
Parallel 𝑘-Core Decomposition with Batched Updates
and Asynchronous Reads

Quanquan C. Liu

Yale University

USA

quanquan.liu@yale.edu

Julian Shun

MIT CSAIL

USA

jshun@mit.edu

Igor Zablotchi

Mysten Labs

Switzerland

igor@mystenlabs.com

Abstract
Maintaining a dynamic 𝑘-core decomposition is an impor-

tant problem that identifies dense subgraphs in dynamically

changing graphs. Recent work by Liu et al. [SPAA 2022]

presents a parallel batch-dynamic algorithm for maintaining

an approximate 𝑘-core decomposition. In their solution, both

reads and updates need to be batched, and therefore each

type of operation can incur high latency waiting for the other

type to finish. To tackle most real-world workloads, which

are dominated by reads, this paper presents a novel hybrid

concurrent-parallel dynamic 𝑘-core data structure where

asynchronous reads can proceed concurrently with batches

of updates, leading to significantly lower read latencies. Our

approach is based on tracking causal dependencies between

updates, so that causally related groups of updates appear

atomic to concurrent readers. Our data structure guaran-

tees linearizability and liveness for both reads and updates,

and maintains the same approximation guarantees as prior

work. Our experimental evaluation on a 30-core machine

shows that our approach reduces read latency by orders of

magnitude compared to the batch-dynamic algorithm, up to( )
a 4.05 · 105 

-factor. Compared to an unsynchronized (non-
linearizable) baseline, our read latency overhead is only up to 
a 3.21-factor greater, while improving accuracy of coreness 
estimates by up to a factor of 52.7.

CCS Concepts: • Theory of computation → Concurrent
algorithms; Dynamic graph algorithms; • Computing 
methodologies → Parallel algorithms.

Keywords: parallelism, concurrency, 𝑘-core decomposition

1 Introduction
The discovery of underlying structure in large-scale net-
works poses a fundamental challenge in various computing

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.
PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0435-2/24/03.
https://doi.org/10.1145/3627535.3638508

domains. One crucial aspect involves identifying communi-

ties within the network where individuals or vertices share

strong connections, as well as understanding the level of con-

nectivity of each individual to their respective community.

The notion of a 𝑘-core, or more generally, 𝑘-core decom-

position, effectively captures the well-connectedness of a

vertex or group of vertices. Consequently, this problem and

its variations have received extensive attention across ma-

chine learning [8, 33, 40], database [17, 21, 32, 54, 63], social

network analysis, graph analytics [25, 26, 49, 50], computa-

tional biology [22, 51, 59, 61], and other relevant communi-

ties [39, 50, 60, 67].

Given an undirected graph𝐺 with 𝑛 vertices and𝑚 edges,

the 𝑘-core of the graph represents the largest subgraph 𝐻 ⊆
𝐺 in which every vertex in 𝐻 has a degree of at least 𝑘 . The

𝑘-core decomposition of the graph refers to a partition of

the graph into layers, where a vertex 𝑣 is placed in layer 𝑘 if

it belongs to a 𝑘-core but not a (𝑘 + 1)-core. This layering
process assigns a coreness value to each vertex based on

the largest 𝑘-core that it belongs to, leading to a natural

hierarchical clustering.

Traditional algorithms that give exact solutions to 𝑘-core

decomposition inherently follow a sequential approach [62].

In fact, 𝑘-core decomposition is known to be a P-complete

problem [11], so efficient parallel algorithms that solve it ex-

actly are unlikely to exist. To overcome this limit, we focus

on achieving a close approximate decomposition, which pro-

vides utility in areas where existing methods focus mostly on

approximations, such as epidemiology [22, 51, 59, 61], com-

munity detection and network centralitymeasures [30, 34, 42,

64, 72, 76], network visualization and modeling [8, 19, 75, 77],

protein interactions [7, 13], and clustering [41, 53].

Current emphasis has also been on addressing the dy-
namic nature of large networks. Networks undergo frequent
updates which require real-time 𝑘-core computations for

various applications. Significant progress has been made on

dynamic 𝑘-core algorithms in both sequential [55, 56, 68,

70, 74, 78] and parallel settings [12, 46, 48] to achieve fast,

practical solutions.

Recent work by Liu et al. has studied𝑘-core decomposition

in the parallel batch-dynamic setting, where operations pro-
ceed in batches and there is global synchronization between

different batches [57]. Each batch consists of exactly one type

of operation—reads, insertions, or deletions. However, a key

286

https://doi.org/10.1145/3627535.3638508
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627535.3638508&domain=pdf&date_stamp=2024-02-20


PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Quanquan C. Liu, Julian Shun, and Igor Zablotchi

challenge arises: querying the system state has high latency,

as reads cannot safely proceed concurrently with update

batches. Unsynchronized reads, concurrent with updates,

may not only lead to hard-to-interpret non-linearizable re-

sults, but can also break the approximation bounds of the

𝑘-core algorithm (in fact, the error could be unbounded, as

we show later). Thus, reads in current parallel batch-dynamic

algorithms must either wait for updates to finish, or be per-

formed synchronously as part of the batch, both adding

latency. This is problematic for applications that require low

read latency. Examples include social networks and search

engines: these need to be very responsive on the dominant

user-facing read path [18, 20], while prioritizing throughput

on the update path.

In this paper, we address this gap by proposing a novel

𝑘-core algorithm in which reading a vertex’s coreness can

proceed asynchronously and concurrently with (batches of)

updates and with other reads. We achieve this by tracking

causal dependencies between updates and reads. We show

that such dependencies can be tracked efficiently, without

locking, and without sacrificing the performance of updates.

Our algorithm, similar to previous work, relies on the

Level Data Structure (LDS) approach. The core idea behind

the LDS approach is that the 𝑘-core decomposition of a graph

can be represented as a sequence of levels. These levels are

organized into groups, where vertices within each group

share the same coreness (within the approximation factor).

The LDS serves as a data structure that maintains the lev-

els of all vertices, gets updated when the graph undergoes

edge insertions or removals, and facilitates queries regarding

vertex coreness.

The main challenge in designing our algorithm is achiev-

ing atomic reads that can proceed concurrently with batches

of updates while incurring low overhead. In brief, this chal-

lenge arises because reads might need to be atomic with

respect with, and thus synchronize with, a potentially large

number of concurrent updates. This might seem at first

counter-intuitive.

At first glance, it may seem as though a read of vertex 𝑣

only needs to be synchronize with updates to edges incident

to 𝑣 . However, the situation is more intricate: an update, say

an insertion of edge 𝑒 , may not only cause changes in the

levels of vertices incident to 𝑒 , but can also trigger a chain

effect of vertices moving levels inside the LDS. All of these

level changes are causally dependent on the initial update

and therefore must appear to reads to take place atomically.

Furthermore, it is possible for vertex level changes to collec-

tively result from multiple edge updates, necessitating that

all of these updates appear atomic to reads.

We aim for lock-free reads. Lock-freedom has the benefit

of guaranteeing that the system always makes progress, even

if some processes are slow, but it comes with the challenge

of precluding simple solutions based on locking. We also

aim for our updates to complete in a finite number of steps.

Due to technical reasons which we explain in Section 2, our

updates cannot be said to be lock-free, and so we use the

term live instead.
To overcome these challenges, we propose a solution

that involves tracking causal dependencies through Directed

Acyclic Graphs (DAGs) of operation descriptors. In essence,

this works as follows. During each update batch, each vertex

𝑣 that needs to change levels in the LDS is associated with

an operation descriptor containing information about which

vertices that moved earlier in the batch caused 𝑣 to also have

to move. This creates a DAG of operation descriptors. Read-

ers that encounter a vertex 𝑣 with an active descriptor need

to first establish whether 𝑣 , and the transitive closure of 𝑣 ’s

causal dependencies (as tracked by the DAG), are still in the

process of being updated. If they are, the read must return

the old level of 𝑣 , since the new, final level might not be

known yet. Otherwise, if the update process is complete, the

read operation can safely return the new level.

We call our data structure the concurrent parallel level
data structure (CPLDS). We implement our data structure

in C++ using the GBBS [27] and ParlayLib [16] libraries and

conduct an experimental evaluation of our algorithm on a

30-core machine. Our evaluation shows that, compared to

the batch-dynamic algorithm of Liu et al. [57], adding asyn-

chronous reads only increases the update time by a factor of

at most 1.48, while decreasing the read latency by a factor

of up to 4.05 · 105. We also compare to an unsynchronized

(non-linearizable) baseline, and show that our read latency is

only up to 3.21x slower, while returning coreness estimates

that are up to 52.7x more accurate.

2 Preliminaries
We study undirected and unweighted graphs in this paper,

and use 𝑛 to denote the number of vertices and𝑚 to denote

the number of edges in a graph. We assume each vertex is

represented by a unique integer in [0, . . . , 𝑛 − 1]. We study

the 𝑘-core decomposition problem, which is defined below.

Definition 2.1 (𝑘-Core). For a graph 𝐺 and positive inte-

ger 𝑘 , the 𝑘-core of 𝐺 is the maximal subgraph of 𝐺 with

minimum induced degree 𝑘 .

Definition 2.2 (𝑘-Core Decomposition). A 𝑘-core decom-
position is a partition of vertices into layers such that a

vertex 𝑣 is in layer 𝑘 if it belongs to a 𝑘-core but not to a

(𝑘 + 1)-core. 𝑘 (𝑣) denotes the layer that vertex 𝑣 is in, and is

called the coreness of 𝑣 .

Definition 2.2 defines an exact 𝑘-core decomposition. A

𝑐-approximate 𝑘-core decomposition is defined as follows.

Definition 2.3 (𝑐-Approximate 𝑘-Core Decomposition). A
𝑐-approximate 𝑘-core decomposition is a partition of ver-

tices into layers such that a vertex 𝑣 is in layer 𝑘 ′ only if

𝑘 (𝑣)
𝑐

≤ 𝑘 ′ ≤ 𝑐𝑘 (𝑣), where 𝑘 (𝑣) is the coreness of 𝑣 .

287



Parallel 𝑘-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

In the parallel batch-dynamic setting, algorithms process

operations in batches, with each batch consisting of exactly

one type of operation—reads, edge insertions, or edge dele-

tions.
1
In this paper, we study a hybrid setting, where reads

are asynchronous and can execute at any time, while up-

dates are batched and executed together periodically. This

solves the latency issue for read operations, which are the

dominant type of operation in most workloads, e.g., in social

networks [18, 20].

In theory, it would be desirable to make updates asy-

chronous as well, but it is much more challenging to do

so while guaranteeing linearizability. We leave this to future

work. Below, we introduce our model more formally.

We consider a set of 𝑃 processes that communicate through

standard shared-memory primitives. The processes coordi-

nate to maintain the graph𝐺 and𝐺 ’s associated CPLDS data

structure by serving incoming operations. Operations on

the CPLDS can be either reads or updates. A read operation

takes an input node and returns its coreness estimate in the

CPLDS. An update operation can be either an edge inser-

tion or an edge deletion. It adds or removes an input edge 𝑒

to/from 𝐺 and updates the (levels of vertices in the) CPLDS

accordingly.

The set of processes can be partitioned into a set of up-

date processes, which only perform updates, and a set of

read processes, which only perform reads. Updates are per-

formed in batches by the update processes. We assume in

this paper that each batch consists either of only insertions

or only deletions (in practice, batches contain a mix of inser-

tions and deletions, which are separated into insertion and

deletion sub-batches during pre-processing). The updates

in each batch are executed collectively and in parallel by

the updating processes. The steps required to execute all

updates in a batch are pooled together for efficient parallel

execution. In other words, it is not the case that each update

is executed by a single process; instead, all update processes

collectively execute each batch. Reads are performed by the

read processes asynchronously and concurrently to batches

of updates. In contrast to updates, reads are not executed in

batches, but individually. Each read is performed by a single

process from beginning to end. Such process separation may

be employed by applications with different flows for reads

and updates, e.g., in which reads access data directly, while

updates modify several internal data structures.

Our timing assumptions are as follows: (1) update pro-

cesses are synchronous, meaning that their computation and

communication delays are bounded by a known constant,

and (2) read processes are asynchronous, meaning that they

can be arbitrarily delayed, without any upper bound on the

delay. We do not consider process failures in this work.

1
We focus on edge updates for simplicity, but most batch-dynamic solutions

can be modified to support vertex updates as well.

In terms of safety, our algorithms satisfy linearizability
(also called atomicity). Essentially, linearizability requires

that each operation (read or update) appears to take effect

instantaneously at a moment in time that falls between that

operation’s invocation and response.

In terms of liveness, our algorithms guarantee that reads

are lock-free: if reads are invoked infinitely often, then some

operation in the system terminates in a finite number of steps,

infinitely often [44]. Furthermore, our algorithms guaran-

tee that each update terminates in a finite number of steps.

However, since our updates are executed on synchronous

processes that do not fail, they cannot be said to be lock-free,

so we instead say that updates are live.

3 Background
This section presents background information on the sequen-

tial and parallel level data structures that our approach is

based on.

3.1 Level Data Structure (LDS)

The sequential level data structure of Bhattacharya et al. [15]

and Henzinger et al. [43] combined with the proof given by

Liu et al. [57] maintains a (2+𝜀)-approximate coreness value

for each vertex in the graph for any constant 𝜀 > 0.

The LDS partitions the vertices of 𝐺 into 𝐾 = O(log2 𝑛)
levels, 0, . . . , 𝐾 −1. The levels are partitioned into equal-sized

groups of contiguous levels. There are O(log𝑛) groups and
each group 𝑔𝑖 has O(log𝑛) levels. We denote the level of a

vertex 𝑣 by ℓ (𝑣).
Whenever an edge is inserted into or removed from the

graph, one or more vertices may change their level, and

thus the LDS must also be updated. This proceeds as follows.

After each edge update, vertices update their levels based

on whether or not they satisfy two invariants (these invari-

ants are explained below). If a vertex 𝑣 violates one of the

invariants, it must move up or down one level in the LDS,

and then re-check the invariants; we repeat this process for

every vertex 𝑣 until all vertices satisfy both invariants.

It is important to note that each time a vertex changes

levels, this may cause other vertices to violate one of the

invariants and thus have to move as well. Thus, every vertex

level change may potentially trigger a cascading effect of

other vertices changing levels.

LDS Invariants. The first invariant upper bounds the in-
duced degree of a vertex 𝑣 in the subgraph of all vertices at

𝑣 ’s level or above. If a vertex 𝑣 violates the first invariant,

𝑣 must move up (at least) one level. The second invariant

lower bounds the induced degree of a vertex 𝑣 in the sub-

graph consisting of the level below 𝑣 , the level of 𝑣 , and all

levels above 𝑣 . If a vertex 𝑣 violates the second invariant, it

must move down (at least) one level. It is important to note

that inserting more edges into the graph may only cause

288



PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Quanquan C. Liu, Julian Shun, and Igor Zablotchi

vertices to violate the first invariant, but not the second; sim-

ilarly, deleting edges from the graph may only cause vertices

to violate the second invariant, but not the first.

We now give the invariants in more technical detail. For

each level ℓ = 0, . . . , 𝐾 − 1, let 𝑉ℓ be the set of vertices cur-

rently in level ℓ . Let 𝑍𝑙 be the set of vertices in levels greater

or equal to ℓ . Let 𝛿 > 0 and 𝜆 > 0 be two constants. Let

𝑔0, ..., 𝑔⌈log(1+𝛿 ) 𝑛⌉ be the groups into which the 𝐾 levels are

partitioned.

Invariant 1 (Degree Upper Bound). If vertex 𝑣 ∈ 𝑉ℓ , level
ℓ < 𝐾 , and ℓ ∈ 𝑔𝑖 , then 𝑣 has at most (2+3/𝜆) (1+𝛿)𝑖 neighbors
in 𝑍ℓ .

Invariant 2 (Degree Lower Bound). If vertex 𝑣 ∈ 𝑉ℓ , level
ℓ > 0, and ℓ − 1 ∈ 𝑔𝑖 , then 𝑣 has at least (1 + 𝛿)𝑖 neighbors in
𝑍ℓ−1.

3.2 Parallel LDS (PLDS)

The Parallel LDS (PLDS) algorithm of Liu et al. [57] is a

parallel batch-dynamic LDS algorithm. It improves upon the

original LDS algorithm by observing that (1) in many cases,

vertices can be updated in parallel (instead of sequentially)

and (2) if the vertices are updated in a carefully chosen order,

the number of times a given vertex needs to be processed

can be significantly reduced.

In the PLDS algorithm, updates arrive in batches. During

the execution of a batch, updates are partitioned into inser-

tions and deletions; thus each batch has an insertion phase

and a deletion phase.

During the insertion phase, levels are visited in increasing

order (starting with level 0). The vertices in each level are

checked in parallel against Invariant 1 and moved up one

level if necessary. The algorithm ensures that each level

needs to be visited at most once during the insertion phase:

after vertices move up from level ℓ , no future step in the

current batch moves a vertex up from level ℓ . Note that a

vertex can move up many levels, one level at a time.

During the deletion phase, each vertex that violates In-

variant 2 computes its desire level, which is the highest level

below its current level where it satisfies Invariant 2. Levels

are visited in increasing order, and when processing level ℓ ,

all vertices with a desire level of ℓ move there. Their neigh-

bors at higher levels will then recompute their desire levels.

The algorithm ensures that a vertex will never need to move

again once it is moved to its desire level, and that no vertices

will want to move to a level ≤ ℓ after processing level ℓ .

Coreness Approximation. The (2 + 𝜖)-approximate core-

ness
ˆ𝑘 (𝑣) of a vertex 𝑣 is computed as in Definition 3.1.

Definition 3.1 (Coreness Estimate). The coreness estimate
ˆ𝑘 (𝑣) of vertex 𝑣 is (1 + 𝛿)max ( ⌊ (ℓ (𝑣)+1)/4⌈log

1+𝛿 𝑛⌉ ⌋−1,0) , where
each group has 4⌈log(1+𝛿 ) 𝑛⌉ levels.

The following lemma by Liu et al. [57] proves the (2 + 𝜖)-
approximation for coreness values.

Lemma 3.2. Let ˆ𝑘 (𝑣) be the coreness estimate and 𝑘 (𝑣) be
the coreness of 𝑣 , respectively. If 𝑘 (𝑣) > (2 + 3/𝜆) (1 + 𝛿)𝑔′ ,
then ˆ𝑘 (𝑣) ≥ (1 + 𝛿)𝑔′ . Otherwise, if 𝑘 (𝑣) < (1+𝛿 )𝑔′

(2+3/𝜆) (1+𝛿 ) , then
ˆ𝑘 (𝑣) < (1 + 𝛿)𝑔′ .

4 Algorithm Overview
To ensure linearizability, a basic challenge that our algorithm

needs to solve is to avoid returning intermediate values: a

read of some vertex 𝑣 ’s level, that is concurrent with an

update to the level of 𝑣 , should either return 𝑣 ’s pre-update

level (its old level), or 𝑣 ’s post-update level (its new level), but

not any intermediate level between the old and new levels.

A first and naive version of our algorithm that addresses

this challenge is as follows: we use operation descriptors to
synchronize between updates and reads.

2
If a vertex 𝑣 has an

active operation descriptor, this signals to concurrent reads

that 𝑣 is in the process of changing levels in the CPLDS.

Essentially, if a read of 𝑣 finds that 𝑣 ismarked with an active

descriptor, the read must return the old level of 𝑣 , before 𝑣

started changing levels in the current batch. This is because

the final level of 𝑣 might not yet be known, and returning an

intermediate level for 𝑣 (in between its old and new levels)

would violate linearizability. Thus, 𝑣 ’s operation descriptor

records the old level of 𝑣 .

However, this first algorithm does not solve another chal-

lenge required by linearizability: avoiding new-old inver-

sions among causally dependent vertices. Consider two ver-

tices 𝑢 and 𝑣 , such that 𝑢’s level change (which is triggered

by an update) causes 𝑣 to now violate one of the LDS in-

variants and to also have to change levels. In any sequential

execution, the update that moves 𝑢 also moves 𝑣 , so no read

can observe the old level of 𝑣 after some read has already

observed the new level of 𝑢, or vice-versa. However, our first

algorithm allows such new-old inversions in concurrent exe-

cutions: if 𝑢 is marked but 𝑣 is not yet (or no longer) marked,

then a pair of reads might return the new level of 𝑣 (since 𝑣

is not marked) and then the old level of 𝑢 (since 𝑢 is marked).

Therefore, it is not sufficient for a read of 𝑣 to synchronize

with level changes of 𝑣 alone. Such a read must also synchro-

nize with level changes of 𝑣 ’s causally dependent vertices. In

fact, it must synchronize with the entire transitive closure

of vertices that may have caused 𝑣 to move or which 𝑣 may

have caused to move. As in the LDS and PLDS algorithms,

in our algorithm it is possible for updates to create depen-

dency chains among vertices: an update causes a node 𝑣 to

change levels, which causes one or more of 𝑣 ’s neighbors

to violate the invariants and have to change levels, which

may cause their neighbors in turn to change levels, and so

on. We represent these causal dependencies as a Directed

Acyclic Graph (DAG): in such a DAG, there is an edge 𝑣 → 𝑢

2
Note that updates do not synchronize with each other through the opera-

tion descriptors; instead, they are synchronized as part of the batch-dynamic

parallel execution.

289



Parallel 𝑘-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

	𝑢

	𝑣 	𝑤
	𝑢

1
2
3
4 	𝑣 	𝑤

	𝑢

Figure 1. A PLDS and a dependency DAG in which 𝑣 ’s and

𝑤 ’s level changes are indirectly caused by the level change

of 𝑢. In any sequential execution, the operation that causes

the level of 𝑢 to change also changes the levels of 𝑣 and 𝑤 .

Thus, it is impossible in any sequential execution for a read to

return the old level of𝑢, 𝑣 , or𝑤 after another read has already

returned the new level of one of these vertices. To ensure

linearizability, our algorithm must therefore guarantee that

level changes to vertices in the same DAG appear to take

effect atomically to concurrent readers.

if 𝑢’s level change caused 𝑣 to also have to change level. If 𝑣

has no such outgoing edge, we call 𝑣 a root (this occurs if 𝑣
moves only as a direct result of an edge update, as opposed

to moving as a result of one of its neighbors in 𝐺 moving).

The set of vertices that move during a batch can thus

be partitioned into dependency DAGs. To avoid new-old

inversions, our algorithm must ensure that the level changes

of all vertices within a DAG appear to concurrent readers to

take effect atomically; we call this the DAG atomicity rule.
An example is shown in Fig. 1.

We enforce the DAG atomicity rule by maintaining the

invariant that each DAG has a single root, and rely on an

atomic operation on this single root to linearize the level

changes of all vertices in the DAG. To ensure that each DAG

has a single root, we do the following: whenever a DAG has

more than one root, we deterministically pick one of them

as the sole root, and make the others point to the sole root.

Even though the dependency graph is a DAG, in our al-

gorithm we do not need to materialize the entire DAG (i.e.,

store all of the dependencies). In fact, we only require that

we can reach the root of a DAG from any vertex in the DAG.

Thus, it is sufficient to store a single parent for each vertex

in the DAG. Whenever we create an operation descriptor

for some vertex 𝑣 (we say that 𝑣 becomes marked), we in-
clude in the descriptor a pointer to 𝑣 ’s parent in the DAG. By

traversing these parent pointers we will reach the root from

any vertex in a finite number of steps. Therefore, we only

materialize a subtree of each DAG. However, we continue

using the DAG terminology in this paper.

We now describe the high-level changes our CPLDS data

structure introduces with respect to PLDS:

1. When a vertex 𝑣 becomes marked during a batch of up-

dates, we create an operation descriptor for 𝑣 and populate

it with 𝑣 ’s old (pre-update) level and parent.

2. At the end of each batch, we unmark all marked nodes

by deleting all operation descriptors. We first unmark the

root of each DAG, and then unmark all non-root vertices.

Algorithm 1. Data structures and global variables

1 struct Descriptor:
2 // a pointer to this node’s parent in the dependency DAG
3 int parent
4 // this node’s level before the current batch of updates
5 int old_level

7 // global variables
8 Descriptor desc_array[num_vertices]
9 int batch_number = 0 // incremented at the start of every batch

3. A read of vertex 𝑣 examines 𝑣 ’s operation descriptor (if

any): if 𝑣 is marked and its root is also marked, the read re-

turns the coreness estimate using 𝑣 ’s old level (as recorded

in 𝑣 ’s descriptor); otherwise, the read returns the coreness

estimate using 𝑣 ’s current level, which we call its live
level.
In the next section, we describe our algorithm in more

technical detail.

5 Detailed Algorithm
5.1 Data Structures and Global State

Algorithm 1 shows the Descriptor data structure; it may

be in one of two states at any given time. If the Descriptor
has the special value UNMARKED, then we say that 𝑣 and its

descriptor are unmarked, which means that 𝑣 is not currently

in the process of changing levels in the CPLDS. Otherwise,

we say that 𝑣 and its descriptor are marked, and thus 𝑣 is in

the process of changing its level. A marked descriptor has

two fields: parent and old_level. The parent field contains
the index of 𝑣 ’s parent node, or the special value I_AM_ROOT
if 𝑣 has no parent because 𝑣 is the root of its DAG.

We maintain a global array desc_array of Descriptors,
one per vertex in the graph, for the lifetime of the program.

As part of our global state, we also maintain a variable

batch_number, which is incremented at the start of each

batch.

5.2 Updates

Our update algorithm executes each batch B as follows; we

show an example in Fig. 2. First, we insert into, or delete

from, 𝐺 all of the edges in B. Then, we traverse the CPLDS

level by level and update the levels of the vertices impacted

by the edge updates of B. Whenever we detect that a ver-

tex violates one of the invariants, we mark it as described

below, and move it up or down one or more levels in the

CPLDS. This is done in parallel for all vertices on a given

level in the CPLDS. After we have done this for every level in

the CPLDS, we finalize the batch by unmarking all marked

vertices (described below).

Marking. Whenever a node 𝑣 becomes marked, we call the

mark function (shown in Algorithm 2) and pass in 𝑣 ’s index in

desc_array, as well as an array containing the indices of 𝑣 ’s

triggers. A vertex𝑢 is a trigger for 𝑣 if𝑢 may have contributed

to 𝑣 becomingmarked during the current batch. In the case of

insertions, the set of triggers contains all marked neighbors

290



PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Quanquan C. Liu, Julian Shun, and Igor Zablotchi

1
2
3
4
5
6

1
2
3
4
5
6

= edge insertion

1
2
3
4
5
6

1
2
3
4
5
6

Figure 2. The insertion batch is shown in red. The batch causes the yellow, green, blue, and purple vertices to move up one

level with the created dependency DAG shown below. Then, the green, blue and purple vertices continue moving up the levels.

Finally, the green, blue, and purple vertices cause the gray vertex to move up a level. Since the green, blue, and purple vertices

are all in the same dependency DAG, the gray vertex points to the root (the blue vertex).

Algorithm 2. Update algorithm: marking and unmarking

1 mark(int v, int triggers[]):
2 desc = new Descriptor
3 desc.old_level = LDS.get_level(v)
4 marked_batch_neighbors = [w for (v,w) in the batch B and w

↩→ is marked]
5 for w in (marked_batch_neighbors + triggers):
6 union(v,w)
7 desc_array[v] = desc

9 // this is called at end of batch
10 unmark_all():
11 // unmark all roots
12 parfor all nodes v such that desc_array[v] != UNMARKED

and desc_array[v].root == I_AM_ROOT :
13 desc_array[v] = UNMARKED
14 // unmark all other marked nodes
15 parfor all nodes v such that desc_array[v] != UNMARKED :
16 desc_array[v] = UNMARKED

of 𝑣 at the same level or higher level as 𝑣 in the CPLDS. (A

vertex which was at a lower level than 𝑣 earlier in the batch

but moved higher than 𝑣 could become a trigger later.) In

the case of deletions, the set of triggers contains all marked

neighbors of 𝑣 at any level lower than ℓ (𝑣) − 1’s level.

In the mark function, we first create a new descriptor for

𝑣 and populate its old_level field with 𝑣 ’s current level, be-

fore 𝑣 moves (Lines 2–3). We then determine the set of DAGs

into which 𝑣 will be merged. These are: (1) the set of DAGs

of 𝑣 ’s triggers and (2) the set of DAGs of 𝑣 ’s marked batch
neighbors (Line 4). A vertex 𝑤 is a marked batch neighbor

of 𝑣 if the edge (𝑣,𝑤) is updated during B and𝑤 is already

marked when we mark 𝑣 . We merge 𝑣 into its marked batch

neighbors’ DAGs to ensure that no updated edge has its end-

points in different DAGs—this is necessary for correctness

(see Section 6).

Next, we merge the DAGs determined in the previous

steps and add 𝑣 to the merged DAG (Lines 5–6). Care must

be taken here regarding synchronization, as multiple threads

that are marking vertices in parallel might merge overlap-

ping sets of DAGs at the same time. In fact, this step is very

similar to the union operation in concurrent union-find im-

plementations [6, 28, 45, 47]. For conciseness, we reuse the

union implementation described in [47] and implemented

in [28], and denote it as union (Line 6).

Unmarking. Unmarking, shown in Algorithm 2, is done

by overwriting the contents of a vertex 𝑣 ’s descriptor with

the special UNMARKED value. We first unmark all DAG roots

(Lines 12–13), and then unmark all other nodes (Lines 15–16).

By unmarking root descriptors first, we maintain the fol-

lowing invariant: for each DAG, the root descriptor is marked

before non-root descriptors in the same DAG are marked,

and is unmarked before non-root descriptors in the same

DAG are unmarked.

Optimization: Path Compression. In our algorithm, we

do not need to materialize DAGs fully; instead, each vertex 𝑣

points directly to the root of its DAG as it was at the moment
when 𝑣 was added to the DAG. However, due to our DAG

merging mechanism in Algorithm 2, it is possible for the

path from 𝑣 to the true root of 𝑣 ’s DAG to become more than

one hop long. This is both unnecessary and inefficient, as

traversing several hops to reach the root may impact per-

formance. Therefore, as an optimization, when doing reads

or updates, we perform path compression when traversing

the path from a vertex to its root: if this path is longer than

one hop, at the end of the traversal, we overwrite 𝑣 ’s parent
field, as well as the parent field of all of 𝑣 ’s ancestors that

we traversed, to point to the root. This optimization is a

standard optimization in union-find algorithms and is done

in the union-find implementation that we use [28].

5.3 Reads

We start with Algorithm 3, which contains the helper func-

tion check_DAG. This function takes a vertex 𝑣 ’s descriptor

𝐷 and determines whether 𝐷 is part of a marked DAG. The

basic logic of check_DAG is as follows: we traverse 𝐷’s DAG

until we reach the root: if the root is marked, return MARKED;
otherwise return UNMARKED. We also perform path compres-

sion for reads, and thus this is the same logic as the find
operation in union-find algorithms (not shown in the pseu-

docode). However, instead of traversing to the root every

time, we implement the following optimization which en-

ables us to return early from check_DAG in some cases. If we

encounter any unmarked descriptor along the way, includ-

ing 𝐷 itself, we can return UNMARKED immediately, without

continuing to the root. This is due to the invariant described

above: if any non-root descriptor in a DAG is unmarked, it

must be the case that the DAG’s root has also been unmarked.

291



Parallel 𝑘-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

Algorithm 3. check_DAG helper function
1 // returns whether the DAG that includes desc is marked or

↩→ unmarked
2 check_DAG(Descriptor desc):
3 // if v’s descriptor is marked we can return directly
4 if (desc == UNMARKED):
5 return UNMARKED

7 // otherwise, traverse to the root of v’s DAG
8 while (desc.parent != I_AM_ROOT):
9 desc = desc.parent
10 // if we encounter an unmarked descriptor on the path to

↩→ the root, we can return directly
11 if (desc == UNMARKED):
12 return UNMARKED

14 // return whether the root is MARKED or UNMARKED
15 if (desc == UNMARKED):
16 return UNMARKED
17 return MARKED

Algorithm 4. Read algorithm

1 // returns the level of the vertex with index v
2 read(int v):
3 retry:
4 b1 = batch_number
5 l1 = LDS.get_level(v)
6 desc = desc_array[v]
7 status = check_DAG(desc)
8 l2 = LDS.get_level(v)
9 b2 = batch_number
10 if (b1 != b2):
11 goto retry
12 else if status == MARKED:
13 return coreness estimate using desc.old_level
14 else: // status was UNMARKED
15 if (l1 == l2):
16 return coreness estimate using l1
17 else:
18 goto retry

Path compression is done on the path up to the unmarked

node that we find.

We now describe the main read algorithm, whose pseu-

docode is in Algorithm 4. Essentially, the logic of a read of

vertex 𝑣 is as follows: (1) read 𝑣 ’s live level and descriptor

(Lines 5–6); (2) determine if 𝑣 ’s root is marked (Line 7); (3) if it

is, then return 𝑣 ’s old level from its descriptor (Line 13); oth-

erwise, return 𝑣 ’s live level from step (1) (Line 16). However,

we require additional logic to ensure linearizability.

First, we “sandwich” steps (1) and (2) above between two

reads of the batch number (Lines 4 and 9). We repeat steps (1)

and (2) until the two batch numbers match, meaning that the

steps occurred within the same batch. Otherwise, the read

logic might observe a mix of states from different batches

and thus return non-linearizable results.

Furthermore, we sandwich step (2) in between two reads

of the 𝑣 ’s live level (Lines 5 and 8); in case 𝑣 is unmarked

(and thus the read returns the live level), these two reads

must match. If we only performed one such read of the live

level, this would enable a scenario in which the read returns

an intermediate level of 𝑣 , in between 𝑣 ’s old and new levels,

which would not be linearizable.

6 Correctness
We prove the linearizability and liveness of our algorithm in

the full version of our paper [58]. In short, we prove

Theorem 6.1. Our algorithm is linearizable, and live: updates
terminate in a finite number of steps and reads are lock-free.

6.1 Approximation Guarantees

The level that a reader uses to compute the coreness esti-

mate will correspond to the level of the vertex during some

point in time in between update batches. This is because

when a reader returns a coreness estimate, it never sees an

intermediate level of the vertex (it uses the level either at

the beginning of a batch or at the end of it). Therefore, when

compared to the true coreness value of the vertex at a point

in time between two consecutive update batches, we main-

tain the (2+ 𝜖)-approximation guarantee as in the algorithm

by Liu et al. [57].

Note that using unsynchronized reads can return core-

ness values of vertices using intermediate levels within a

batch, and the error can be unbounded with respect to the

true coreness values at both the beginning and the end of

the batch. For example, consider a batch of insertions that

causes a vertex 𝑣 to move up from group 𝑔 to group 𝑔 + 𝑖 , for
𝑖 = 𝑂 (log

1+𝛿 𝑛) (there are log1+𝛿 𝑛 groups in the level data

structure). An unsynchronized read can see the vertex 𝑣 in

any group in [𝑔, . . . , 𝑔 + 𝑖]. In the worst case, we return the

coreness estimate of 𝑣 at group 𝑔 + 𝑖/2. According to Defini-

tion 3.1, this will increase the error by a multiplicative factor

of (1+𝛿)𝑖/2 = 𝑂 (
√
𝑛) relative to the guarantee in Lemma 3.2,

no matter whether we compare to the ground truth at the

beginning or at the end of the batch.

7 Experimental Evaluation
In this section, we implement our algorithm and test it

against various baselines to determine the latency, through-

put, and accuracy of our reads and updates. We implement

our algorithms on top of the parallel level data structure

(PLDS) in Liu et al. [57] which uses the Graph Based Bench-

mark Suite (GBBS) [27]. Our results show that our algorithms

decreases the latency of reads compared to synchronous im-

plementations by up to five orders of magnitude.
Evaluated Algorithms. We compare our CPLDS against

two baseline algorithms that we also implement. First, we

compare our CPLDS against a synchronous implementation

(SyncReads) where all reads must wait until all updates are

performed in the batch before the reads can be performed.We

also compare against a non-synchronous version (NonSync)

of our algorithm where reads can be done at any time in the

batch. This algorithm is not linearizable. We obtain orders-of-
magnitude improvements on the accuracy of our reads against
the non-linearizable (NonSync) implementation and on the

latency against the synchronous (SyncReads) algorithm.

Experimental Setup.We use a c2-standard-60 Google

292



PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Quanquan C. Liu, Julian Shun, and Igor Zablotchi

Graph Dataset Num. Vertices Num. Edges Largest value of 𝑘

dblp 317,080 1,049,866 113

brain 784,262 267,844,669 1200

wiki 1,094,018 2,787,967 124

youtube (yt) 1,138,499 2,990,443 51

stackoverflow (so) 2,584,164 28,183,518 198

livejournal (lj) 4,846,609 42,851,237 372

orkut 3,072,441 117,185,083 253

ctr 14,081,816 16,933,413 3

usa 23,947,347 28,854,312 3

twitter 41,652,230 1,202,513,046 2488

Table 1. Graph sizes and largest values of 𝑘 for 𝑘-core de-

composition.

Cloud instance (3.1 GHz Intel Xeon Cascade Lake CPUs with

a total of 30 cores with two-way hyper-threading, and 236

GiB RAM) and an m1-megamem-96 Google Cloud instance

(2.0 GHz Intel Xeon Skylake CPUs with a total of 48 cores

with two-way hyper-threading, and 1433.6 GB RAM). We do

not use hyper-threading in our experiments as we found it

not to improve performance. Our programs are written in

C++, use a work-stealing scheduler [16], and are compiled

using g++ (version 7.5.0) with the -O3 flag. We terminate

experiments that take over 2 hours.

We test our algorithms on batches of insertions and dele-
tions. Unless specified otherwise, all experiments are con-

ducted on batches of 10
6
edges. We run each experiment for

11 trials, and we compute the mean and maximum results

for each experiment.

Datasets. We use datasets from the Stanford Network Anal-

ysis Project (SNAP), the Network Respository, and the DI-

MACS Shortest Paths challenge, specifically, the datasets

used by Liu et al. [57] in their evaluation: com-DBLP (dblp),
com-LiveJournal (lj), com-Orkut (orkut), com-Youtube (yt),
wiki-talk (wiki), sx-stackoverflow (so), twitter (twitter) [52],
human-Jung2015-M87113878 (brain), full USA (usa), and cen-
tral USA (ctr). Graph characteristics are given in Table 1.

Implementation Details. All of our code is publicly avail-

able.
3
We make use of the optimization feature given in

the original PLDS code with the -opt flag set to 20. This

optimization feature speeds up the code but degrades its ap-

proximation error. We set the parameters 𝛿 = 0.2 and 𝜆 = 9.

The theoretical approximation factor using these parameters

is 2.8 (i.e., 𝜀 = 0.8). Our experiments demonstrate we never

exceed the maximum approximation factor obtained by the

original PLDS implementation for each dataset. We test our

implementations on combinations of different numbers of

reader and update threads. Each thread is on a separate core

with no other reader or update threads. We test combina-

tions of 1, 2, 4, 8, and 15 reader and update threads. Latency.
First, we measured the latency of reads using all three im-

plementations on all of the graphs. For all algorithms, each

3
https://github.com/qqliu/batch-dynamic-kcore-

decomposition/tree/master/gbbs/benchmarks/EdgeOrientation/ConcurrentPLDS

read thread continuously generates reads of vertices chosen

uniformly at random for the duration of the batch. Reads

for CPLDS are implemented and performed according to

our algorithms. NonSync performs reads immediately by

looking at the current level of the vertex. Each read thread

in SyncReads maintains an array of reads in the order that

they are generated during each update batch and performs

the reads, in order, at the end of the batch.

For each implementation and graph, we obtain the av-

erage, 99-th percentile latency, and 99.99-th percentile la-

tency across all reads and all trials. The results are shown

in Fig. 3. We see that against SyncReads, our CPLDS algo-

rithm achieves up to five orders of magnitude smaller latency

for both insertions and deletions for the average, 99-th per-

centile and 99.99-th percentile latencies. This is because in

SyncReads, reads that arrive must wait until the end of the

batch before they can execute. Compared to NonSync, reads

are at most 3.21x slower in CPLDS, but are linearizable.

Batch Size vs. Latency. Fig. 4 shows the latency of reads

across multiple insertion batch sizes for all three implemen-

tations. Specifically, we show the average, 99-th percentile,

and 99.99-th percentile latencies for dblp and lj. For yt, the
average latency is 1.12–1.38 factor larger for CPLDS than

NonSync but is at least seven orders of magnitude smaller
than SyncReads. For the 99-th percentile latency on dblp,
CPLDS and NonSync exhibit the same latency and CPLDS

exhibits smaller latency than SyncReads by up to seven or-

ders of magnitude. Finally, for the 99.99-th percentile latency

on dblp, CPLDS exhibits larger latency than NonSync by up

to a factor of 3.98, but exhibits up to five orders of magnitude

smaller latency than SyncReads.

For dblp, the average latency is 1–1.70 factor larger for

CPLDS than NonSync but is at least five orders of magnitude
smaller than SyncReads. For the 99-th percentile on dblp,
CPLDS and NonSync exhibit the same latency and CPLDS

exhibits smaller latency than SyncReads by up to six orders

of magnitude. Finally, for the 99.99-th percentile on dblp,
CPLDS exhibits larger latency than NonSync by up to a fac-

tor of 1.88, but exhibits up to five orders of magnitude smaller

latency than SyncReads. Deletions follow a similar trend:

for dblp, the average, 99-th percentile and 99.99-th percentile

latencies for CPLDS are up to 1.84, 1.0, and 1.66 factors, re-

spectively, larger than NonSync. Compared to SyncReads,

CPLDS exhibits up to six orders of magnitude smaller lanten-

cies on dblp and up to seven orders of magnitude smaller

latencies on yt. For yt, the average, 99-th percentile, and

99.99-th percentile latencies for CPLDS are up to 1.44, 1.0,

and 2.33 factors, respectively, larger than NonSync.

We found that deletions follow a similar trend.

Update Time. Fig. 5 shows the average and maximum up-

date times throughout all of our trials on all graphs. We

see that NonSync requires the least amount of update time,

although our algorithm is at most 1.48x slower for both in-

sertions and deletions. The reason that SyncReads requires

293

https://github.com/qqliu/batch-dynamic-kcore-decomposition/tree/master/gbbs/benchmarks/EdgeOrientation/ConcurrentPLDS
https://github.com/qqliu/batch-dynamic-kcore-decomposition/tree/master/gbbs/benchmarks/EdgeOrientation/ConcurrentPLDS


Parallel 𝑘-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

br
ain ct

r
db

lp lj
or

ku
t so

tw
itt

erus
a

wi
ki yt

Graphs

10−6
10−4
10−2
100

La
te

nc
y 

(s
ec

s) Average Latency
CPLDS SyncReads NonSync

(a) Average Insertion Latency

br
ain ct

r
db

lp lj
or

ku
t so

tw
itt

erus
a

wi
ki yt

Graphs

10−5
10−3
10−1
101

La
te

nc
y 

(s
ec

s) 99-th Percentile Latency
CPLDS SyncReads NonSync

(b) 99-th Percentile Insertions Latency

br
ain ct

r
db

lp lj
or

ku
t so

tw
itt

erus
a

wi
ki yt

Graphs

10−510−410−310−210−1100101

La
te

nc
y 

(s
ec

s) 99.99-th Percentile Latency
CPLDS SyncReads NonSync

(c) 99.99-th Insertions Latency

br
ain ct

r
db

lp lj
or

ku
t so us
a

wi
ki yt

Graphs

10−6
10−4
10−2
100

La
te

nc
y 

(s
ec

s) Average Latency
CPLDS SyncReads NonSync

(d) Average Deletions Latency

br
ain ct

r
db

lp lj
or

ku
t so us
a

wi
ki yt

Graphs

10−610−510−410−310−210−1100101

La
te

nc
y 

(s
ec

s) 99-th Percentile Latency
CPLDS SyncReads NonSync

(e) 99-th Percentile Deletions Latency

br
ain ct

r
db

lp lj
or

ku
t so us
a

wi
ki yt

Graphs

10−510−410−310−210−1100101

La
te

nc
y 

(s
ec

s) 99.99-th Percentile Latency
CPLDS SyncReads NonSync

(f) 99.99-th Deletions Latency

Figure 3. Comparison of the average, 99-th percentile, and 99.99-th percentile read latencies of the implementations under

batches of insertions or deletions. The 𝑦-axis is in log-scale. Twitter times out for SyncReads and we do not show their results.

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−6
10−4
10−2
100

La
te

nc
y 

(s
ec

s)

Average Insertions Latency
CPLDS SyncReads NonSync

(a) YouTube Average Insertions

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−610−510−410−310−210−1100101

La
te

nc
y 

(s
ec

s)

99-th Percentile Latency
CPLDS SyncReads NonSync

(b) YouTube 99-th Percentile Insertions

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−5
10−4
10−3
10−2
10−1
100
101

La
te

nc
y 

(s
ec

s)

99.99-th Percentile Latency
CPLDS SyncReads NonSync

(c) YouTube 99.99-th Insertions

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−710−610−510−410−310−210−1100

La
te

nc
y 

(s
ec

s)

Average Insertions Latency
CPLDS SyncReads NonSync

(d) DBLP Average Insertions

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−6
10−5
10−4
10−3
10−2
10−1
100

La
te

nc
y 

(s
ec

s)

99-th Percentile Latency
CPLDS SyncReads NonSync

(e) DBLP 99-th Percentile Insertions

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−5
10−4
10−3
10−2
10−1
100

La
te

nc
y 

(s
ec

s)

99.99-th Percentile Latency
CPLDS SyncReads NonSync

(f) DBLP 99.99-th Insertions

Figure 4. Comparison of the latencies over different insertion batch sizes using 15 update threads and 15 read threads. The

𝑦-axis is in log-scale. We tested on yt and dblp.
more time sometimes (up to 1.85 factor worse) than the other

methods is due to the fact that reads occur synchronously and

must factor into the update time (since updates are blocked

and cannot be performed until all synchronous reads finish).

We see that for most graphs, NonSync results in the lowest

update time because the updates methods did not change

compared to the previous synchronous PLDS implementa-

tion of [57].

Approximation Factors. Fig. 6 shows the average and max-

imum approximation factors of our algorithm versus the

baselines. We see that the maximum approximation factors

294



PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Quanquan C. Liu, Julian Shun, and Igor Zablotchi

br
ain ct

r
db

lp lj
or

ku
t so

tw
itt

erus
a

wi
ki yt

Graphs

100

101
Ti

m
e 

(s
ec

s)
Average Insertions Time

CPLDS SyncReads NonSync

(a) Average Insertions Batch Update Time

br
ain ct

r
db

lp lj
or

ku
t so

tw
itt

erus
a

wi
ki yt

Graphs

100

101

102

Ti
m

e 
(s

ec
s)

Maximum Insertions Time
CPLDS SyncReads NonSync

(b)Maximum Insertions Batch Update Time

br
ain ct

r
db

lp lj
or

ku
t so us
a

wi
ki yt

Graphs

10−1

100

Ti
m

e 
(s

ec
s)

Average Deletions Time
CPLDS SyncReads NonSync

(c) Average Deletions Batch Update Time

br
ain ct

r
db

lp lj
or

ku
t so us
a

wi
ki yt

Graphs

10−1

100

Ti
m

e 
(s

ec
s)

Maximum Deletions Time
CPLDS SyncReads NonSync

(d) Maximum Deletions Batch Update Time

Figure 5.Comparison of the average andmaximum batch up-

date time over all batches and trials using 15 update threads

and 15 read threads. The 𝑦-axis is in log-scale. Twitter times

out for SyncReads and we do not show their results.

ctr db
lp lj

ork
utso usawiki yt

Graphs

1.25
1.50
1.75
2.00
2.252.502.75

Er
ro

r (
Fr

ac
tio

n) Average Insertions Read Error
CPLDS SyncReads NonSync

(a) Average Insertions Read Error

ctr db
lp lj

ork
utso usawiki yt

Graphs

10

100

Er
ro

r (
Fr

ac
tio

n) Maximum Insertions Read Error
CPLDS SyncReads NonSync

(b) Maximum Insertions Read Error

ctr db
lp lj

ork
ut so usa wiki yt

Graphs

2.0

3.0
4.0
Er

ro
r (

Fr
ac

tio
n) Average Deletions Read Error

CPLDS SyncReads NonSync

(c) Average Deletions Read Error

ctr db
lp lj

ork
utso usawiki yt

Graphs

10

100

Er
ro

r (
Fr

ac
tio

n) Maximum Deletions Read Error
CPLDS SyncReads NonSync

(d) Maximum Deletions Read Error

Figure 6. Comparison of the average and maximum errors

over all reads and all trials using 15 update threads and 15

read threads. The 𝑦-axis is in log-scale. The blue line shows

the theoretical maximum error of 2.8. The deletion errors

sometimes exceed 2.8 due to the optimizations in our data

structure.

295



Parallel 𝑘-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

for CPLDS are upper bounded by 2.8, the theoretical max-

imum bound for insertion, and by the maximum approxi-

mation factors returned by SyncReads for deletions. The

deletion errors for CPLDS and SyncReads exceed 2.8 due

to the optimizations in our data structure, as described ear-

lier. For CPLDS, because of our theoretical approximation

guarantees, our reads are guaranteed to be linearizable to

either the beginning of the batch or the end of the batch.

Since it is difficult to know whether the read linearized to

the beginning or the end of the batch, we take the minimum

of the two errors.

We see that our average error for CPLDS is sometimes

slightly larger than the average error for SyncReads, by a

factor of at most 1.15. Such a small factor is likely due to the

variance in our selections of reads. For NonSync, we return

the minimum approximation factor between the beginning

and the end of the batch. We see that the maximum errors

for NonSync are up to 52.7x worse than CPLDS because the

a read can occur while the vertex is in the middle of moving

levels. Thus, the vertex can be stuck in a “middle” level whose

core number is far from the approximate coreness estimate

at the beginning or end of the batch.

Scalability of Read and Write Throughputs. We test the

scalability of our read throughputs as we increase the num-

ber of reader threads while maintaining 15 writer threads.

We also test our write throughput. We record the average

throughput across all batches and all trials for the dblp and

lj graphs. For CPLDS and NonSync reads and writes, the

average throughput is computed as the total number of reads

or writes divided by the total write time over all batches.
For SyncReads reads and writes, the duration of time in

the denominator is the total read plus write time over all

batches, respectively. For the read scalability of SyncReads,

we compute the throughput analytically: we divide the total

number of reads performed by CPLDS by half of the sum of

the update time and the minimum read time of any thread

(on average, a read operation will come in the middle of this

interval). The minimum read time of any thread is computed

by multiplying the minimum observed latency of reads (per-

formed by NonSync) times the total number of reads divided

by the number of threads. This analytical computation upper

bounds the read throughput of SyncReads. For both graphs,

we test on the number of reader threads from {1, 2, 4, 8, 15}.
In addition to read throughputs, we also test the scalability

of our write throughputs as we increase the number of writer

threads while maintaining 15 reader threads. For dblp, we
test on the number of writer threads from {1, 2, 4, 8, 15}. For
lj, due to the high running times on smaller number of writer

threads, we only test on {8, 15}.
The results are shown in Fig. 7. We see that NonSync has

the greatest read throughput for most graphs due to the fact

that it does not requiring synchronization mechanisms for in-

dividual reads (i.e., the dependency DAG), while CPLDS has

the worst read throughputs. Because we are upper bounding

the read throughput of SyncReads, sometimes SyncReads

has greater throughput than NonSync (by a small margin).

NonSync has slightly higher read throughput by factors of

up to 2.21x than CPLDS since reads in NonSync do not have

to traverse the dependency DAG. On the other hand, either

SyncReads or NonSync have the greatest writer throughput.

CPLDS sometimes has the worst write throughput and is

sometimes between SyncReads and NonSync, specifically,

with write throughput within a factor of 7 of the maximum

throughput of either SyncReads and NonSync. Such an or-

dering of the throughputs is expected as NonSync has the

smallest total time (consisting only of write time) while Syn-

cReads also has additional time resulting from reads and

CPLDS requires additional time to maintain the DAGs.

8 Related Work

Parallel batch-dynamic graph algorithms. There has

been work on parallel batch-dynamic 𝑘-core decomposition,

both in the exact [12, 38, 46, 48, 73] and approximate [57]

settings. The approximate algorithm of Liu et al. [57] has

been shown to significantly outperform the exact algorithms.

Similar to our paper, these works maintain a 𝑘-core decompo-

sition of a graph, or an approximation thereof, under batches

of edge updates. Unlike our work, they do not propose a way

to query coreness values concurrently with updates. Parallel

batch-dynamic algorithms have been designed for a number

of other graph problems [1, 2, 9, 10, 29, 36, 66, 69, 71].

Concurrency on graphs. Fedorov et al. [35] propose a con-
current algorithm for dynamic connectivity, which requires

maintaining the connected components of a graph under

dynamic edge insertions and deletions. Their algorithm sup-

ports single-writer multi-reader concurrency, like our algo-

rithm. If fine-grained locking is applied, their algorithm can

handle writers in disjoint components. Nathan et al. [65]

propose a non-stop streaming data analysis model, in which

updates and reads can proceed concurrently. However, the

results of their algorithms are not necessarily linearizable.

Dhulipala et al. [24, 27] design compressed fully-functional

trees that support single-writer multi-reader operations on

graphs. Unlike our work where the results of reads can reflect

themost recent updates, their work only supports concurrent

reads on static snapshots of graphs.

Concurrency from parallel batch-dynamic data struc-
tures. Aksenov et al. [5] propose parallel combining, which
implements a concurrent data structure from a parallel batch-

dynamic one by synchronizing operations into batches exe-

cuted by a "combiner." Of particular relevance is their read-

optimized version, which performs updates sequentially and

reads in parallel. They apply their idea to a dynamic connec-

tivity algorithm. Agrawal et al. [4] propose a similar idea,

where a scheduler implicitly batches concurrent accesses to a

data structure, executing one batch at a time. Like our paper,

both works enable concurrency from batch-dynamic data

296



PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Quanquan C. Liu, Julian Shun, and Igor Zablotchi

2 4 6 8 10 12 14
Thread Counts

106

Th
ro

ug
hp

ut

Writer Scalability
CPLDS
SyncReads
NonSync

(a) DBLP Writer Throughputs for Insertions

2 4 6 8 10 12 14
Thread Counts

106

107

Th
ro

ug
hp

ut

Writer Scalability
CPLDS
SyncReads
NonSync

(b) DBLP Writer Throughputs for Deletions

8 9 10 11 12 13 14 15
Thread Counts

106

8 × 105

9 × 105

Th
ro

ug
hp

ut

Writer Scalability
CPLDS
SyncReads
NonSync

(c) LJ Writer Throughputs for Insertions

8 9 10 11 12 13 14 15
Thread Counts

106

1.2 × 106

1.4 × 106

1.6 × 106

1.8 × 106

2 × 106

2.2 × 106

2.4 × 106

Th
ro

ug
hp

ut

Writer Scalability
CPLDS
SyncReads
NonSync

(d) LJ Writer Throughputs for Deletions

2 4 6 8 10 12 14
Thread Counts

107
Th

ro
ug

hp
ut

Reader Scalability
CPLDS
SyncReads
NonSync

(e) DBLP Reader Throughputs for Insertions

2 4 6 8 10 12 14
Thread Counts

107

Th
ro

ug
hp

ut

Reader Scalability
CPLDS
SyncReads
NonSync

(f) DBLP Reader Throughputs for Deletions

2 4 6 8 10 12 14
Thread Counts

107

Th
ro

ug
hp

ut

Reader Scalability
CPLDS
SyncReads
NonSync

(g) LJ Reader Throughputs for Insertions

2 4 6 8 10 12 14
Thread Counts

107

Th
ro

ug
hp

ut
Reader Scalability

CPLDS
SyncReads
NonSync

(h) LJ Reader Throughputs for Deletions

Figure 7. Comparison of the average throughput over all batches and trials using different numbers of update threads and

reader threads on the dblp and lj graphs. The 𝑦-axis is in log-scale. For the writer throughput experiments, we fix the number

of reader threads to 15, and for the reader throughput experiments, we fix the number of writer threads to 15.

structures but, unlike our paper, they do not allow asynchro-

nous reads concurrent with update batches, and therefore

cannot guarantee low latency for reads.

Concurrency techniques. Some of our techniques are sim-

ilar to previous methods in concurrent programming. Op-

eration descriptors, like the ones we use to synchronize

reads and updates, are a classic technique for lock-free algo-

rithms [14, 31, 37]. Our sandwiched reads are reminiscent

of the clean double collect method used by Afek et al. [3] in

their atomic snapshot algorithm. Finally, the epsilon trick

has been used before to space out linearization points that

would otherwise (incorrectly) occur at the same time [23].

9 Conclusion
We present a novel approximate 𝑘-core decomposition al-

gorithm that supports parallel batch-dynamic updates and

asynchronous concurrent reads. We ensure linearizability by

efficiently tracking causal dependencies between operations

using a lightweight dependency DAG design. Our experi-

mental evaluation demonstrates that the high throughput

of parallel batch-dynamic updates is preserved, while asyn-

chronous reads attain ultra-low latency and accuracy similar

to that of the previous synchronous algorithm. For future

work, we are interested in supporting asynchronous updates

in our data structure. We are also interested in using our

data structure for other closely related graph problems, such

as low out-degree orientation, maximal matching, 𝑘-clique

counting, vertex coloring, and densest subgraph.

Acknowledgments
We thank Rachid Guerraoui,MauriceHerlihy, and Siddhartha

Jayanti for helpful discussions. A large portion of this work

was completed while Q.C. Liu was a postdoctoral scholar

at Northwestern Univeristy and an Apple Research Fellow

at the Simons Institute at UC Berkeley. Part of this work

was completed while I. Zablotchi was a postdoctoral fel-

low at MIT CSAIL, where he was supported by SNSF Early

Postdoc.Mobility Fellowship P2ELP2_195126. J. Shun was

supported DOE Early Career Award #DE-SC0018947, NSF

CAREER Award #CCF-1845763, Google Faculty Research

Award, Google Research Scholar Award, cloud computing

credits from Google-MIT, and FinTech@CSAIL Initiative.

297



Parallel 𝑘-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

References

[1] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhuli-

pala. 2019. Parallel Batch-Dynamic Graph Connectivity. In The
31st ACM Symposium on Parallelism in Algorithms and Architectures.
381–392.

[2] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala,

and Sam Westrick. 2020. Parallel Batch-Dynamic Trees via Change

Propagation. In Annual European Symposium on Algorithms, Vol. 173.
2:1–2:23.

[3] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,

and Nir Shavit. 1993. Atomic Snapshots of Shared Memory. Journal of
the ACM (JACM) 40, 4 (1993), 873–890.

[4] Kunal Agrawal, Jeremy T. Fineman, Kefu Lu, Brendan Sheridan, Jim

Sukha, and Robert Utterback. 2014. Provably Good Scheduling for

Parallel Programs That Use Data Structures through Implicit Batching.

In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms
and Architectures. 84–95.

[5] Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto. 2018. Paral-

lel Combining: Benefits of Explicit Synchronization. In International
Conference on Principles of Distributed Systems (OPODIS), Vol. 125.
11:1–11:16.

[6] Dan Alistarh, Alexander Fedorov, and Nikita Koval. 2019. In Search of

the Fastest Concurrent Union-Find Algorithm. In 23rd International
Conference on Principles of Distributed Systems, Vol. 153. 15:1–15:16.

[7] Md. Altaf-Ul-Amin, Yoko Shinbo, Kenji Mihara, Ken Kurokawa, and

Shigehiko Kanaya. 2006. Development and implementation of an algo-

rithm for detection of protein complexes in large interaction networks.

BMC Bioinform. 7 (2006), 207.
[8] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessan-

dro Vespignani. 2005. Large scale networks fingerprinting and vi-

sualization using the k-core decomposition. In Advances in Neural
Information Processing Systems. 41–50.

[9] Daniel Anderson and Guy E. Blelloch. 2023. Deterministic and

Work-Efficient Parallel Batch-Dynamic Trees in Low Span. CoRR
abs/2306.08786 (2023), 20 pages. https://doi.org/10.48550/arXiv.2306.
08786

[10] Daniel Anderson, Guy E. Blelloch, Anubhav Baweja, and Umut A.

Acar. 2021. Efficient Parallel Self-Adjusting Computation. In 33rd ACM
Symposium on Parallelism in Algorithms and Architectures. 59–70.

[11] Richard Anderson and Ernst W Mayr. 1984. A P-complete problem and
approximations to it. Technical Report. Stanford University.

[12] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Vele-

grakis. 2016. Distributed k-core decomposition and maintenance in

large dynamic graphs. In ACM International Conference on Distributed
and Event-based Systems (DEBS). 161–168.

[13] Gary D. Bader and Christopher W. V. Hogue. 2003. An automated

method for finding molecular complexes in large protein interaction

networks. BMC Bioinform. 4 (2003), 2.
[14] Greg Barnes. 1993. A Method for Implementing Lock-Free Shared-

Data Structures. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 261–270.

[15] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and

Charalampos Tsourakakis. 2015. Space- and Time-Efficient Algorithm

for Maintaining Dense Subgraphs on One-Pass Dynamic Streams. In

ACM Symposium on Theory of Computing (STOC). 173–182.
[16] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Brief

Announcement: ParlayLib – A Toolkit for Parallel Algorithms on

Shared-Memory Multicore Machines. In ACM Symp. on Parallel Alg.
(SPAA). 507–509.

[17] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana

Volkovich. 2014. Core decomposition of uncertain graphs. In ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). 1316–1325.

[18] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter

Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,

Harry C. Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun

Song, and Venkateshwaran Venkataramani. 2013. TAO: Facebook’s

Distributed Data Store for the Social Graph. In USENIX Annual Tech-
nical Conference (ATC), Andrew Birrell and Emin Gün Sirer (Eds.).

49–60. https://www.usenix.org/conference/atc13/technical-sessions/
presentation/bronson

[19] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran

Shir. 2007. A model of Internet topology using k-shell decomposition.

Proceedings of the National Academy of Sciences 104, 27 (2007), 11150–
11154.

[20] Audrey Cheng, Xiao Shi, Aaron N. Kabcenell, Shilpa Lawande, Hamza

Qadeer, Jason Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh

Balakrishnan, Nathan Bronson, Natacha Crooks, and Ion Stoica. 2022.

TAOBench: An End-to-End Benchmark for Social Networking Work-

loads. Proceedings of the VLDB Endowment 15, 9 (2022), 1965–1977.
https://doi.org/10.14778/3538598.3538616

[21] Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang,

Yinglong Xia, and Chenyi Zhang. 2020. Finding the Best k in Core De-

composition: A Time and Space Optimal Solution. In IEEE International
Conference on Data Engineering (ICDE). 685–696.

[22] Martino Ciaperoni, Edoardo Galimberti, Francesco Bonchi, Ciro Cat-

tuto, Francesco Gullo, and Alain Barrat. 2020. Relevance of temporal

cores for epidemic spread in temporal networks. Scientific Reports 10,
1 (2020), 12529.

[23] Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. 2018. The

Inherent Cost of Remembering Consistently. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 259–269.

[24] Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun. 2022. PaC-

trees: supporting parallel and compressed purely-functional collec-

tions. In 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 108–121.

[25] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2017. Julienne: A

Framework for Parallel Graph Algorithms usingWork-efficient Bucket-

ing. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 293–304.

[26] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoreti-

cally Efficient Parallel Graph Algorithms Can Be Fast and Scalable. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
393–404.

[27] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-

latency graph streaming using compressed purely-functional trees.

In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 918–934.

[28] Laxman Dhulipala, Changwan Hong, and Julian Shun. 2020. ConnectIt:

A Framework for Static and Incremental Parallel Graph Connectivity

Algorithms. Proc. VLDB Endow. 14, 4 (Dec 2020), 653–667.
[29] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu.

2021. Parallel Batch-Dynamic 𝑘-Clique Counting. In Symposium on
Algorithmic Principles of Computer Systems (APOCS). 129–143.

[30] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2009. Extrac-

tion and classification of dense implicit communities in the Web graph.

ACM Trans. Web 3, 2 (2009), 7:1–7:36.
[31] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.

2010. Non-blocking binary search trees. In ACM Symposium on Princi-
ples of Distributed Computing (PODC). 131–140.

[32] Fatemeh Esfahani, Venkatesh Srinivasan, Alex Thomo, and Kui Wu.

2019. Efficient Computation of Probabilistic Core Decomposition at

Web-Scale. In International Conference on Extending Database Technol-
ogy (EDBT). 325–336.

[33] Hossein Esfandiari, Silvio Lattanzi, and Vahab S. Mirrokni. 2018. Par-

allel and Streaming Algorithms for K-Core Decomposition. In Interna-
tional Conference on Machine Learning (ICML) (Proceedings of Machine

298

https://doi.org/10.48550/arXiv.2306.08786
https://doi.org/10.48550/arXiv.2306.08786
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://doi.org/10.14778/3538598.3538616


PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Quanquan C. Liu, Julian Shun, and Igor Zablotchi

Learning Research, Vol. 80). 1396–1405.
[34] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng

Hu. 2017. Effective Community Search over Large Spatial Graphs.

Proceedings of the VLDB Endowment 10, 6 (2017), 709–720.
[35] Alexander Fedorov, Nikita Koval, and Dan Alistarh. 2021. A Scalable

Concurrent Algorithm for Dynamic Connectivity. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). 208–220.

[36] Paolo Ferragina and Fabrizio Luccio. 1994. Batch Dynamic Algorithms

for Two Graph Problems. In International PARLE Conference on Parallel
Architectures and Languages Europe, Vol. 817. 713–724.

[37] Keir Fraser. 2004. Practical lock-freedom. Ph. D. Dissertation. University

of Cambridge, UK.

[38] Kasimir Gabert, Ali Pinar, and Ümit V. Çatalyürek. 2021. Shared-

Memory Scalable k-Core Maintenance on Dynamic Graphs and Hy-

pergraphs. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS) Workshops. 998–1007.

[39] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso

Lanciano. 2020. Core Decomposition in Multilayer Networks: Theory,

Algorithms, and Applications. ACM Trans. Knowl. Discov. Data 14, 1
(2020), 11:1–11:40.

[40] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrovic. 2019. Im-

proved Parallel Algorithms for Density-Based Network Clustering. In

International Conference on Machine Learning (ICML) (Proceedings of
Machine Learning Research, Vol. 97). 2201–2210.

[41] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and

Michalis Vazirgiannis. 2014. CoreCluster: A Degeneracy Based Graph

Clustering Framework. In AAAI Conference on Artificial Intelligence.
44–50.

[42] John Healy, Jeannette C. M. Janssen, Evangelos E. Milios, and William

Aiello. 2006. Characterization of Graphs Using Degree Cores. In In-
ternational Workshop on Algorithms and Models for the Web-Graph
(WAW), Vol. 4936. 137–148.

[43] Monika Henzinger, Stefan Neumann, and Andreas Wiese. 2020. Ex-

plicit and Implicit Dynamic Coloring of Graphs with Bounded Arboric-

ity. CoRR abs/2002.10142 (2020), 18 pages.

[44] Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Pro-
gramming, Revised Reprint (1st ed.). Morgan Kaufmann Publishers

Inc.

[45] Changwan Hong, Laxman Dhulipala, and Julian Shun. 2020. Exploring

the Design Space of Static and Incremental Graph Connectivity Algo-

rithms on GPUs. In Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques. 55–69.

[46] Qiang-ShengHua, Yuliang Shi, Dongxiao Yu, Hai Jin, Jiguo Yu, Zhipeng

Cai, Xiuzhen Cheng, and Hanhua Chen. 2020. Faster Parallel Core

Maintenance Algorithms in Dynamic Graphs. IEEE Transactions on
Parallel and Distributed Systems 31, 6 (2020), 1287–1300.

[47] Siddhartha V. Jayanti and Robert E. Tarjan. 2021. Concurrent disjoint

set union. Distributed Computing 34, 6 (2021), 413–436.

[48] Hai Jin, Na Wang, Dongxiao Yu, Qiang-Sheng Hua, Xuanhua Shi,

and Xia Xie. 2018. Core Maintenance in Dynamic Graphs: A Paral-

lel Approach Based on Matching. IEEE Transactions on Parallel and
Distributed Systems 29, 11 (2018), 2416–2428.

[49] Humayun Kabir and Kamesh Madduri. 2017. Parallel k-Core Decom-

position on Multicore Platforms. In IEEE International Parallel and
Distributed Processing Symposium Workshops, (IPDPS). 1482–1491.

[50] Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. 2015.

K-Core Decomposition of Large Networks on a Single PC. Proceedings
of the VLDB Endowment 9, 1 (2015), 13–23.

[51] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev

Muchnik, H Eugene Stanley, and Hernán A Makse. 2010. Identification

of influential spreaders in complex networks. Nature Physics 6, 11
(2010), 888–893.

[52] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.

What is Twitter, a Social Network or a News Media?. In International

Conference on World Wide Web. 591–600.
[53] Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu C. Aggarwal. 2010. A

Survey of Algorithms for Dense Subgraph Discovery. InManaging and
Mining Graph Data. Advances in Database Systems, Vol. 40. 303–336.

[54] Conggai Li, Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and

Xuemin Lin. 2019. Efficient Progressive Minimum k-core Search. Pro-
ceedings of the VLDB Endowment 13, 3 (2019), 362–375.

[55] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Mainte-

nance in Large Dynamic Graphs. IEEE Trans. Knowl. Data Eng. 26, 10
(2014), 2453–2465.

[56] Zhe Lin, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Zhihong Tian.

2021. Hierarchical Core Maintenance on Large Dynamic Graphs.

Proceedings of the VLDB Endowment 14, 5 (2021), 757–770.
[57] Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and

Julian Shun. 2022. Parallel Batch-Dynamic Algorithms for 𝑘-Core

Decomposition and Related Graph Problems. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 191–204.

[58] Quanquan C. Liu, Julian Shun, and Igor Zablotchi. 2024. Parallel 𝑘-

Core Decomposition with Batched Updates and Asynchronous Reads.

arXiv:2401.08015 [cs.DC]

[59] Ying Liu, Ming Tang, Tao Zhou, and Younghae Do. 2015. Core-like

groups result in invalidation of identifying super-spreader by k-shell

decomposition. Scientific Reports 5, 1 (2015), 9602.
[60] Qi Luo, Dongxiao Yu, Feng Li, Zhenhao Dou, Zhipeng Cai, Jiguo Yu,

and Xiuzhen Cheng. 2019. Distributed Core Decomposition in Proba-

bilistic Graphs. In International Conference on Computational Data and
Social Networks (CSoNet), Vol. 11917. 16–32.

[61] Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazir-

giannis. 2016. Locating influential nodes in complex networks. Scien-
tific Reports 6, 1 (2016), 19307.

[62] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering

and clustering and Graph Coloring Algorithms. J. ACM 30, 3 (1983),

417–427.

[63] Sourav Medya, Tianyi Ma, Arlei Silva, and Ambuj K. Singh. 2020. A

Game Theoretic Approach For k-Core Minimization. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS).
1922–1924.

[64] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos E.

Tsourakakis, and Shen Chen Xu. 2015. Scalable Large Near-Clique

Detection in Large-Scale Networks via Sampling. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD). 815–824.

[65] Eisha Nathan, E. Jason Riedy, Anita Zakrzewska, and Chunxing Yin.

2017. A New Direction for Streaming Graph Analysis. In IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). 645–646.

[66] Shaunak Pawagi and Owen Kaser. 1993. Optimal parallel algorithms

for multiple updates of minimum spanning trees. Algorithmica 9, 4

(1993), 357–381.

[67] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-

Lung Wu, and Ümit V. Çatalyürek. 2013. Streaming Algorithms for

k-core Decomposition. Proceedings of the VLDB Endowment 6, 6 (2013),
433–444.

[68] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-

Lung Wu, and Ümit V. Çatalyürek. 2016. Incremental k-core decompo-

sition: algorithms and evaluation. Proceedings of the VLDB Endowment
25, 3 (2016), 425–447.

[69] X. Shen and W. Liang. 1993. A parallel algorithm for multiple edge up-

dates of minimum spanning trees. In Proceedings Seventh International
Parallel Processing Symposium. 310–317.

[70] Bintao Sun, T.-H. Hubert Chan, and Mauro Sozio. 2020. Fully Dynamic

Approximate k-Core Decomposition in Hypergraphs. ACM Trans.
Knowl. Discov. Data 14, 4 (2020), 39:1–39:21.

[71] Tom Tseng, Laxman Dhulipala, and Julian Shun. 2022. Parallel Batch-

Dynamic Minimum Spanning Forest and the Efficiency of Dynamic

299

https://arxiv.org/abs/2401.08015


Parallel 𝑘-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

Agglomerative Graph Clustering. In Proceedings of the 34th ACM Sym-
posium on Parallelism in Algorithms and Architectures. 233–245.

[72] Kai Wang, Xin Cao, Xuemin Lin, Wenjie Zhang, and Lu Qin. 2018.

Efficient Computing of Radius-Bounded k-Cores. In IEEE International
Conference on Data Engineering (ICDE). 233–244.

[73] Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng

Hua. 2017. Parallel Algorithm for Core Maintenance in Dynamic

Graphs. In IEEE International Conference on Distributed Computing
Systems (ICDCS). 2366–2371.

[74] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2019.

I/O Efficient Core Graph Decomposition: Application to Degeneracy

Ordering. IEEE Trans. Knowl. Data Eng. 31, 1 (2019), 75–90.
[75] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating net-

work communities based on ground-truth. Knowl. Inf. Syst. 42, 1 (2015),
181–213.

[76] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017.

When Engagement Meets Similarity: Efficient (k, r)-Core Computation

on Social Networks. Proceedings of the VLDB Endowment 10, 10 (2017),
998–1009.

[77] Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010.

Using the k-core decomposition to analyze the static structure of large-

scale software systems. J. Supercomput. 53, 2 (2010), 352–369.
[78] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. 2017. A Fast

Order-Based Approach for Core Maintenance. In IEEE International
Conference on Data Engineering (ICDE). 337–348.

A Artifact Appendix
A.1 Setup and Experiment Script

Our experiments use code from the Graph Based Benchmark

Suite (GBBS) which can be installed from this Github link:

https://github.com/qqliu/batch-dynamic-kcore-decomposition.

GBBS is most easily installed and run on Ubuntu 20.04 LTS,

but can be installed easily on any Ubuntu machine. We have

provided an instance with pre-installed software on which

you can run experiments if you provide us with a public key.

First, run setup.sh within the main

batch-dynamic-kcore-decomposition/ directory by typ-

ing sh setup.sh into the command line. The following are

the setup instructions that are run by setup.sh:

1. If you do not have make, run sudo apt install make.
2. If you do not have g++, run sudo apt-get update,

then sudo apt-get install g++.

3. Run git submodule update --init --recursive
to obtain subpackages from inside the GBBS directory.

4. All scripts for running code is included under the

/batch-dynamic-kcore-decomposition/gbbs/scripts
directory.

5. The relevant scripts are: cplds_approx_kcore_setup.txt,
cplds_test_approx_kcore.py, and
cplds_read_approx_kcore_results.py.

Experiment Machine Setup Our experiments require

machines with 30 cores. Specifically, we tested our exper-

iments on machines with the following specifications. We

use a c2-standard-60 Google Cloud instance (3.1 GHz Intel
Xeon Cascade Lake CPUs with a total of 30 cores with two-

way hyper-threading, and 236GiB RAM) and an m1-megamem-96
Google Cloud instance (2.0 GHz Intel Xeon Skylake CPUs

with a total of 48 cores with two-way hyper-threading, and

1433.6 GB RAM). We do not use hyper-threading in our

experiments. Our programs are written in C++, use a work-

stealing scheduler [16], and are compiled using g++ (version

7.5.0) with the -O3 flag. We terminate experiments that take

over 2 hours to finish.

Experiment Script We have prepared an experimental

script for you to run to reproduce the results for all experi-
ments for insertions on three of our tested graphs. We chose

these experiments in order for our suite of experiments to

complete within a reasonable time limit. All of our experi-

ments in the script can be completed in a total of 15 minutes.

The experimental script is included in /batch-dynamic-kcore-

decomposition/gbbs/scripts/cplds_experiments and can be

run by typing sh run_experiments.sh into the terminal.

The program outputs into the terminal, the results of all

experiments with the corresponding labels.

A.2 Step-by-Step Instructions

All of our experiments can be performed using our general

purpose script given in the README file under the

gbbs/benchmarks/EdgeOrientation/ConcurrentPLDS di-
rectory.

300

https://github.com/qqliu/batch-dynamic-kcore-decomposition

	Abstract
	1 Introduction
	2 Preliminaries
	3 Background
	3.1 Level Data Structure (LDS)
	3.2 Parallel LDS (PLDS)

	4 Algorithm Overview
	5 Detailed Algorithm
	5.1 Data Structures and Global State
	5.2 Updates
	5.3 Reads

	6 Correctness
	6.1 Approximation Guarantees

	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Setup and Experiment Script
	A.2 Step-by-Step Instructions


