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Figure 1. SSSP performance on our evaluation platforms.
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Figure 2. SSSP preprocessing overhead (lower-is-better).
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Figure 3. CC performance on our evaluation platforms.
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Figure 4. CC preprocessing overhead (lower-is-better).
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Figure 5. PR performance on our evaluation platforms.

Supplemental Material
S.1 Evaluation on SSSP, CC, PR and CDLP

The evaluation presented in our main paper compares GRAPHCUBE against the baseline methods on BFS. Here, we give results
for other graph operations: single-source shortest paths (SSSP) in Figures 1 and 2, connected component detection (CC) in
Figures 3 and 4, page ranking (PR) in Figures 5 and 6, and community detection with label propagation (CDLP) in Figures 7
and 8. These results, combined with the BFS results in the paper, show that GRAPHCUBE consistently outperform the baseline
methods when using 16 or more computing nodes by better communication overhead across the blade level.
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Figure 6. PR preprocessing overhead (lower-is-better).
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Figure 7. CDLP performance on our evaluation platforms.
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Figure 8. CDLP preprocessing overhead (lower-is-better).

S.2 Complexity Analysis for Graph Partitioning

In this section, we present an analysis of the time complexity of our partitioning algorithm, described in Section 5 of the main
paper. Our algorithm operates on a sorted graph and takes advantage of the properties of the sorted graph. It consists of two
main steps: vertex clustering and distribution. In this analysis, we focus on the time complexity of each step. Furthermore, the
storage overhead of our algorithm remains constant throughout the entire graph partitioning process. Note that many graph
algorithms require sorting the graph as a preprocessing step, and our algorithm leverages this property.

Time complexity of graph clustering. The first step of our partitioning algorithm is to group vertices into clusters €
according to their distance to a given high-degree degree. The overhead of vertex clustering is dominated by the time spent

visiting each row of the graph adjacency matrix to collect the edge-degree information of each vertex. Therefore, the time of
v;€C;
graph clustering is », o; * 6, where 0 is the average latency of visiting a row (i.e., a vertex) of the graph adjacency matrix. As
i=0
such, the time spent on graph clustering is close to visiting all vertices once, with a time complexity of O(N), where N is the
number of vertices.

Time complexity of graph partitioning. Assume the average communication latency within a domain is d, i.e., the intra-

domain latency is d. See also Sec. 4.4. Since we attempt to allocate every vertex (i.e., v;) within a cluster, €;, to the same domain,
v;€C;

the time spent on graph partitioning is , v; * d. Like graph clustering, the time spent on graph partitioning is close to
i=0

visiting each vertex once, with a time complexity of O (N), where N is the number of graph vertices.

Space complexity. The memory footprint of GRAPHCUBE results from storing the vertex clusters, €. Hence, its space
v;€C;
complexity is Y, v; = O (N).
i=0

Putting together, the time and space complexities of GRAPHCUBE's graph partitioning algorithm are 2 «* O(N) ~ O(N) (time
complexity of graph clustering plus graph partitioning) and O(N), respectively, where N is the number of graph vertices. Such
complexity is in line with the O(N) complexity of most graph partitioning algorithms based on a sorted graph and lower
than the O(N?) complexity of methods performed on unsorted graphs [1, 7, 9]. Even when including the overhead for graph
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sorting, which is required by many graph computation algorithms themselves, our time complexity is O(logN) + O(N), which
is still lower than O(N?).

S.3 Discussions and Future Work
Naturally, there is room for further work, and we discuss a few points here.

GPU optimization. GRAPHCUBE targets CPU executions. An interesting future direction would be porting our optimization
to a CPU-GPU mixed system, where graph partitioning needs to consider the communications latency between the CPU and
GPU memory and their computation capability. Balancing the communications across the interconnection hierarchy will still
be important in such a setting, and GRAPHCUBE can benefit from GPU-specific optimization [5, 8].

Fault tolerance. Our graph partitioning algorithm does not explicitly consider fault tolerance. With our current implementation,
fault tolerance is achieved through the classical techniques of replication and restarting crashing MPI nodes. Therefore, distribute
fault tolerance techniques [2, 4] are orthogonal to our approach.

Ring-based interconnection topology. Our routing and graph partitioning algorithms target the commonly used tree-based
interconnection topology in HPC systems. Although a ring-based topology is also used in some data centers [6, 10], it is rarely
used in large-scale HPC systems due to the potential for performance degradation when messages traverse multiple nodes
to reach their destination. Our routing optimization (Section 4.1) may not apply to ring-based topology, but our node-level
optimization (Section 6) remains applicable. Furthermore, a ring-based topology can simplify our analytical models, as the
partitioning algorithm only needs to consider two possible data transmission directions.

Auto-tuning kernels. We have showcased how PGAS can be combined with vectorization to improve performance (Sec. 6.2).
It would be interesting to integrate our techniques auto-tuning methods [3, 11] to optimize low-level kernel implementation.
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