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ABSTRACT
The process of transforming input images into corresponding tex-
tual explanations stands as a crucial and complex endeavor within
the domains of computer vision and natural language processing. In
this paper, we propose an innovative ensemble approach that har-
nesses the capabilities of Contrastive Language-Image Pretraining
(CLIP) models. Our ensemble framework encompasses two signifi-
cant variations of the CLIP model, each meticulously designed to
cater to specific nuances within the image-to-text transformation
landscape. The first model introduces an elaborated architecture,
featuring multiple layers with distinct learning rates, thereby am-
plifying its adeptness in capturing intricate relationships between
images and text. The second model strategically exploits CLIP’s
inherent zero-shot learning potential to generate image-text em-
beddings, subsequently harnessed by a K-Nearest Neighbors (KNN)
model. Through this KNN-based paradigm, the model facilitates
image-to-text transformation by identifying closely related embed-
dings within the embedding space. Notably, our ensemble approach
is rigorously evaluated, employing the cosine similarity metric to
gauge the alignment between model-generated embeddings and
ground truth representations. Comparative experiments vividly
highlight the superiority of our ensemble strategy over standalone
CLIP models. This study not only advances the state-of-the-art in
image-to-text transformation but also accentuates the promising
trajectory of ensemble learning in effectively addressing intricate
multimodal tasks.

CCS CONCEPTS
• Computing methodologies→ Information extraction; En-
semble methods; Computer vision representations.
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1 INTRODUCTION
In the dynamic landscape of CV(computer vision) and NLP(natural
language processing), the conversion of visual input into coherent
textual descriptions has emerged as a fundamental yet intricate
challenge. Bridging the gap between these two modalities holds
profound potential across diverse domains, from enabling visually
impaired individuals to enhancing the autonomy of machines. This
article addresses the complex task of image-to-text transformation
by introducing a novel ensemble approach that harnesses the capa-
bilities of Contrastive Language-Image Pretraining (CLIP) models.

While CLIP models have demonstrated exceptional prowess in
aligning text and images, this work propels the field forward by
presenting a sophisticated ensemble strategy that leverages their
collective strengths. We introduce two distinct adaptations of the
CLIP model, meticulously tailored to different facets of the image-
to-text transformation endeavor. The first adaptation introduces
a multi-layered architecture with the integration of differential
learning rates, amplifying the model’s discerning power to capture
intricate and nuanced image-text relationships. Complementing
this, the second adaptation ingeniously exploits CLIP’s inherent
zero-shot learning capacity, resulting in the generation of con-
textual embeddings for both images and text. These embeddings
seamlessly integrate into a K-Nearest Neighbors (KNN)[9] model,
a strategic choice that reverberates throughout the image-to-text
transformation process.

The significance of this study reverberates across numerous
real-world scenarios, ranging from generating image captions to
facilitating content-based image retrieval. Our ensemble approach,
by bridging the semantic gap between images and text, contributes
to the interpretability and accessibility of visual data.
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In subsequent sections, we embark on an exploratory journey
into the intricate mechanics of our ensemble approach. We delve
into architectural intricacies, elucidate data preprocessing method-
ologies, unveil the metrics employed for evaluation, and present
compelling experimental results. Through meticulous evaluation
and comprehensive comparative analysis, we substantiate the dis-
tinct advantages of our approach over both standalone CLIP models
and traditional methods. As we navigate the complex landscape
of image-to-text transformation, our study not only advances the
boundaries of current capabilities but also underscores the bur-
geoning potential of ensemble learning to unravel the complexities
inherent in multimodal tasks.

2 RELATEDWORK
Within the domain of converting images to text, extensive research
has been undertaken to improve the caliber and pertinence of the
generated captions. This section provides an overview of key ad-
vancements and approaches that have contributed to the develop-
ment of our proposed ensemble model for image captioning.

J Devlin et al.[3] introduce BERT, a transformer-based language
model pre-trained on extensive text data. BERT’s bidirectional con-
text comprehension and contextual embeddings have propelled it to
achieve state-of-the-art performance across diverse NLP tasks, in-
cluding image captioning, significantly enhancing language under-
standing for such tasks. A Karpathy et al.[7] propose an attention-
based model that aligns visual and semantic spaces, producing de-
tailed image descriptions by focusing on relevant regions of the im-
age. By allowing the model to attend to specific image regions while
generating each word, the approach improves the relevance and
contextual understanding of generated captions. Q. Wu et al. (2016)
explore high-level concepts’ role in bridging vision and language,
specifically their impact on image captioning. By incorporating
high-level semantic concepts, the model gains a better understand-
ing of the image content, leading to improved caption quality that
is more aligned with human perception. J Gu et al.[5] propose a
stack-captioning model that employs a coarse-to-fine approach to
generate captions, demonstrating improved performance by iter-
atively refining the captioning process. Utilizing a hierarchy of
captioning modules, this approach enables the model to encompass
global and local details, yielding captions that are more contextually
enriched and coherent. SJ Rennie et al.[12] introduces self-critical
sequence training, a reinforcement learning approach for image
captioning, which improves caption quality by directly optimizing
caption-level evaluation metrics. By using a reinforcement learn-
ing framework to fine-tune the captioning model, this approach
encourages the generation of captions that receive higher scores ac-
cording to the chosen evaluation metric. P Sharma et al.[13] present
the Conceptual Captions dataset, enhancing image caption quality
and model training through improved annotations and hypernymic
captions. J Johnson et al.[6] introduce DenseCap, a model merging
convolutional and recurrent networks for dense image caption-
ing. It generates captions for multiple image regions, enhancing
description detail by covering various objects and regions within
images. D Elliott et al.[4] introduce the Multi30K dataset, a multi-
lingual extension of the English-German image description dataset,
facilitating cross-lingual research in image captioning. This dataset

enables the evaluation and development of captioning models for
multiple languages, contributing to the advancement of multilin-
gual captioning. R Vedantam et al.[14]proposes the CIDEr metric,
a consensus-based evaluation measure for image captioning that
considers consensus among multiple reference captions, addressing
limitations of previous metrics. CIDEr takes into account multiple
valid caption variations and provides a more robust and compre-
hensive evaluation of caption quality. Utilizing the Twins-PCPVT
model, Weinan Dai et al.[1] converts fundus images into embed-
dings, enhancing the efficiency and accuracy of diabetic retinopathy
detection. A Radford et al.[11] Generative Adversarial Networks
(GANs) showcased potential in generating images from text descrip-
tions. However, the unidirectional nature of the approach restricted
its applicability to image-to-text tasks. Saad M.Darwith et al.[2]
investigate the use of Type-2 Fuzzy Logic as a means to bridge the
semantic gap in Content-Based Image Retrieval (CBIR) systems.
Their findings highlight the potential of this approach in enhancing
image retrieval accuracy by addressing inherent uncertainties in
semantic interpretations. J Lu et al.[8]showcased advancements
in vision-and-language tasks by jointly pretraining on multiple
vision and language tasks. However, the focus was broader, and the
fine-grained image-to-text transformation remained a challenge.

In the subsequent sections, we delve into our ensemble approach,
unveiling its architectural intricacies, data preprocessing strategies,
evaluation metrics, and empirical findings. Through comprehensive
analysis, we highlight the distinct advantages of our approach,
thereby contributing to the broader landscape of image-to-text
transformation.

3 ALGORITHM AND MODEL
Our ensemble learning approach harnesses the power of two intri-
cately designed models, both of which are built upon the foundation
of the CLIP framework. Collectively, they collaborate to amplify the
image-to-text transformation process, harnessing the exceptional
abilities of CLIP.

3.1 CLIP Model
The CLIP model, which incorporates elements of the Vision Trans-
former (VIT), forms the foundation of our approach, providing a
powerful framework for processing both images and text and gen-
erating embeddings in a shared semantic space. The architecture of
the CLIP model, which includes VIT, is illustrated in Figure 1[10].

The CLIP model consists of a shared vision and language encoder.
Leveraging the capabilities of VIT, the model employs self-attention
mechanisms to capture intricate details within images. This inte-
gration allows CLIP to effectively process and represent visual
information. Given an input image and text, the model projects
them into a common space where the similarity between their
embeddings reflects their semantic correspondence. This inherent
ability of CLIP, enhanced by VIT, forms the basis for our subsequent
enhancements.

The Vision Transformer (VIT)[16] is a crucial component in-
tegrated into the CLIP model. VIT is an image processing model
that utilizes self-attention mechanisms to analyze and capture the
relationships between different parts of an image. By incorporating
VIT, the CLIP model gains the capability to understand images
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Figure 1: Architecture of the CLIP Model

at a more granular level, enabling it to extract meaningful visual
features and representations. This integration not only enhances
the model’s ability to process images but also contributes to the
generation of semantically meaningful embeddings.

3.2 Model A - Enhanced Image-to-Text
Transformation

To optimize the process of image-to-text transformation, we in-
troduce Model A, which enhances the capabilities of the CLIP
model through the incorporation of additional neural network lay-
ers. Model A is designed to refine the visual embedding of an input
image and generate an enriched text embedding.

The computation within Model A begins with passing the input
image through the pre-trained CLIP vision model, resulting in a
high-dimensional visual embedding denoted as Image_Embedding.
This visual representation captures the salient features of the image
in the context of semantic understanding.

Figure 2: Architecture of Model A - Enhanced Image-to-Text
Transformation

To enhance the visual embedding, Model A introduces two addi-
tional fully connected layers, FC1 and FC2, followed by layer nor-
malization operations Norm1 and Norm2. These layers iteratively
refine the feature representation, extracting intricate relationships
inherent in the image data.

The out of FC1 is computed as follows:

FC1_Out = FC1(Image_Emb) (1)
Subsequently, the output is normalized using layer normalization

to yield Norm1_Out:

Norm1_Out = Norm1(FC1_Out) (2)
Similarly, FC2 and Norm2 operations further enhance the fea-

tures, resulting in Norm2_Out.
To produce the enriched text emb, Model A employs a weighted

combination of Norm1_Out and Norm2_Out using the following
equation:

Final_Text_Emb = 𝛼 · Norm1_Out + (1 − 𝛼) · Norm2_Out (3)

This fusion mechanism empowers Model A to adaptively in-
tegrate the refined visual features, resulting in an enriched text
embedding that encapsulates both the original visual content and
its semantic nuances.

To facilitate effective training, we employ a differential learn-
ing rate strategy. Specifically, the pre-trained CLIP vision model is
fine-tuned using a relatively small learning rate 𝑙𝑟vision, while the
newly introduced fully connected layers FC1 and FC2, along with
layer normalization operations Norm1 and Norm2, use a larger
learning rate 𝑙𝑟fc. This method guarantees a harmonious parameter
adjustment between the existing pre-trained model and the freshly
incorporated layers. The pre-trained CLIP model, having been op-
timized on an extensive dataset, demands nuanced tweaks, while
the newly added layers necessitate more substantial updates owing
to their random initialization.

3.3 Model B - Zero-Shot Learning and
KNN-based Fusion

Model B capitalizes on the inherent zero-shot learning [15] capabil-
ities of the CLIP model, extending its applicability to image-to-text
transformation tasks. The architecture of Model B integrates image
embeddings with their corresponding text embeddings through a
K-nearest neighbors (KNN) based fusion approach. This enables
a seamless cross-modal interaction, leveraging the rich semantic
understanding of CLIP for enhanced image-to-text transformation.

The first step of Model B[10] involves utilizing the CLIP model to
generate both image embeddings and text embeddings for a diverse
set of images and their corresponding textual descriptions. This
forms a basis for zero-shot learning, enabling Model B to generalize
to unseen image-text pairs during testing.

Figure 3: Zero-Shot Learning Architecture in Model B
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For each image embedding, Model B employs a K-nearest neigh-
bors (KNN) model to retrieve a set of nearest neighbor text em-
beddings. The KNN-based approach introduces a distance-based
weighting mechanism, which captures the relevance and contex-
tual significance of each neighbor. This distance-based weighting
is calculated using the following formula:

Weight(𝑖) = 1
Distance(𝑖)Distance_Dim + 𝛿

× Coef (4)

Where Distance(𝑖) is the Euclidean distance between the query
image embedding and the 𝑖th neighbor text embedding, Distance_Dim
controls the influence of distance, and 𝛿 is a small positive constant
to ensure numerical stability, and Coef is a coefficient to prevent
overflow.

The weighted contributions from all neighbors are then aggre-
gated to form the final text embedding. Mathematically, given an
image embedding Image_Emb, the KNN-based fusion mechanism
generates the text embedding Text_Emb as:

Text_Emb =
1
𝐾

𝐾∑︁
𝑖=1

Weight(𝑖) × KNN_Text_Emb𝑖 (5)

Here,𝐾 represents the number of nearest neighbors, KNN_Text_Emb𝑖
refers to the 𝑖th nearest neighbor text embedding.

In summary, Model B extends the zero-shot learning capabilities
of the CLIP model to image-to-text transformation. The KNN-based
fusion approach intelligently combines image and text emb, with
distance-based weighting to capture contextual relevance, result-
ing in an enriched text representation that reflects the underlying
semantics.

Figure 4: K-Nearest Neighbors Fusion in Model B

3.4 Model Ensemble
This ensemble leverages the strengths of each constituent, yielding
a powerful image-to-text transformation framework.

The integration process merges the semantically rich embed-
dings from the trained CLIP model with the contextual embeddings
produced by the CLIP kNNRegression model. This fusion aims
to leverage CLIP’s interpretive capabilities alongside the nuanced
contextual understanding of kNNRegression, creating a unified
ensemble embedding. The ensemble embedding is calculated as
follows:

Ens_Emb = 𝛼 × A_Emb + (1 − 𝛼) × B_Emb (6)
Where 𝛼 represents the adjusted weighting coefficient.
The model ensemble embodies the symbiotic relationship be-

tween themodel A andmodel B, resulting in a dynamic and versatile
image-to-text transformation framework. The subsequent sections
delve into empirical evaluation and findings, substantiating the
effectiveness and potential of our ensemble approach.

3.5 Data Preprocessing
Effective data preprocessing is pivotal to the success of our ensemble
learning approach for image-to-text transformation. We employ a
series of meticulous steps to enhance the quality and suitability of
our input data.

3.5.1 Data Augmentation. Data augmentation is employed to en-
hance the diversity and robustness of our training dataset. For im-
ages, we apply random transformations such as rotations, flips, and
crops to generate augmented versions of the original images. For
text, we perform synonym replacement and random word shuffling
to create variations of the input text descriptions.

3.5.2 Cosine Similarity Filtering. To streamline the dataset and
enhance model performance, we transform textual prompts into
embedding. These embedding encapsulate intricate semantic infor-
mation within the embedding space. To quantify the resemblance
between two embedding vectors, we utilize the cosine similarity
formula:

Cosine Similarity(𝑣𝑖 , 𝑣 𝑗 ) =
𝑣𝑖 · 𝑣 𝑗

∥𝑣𝑖 ∥ · ∥𝑣 𝑗 ∥
(7)

Here, 𝑣𝑖 and 𝑣 𝑗 denote the embedding vectors associated with
two distinct textual prompts.

For each textual prompt within the training dataset, we compute
the cosine value with the embedding vectors of other prompts. By
applying a designated similarity threshold (e.g., 0.85), in cases where
the similarity between a prompt and any other prompt surpasses
this threshold, we opt to remove one of the samples to ensure a
diverse dataset composition.

This filtering step not only enhances model performance but also
leads to improved training efficiency. Specifically, the reduction in
dataset size from 90K to 60K instances has resulted in an enhance-
ment of the model’s metric, along with a reduction in training time
per epoch from 6 hours to 4 hours. These improvements collec-
tively contribute to the effectiveness and efficiency of our ensemble
learning approach for image-to-text transformation tasks.

3.6 Performance Measurement
To gauge model performance, we utilize the following metric:

Avg-Cos =
1
𝑁

𝑁∑︁
𝑖=1

CosSim(GT-Embed𝑖 , Pred-Embed𝑖 ) (8)

Where Avg-Cos denotes the average cosine similarity,𝑁 signifies
the total image-text pairs, and CosSim(GT-Embed𝑖 , Pred-Embed𝑖 )
represents the cosine value between the groundtruth text embed-
ding and the predicted embedding for the 𝑖-th pair. This metric
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Table 1: Average Cosine Similarity Results

Model Avg-CosSim

CLIP 0.5642
CLIP with data filter1 0.5684
CLIP with data filter2 0.5721

Model A 0.5753
Model B 0.5531

Ensemble Model 0.5961

quantifies the alignment and semantic coherence between images
and their textual descriptions. Higher Avg-CosSim values indicate
more robust semantic alignment and enhanced image-to-text trans-
formation, showcasing the effectiveness of our ensemble learning
approach.

3.7 Experiment Results
We conducted comprehensive experiments to evaluate the per-
formance of our proposed ensemble approach for image-to-text
transformation. In our experiments, we employ the Average Cosine
Similarity (Avg-CosSim) as the evaluation metric, assessing the
correspondence between the embeddings generated by the model
and the actual ground truth representations.

The outcomes presented in Table 1 unmistakably showcase the
efficacy of our ensemble approach. The Ensemble Model achieves
the highest Avg-CosSim, indicating a superior alignment between
the generated embeddings and ground truth representations com-
pared to other individual models. Model A, with its elaborated
architecture, also outperforms the standalone CLIP models and
Model B. These findings underscore the value of our ensemble
strategy in enhancing image-to-text transformation.

The comparative experiments validate the promising trajectory
of ensemble learning in addressing intricate multimodal tasks and
further contribute to advancing the state-of-the-art in image-to-text
transformation.
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