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Abstract

Kronecker Matrix-Matrix Multiplication (Kron-Matmul) is
the multiplication of a matrix with the Kronecker Product
of several smaller matrices. Kron-Matmul is a core opera-
tion for many scientific and machine learning computations.
State-of-the-art Kron-Matmul implementations utilize exist-
ing tensor algebra operations, such as matrix multiplication,
transpose, and tensor matrix multiplication. However, this
design choice prevents several Kron-Matmul specific opti-
mizations, thus, leaving significant performance on the table.
To address this issue, we present FastKron, an efficient

technique for Kron-Matmul on single and multiple GPUs.
FastKron is independent of linear algebra operations en-
abling several new optimizations for Kron-Matmul. Thus, it
performs up to 40.7× and 7.85× faster than existing imple-
mentations on 1 and 16 GPUs respectively.
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1 Introduction

Kronecker Matrix is a widely used data format in machine
learning [8, 15, 23, 29, 35, 46, 51, 52] and scientific computa-
tions [10, 18, 50]. A Kronecker Matrix is a block matrix of
shape PM × QN and is the result of the kronecker product of
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twomatrix factors of shape P×QandM×N.KroneckerMatrix-
Matrix Multiplication (Kron-Matmul) is the multiplication
of an input matrix with a kronecker matrix. Kron-Matmul
is the key operation for computations that represents their
data as a Kronecker Matrix. For example, training Gauss-
ian Processes (GPs), which are a class of machine learning
models, involves multiplication of GPs’ kernel matrix with
the dataset matrix. In several state-of-the-art GPs [51, 52],
the kernel matrix is a kronecker product of smaller matrix
factors. Hence, training of these GPs involves Kron-Matmul
of the kernel matrix with the training dataset matrix.
There are two existing algorithms for Kron-Matmul: the

shuffle algorithm [11] and the fused tensor matrix multiply
transpose (FTMMT) algorithm [27]. Both algorithms run for
multiple iterations, where at each iteration, algorithms multi-
ply the input matrix with a factor to generate an intermediate
matrix. This intermediate of an iteration is the input for the
next iteration. These algorithms differ in how they perform
the multiplication in each iteration. The shuffle algorithm
uses a series of reshape, matrix multiplication, and trans-
pose operations. Existing single-GPU implementations of the
shuffle algorithm, GPyTorch [16] and PyKronecker [7], use
NVIDIA cuBLAS [1] for matrix multiplication and generate
optimized transpose kernels. Similarly, the multi-GPU im-
plementation in Cyclops Tensor Framework (CTF) [42] uses
distributed matrix multiplication and transpose. The FTMMT
algorithm represents the input matrix as a multi-dimensional
tensor and fuses the transpose and multiplication using lin-
ear algebra engines, such as COGENT [25] and cuTensor [2]
for single-GPU and Distal [53] for multi-GPU. Hence, both
algorithms use existing linear algebra operations.

However, due to this design choice, these implementations
miss several Kron-Matmul specific optimizations leading to
the following three inefficiencies. First, the transpose in the
shuffle algorithm is significantly expensive. Our experiments
found that the transpose step can take up to 80% of the total
execution time on both single- and multi-GPU executions.
Second, linear algebra GPU kernels are not optimized for
Kron-Matmul. For example, the matrix multiplication in the
shuffle algorithm is performed on small and rectangular
matrices, which is an inefficient case for NVIDIA cuBLAS.
Moreover, when caching data from the global to shared mem-
ory, COGENT performs a high number of shared memory
bank conflicts. Third, linear algebra operations used in both
algorithms require full intermediates in the global memory at
each iteration, leading to unnecessary loads and stores from
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the global memory. This process can be optimized by fusing
multiple linear algebra operations in a single kernel. How-
ever, existing implementations cannot perform this fusion
because they use general linear algebra operations instead of
Kron-Matmul specific operations. Similarly, multi-GPU im-
plementations communicate per GPU intermediate at every
iteration, leading to high communication volume.

In this paper, we present FastKron to address above limi-
tations. FastKron’s Kron-Matmul algorithm is not based on
existing linear algebra operations and thus, enables new opti-
mizations for single- and multi-GPU scenarios. FastKron’s
algorithm divides rows of the input matrix into slices of size
equal to the factor’s column and multiplies each slice with
all columns of the factor (Section 3). Then the algorithm
stores consecutive elements in the intermediate matrix as
the multiplication of consecutive slices with same column.
Thus, our algorithm writes output elements at the correct
index, removing the need for memory shuffle operations like
transpose and reshape. FastKron’s GPU implementation
contains a novel tiling methodology that assigns multiple
slices and columns to each thread (Section 4). The implemen-
tation caches inputs in the shared memory while minimizing
the shared memory bank conflicts and performing coalesced
global memory accesses (Section 4.1). The algorithm also en-
ables us to fuse multiplications with multiple factors in a sin-
gle GPU kernel by storing intermediates in the shared mem-
ory, leading to reduced global memory accesses (Section 4.2).
Furthermore, FastKron’s multi-GPU implementation mini-
mizes the communication volume by performing multiple
local multiplications on each GPU before communicating
the intermediate of the last local multiplication (Section 5).

FastKron provides significant performance speedup over
state-of-the-art single and multi-GPU Kron-Matmul imple-
mentations. On an NVIDIA Tesla V100 GPU, FastKron pro-
vides up to 40.7× speedup over GPyTorch [16], 6.40× over
COGENT [25], and 5.41× over cuTensor (Section 6.2.3). On
a system with 16 NVIDIA Tesla V100 GPUs, FastKron per-
forms 7.85× better than CTF [42] and 5.33× better than Dis-
tal [53] (Section 6.3). We also integrated FastKron into
GPyTorch to reduce the training time of several Gaussian
Process techniques by up to 6.20×. FastKron is publicly
available at https://github.com/abhijangda/fastkron.

2 Kronecker Matrix-Matrix Multiplication

This section presents existing algorithms for KroneckerMatrix-
Matrix Multiplication and their limitations.
A Kronecker Matrix of GP1P2×Q1Q2 is the result of the kro-

necker product of two matrices F1P1×Q1 and F2P2×Q2 , such that:

GP1P2×Q1Q2 = F
1
P1×Q1 ⊗ F

2
P2×Q2 =


𝑓 111F

2 . . . 𝑓 11Q1F
2

...
...

...

𝑓 1P11F
2 . . . 𝑓 1P1Q1F

2



We refer to matrices F1P1×Q1 and F2P2×Q2 asKronecker factors of
GP1P2×Q1Q2 . We refer to the operation of multiplying the Kro-
necker product of N factors FiPi×Qi with XM×∏i Pi to compute
YM×∏i Qi as Kron-Matmul. In this section, for simplicity we
consider all factors are of the same shape P×Q. A naive algo-
rithm for Kron-Matmul computes the Kronecker matrix and
then matrix multiply (Matmul) it with X. However, this algo-
rithm results in a high complexity of O(MPNQN). We now
present two state-of-the-art algorithms for Kron-Matmul
that are faster than the naive algorithm.

2.1 The Shuffle Algorithm

The shuffle algorithm [11] avoids computing the Kronecker
matrix. The shuffle algorithm runs for N iterations from N
to 1, with each iteration performing three steps. An iteration
𝑖 generates an intermediate matrix Y

i
M×QN+1−iPi−1

, which is
also the input for the next iteration. Figure 1 shows Kron-
Matmul of XM×P2 with two factors F1P×Q and F

2
P×Q. The first

iteration multiplies X with the last factor F2. First, step (a)

reshapes XM×P2 to XMP×P and then multiply XMP×P with
F
2
P×Q to obtain Y

2
MP×Q (Figure 1a). Then, step (b) reshapes

Y
2
MP×Q to Y

2
M×P×Q and transposes the last two dimensions

of Y2
M×P×Q (Figure 1b). Finally, step (c) reshapes Y2

M×Q×P to
Y
2
M×QP (Figure 1c). The next iteration performs above steps

with Y
2
M×QP and F

1
P×Q to get the final result of Kron-Matmul,

Y
1
M×Q2 . The shuffle algorithm performs O(MP

∑N
i=1 Q

N−iPi)
computations, which is better than the naive approach.
Limitations State-of-the-art GPU based implementations of
the shuffle algorithm, GPyTorch [16] and PyKronecker [7],
uses NVIDIA cuBLAS MatMul in step (a) and an efficient
GPU kernel for transposing two inner dimensions of a 3-
D tensor for step (b). However, this transpose of the 3-D
tensor cannot be fused with the Matmul. Since all transpose
steps in the algorithm performs O(M∑N

i=1 Q
N−iPi) memory

accesses, both implementations spends up to 80% of the total
time in the transpose. Moreover, the cuBLAS Matmul is not
optimized for multiplying a large skinny and small matrix.

2.2 Fused Tensor-Matrix Multiply Transpose

We can avoid the expensive transpose operation by repre-
senting the input XM×PN and intermediates Yi

M×QN+1−iPi−1
as

3 dimensional tensor and fusing the transpose with the com-
putation using tensor multiplication engines [25, 32]. This
algorithm, which we call as Fused Tensor-Matrix Multiply
Transpose (FTMMT) algorithm [27] works as follows. The
algorithm goes from N to 1 iterations and in an iteration 𝑖

multiplies the tensor with the 𝑖𝑡ℎ factor and transposes the
last two dimensions then reshape to the columns of next
factor. Consider Kron-Matmul of XM×P3 with factors F1P×Q,
F
2
P×Q, and F

3
P×Q. In the first iteration, we reshape XM×P3 to

3-D tensorXM×P2×P. Then, we multiply the last dimension of

https://github.com/abhijangda/fastkron
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reshape(X2×4 → X4×2 ) × F
2
2×2 = Y

2
4×2 =

𝑥11 × 𝑓 211 + 𝑥12 × 𝑓 221 𝑥11 × 𝑓 212 + 𝑥12 × 𝑓 222
𝑥13 × 𝑓 211 + 𝑥14 × 𝑓 221 𝑥13 × 𝑓 212 + 𝑥14 × 𝑓 222
𝑥21 × 𝑓 211 + 𝑥22 × 𝑓 221 𝑥21 × 𝑓 212 + 𝑥22 × 𝑓 222
𝑥23 × 𝑓 211 + 𝑥24 × 𝑓 221 𝑥23 × 𝑓 212 + 𝑥24 × 𝑓 222


(a) Reshape X and compute Y2 = X × F

2

trans(reshape(Y2
4×2 → Y

2
2×2×2 ), 1, 2) =

[ ∑2
i=1 𝑥1i × 𝑓 2i1

∑2
i=1 𝑥1i × 𝑓 2i2∑4

i=3 𝑥1i × 𝑓 2i
2 1

∑4
𝑖=3 𝑥1i × 𝑓 2i

2 2

]
[ ∑2

i=1 𝑥2i × 𝑓 2i1
∑2

i=1 𝑥2i × 𝑓 2i2∑4
i=3 𝑥2i × 𝑓 2i

2 1

∑4
i=3 𝑥2i × 𝑓 2i

2 2

]


(b) Transpose last dimensions of Y22×2×2

reshape(Y2
2×2×2 → Y

2
2×4 ) = Y

2
2×4 =

∑2
i=1 𝑥1i × 𝑓 2i1

∑4
i=3 𝑥1i × 𝑓 2i

2 1

∑2
i=1 𝑥1i × 𝑓 2i1 . . .∑2

i=1 𝑥2i × 𝑓 2i1
∑4

i=3 𝑥2i × 𝑓 2i
2 1

∑2
i=1 𝑥2i × 𝑓 2i1 . . .


(c) Reshape to Y

2
2×4

Figure 1. First iteration of the shuffle algorithm for Kron-Matmul of X2×4 and F
1
2×2 ⊗ F

2
2×2. Reshape transforms shape of a

tensor to other shape. Transpose exchanges the elements of two dimensions of a multi-dimensional tensor.[
𝑥11 𝑥12 𝑥13 𝑥14
𝑥21 𝑥22 𝑥23 𝑥24

]
×
[
𝑓 211 𝑓 212
𝑓 221 𝑓 222

]
(a) Sliced-Multiply 1st col of F2 with 1st
row of X to get first 2 elements of Y2

[
𝑥11 𝑥12 𝑥13 𝑥14
𝑥21 𝑥22 𝑥23 𝑥24

]
×
[
𝑓 211 𝑓 212
𝑓 221 𝑓 222

]
(b) Sliced-Multiply 2nd col of F2 with 1st
row of X to get next 2 elements of Y1

Y
2 =


∑2

i=1 𝑥1i × 𝑓 2i1
∑4

i=3 𝑥1i × 𝑓 2i
2 1

∑2
i=1 𝑥1i × 𝑓 2i1 . . .∑2

i=1 𝑥2i × 𝑓 2i1
∑4

i=3 𝑥2i × 𝑓 2i
2 1

∑2
i=1 𝑥2i × 𝑓 2i1 . . .


(c) Do steps (a) and (b) with both rows of X to get Y2

Figure 2. First iteration of the FastKron Kron-Matmul algorithm of X2×4 with F
1
2×2 ⊗ F

2
2×2. Elements of Y2 with the same

color are generated by a column of F2 with the same color. The result of first iteration, Y2, is same as in Figure 1.

XM×P2×P with the last factor F3P×Q, to obtainY
3
M×P2×Q. Finally,

we transpose the second and last dimensions of Y3
M×P2×Q to

Y
3
M×Q×P2 and reshape to Y3

M×QP×P The second iteration mul-
tiplies Y3

M×QP×P with F
2
P×Q and transposes the first and last

dims of the result and reshape to Y
2
M×Q2×P. Similarly, the

third iteration multiplies with F
1
P×Q to obtain Y

1
M×Q2×Q and

reshape to Y
1
M×Q3 .

Limitations Although existing single- and multi-GPU ten-
sor multiplication systems, COGENT [25], cuTensor [2], and
Distal [53], improves over the shuffle algorithm, they do not
execute each iteration efficiently and do not optimize across
iterations. For example, COGENT caches data in fast mem-
ories using the standard approach, i.e., cache contiguous P
elements of the last dimension from the shared memory to
P registers of consecutive threads. This approach leads to
shared memory bank conflicts because every P element lies
in the same shared memory bank when P is a multiple of the
number of banks. Moreover, these systems store the output
intermediate of the current iteration in the global memory
and load the intermediate in the next iteration, leading to
high memory accesses and communication volume.

In summary, existing implementations perform high mem-
ory accesses and high communication volume because they
do not optimize for Kron-Matmul.

3 The FastKron Algorithm

This section presents a novel Kron-Matmul algorithm, which
enables us to develop new optimizations for Kron-Matmul.
Algorithm 1 is FastKron’s algorithm for Kron-Matmul.

For brevity, we present the algorithm for the common case in
our evaluation dataset, where all Kronecker factors are of the
same shape. However, it is straightforward to generalize this
algorithm to factors of different shape. The algorithm works

as follows. First, the algorithm allocates two intermediate
matrices and set the number of cols of input matrix for the
first iteration (line 3–5). These intermediates are swapped
after every iteration. The algorithm starts the multiplica-
tion from the last factor (lines 6–17). For each factor, the
algorithm first computes number of cols of the output inter-
mediate (line 8). Then the algorithm performs Sliced Multiply
for each row of X with all columns of Fi, where it divides
the row into slices of size P (line 10) and multiplies each
slice with each column of Fi (line 14). Then, the algorithm
writes the result of each slice and column in Y

1 (line 15).
Finally, the algorithm returns the final result (line 18). The
algorithm performs O(MP

∑N
i=1 Q

N−iPi) computations and
O(M∑N

i=1 Q
N−iPi) memory accesses. Hence, the ratio of com-

putations to memory accesses is P.
Figure 2 shows an example of Kron-Matmul of X2×4 and

F
1
2×2⊗F

2
2×2 using FastKron’s algorithm. First, both columns

of F2 are multiplied with each slice of each row of X (Fig-
ure 2a). Two elements generated by sliced multiplication of
the first column of F2 are stored as the first two elements
of the first row of Y2. Then, elements generated by sliced
multiplication of the second column of F2 are stored as the
third and fourth elements of the first row of Y2 (Figure 2b).
Finally, the intermediate result with the current factor, Y2, is
used as the input matrix for the next factor.
Comparison with Existing Algorithms There is a key
difference that separates FastKron’s algorithm and MatMul.
In MatMul, consecutive elements in a row of the output
are the result of multiplication of consecutive columns of
the second matrix with the same row of the first matrix.
However, in FastKron’s algorithm, consecutive elements
are obtained by multiplying consecutive slices of rows with
the same column of the factor. Thus, FastKron’s algorithm
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Algorithm 1 The FastKron Kron-Matmul algorithm

1: Input: Matrix XM×PN and N Kronecker Factors FiP×Q
2: Output: Result of Kron-Matmul of X with all N F

is
3: Y1 and Y

2 are new matrices of size M ×maxNf=0 (Q
N−fPf)

4: Y1 = X ⊲ Copy X to Y
1

5: K = PN ⊲ Input Intermediate No. of Cols
6: for f = N → 1 do
7: for i = 1 → M do

8: L = (K÷P) ×Q ⊲ Output Intermediate No. of Cols
9: for j = 1 → L do ⊲ Sliced-Multiply X row and F

f col
10: rowSlice = (j × P) mod K
11: kCol = (j ÷ PN−1) mod P
12: acc = 0
13: for k = 1 → P do ⊲ Sliced Multiply Accumulate
14: acc += Y

0[i][rowSlice + k] × F
f[k][kCol]

15: Y
1[i][j] = acc

16: Y
1,Y2 = Y

2,Y1 ⊲ Swap intermediates
17: K = L
18: return Y

1

writes output elements at the right index, removing any need
for extra memory operations, like transpose.

4 FastKron’s CUDA Implementation

This section presents FastKron’s CUDA kernel with an
efficient shared memory caching technique (Section 4.1) and
fusion of multiple sliced multiplications (Section 4.2).

FastKron provides Python andC++APIs for Kron-Matmul
for several data types, including float and double. All the
API functions call into a type generic C++ implementation
of Algorithm 1. The implementation executes the loop of
lines 6–17 of Algorithm 1 and returns the output. The im-
plementation invokes SlicedMultiplyKernel (in Figure 3)
to sliced-multiply XM×K and FP×Q to generate YM× KQ

P
. The

kernel takes global memory addresses for X, F, and Y, along
with their shapes. Each thread block of the kernel performs
the following steps:
1. Load slices of rows of X and cols of F into shared memory.
2. Load part of slices from the shared memory to registers.
3. Perform sliced multiply accumulate on register buffers to
compute multiple elements of Y.

4.When elements of Y are computed, transfer elements from
registers to global memory.

The above workflow is similar to NVIDIA CUTLASS [3]
and BLIS [48] but with differences in the shared memory
caching and element to thread assignment optimized for
Kron-Matmul. We now explain above steps in Figure 3 using
an example workflow for Y2×512,X2×512, and F8×8 in Figure 4.
ThreadBlockTiles Each thread block slicedmultiply {TM, TK}
block of XM×K with TQ cols of FP×Q to produce a block
of

{
TM,

(
TK
P × TQ

)}
of Y. Thus, the kernel is invoked with

1 Ks = (Slices = (TK/P))*TP;

2 shared T Xs[TM][Ks], Fs[TP][TQ];

3 register T Yr[TM][RK][RQ]={0};

4 // Compute Element Locations in Y

5 yQ = (tid.x / Slices) * RQ;

6 yK = (tid.x % Slices) * RK;

7 for(tP = 0; tP < P; tP += TP){

8 /*Step 1: Global to Shared Memory */

9 ShiftGToS(Xg, Xs, K, TM, TP, Ks, RK);

10 DirectGToS(Fg, Fs, Q, TP, TQ);

11 syncthreads ();

12 for(rP = 0; rP < TP; rP += RP){

13 register T Xr[TM][RK][RP], Fr[RP][RQ];

14 /*Step 2: Shared to Registers */

15 ShiftSToR(Xs, Xr, rP, yK, RK, RP, TM, TP);

16 DirectSToR(Fs, Fr, rP, TP, TQ, RQ);

17 /*Step 3: Multiply Accumulate */

18 for(m = 0; m < TM; m++) for(k = 0; k < RK; k++)

19 for(q = 0; q < RQ; q++) for(p = 0; p < RP; p++)

20 Yr[m][k][q] += Xr[m][k][p] * Fr[p][q];

21 } syncthreads ();}

22 /*Step 4: Registers to Global Memory */

23 for(r = 0; r < TM; r++)

24 for(b = 0; b < RQ; b++) for(e = 0; e < RK; e++){

25 yRow = r + bid.x*TM;

26 yCol = (yQ + b) * (TK/P) + yK + e;

27 yCol = (yCol / (TK/P)) * (K/P) +

28 bid.y * (TK/P) + yCol % (TK/P);

29 Y[yRow * K + yCol] = Yr[r][b][e];}

Figure 3. FastKron’s SlicedMultiplyKernel for XM×K
and FP×Q to compute YM× KQ

P
. Shift* and Direct* transfers

data from global/sharedmemory to sharedmemory/registers.

{
M
TM
, K
TK
,

Q
TQ

}
threadblocks. Each thread produces RK × RQ el-

ements for each TM row. Thus, each thread block contains
TK÷P
RK

× TQ
RQ

threads. In Figure 4a, each threadblock sliced-
multiply TP × TK = 512 block of X2×512 with TQ = 2 cols of
F8×8 to produce 512

8 × 2 = 128 elements of a row of Y2×512.
Global to Shared Memory Each thread block caches TP
elements of slices of rows of X and cols of F in the shared
memory (lines 9–10 in Figure 3). The main loop of the kernel
iterates over all TP tiles and multiplies TP elements of slices
and cols to produce elements of Y (lines 7–21). In Figure 4a,
the thread block caches TP = 4 elements of each slice and
col in the shared memory. Section 4.1 presents our efficient
shared memory access approach to minimize bank conflicts.
Shared Memory to Registers A thread loads RK slices of
X and RQ cols of F from the shared memory to registers
(lines 15–16 in Figure 3). These slices and columns are mul-
tiplied to compute RK × RQ elements of Y. Therefore, higher
values of RK increases the reuse of cols of F and higher values
of RQ imply higher reuse of slices of X. Figure 4b shows that
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 F8x8

   
TM=1

X2x512 Y2x512

TP=4
elems

T P
=4

Xs

Fs

slice 1

64 64

64 x 2 elemsslice 64

TQ=2 cols

(a) Thread block 0 is assigned to 1st row of X and 2 cols of F to
produce 512

8 ×2 = 128 elements ofY. The thread block load 4 elements
of all 64 slices into Xs and of columns into Fs, and multiplies each
slice and column to produce partial 128 elements of Y. Then, the
thread block moves to the next 4 elements, and updates partial
elements to get its final elements.

RP=2 
elems

R
P
=2

Xs

Fs

Xr

Fr

Y

Yr

2 elemsslice 1 slice 64

RK=2 slicesRQ=2 cols

RK*RQ=4 elems

(b) Thread 0 is assigned to first 2 slices of Xs and all 2 cols of Fs to
produce 4 elements of Yr. A thread loads 2 elements of both slices in
Xr and of cols in Fr, and multiplies each slice and column to produce
4 partial elements. Then, the thread moves to next 2 elements and
updates partial elements to get final elements. Elements for col 1
are stored at index 0 and for col 2 are stored at index 64 of Y.

Figure 4. FastKron’s tiling to sliced-multiply X2×512 and F8×8 to produce Y2×512 with TM = 1, TK = 512, TQ = 2, TP = 4, RP =
2, RQ = 2, RK = 2. There are 512

8 = 64 slices for each X row. The CUDA kernel is invoked with
{ 2
1 ,

512
512 ,

8
2
}
threadblocks. Xs and

Fs are shared memory buffers. Xr, Fr, and Yr are register buffers.

each thread loads RP = 2 elements of RK = 2 slices and of
RQ = 2 columns to register buffers (Xr and Fr).
Elements to Thread Mapping Each thread computes RK ×
RQ elements of Y stored in registers. The thread controls
the computation intensity using RP, i.e., each thread loads
and multiplies RP elements of RK slices of X and RQ cols of F
(lines 12–21 in Figure 3). In Figure 4b, with RK = RQ = 2, two
slices are multiplied with two cols to obtain 4 elements of Y.
Registers to Global MemoryAfter computing its elements,
each thread stores these elements toY (line 23–29 in Figure 3).
Since consecutive elements of Y are obtained by multiplying
slices of X with the same col of F, all RK elements are stored
consecutively. Moreover, a group of RK elements for a col
𝑐 are stored at the address starting from 𝑐 × K

P . Therefore,
the thread computes its index in Y (lines 5–6 in Figure 3)
and write elements. In Figure 4b, the RK = 2 elements for the
first col of F are stored at indices starting from 0, while the
elements for the second col are stored at indices 1× 512

8 = 64.

4.1 Efficient Data Movement

This section describes FastKron’s shift caching that mini-
mizes shared memory bank conflicts in our algorithm.

The standard approach, which we call direct caching, trans-
fers data from the global to shared memory by assigning
consecutive threads to contiguous elements and loads con-
tiguous elements from the shared memory to registers of
consecutive threads. This method is used in Matmul and ten-
sor contractions of CUTLASS [3] and COGENT [25]. How-
ever, using this method, in our case, leads to high shared
memory bank conflicts. In Figure 4b, as TP = 4, thread 0 load
elements 0–3 of slice 0 stored in Xs[0] to Xs[3], and thread
1 load elements 0–3 of slice 2 stored in Xs[8] to Xs[11]. If

the number of banks, i.e., warpSize, is 4, then all elements
at Xs[0], Xs[8], . . . , Xs[64] fall into the same bank leading
to 4 conflicts for every read.

FastKron’s shift caching performs coalesced global mem-
ory accesses and minimizes shared memory bank conflicts
to ⌈ WarpSizeTP

⌉. Figure 5 shows the implementation of the shift
caching. When loading from the global to shared memory
ShiftGToS finds the slice index for each element and shifts
the element forward by the ratio of the slice index and
the number of slices per thread (RK) (line 4). Consequently,
when loading elements from the shared memory to regis-
ters, ShiftSToR takes the starting slice index of the thread,
divides it by the number of slices per thread to obtain the
shift, and shifts the element back in the thread’s register
tile (lines 10–13). In Figure 4b, thread 1 stores slice 2 to the
shared memory by shifting elements forward by 2

RK
= 1, i.e.,

elements 0–2 are stored at Xs[9]–X[11], and element 3 is
stored at Xs[8]. Similarly, when storing slice 4, thread 2 shift
all elements forward by 4

RK
= 2 and stores element 0 of this

slice at Xs[14]. When loading to registers, thread 1 loads ele-
ment 0 of slice 2 from Xs[9]while thread 2 loads element 0 of
slice 4 from Xs[14]. If warpSize is 4, Xs[9] and Xs[14] fall
in different banks, avoiding any bank conflicts. Section 6.2.2
shows the effectiveness of the shift method in reducing bank
conflicts over the direct method in COGENT [25] and cuTen-
sor [2].

4.2 Fusing Consecutive Sliced Multiplications

This section describes FastKron’s fusion mechanism that
perform multiple sliced multiplications in a single kernel
leading to significant decrease in global memory accesses.
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1 ShiftGToS(Xg , Xs, K, TN, TP, Ks, RK){

2 for(m = 0; m < TM; m++)

3 for(k = tid; k < Ks; k += bdim) {

4 elem = k%TP; slice = k/TP; shift = slice/RK;

5 col = slice*TP + (elem + shift)%TP;

6 Xs[m][col] = Xg[(m + bid.x) * K + k];}}

7
8 ShiftSToR(Xs , Xr, rP, yK, RK, RP, TM, TP){

9 for(m = 0; m < TM; m++) for(q = 0; q < RQ; q++){

10 slice = (yK + q); shift = (yK / RK)%TP;

11 for (p = 0; p < RP; p++) {

12 elem = rP + p; round = (elem + shift)%TP;

13 Xr[m][q][p] = Xs[m][slice*TP + round ];}}}

Figure 5. FastKron’s shift caching method. ShiftGToS
caches from global to shared memory. ShiftSToR caches
from shared memory to registers.

The linear algebra kernels used by existing Kron-Matmul
implementations require inputs in the global memory. Thus,
these implementations store the output intermediate of each
multiplication in the global memory and load the interme-
diate again for the next multiplication. Since FastKron is
independent of linear algebra kernels, it can fuse consec-
utive sliced multiplications and store intermediates in the
shared memory, thereby, avoiding expensive global memory
accesses. We now discuss the working of fused kernel.
The fused kernel sliced multiplies all cols of Nfused fac-

tors with TK elements and stores the intermediate in shared
memory. Hence, the algorithm using the fused kernel runs
for ⌈ N

Nfused
⌉ iterations. After every sliced multiply the num-

ber of shared memory elements that are contiguous in the
full global memory intermediate reduces by the factor of P.
Figure 6 shows that the fused kernel for Kron-Matmul of
X1×256 and F4×4 with TK = 128, sliced multiplies Nfused = 2
factors to generate TK elements in the shared memory for
each factor. After the first sliced multiply, there are TQ1 = 4
sets of TK

P1 = 32 elements of shared memory with a stride of
32 in the global intermediate. After the second multiply, we
get TQ2 = 16 sets of TK

P2 = 8 contiguous elements with a stride
of 8 in the global intermediate. In general, after the 𝑖𝑡ℎ sliced
multiply, there are TQi sets of TK

Pi contiguous elements with a
stride of TK

Pi in the global intermediate. Thus, the fused kernel
can compute a maximum of Nfused = ⌊logP TK⌋ consecutive
sliced multiplications. Moreover, the fusion is valid when all
elements of all slices can be stored in the shared memory,
i.e., TP = P. Our experiments found this is true for P ≤ 32
and Q ≤ 32.

After the last multiply, the fused kernel transfers elements
from the shared to global memory using StoreFusedShMem
function (Figure 7). Consider storing element 41 of the shared
memory to global memory in Figure 6. The function first

Shared Mem Tile Xs1
1x128 of X1x256

c1…c4

F4

F3 Xs2

8

Xs1 ✕ c1

16

24
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88

96

104

112

120

Xs1 ✕ c2 Xs1 ✕ c3 Xs1 ✕ c4

64

72

Xs1

Xs1

Y1

Xs1 ✕ c1 Xs1 ✕ c2 Xs1 ✕ c3 Xs1 ✕ c4

…
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in GL Mem
41 to 81

96 160 22432

64 128 192

Logical view 
in Y1

Figure 6. Workflow of the fused kernel for Kron-Matmul of
X1×256 with 4 factors F4×4 and TK = 128 by the first thread
block. The kernel fuses Nfused = 2 sliced multiplications
(max is 3). A thread block sliced multiply all 4 cols of F4
and F

3 with TK shared memory elements and store them in
another shared memory buffer. After each multiplication, the
corresponding indices in global intermediate (Y1) are shown.
Finally, the output of 2nd sliced multiply is written to Y

1.

computes (i) the number of slices in global and shared mem-
ory, i.e., 64 and 32 in our example, and (ii) the slices of fusion
of Nfused factors in the global and shared memory, i.e., 16 and
8 in our example (lines 2–3). The function now iterates on
all TK elements of each row in the shared memory and store
them to global memory using the below steps: 1) Compute
the slice of the element in the shared memory tile and scale
it to the global memory (line 7), i.e., 64 in our example; 2)
Compute the fused slice index in the shared memory tile and
scale to the global memory (line 9), i.e., 16 in our example; 3)
Compute the element index within the fused slice (line 12),
i.e., 1 in our example; 4) Finally, store the element at the sum
of the above indices (line 15), i.e., at 81. Section 6.2.2 shows
that fusion is a key optimization for small P.

4.3 Autotuning Kernel Parameters

This section describes FastKron’s autotuning mechanism
to find efficient tile sizes for any Kron-Matmul shape.
Kron-Matmul can be performed on matrices of diverse

shapes. However, there is no single set of tile size parame-
ter values that performs efficiently for all shapes. Therefore,
FastKron performs auto-tuning over a range of tile size
parameter values for the given shape. The auto-tuning phase
considers all combinations of following values of tile size
parameters till the maximum shared memory usage and reg-
isters per thread is reached:
Thread Block Tile Sizes (i) TK ∈ all multiples of P till K, (ii)
TP ∈ all factors of P, (iii) TQ ∈ all factors of Q, and (iv) even
values of TM until the number of threadblocks executing in
parallel by all SMs reaches a maximum value.
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1 StoreFusedShMem(Xg, Xs, K, P, Q, Tm, TK, Nfused) {

2 XgSlics = K/P; XsSlics = TK/P;

3 XgFuseSlics=K/P**Nfused;XsFuseSlics=TK/P**Nfused;

4 for(e = tid; e < Tm * TK; e += bdim) {

5 m = e/TK; c = e%TK
6 // Scale Shared Mem Slice Idx to Global Mem Idx

7 slice = (c/XsSlics )* XgSlics;

8 // Scale Shared Fused Slice to Global Mem

9 fusedSlice = ((c%XsSlics )/ XsFuseSlics) *

10 XgFuseSlics;

11 //Elem Idx in Fused Slice

12 elem = bid.y * XsFuseSlics + c % XsFuseSlics;

13 // Column index in Global Memory

14 col = slice + fusedSlice + elem;

15 Yg[(m+bid.x*TM) * K/P*Q + col] = Xs[m*TM + c];}

Figure 7.Write output of Nfused fused sliced multiply kernels
from shared to global memory. X**Y represents XY.

Thread Tile Sizes (i) RP ∈ all factors of TP, (ii) RQ ∈ all fac-
tors of TQ, and (iv) RK ∈ all factors of TK

TP
.

This narrowing down of tile size choices based on the avail-
able resource usage and the occupancy significantly decreases
the search space of all choices. FastKron compile CUDA
kernels for all combinations of the above tile sizes in parallel
and find the kernel with the least execution time.

5 Distributed Kron-Matmul

Existing distributed implementations of the shuffle algorithm
in CTF [42] and the FTMMT algorithm using Distal [53], ex-
ecutes each iteration by (i) dividing the input among all GPUs,
(ii) performingmultiplications on each GPU to generate its lo-
cal intermediate, and (iii) communicate intermediates among
all GPUs to obtain a globally distributed intermediate as the
output of iteration. This section presents FastKron’s dis-
tributed Kron-Matmul that minimizes the communication
by (i) performing multiple Nlocal sliced multiplications on
each GPU to generate intermediates local to each GPU and
(ii) communicating local intermediates to obtain the globally
distributed output intermediate of Nlocal iterations.
FastKron performs distributed Kron-Matmul on a ho-

mogenous 2D grid of {GM,GK} GPUs by dividing the com-
putation into a block of size M

GM
× K

GK
per GPU. Since each

factor FP×Q is much smaller than XM×K, FastKron requires
that all factors are accessible on all GPUs. Algorithm 2 is
FastKron’s distributed Kron-Matmul algorithm, which is
executed by each GPU. The algorithm assumes that all fac-
tors are of the same shape, but it is straightforward to sup-
port the general case. First, the algorithm computes GPU
block size, allocates intermediate matrices on each GPU, and
computes Nlocal (lines 2–4). Then each GPU can perform
Nlocal = logP

K
GK

local sliced multiplications before communi-
cating local intermediates to obtain the globally distributed

Algorithm 2Multi-GPU Kron-Matmul using GM×GK GPUs

1: Current GPU
{
gM, gK

}
with in the grid of {GM,GK} GPUs

2: TGM, TGK = M
GM

, K
GK

⊲ Tile computed by each GPU
3: Y1 and Y

2 are new matrices of size TGM × TGK
4: Nlocal = ⌊logP TGK⌋
5: Y1 = X[gM × TGM : (gM + 1) × TGM] [gK × TGK : (gK + 1) × TGK]
6: for f = N → 1 with step Nlocal do
7: for b = 0 → Nlocal − 1 do ⊲ Do Nlocal multiplies per GPU
8: Y

2 = SlicedMultiplyKernel(Y1TGM×TGK , F
f - b
P×Q)

9: Y
1,Y2 = Y

2,Y1

10: for dst = 1 → GK do ⊲ Share result among GPUs with the
same gM

11: if dst = gK then

12: for src = 1 → GK do

13: Y
1
src = Y

1 [1 : TGM][src× TGK
GK

:(src+1)× TGK
GK

]
14: Y

2
dst = Y

2 [1 : TGM][dst× TGK
GK

:(dst+1)× TGK
GK

]
15: if src ≠ dst then
16: Y

1
src = Recv(gM, src)

17: StoreGPUTile(Y2dst, Y
1
src, K, P, Q, TGM, TGK, Nlocal)

18: else

19: Y
1
dst = Y

1 [1 : TGM][dst× TGK
GK

:(dst+1)× TGK
GK

]
20: Send(Y1dst, gM, dst)

21: Y
1,Y2 = Y

2,Y1

22: return Y
1

intermediate (line 7). Now the layout of each column of lo-
cal intermediate is such that (i) a column stores GK parts of
size K÷GK

GK
, where the 𝑖𝑡ℎ local part is stored on the 𝑖𝑡ℎ GPU

of the globally distributed intermediate and (ii) a column
contains K÷GK

PNlocal elements that lie apart by the same value in
the global intermediate. Figure 8 shows an example of this
layout on 4 GPUs. The algorithm relocates elements on each
GPU by sharing these parts among all GPUs (line 20 and 16)
and storing the received elements to correct place using
StoreGPUTile function (line 17), which is similar to Store-
FusedShMem. Therefore, the algorithm communicates ex-
actly GM×

(
N×TGM×(K−TGK )

logP TGK

)
number of values. FastKron uses

NVIDIA NCCL [4] for Send and Recv. If all NVIDIA GPUs
in the same gM supports Point-to-Point accesses, FastKron
implement lines 10–20 in a single CUDA kernel, which is
more efficient than NCCL.
Similar to SUMMA [47], we divide the process grid into

{
√
𝐺,

√
𝐺}, where G is the number of GPUs. If G is not a

perfect square, we set the grid to {2⌈log2
√
𝐺 ⌉, 2⌊log2

√
𝐺 ⌋}. Al-

though complex partitioning approaches for distributed Mat-
mul exists [13, 26, 41], our experiments found that our parti-
tioning approach performs well.
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6 Evaluation

In this section, we evaluate FastKron against state-of-the-
art implementations of the shuffle algorithm and the FTMMT
algorithm on diverse Kron-Matmul sizes.
Experimental SetupWe run our experiments on a single
NVIDIA DGX-2 machine, which contains dual 24-core In-
tel Xeon CPUs and 16 NVIDIA Tesla V100 GPUs connected
using NVLINK 2. Each Tesla V100 GPU contains 32 GB of
global memory, and provides 15.7 Tera Floating Point Op-
erations per Second (TFLOPS) for float and 7.8 TFLOPS for
double. We use CUDA 12.2 on Ubuntu 22.04 and report the
average TFLOPS of 100 runs after a warmup of 10 runs.

6.1 Autotuning Time

We perform a search over the tile size parameters for each
Kron-Matmul problem size to obtain the best performing ker-
nel parameters (Section 4.3). The autotuner generates upto
10,000 configurations for each problem size. By compiling
kernels in parallel, the auto-tuner takes less than 2 minutes
to find the fastest kernel.

6.2 Single GPU Evaluation

Wefirst evaluate FastKron on a single GPUusingmicrobench-
marks and then on a real world dataset.

6.2.1 Evaluation Systems. We perform experiments on
the following systems:
GPyTorch [16] and PyKronecker [7] are two state-of-the-art
GPU based implementations of the shuffle algorithm. Since
both implementations call into NVIDIA cuBLAS for Matmul
and generate identical CUDA kernels for the transpose, both
implementations perform within 10% of each other. Thus, we
use GPyTorch 1.11 as the baseline for the shuffle algorithm.
COGENT [25] is a state-of-the-art GPU code generator for
tensor contractions. It fuses the transpose with the multipli-
cation and generates optimized code and tile sizes for the
FTMMT algorithm for the given Kron-Matmul shape.
cuTensor [2] is a state-of-the-art library for tensor contrac-
tions by NVIDIA. It fuses transpose with multiplications and
autotunes at runtime over several tile sizes for the FTMMT
algorithm. We use cuTensor as baseline because we found it
performs as good as manually tuned CUTLASS [3].
FastKron with all optimizations.
FastKron-wo-Fuse is FastKron without the fusion of
consecutive sliced multiplications (Section 4.2).

6.2.2 Microbenchmarks. Wenowpresent results for Kron-
Matmul of XM×PN with N factors FP×P. Figure 9 shows the
performance of each system with M=1024, the power of two
values of P, and several values of N. The performance im-
proves with the increase in P and N because (i) the ratio of
computation to memory accesses, P increases, and (ii) large
N increases the amount of parallelism. For the largest size,
FastKron achieves 87% of the maximum FLOPS of the GPU.
Impact of Fusion The fusion optimization improves the
performance by 2.20× for 85 to 1.15× for 323. Since the shared
memory is limited, the number of fused slicedmultiplications
decreases with an increase in P, leading to less improvement
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P N GPyTorch (ms) COGENT FastKron
Matmul Trans. Total (ms) (ms)

8 6 26 45 71.0 36.4 5.76
16 5 64 169 238 104 29.7
32 4 44 159 203 64.4 38.8
64 3 8.7 36 45.7 14.8 8.74

Table 1. Execution time of GPyTorch’s Matmul and trans-
pose, COGENT, and FastKron for float with M = 1024 and
largest values of P and N on a 32GB GPU.

P N COGENT(×107) FastKron(×107) Reduction in
Loads Stores Loads Stores Loads Stores

8 6 6.93 1.06 2.24 1.04 3.10 1.02
16 5 27.8 6.29 11.9 2.48 2.33 2.54
32 4 27.7 10.4 20.2 3.32 1.37 3.13
64 3 6.85 4.71 3.97 1.48 1.72 3.18

Table 2. Shared memory load and store transactions in
FastKron and COGENT, and reduction in transactions for
M = 1024 and diverse values of P and N.

P N FastKron COGENT GPyTorch
Float Double Float Double Float Double

8 8 3.90 1.80 0.67 0.26 0.26 0.13
16 6 6.17 3.20 1.98 0.91 0.46 0.21
32 5 7.75 3.88 5.38 2.26 1.36 0.64
64 4 11.0 5.40 7.98 3.40 2.70 1.29

Table 3. Achieved TFLOPS of GPyTorch, COGENT, and
FastKron for float and double with M = 16 and largest PN.

with increasing P. The auto-tuner finds TP = 32 for P ≥ 64,
hence, fusion is not applied to P ≥ 64.
Speedup over GPyTorch FastKron provides a speedup
of 7.62× for 85 to 3.11× for 1283 over GPyTorch because: (i)
FastKron avoids the transpose step of GPyTorch. Table 1
shows that the transpose step takes up to 80% of the total
time of GPyTorch; and (ii) FastKron performs better than
cuBLAS Matmul for small and rectangular shapes. Table 1
shows that FastKron is 0.95×–4.51× faster than cuBLAS.
Speedup over COGENT and cuTensor Both COGENT and
cuTensor provides similar performance. FastKron provides
a speedup of 6.40× for 85 to 1.47× for 1283 over COGENT.
Similarly, FastKron provides a speedup of 3.32× for 85 to
1.2× for 1283 with maximum speedup of 5.41× at 164. This
speedup is because: (i) FastKron fuse consecutive sliced
multiplications and store intermediates in the shared mem-
ory; and (ii) the shift caching method decreases shared mem-
ory bank conflicts over COGENT and cuTensor, which uses
the direct caching method. For example, Table 2 shows that
FastKron generates up to 3.10× less load and 3.18× less
store transactions than COGENT.

ID Source {Mi} {P
N
i

i
× Q

i

N
i

}

1–5 LSTM and RNN [23]

20 27 × 27
{20, 50} 29 × 29

20 210 × 210
1 211 × 211

6–8 ML Compression [46]
10 52 × 50, 65 × 20
50 32 × 8, 64 × 128
10 52 × 65, 50 × 20

9–16 HyPA [10] {4, 8, 16, 20} 29 × 29
{4, 8, 16, 20} 83 × 83

17–19 Graphs [29]
1024 37 × 37
1024 47 × 47
1024 67 × 67

20–21 Biology [18] 1 53 × 53, 2 × 2
1 52 × 52, 2 × 2, 25 × 25

22–24 Drug-Targets [50]
1526 46 × 46
156 83 × 83
2967 47 × 47

25–28 GP [8, 15, 35, 51, 52]

16 88 × 88
16 166 × 166
16 326 × 326
16 643 × 643

Table 4. Real world Kron-Matmul sizes. The first column is the
id for each size and the second column is the source of these sizes.
The third column {Mi} contains one or more values of M for the
same size of factors. The final column {PNi

i × QNi
i } represents Ni

consecutive factors of the shape Pi × Qi.

Small M and Double Type Table 3 shows the performance
for float and double types with M = 16. FastKron provides
up to 13.4× speedup for float and up to 15.24× for double
over GPyTorch. FastKron also runs up to 5.82× and 6.92×
faster than COGENT for float and double respectively.

In summary, FastKron provides significant speedup over
baselines for a diverse mix of matrix sizes and data type.

6.2.3 Real World Dataset. We now perform experiments
on the real world Kron-Matmul sizes used in machine learn-
ing compression [23, 46], scientific computations [10], graph
computations [29], computational biology [18], drugs [50],
and gaussian process kernels [8, 15, 35, 51, 52]. Table 4 shows
that our dataset contains 28 diverse cases with odd and non-
power of two values of M, factors with distinct and odd sizes,
and N from 2 to 11. Figure 10 shows that FastKron performs
5.70×–40.7× faster than GPyTorch, 1.43×–8.14× faster over
COGENT, and 1.55×–6.45× faster than cuTensor on the real
world dataset.

6.3 Multiple GPUs Evaluation

We now evaluate the multi-GPU performance of FastKron
on 16 NVIDIA Tesla V100 GPUs. In this experiment, we
allocate all factors on all GPUs and compare FastKron
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against the following state-of-the-art distributed tensor al-
gebra frameworks:
Cyclops Tensor Framework (CTF) [42] implements dis-
tributed tensor matrix multiply as a series of distributed
Matmuls and transposes. Thus, our implementation of the
distributed version of the shuffle algorithm in CTF uses a
series of distributed tensor matrix multiplies.
Distal [53] allows a user to manually specify a distributed
schedule for the given tensor algebra computation. We im-
plemented each iteration of the FTMMT algorithm in Distal.
Our schedule of the algorithm follows the same distribution
as FastKron, i.e., divide M and K by

√
𝐺 . However, it is

not possible to specify our distributed Kron-Matmul in Dis-
tal because Distal communicates intermediate after every
sliced multiplication.

6.3.1 Results. Figure 11 shows the weak scaling (memory
per GPU remains constant) performance of all systems with
increasing M for P = 64,N = 4 and P = 128,N = 4. We
chose these values of P and N because they provide maxi-
mum FLOPs per GPU. FastKron provides speedup of 7.85×
over CTF and 5.33× over Distal at 16 GPUs. Moreover, for

Dataset PN Speedup on 1 GPU Speedup on 16 GPUs
SKI SKIP LOVE SKI SKIP LOVE

autompg 87 1.1× 1.1× 1.2× 1.3× 1.3× 1.5×
kin40k 88 1.5× 1.3× 1.2× 3.1× 1.8× 1.6×
airfoil 165 1.1× 1.1× 1.3× 1.2× 1.2× 1.5×
yacht 166 1.8× 1.7× 1.9× 3.8× 3.3× 5.2×
servo 324 1.1× 1.1× 1.2× 1.3× 1.2× 1.5×
airfoil 325 1.8× 1.8× 1.8× 6.2× 4.9× 5.0×
3droad 643 1.1× 1.1× 1.2× 1.2× 1.2× 1.1×
servo 644 2.1× 2.0× 2.2× 4.5× 3.8× 5.4×

Table 5. Speedups in trainingGPs on real world datasets after
integrating FastKron in GPyTorch over vanilla GPyTorch.

16 GPUs, FastKron reaches 69% of the maximum FLOPs.
Distal performs better than CTF because CTF performs
distributed transposes, which Distal avoids. FastKron per-
forms better than both Distal and CTF because FastKron
minimizes the communication volume by performing multi-
ple sliced multiplications on each GPU before communicat-
ing their intermediates to obtain the full intermediate. Thus,
FastKron is an efficient distributed Kron-Matmul engine.

6.4 Case Study: Fast Training of Gaussian Processes

Gaussian Processes (GPs) are a class of machine learning
models that provide predictions with uncertainty and inter-
pretability [37]. GPs contain a kernel matrixK and represent
the training dataset of M points as a vector V of length M.
The training process of GPs computes (K)−1V [38, 52], which
can be expensive for large values of M. Structured Kernel
Interpolation (SKI) [51, 52] is a GP that interpolates the ker-
nel matrix as W(K1 ⊗ K

2 . . .KN)WT, where WM×PN is an
interpolation weight matrix and K

i
P×P is a Kronecker kernel

matrix. Using the conjugate gradient algorithm, the inverse
computation is done using a series of Kron-Matmuls of V
and ⊗iK

i. Thus, Kron-Matmul is a key process in training
SKI and its variants, SKIP [15] and LOVE [35]. Also, large
values of P and N improve the accuracy of GPs.

We integrated FastKron in GPyTorch to accelerate Kron-
Matmul and use it to evaluate the reduction in training time
of SKI, SKIP, and LOVE on the UCI dataset [5] with 150
to 3×105 points. We set the conjugate gradient method to
consider 16 samples, i.e., M = 16, and runs for 10 iterations
in each epoch. These datasets and parameters have been
used in prior works [15, 35, 51, 52]. We perform experiments
on the highest value of P that can be allocated in the GPU
memory for each dataset. Table 5 shows that integrating
FastKron in GPyTorch provides a speedup of up to 1.95×
on a single GPU and up to 6.20× on 16 GPUs when training
GPs. GPyTorch does not support multi-GPU execution for
these GPs and thus executes several other operations on a
single GPU, leading to a speedup increase of up to 3.33×with
16 GPUs over 1 GPU. Thus, integrating FastKron enables
faster training of GPs on larger kernel matrices.
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7 Related Work

Tensor Contractions The traditional way to execute tensor
contractions first transpose input tensors to a valid Mat-
mul, and then transpose the output to required tensor. Since
these transposes are expensive, multiple works have de-
veloped efficient transpose routines for CPUs [44, 45], and
GPUs [20, 30, 44, 49]. TTC [44] and TTLG [49] are compilers
for transpose routines. TAL_SH [30] uses the state-of-the-art
cuTT [20] library for efficient transpose on GPUs. Several
works avoid the transpose and directly perform tensor con-
traction [25, 31, 32, 40, 43]. TBLIS [32] fuses transpose with
BLIS [48] Matmul kernels on CPUs. GETT [43] uses a highly
tuned macro kernel where its operands reside in the cache
hierarchy. CUTLASS [3] and cuTensor [2] extends GETT ap-
proach to GPUs. Nelson et. al [33] and Patabandi et. al. [34]
uses machine learning to tune tile size parameters of a ten-
sor algebra GPU kernel. COGENT [25] improves over these
approaches by generating a specialized kernel and tile sizes
for tensor contractions for GPUs. Thus, these works can
efficiently execute each multiplication with a Kronecker fac-
tor in the FTMMT algorithm. However, unlike FastKron,
these works do not optimize for memory accesses across
multiplications in the algorithm. Kim et. al.[24] improves
tensor contractions for coupled cluster methods in quan-
tum chemistry by fusing multiple contractions. However,
their approach performs transpose in shared memory and
these tensor contractions are different from contractions in
Kron-Matmul.
Kronecker Matrix-Matrix Multiplication GPytorch [16]
and PyKronecker [7] are two state-of-the-art single-GPU
implementations for the shuffle algorithm [11]. Dayar and
Orhan [12] presents an improvement to the shuffle algorithm
for Kronecker matrix-vector products. Fackler [27] proposed
an algorithm similar to FTMMT that avoids the transpose
by representing the input matrix as a tensor. We use CO-
GENT [24, 25] as a baseline for this algorithm. FastKron
improves over these implementations by avoiding transpose
and using optimizations, such as, shift caching and fusion
of iterations. Moreover, FastKron provides a distributed
algorithm while above systems are only for single node.
Optimizing Small and Skinny Matmul Many works has
optimized Matrix Multiplication and Matrix-Vector Multi-
plication computations on small and skinny matrices on

GPUs [6, 19, 39]. He et al. [19] proposes an optimal warp al-
location strategy for matrix-vector multiplication. KBLAS [6]
uses double-buffering to overlap data motion with computa-
tion to optimize matrix-vector multiplication. TSM2X [39]
optimizes GEMM of rectangular matrices with small matri-
ces. These techniques can improve the Matmul part in the
shuffle algorithm but will still suffer from high transpose
cost. However, FastKron avoids transpose operations and
also provides an efficient multi-GPU execution.
Distributed Tensor Algebra Cannon [9, 28] and SUMMA
[47] are one of the first algorithms for distributed Matmul.
Solomonik et. al. [41] presented a 2.5D algorithm that dis-
tributes the summation dimension and CARMA [13] is a
recursive algorithm. COSMA [26] is an near I/O-optimal
algorithm for distributed Matmul. Rajbhandari et. al. [36]
presents a communication-optimal algorithm for distributed
tensor contraction. Cyclops Tensor Framework (CTF) [42]
and DISTAL [53] are two state-of-the-art distributed tensor
algebra systems. CTF executes tensor contractions as a series
of distributed transposes and Matmuls, while DISTAL allows
fusion of the transpose with contraction to perform better
than CTF. For Kron-Matmul, both approaches communicates
intermediate for each iteration, while FastKron minimizes
the communication by performing multiple sliced multipli-
cations on each GPU and communicate intermediate of last
multiplication.
DistributedComputationsDistributedHalide [14] extends
Halide with scheduling primitives for distributing dimen-
sions of loops. Recent works [17, 22] supports overlapping
CUDA computations with communication. However, Kron-
Matmul algorithm cannot be represented in these frame-
works.

8 Conclusion

In this paper, we proposed a novel algorithm for Kron-Matmul,
which is not based on existing linear algebra operations. This
advantage enabled us to develop new optimizations for Kron-
Matmul implementations on GPUs. Experimental results
demonstrates that our implementation outperforms state-of-
the-art techniques on both single and multiple GPUs.
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A Artifact Appendix

The artifact [21] contains implementation of FastKron and
scripts to reproduce our key results. The artifact provides a
Dockerfile, which contains all prerequisites installed. Latest
source code is available at https://github.com/abhijangda/
fastkron.

A.1 Hardware

FastKron supports both systems with a single NVIDIA GPU
and multiple NVIDIA GPUs. In our experiments we use a
DGX-2machine with 16 NVIDIA Tesla V100 GPUs connected
using NVLINK 2.

A.2 Docker Container

Download the artifact zip file from [21], unzip it, and create
the container.
unzip fastkron -ppopp -24-ae.zip

cd fastkron -ae

docker build -t fastkron -ppopp -24-ae .

docker run -it --gpus all fastkron -ppopp -24-ae

Check if PyTorch supports CUDA:
python

>>> import torch

>>> torch.cuda.is_available ()

True

A.3 Getting Started

We will now build FastKron and execute tests. In the con-
tainer, the FastKron directory is available at /fastkron and
the benchmark infrastructure is in /fastkron-benchmarks.
Setup CMake Setup CMake inside FastKron Directory

mkdir /fastKron/build

cd /fastKron/build

cmake ..

Single GPU Test We can execute one of the single GPU
tests as below:
make gen -single -gpu -kernels

make run -single -gpu -no-fusion -tests -j

Multi GPU TestWe can execute one of the multi GPU tests
as below:
make gen -multi -gpu -tests -kernel

make run -multi -gpu -nccl -no-fusion -tests -j

Execute all Tests (Optional) We can execute all tests from
the FastKron directory
cd /fastkron

python tests/run -tests.py

If all above tests run fine and do not give any error then we
have successfully setup the benchmarking.

A.4 Step by Step Instructions

We will now reproduce results in Figure 9, Table 3, Figure 10,
Figure 11, and Table 5. These commands generate figures as
PDF in the benchmarks directory and table as CSV in the
benchmarks directory.
Change to the benchmark directory:
cd /fastkron -benchmarks

Figure 9 [Time 30 mins] Generate Figure-9.pdf in the
benchmarks directory by executing:
python run_benchmarks.py -fk-dir /fastkron\

-fk-bench -dir /fastkron -benchmarks \

-bench Figure -9

make Figure -9.pdf

Table 3 [Time 15 mins] Generate Table-3-float.csv for
Float type and Table3-double.csv for Double type in the
benchmarks directory by executing:
python run_benchmarks.py -fk-dir /fastkron\

-fk-bench -dir /fastkron -benchmarks \

-bench Table -3

Figure 10 [Time 40 mins] Generate Figure-10.pdf in the
benchmarks directory by executing:
python run_benchmarks.py -fk-dir /fastkron\

-fk-bench -dir /fastkron -benchmarks \

-bench Figure -10

make Figure -10. pdf

Figure 11 [Time 40 mins] Generate Figure-11-64.pdf and
Figure-11-128.pdf:
python run_benchmarks.py -fk-dir /fastkron\

-fk-bench -dir /fastkron -benchmarks \

-bench Figure -11

make Figure -11 -64. pdf Figure -11 -128. pdf

Table 5 [Time 30 mins] Generate Table-5.csv by execut-
ing:
python gps -Table -5.py ./uci 10

https://github.com/abhijangda/fastkron
https://github.com/abhijangda/fastkron
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