t / ,  i.e. auto- 
morphisms preserve length. Therefore, f ( M )  = 31. 

By Lemma 1, distinct aummorphisms have distiamt 
images on members of gen (s} and thus i0u(t)  I = [ H ], 
Vt C gen (s}. Thus, by Lemma 3, H partitions M into 
disjoint subsets of the form OH(t), and hence i H ] divides 

iMI .  I 
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Algorithms conthme to be published in which undefined 
mathematical  constants appear as a finite number of 
decimal digits. Such constants even appear in algorithms 
which explicitly claim to be of arbitrary precision; for 
example, Algorithm 349 [Comm. A C M  12 (Apr. 1969), 
213-214] has an undefined constant piq given to 48 decimal 
digits. Such algorithms are not useful in high precision 
unless the author defines all constants arid tells how they 
can he obtained. It  should be required of all published 
algorithms that  all constants be defined or that  working 
precision be explicitly stated. 

[EDITOR'S NOTE. I agree completely with the suggested 
requirement and will t ry  to enforce it in the future . - -  
L.D.F.] 
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