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1 INTRODUCTION

Data Poisoning Attacks (DPAs) have been a serious threat to machine learning models used in
computer vision, speech recognition, and other Artificial Intelligence (AI) application areas. The
attacks are based on the minimal change to data [228] and can deceive a trained model to produce
incorrect outcomes. Thus, DPAs are able to poison complex and state-of-the-art machine learning
models that are central to the decision-making processes of any intelligent system running in
various sectors including business, industry, and defence. For example, Microsoft reported a DPA
attack that targeted the company chatbot Tay whose training data were poisoned with racist tweets
and consequently caused the chatbot’s conversational algorithm to generate offensive tweets [2].
The consequence of a DPA can even lead to loss of human life. A recent piece of news reported
that a vulnerability of the Al module in the autopilot of a Tesla car was exploited, and caused the
failure to recognise a stopped car in the lane as an obstacle [1].

A DPA needs a minimum of five elements to form one attack. These elements are victim model,
poisoning techniques (e.g., indirect poisoning, data injection, data manipulation, logic corruption),
knowledge of training data and/or victim model, attack mode (e.g., repetitive and non-repetitive),
and core perturbation function or algorithm. In principle, a DPA attack is driven by a mathematical
perturbation function or a specially designed data perturbation algorithm. A mathematical pertur-
bation function-driven DPA crafts adversarial samples using a pre-defined calculation to modify
the original data samples. Despite the modification causing the change in the internal data dis-
tribution, such perturbation is imperceptible to humans since the individual samples look similar
to the original ones. Such complex perturbation functions eventually will mislead the classifier to
output wrong predictions.

In practice, it is difficult to trace a DPA in that its mathematical perturbation functions are
dynamic and also transferable. According to [66], in a black-box setting, transferability provides
a DPA with the ability to expand its maliciousness from one victim model to other models while
being equally effective. For example, the ensemble adversarial attack uses a perturbation function
to create adversarial data which is tested on a local surrogate model and then the poison can be
transferred to multiple victim models [225]. Theoretically, the transferability of DPA is related to
three metrics connected to target model complexity: (1) the size of the input gradient of the model;
(2) how well the gradients of the surrogate and target models align; and (3) the variance of the loss
landscape optimised to generate the attack points [66].

The execution of a DPA perturbation mathematical function can be computationally expensive.
The level of computational cost varies with the type of the perturbation method. The fixed-point
disturbance will experience the least computation cost, while dynamic fixed point and gradient-
based computation will experience progressively higher cost due to the complex and iterative
nature of the computation [65]. Similar to the mathematical perturbation function, a DPA can
also be driven by a specially designed perturbation algorithm. The purpose of the algorithm is
to encode the adversarial attack behavior like that of using a mathematical function, but with
added algorithmic complexity such as, adding points to the training set sequentially, performing
repetition, and iterating multiple computational steps until a certain set of conditions is met.

The DPA behavior can be characterized by other features, such as attack frequency, assembly,
and repetition to convergence. For the same DPA, its behavior changes significantly according
to the chosen parameters, creating a variety of perturbations outcomes. Some parameters like
step size, norm, target confidence, and perturbation search methods have a big impact on the
perturbation visibility.

DPA can be scalable as the attackers can simply modify or adjust the parameters of iteration
to scale up the perturbation influence/weight on the target. An iterative DPA often makes small
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unnoticeable modifications at each iteration, which becomes malicious over the iterations, and
makes the whole process complex and computationally expensive. DPA mode configuration adds
further complexity through multiple backwards passes of gradient computation, increasing both
time and space complexity. Due to the fact that the attacks have a repetition frequency where the
model during an attack will be queried one or multiple times (iterative mode), the repetition of DPA
will add more complexity to the adversarial crafting process. A specific DPA can be encapsulated
in a pre-designed repetition mode, and also can be performed as a single attack or an ensemble of
attacks where multiple perturbation methods are used by the attackers based on the threat model.

DPA can be dynamic as well, because it can be applied in an automated, semi-manual, or full
manual framework. Execution of a DPA requires conducting multiple queries (scans) on the target
model, which is also called the victim model, if the model has already been compromised. These
queries take place in the reconnaissance phase aiming to identify the target model settings and
gather specific information that is required to specify which DPA should be applied and will have
a higher chance to break through.

As per the complexity and dynamic nature of DPAs discussed above, it is essential for ma-
chine learning practitioners who deploy models to adopt frameworks to assess DPA risk for mod-
els/assets protection. For an unknown DPA, it is practically very difficult for a cyber defence profes-
sional to search through hundreds of options to identify a DPA, and quickly find a reliable defence
solution. In most cases, only a tentative solution is adopted which works only for a brief period
of time because of the dynamic nature of DPAs. This ad-hoc approach is inefficient because of
the absence of a roadmap to characterize a DPA and map it to a defence solution. For example,
Langlotz et al. [130] created a roadmap that links foundational machine learning algorithms to
various medical imaging usages including medical image reconstruction, noise reduction, quality
assurance, triage, segmentation, computer-aided detection, computer-aided classification, and ra-
diogenomics. This roadmap in practice facilitates the identification of solutions. Inspired by this,
we propose formulation of such a navigating path that can assist cyber defence professionals in
quickly generating a solution, especially for real-time critical applications.

Data Poisoning attacks are very effective against Deep Learning models despite their impressive
ability to solve complex problems such as image classification and recognition. DPA exploits the
Deep Learning vulnerabilities that imply a huge limitation and security concerns on the develop-
ment of models if these security issues persist. Therefore, there have been many defences proposed
since the discovery of adversarial attacks by Szegedy et al. [229]. These defences are ineffective to
stop complex and strong attacks as argued by Machado et al. [196].

1.1 Differentiation

Evasion attacks (EAs) [85] are categorized in literature as a group of adversary attacks different
to DPA, because an EA perturbs the input samples at testing time, instead of polluting the training
data as a DPA does [33]. Note that regardless of the different victim models, the majority of EAs and
DPAs use the same type of perturbation core. From the perspective of victim model despondency,
an EA can be treated as a DPA in the configuration of poisoning testing data.

Backdoor attacks (BAs) are another category of adversary attacks. Similar to a DPA, a BA
aims to inject poisoned data samples into training data. A DPA downgrades the performance in
predicting true testing samples, whereas a BA preserves the performance on true samples, similarly
with the model, while changing the prediction of attacked samples (i.e., true testing samples with
embedded triggers) to the target label. From this angle, data poisoning can be regarded as the
‘non-targeted' poisoning-based backdoor attack with transparent triggers to a certain extent.

Without loss of generality, we consider a BA as a triggered DPA, and an EA as a configured DPA,
and use one consistent term of DPA throughout this paper to cover the three types of attacks.
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Table 1. A Summary of Recent DPA Survey Studies

Work DPA families Year
Sagar et al. [207] Label Flipping Attacks, Gradient Descent Attacks 2023
Tian et al. [233] Non convex Optimisation Attacks, Label Flipping Attacks 2023
Ramirez et al. [193] Label Flipping Attacks, Attacks on SVM, Attacks on Clustering / 2022

K-Means Attacks, Non convex Optimization Attacks / Gradient
Optimization Attacks, GAN Generated Poisoning

Goldblum et al. [96] Collision Poisoning, Non convex Optimisation Attacks, Influence 2021
Functions Poisoning Attacks, Label Flipping Attacks, Vanishing
Gradients / Gradient Obfuscation

Koh et al. [123] Influence Functions Poisoning, Iterative Optimisation Attacks 2021
Kong et al. [124] Gradient Descent Attacks, Saddle Point Optimization Attacks 2021
Machado et al. [196] Universal Adversarial Attacks, Natural Evolutionary Strategies Attacks, | 2020

Boundary Attacks, Momentum Iterative Attacks, Projected Gradient
Descent Attacks, Spatially Transformed Attacks

Gao et al. [89] Backdoor Attacks, Universal Adversarial Patch 2020

Bhambr et al. [20] Gradient-free Attacks, Advanced Local Search Attacks 2020

Liu et al. [148] Generalised Membership Attacks, Universal Adversarial Attacks 2020

Chakraborty et al. [39] Papernote Adversarial Crafting Attacks, GAN Attacks, Membership 2020
inference Attacks

Yuan et al. [266] Feature Adversary Attacks, Generative Adversarial 2018

Serban et al. [211] Non convex Optimisation Attacks, Geometric Transformations Attacks, | 2018
Generative Modeling Attacks

Liu et al. [144] Generative Adversarial, LCA Label Modification, Attacks on SVM, 2018
Attacks on Clustering, Attacks on PPCA/Lasso

Chakraborty et al. [38] Iterative Optimisation Attacks, BFGS, FGSM, JSM 2018

It is important to note that DPA has been extensively researched and analyzed in the literature.
Numerous studies have been conducted, identifying different DPA families that exhibit common
features and characteristics. Table 1 presents a summary of recent DPA-related surveys conducted
in the past five years and lists the DPA families examined for each survey. For instance, Ramirez
et al. [193] conducted a comprehensive review on DPA in Artificial Intelligence (Al), identifying
seven DPA families, namely Label Flipping Attacks, Attacks on SVM, Attacks on Clustering, Gradi-
ent Optimization Attacks, GAN Generated Poisoning, Features Adversary Attacks, Crowd-Sensing
Attack. This work provides valuable insights into Al targeted DPAs, which facilitates a deeper un-
derstanding of the vulnerabilities and countermeasures in Al systems. Meanwhile, Sagar et al. [207]
delivered an analysis of Poisoning Attacks and their defences within the realm of Federated Learn-
ing. In contrast, Gao et al. [89] centered their research on a specific kind of Data Poisoning Attack
known as “Backdoor Attacks”. Although all these surveys possess valuable insights, none provide
a comprehensive review that covers all existing DPA families, explores their interconnections, and
importantly, establishes a connection from specific attacks to effective defence solutions. Moti-
vated by this gap, the objectives of this work are to consolidate DPA families from existing sur-
veys, integrate new DPA families derived from recent studies on DPA attacks and defences, and
construct a comprehensive DPA roadmap. This roadmap will provide a critical tool for defenders
to devise effective solutions to counter these attacks.

The contributions of this paper are summarized as follows:

— A full set of DPA measurements are formulated as the baselines for our roadmap
investigation.

— A DPA characteristic model is proposed and we demonstrate its core role in categorisation
of DPAs.

— We develop a DPA roadmap that comprehensively covers 221 recently published DPAs and
111 DPA defence methods. The roadmap can facilitate security professionals to identify
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Table 2. Notations

Variable Description

X An original data sample (unmodified)
y The truth class label of x

X A set of original data sample

t The time stept = 1,2,. ..

o The predicted class label at time ¢
4 Perturbation model

{(xy) A perturbed data sample

{(yy) A perturbed class label

{(Dy) A perturbed data set

{(Dy) A perturbed validation data set
{(Dyr) A perturbed training data set

g A Threat model

f(x) Victim model

M A road map from attack to defence
M) A road map on victim model

the rules of forming a DPA from the attacker’s viewpoint and the potential defence
solutions.

1.2 Definitions and Notations

For the convenience and simplicity of the presentation, we summarize the key notations and vari-
ables in Table 2. A dataset is defined as {x;, yi}gl, where x; is a data sample with a label y; and N
is the size of the dataset.

An adversarial example dataset is denoted as {'(x;) where {(x;) : D(x,{(x:)) < n, f({(x:)) # y,
where D is the dataset.

The rest of the paper is organized as follows: Section 2 introduces the current status of DPA vari-
ations and defence mechanisms and identifies the Roadmap solution. Section 3 presents the DPA
measurements and characteristic model, highlighting the core elements of DPA, namely the data
and victim model. By applying the DPA characteristic model to DPA grouping and edge deriva-
tions, the proposed DPA roadmap, along with a validation case study, is introduced in Section 4.
Section 5 discusses the limitations of the approach and explores future research directions. Finally,
in Section 6, we conclude the paper.

2 OVERVIEW

Data poisoning is a class of adversarial attacks to machine learning models (victim models) where
adversaries intend to degrade the model’s performance by contaminating the training data. Given
a training dataset {x}, a data poisoning attack often modifies the training dataset by injecting per-
turbed samples {(x) or artificially crafted new samples, so as to alter the learning model decision
function f(x) that decreases the accuracy of the learning model. The learning model hereafter is
also referred to as victim model (VM).

Such attacks have been applied against a wide range of learning models including online incre-
mental learning model and online multi-task learning. A DPA manipulates data x for training in
order to cause the VM to fail during training and inference. Data poisoning in its early discoveries
targets typical VMs including support vector machines and neural networks [140]. A variety of
DPAs are now impacting almost every machine learning model in different ways.
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2.1 Dependency on Data

DPA can also be found to have a dependency on the type of data. For example, the Image Scaling
DPA [191] is image agnostic and targets only image data. The Concealed DPA [240] is a Neural
Language Processing (NLP) based DPA that works only on text data. The VenoMave [6] is an
audio-specific DPA that impacts digital signal data. There are also DPAs specific to unstructured
data. For example, the Vanilla PCA Poisoning [204] is a DPA for only unstructured sensor network
data. Graphs embedded knowledge also are targeted by DPA which gives so called direct and
indirect DPA [271].

On the other hand, a DPA typically can be applied to multiple types of data, but may have a
preference in favor of or against a certain data type. For example, the universal adversary per-
turbation (UAP) [269] represents a large family of DPAs including DF-UAP, SV-UAP, GAP, NAG,
Cos-UAP, FFF, AAA, GD-UAP, PD-UAP, and CD-UAP. The family is applicable to image, text and
audio, but not sustainable for structured data. Such restrictions come from the limits of software
application environment and victim model dependency. For example, the convolutional neural
networks (CNNs) are widely used in computer vision applications owing to its outstanding per-
formance on image pattern recognition. This in return causes those CNN-dependant DPAs [103]
working only on image data.

2.2 Dependency on Perturbation Core

The effectiveness of DPA is highly related to the adopted perturbation core { in the attack. The
perturbation function defines the adversarial example generation methods [7, 26, 35] which is re-
sponsible for crafting the small anomaly/perturbation that is added to the input during training
and is sufficient to change the prediction of the learning model. Each DPA normally has a unique
perturbation core which allows us to categorize a DPA according to its core. In some cases, mul-
tiple DPAs may share the same type of perturbation function, but with varied parameters which
differentiates their behaviour.

For example, FGS, IFGS, L-GFGS and Box-constrained L-GFGS are a family of DPAs which use
the same fast gradient sign (FGS) core [98] which linearizes the cost function around the current
value for obtaining an optimal max-norm constrained perturbation. The IFGS is an iterative version
of FGS, which applies the sign of the gradient at each iteration. The L-GFGS is an enhanced version
of the original FGS in producing stronger and faster adversarial examples. The Box-constrained
L-GFGS ensures reliable finding of those adversarial examples [127].

2.3 Dependency on Victim Model

A DPA can be dependent on a specific victim model (VM), the model type, inputs, outputs, train-
ing data, parameters, and many other factors. In other words, the perturbation function of DPA {
is defined based on a given learning model f(x), which causes the DPA associate with one specific
VM or VM family. In practice, such dependency highlights the vulnerabilities of learning model
and leads the attacker to exploit these vulnerabilities. For example, SVM-PA perturbation [254]
was designed to attack the Support Vector Machine (SVM) in its kernel space changing the in-
tegrity of model. The DPA needs a kernel space to execute the attack, thus non-kernel learning
models will not be impacted by this attack. Gradient-based DPAs [107] are set to interfere or mod-
ify the gradient calculation during the learning (model updating) process. These DPAs are able to
impact a large group of models that rely on gradient calculation for learning.

Also, a DPA can be applicable to universal learning models, which means { is independent to
f(x). For example, in the case of Black-box scenario, the attack requires no information about
the VM structure and parameters, but the input and results labeled by the learning model. In the
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scenario of attack transferring, a DPA against one learning model is also effective against a differ-
ent, potentially unknown, model. For a group of learning models with a similar decision function,
if a DPA successfully breaks one model, then similar DPAs can be effective to the remaining mod-
els. Nevertheless, training classifiers on compromised data implies the VM independent attack,
since the contamination leads to the mis-classification of any learning model. This happens when
open-source data are used for training without verifying the origin of the data and its integrity. To
prevent this, it is imperative to ensure the dataset is from a trusted source and ensure its integrity
before training.

From the viewpoint of attackers, targeting a specific VM will minimise the scope of the attacks,
avoid time consuming vulnerability scanning, and enable personalized data poisoning which often
have a better success rate. On the other hand, from the perspective of defence, it is extremely
challenging to protect a learning model against a personalized attack because typical protection is
no longer capable of filtering out the threats. Thus, it is worth discovering the mapping between
DPA and VM to better understand and characterise the attack and devise an effective defensive
solution.

2.4 DPA Defence

The target of security by design is to predict potential attacks through a what-if analysis toward
designing a suitable defence before the attack occurs [26]. Multiple existing DPA defence tech-
niques are attack specific agnostics, such as adversarial training [251], data sanitisation [58] and
influence based defence. These solutions can only defend some specific type of DPAs such as TCL-
attack [277], pGAN-attack [173], LF-attack [25], R-attack [112]. Thus, existing defence techniques
against data poisoning attacks are largely attack-specific, they are designed to tackle one specific
type of attacks, but may not work for other types mainly due to the distinct principles they fol-
low. Apparently, it is beneficial to map all defences to their corresponding DPAs, or the other way
around. This will provide the defenders a clear view on every attack and suggest what are the
appropriate defences that can be implemented in a fast manner.

2.5 The Roadmap Solution

For both VM dependency and in-dependency, it is desirable to discover those DPA groups that
share features (DPA measurements) and mathematical computation. If groups are connected to
one another, going towards a specific defence solution, then the complete knowledge of DPA will
be represented as a roadmap, and the map will equip the defenders with the complete knowledge
of DPA characteristics in the shortest possible time in implementing an effective countermeasure
solution.

Technically, given a DPA set A and its defence solution set D, the construction of a roadmap to
connect DPA to defence is to create a morphism as

M:A— D,

where the roadmap M is a subset of A X D consisting of all the pairs of (a, M(a)) for every a € A.
Note that the roadmap does not capture the complete information of which the defence D is used
as the codomain; the range M(a) is determined by the input space A.

It is worth noting that under the condition of known victim model f, the roadmap can be for-
matted as

Mf,c A > D,
in which a DPA g; is able to be tracked on the DPA configuration ¢ with the specific reference to
f and to reach the predicted defence solution d; with d; € D.
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With Mg, in the scenario of known attack, where the victim model is treated with a complicated
attack approach and process. The roadmap will guide the defender to track the attack process, at
every step to quickly detect a list of possible candidate attacks and predict the ultimate solution. In
the case of an unknown DPA, the defender can still track the DPA according to the configuration
and quickly identify shortlisted DPAs that are performed randomly by the attacker.

3 DPA CHARACTERISTIC MODEL
3.1 DPA Measurements

DPA measurements are a range of factors that impact the behaviour, architecture, operation and
consequences of a data poisoning attack. The following describes the list of measurements for the
purpose of DPA characterization.

Data Type: The type of data on which the attack is performed. The option includes text,

audio, video, graph, structured and unstructured, and all types of data.

Victim Model [222]: The type of machine learning model that the attack targets. The option

includes supervised learning, unsupervised learning, natural language processing, reinforce-

ment learning, and statistic learning,.

Target Algorithm: A specific algorithm that has been targeted. The algorithm belongs to

one of the above victim models. The option includes SVM, CNN, Linear Regression, Logis-

tic Regression, Decision Tree, Gradient Based GCN, Random Forest, RNN, LSTM, Bi-LSTM,

Gradient Boost Decision Tree, Faster RCNN.

Target Architecture: The type of architecture that has been targeted by the attack. The

option includes LeNet, VGG, AlexNet, QuocNet, GoogLeNet, CaffeNet, ResNet, DQN, TRPO,

A3C, VAE, AE, VGGFace, FCN, BiDAF, 2-Layer FC.

Threat Model [128]: The approach and mathematical model adopted in the attack. The

option includes additive threat model, functional non-additive model, Blackbox, Whitebox

and Graybox threat model.

Attack Frequency [266]: The number of times to query the model and refine the adversarial

samples. The option includes a one-time attack and an iterative attack.

Perturbation Core [257]: The type of small artificial corruptions introduced into clean

samples so as to fool the target machine learning algorithm. The option includes FGSM, PGD,

DbBA, Threshold Attack, NewtonFool, PGD permutated Gradient descent, PGD - Iterative,

PGD - Single Shot, ZOO, Spatial Transformation, BIM, Momentum Iterative, Auto Attack,

Shadow Attack, JSMA, SimBA, SimBA-DCT, DPatch, Carlini & Wagner, IGS, Adversarial

Patch, IFS, QL Attack, LBFG, QeBB, UAP, TUAP, and CE. Table 6 gives a list of commonly

used perturbation mathematical functions.

Perturbation Scope [156]: Individual-scope perturbations are generated for each indi-

vidual input sample, while universal-scope perturbations are perturbations generated

independently from any input sample. The option includes individual and universal scope

perturbation.

Perturbation Dimension [189]: The selection of input dimensions on which perturbation

is performed in order to generate the target mis-classification with a minimum amount of

perturbation. The option includes all input dimensions or a subset of them.

Repetition to Convergence [234, 266]: The number of attack repetitions for crafting the

desired adversarial samples. The option includes a one-time attack and an iterative attack.

Adversarial goal Consider four goals that impact classifier output integrity:

— Confidence reduction - reduce the output confidence classification (thereby introducing
class ambiguity)
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— Misclassification - alter the output classification to any class different from the original
class

— Source/Targeted misclassification - produce inputs that force the output classification to
be a specific target class.

The option includes targeted, un-targeted class and confidence reduction.

Perturbation Search Methods [266]: The search method used for finding the opti-

mal perturbation (selection) according to the input data type and target model. The

option includes bisection search, fast gradient, binary search, minimum and maximum

search.

Perturbation visibility [156]: The visibility of the adversarial samples. The option

includes optimal perturbation, visible perturbation, physical perturbation, fooling data and

noise.

Attack assembly [160]: A number of adversarial methods can be applied together for the

purpose of bypassing a defence by creating an attack assembly. The option includes single

attack, ensemble attack and composite attack.

Defence Mechanism: A detection and response mechanism against a single or multiple

data poisoning attacks. This can be either proactive or reactive mode.

3.2 Characterizing Model

The characterization of a DPA broadly depends on whether the attacker has access to the VM data,
i.e., the victim model is known or unknown. In the case of a known VM, the weakness points (attack
points) are known, and a DPA is likely to be designed according to the victim model architecture,
algorithm, and parameters. In the case of an unknown VM, the attacker needs to find out first attack
points, by testing with different types of perturbation, observing the visibility and the response
from the VM, then fix the type of perturbation applied to the attack.

To formulate the attack, its behavior is required to be customised according to the attack dimen-
sion (selection of input variables) and scope (universal or just individual sample). In launching the
attack, the attacker needs to decide on a threat model and the attack frequency to ensure its con-
vergence over multiple trials. Also, the attacker may assemble the formulated attack to increase
the attack complexity and effectiveness. Figure 1 summarizes the DPA characterising model, which
consists of attack core, and the layer of attack prototyping, formulation, and implementation. Note
that the implementation of a real-world DPA often involves all layers working in cohesion and de-
pending on each other.

3.3 DPA Grouping

The purpose of DPA grouping is to discover those DPA families that share the same defence solu-
tion or possess a set of similar attributes. In doing this, the first criterion is to find those DPAs that
share the same defence solution. For example, data sanitization [247] is a popular defensive mech-
anism applicable to multiple DPAs including simplistic attack, greedy attack, semi-online-WK and
concentrated attack [247]. Following the data sanitizing defence, we are able to discover the DPA
family of Watermarking [162], Clean-Label [213], feature collision [213] and Spoofing [125]. Simi-
larly, following randomized smoothing [161], gradient shaping [105], and other defence solutions
in Table 8, Table 5 presents the full list of DPA families used in this research.

The second criterion we follow is the similarity in terms of key DPA measurements including
data type, perturbation method and Victim model which are defined in Section 2. For example,
DPA-M-PGD and DPA-M-FGSM both target image data, and they use a similar mathematical core
{(x) = x+e.sign(VxL(x, l;rye)). Table 3 gives a list of popular mathematical perturbation functions.
Thus, these two DPAs are grouped in one node. Another example, BIM is an iterative version of
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Victim Model
known

Victim Model
Unknown

Fig. 1. DPAs characterising model.

FGSM. The two perturbation methods share the core {(x) = x+e€.sign(V,L(x, l;14.))- Further, both
FGSM and BIM apply the same additive threat model. Thus, DPA-M-FGSM and DPA-M-BIM are
categorised as one node in terms of DPA measurement perturbation method and threat model. An-
other criterion in deriving the node is assembly. Two or multiple DPAs can be assembled to build
one attack that is more powerful than an individual. In DPAs assembly, two or multiple (single
attack) are combined by searching for the best combination of attack algorithms and their hyper-
parameters leading to a more powerful attack Composite Adversarial Attacks (CAA) [160].

4 ROADMAP

As discussed above, DPA has a dependency on data type, perturbation core, and victim model. The
majority of DPAs specify the type of target model, and both attack developer and defender have
more or less prior knowledge about the model they are using and the model under attack (i.e.,
VM). Thus, a roadmap on the victim model will assist security practitioners to quickly analyze an
unknown attack by observing its behaviors against the victim model characteristics represented
in the roadmap and coming up with an effective defence solution.

VM-independent DPAs are attacks applicable to universal models even if the learning method
is based on different principles. VM-dependent DPA is more harmful than VM-independent attack.
The attackers have prior knowledge of the model under attack, not only its characteristics, but
also its parameters with value ranges, converging pathway, and the transferability to models with
similar structures. They can easily discover all weakness points (attack points) and exploit them
to achieve the level of damage they want.

ACM Computing Surveys, Vol. 56, No. 7, Article 175. Publication date: April 2024.
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Table 3. List of Mathematical Core Perturbation Functions

No | Perturbation Core Formula
1 Gradient Descent [205] sign(VyL(x, y))
2 Projected Gradient Descent (PGD) [180] sign(VyL(x, y))
Xpe1 = argmind ||x = i |2
3 Batch Gradient Descent [205] 0—n.vo J(O)
4 Projected Gradient Iterative [214] a.sign(vx(,>](x(i), y)
5 Projected Gradient Ascent (PGA) [104] X1 = argmax L [|x — yri| |§
6 Discrete Gradient Ascent (DGA) [75] V1 L(O, xT 1 y)
7 Momentum Iterative (MI) [73] (X1 = § + a.sign(g; + 1)
9 Momentum Gradient Ascent (MGA) [185] | x—1 + 1] (x-1)
10 | Stochastic Gradient Descent (SGD) [214] | 8 — . Vo L(0, x@, y®))
11 Momentum Stochastic Gradient Descent —€ V. E(w) + pAw;_4
(MSGD) [43]
12 | Enhanced Projected Gradient Descent [67] [ I ](xi +6)
0,255
13 Back Gradient Descent [175] Ve L(Leo W)
14 | Decision Based [31] [lx =112
15 | Score Based [31] R =0T 1y
é/k — gk—l
16 | Transfer Based [74] W s Vi L(x, y)
17 Score Transfer Based [108] Li = Luntargeted(X, Y)orLiarger (X, t)
Ui
Zy1 — EZ? =1L; Yz, , logN(V;|Z;-1, a?)
1, b
18 | Low - Dimension Embedding (NES) [108] I (8 — r].sign(—i_ L(x + Wi, y) V logN (wi |8, a?)))
[-€.epsilon] Z =1
19 [ Universal [270] Py e = argming||x — {|| while [[{]], < e
20 | Projected Sinkhorn Iterations w— /A
(Wassertein) [252]
21 | signSGD [145] GradEstimate(x) = ﬁ > Y qVfi(xsu )
icLij=1
22 | ZO-signSGD [146] GradEstimate(x) = ﬁ > Y qVfi(xu ),
i€Lgj=1
Vi (xsus ) = w u;
23 Image-Scaling [190] Scale(S+A) =D+ 6, ||6]], > er
24 | Shadow-Penalties [94] m;xL(Q, x+08)—A:C(8) — A1 TV(S) — AsDissim(6)
25 Gaussian Noise [30] Z(j, k) = a x Py (j, k) + No.(J, k)
4.1 Developing Map

According to the DPA characteristic model described in Section 3, we rank the priority of the
DPA measurements in terms of their relatedness to the victim model as: (1) target algorithm, (2)
perturbation core, (3) perturbation visibility, and (4) perturbation search method. Given a collection
of DPAs, and the set of DPA measurements, the following steps are taken to create the roadmap:

— Step 1: All DPA measurements are ranked according to the characteristic model, where data

type, victim model, and perturbation core are the core measurements.

Step 2: An initial DPA grouping is conducted by checking the similarity of three core mea-
surements.

Step 3: For each resulting DPA group, nodes are created by verifying: (1) if the group is in line
with an exiting DPA group, then a mid-layer node is created to represent the DPA group in
the roadmap; and (2) if the group DPAs share the same defence solution and cannot be further
divided, then a terminal node is created with its defence solution identified in the map.
Step 4: For every non-terminal node, a next-layer grouping is conducted according to the
ranked remaining measurements, creating another set of DPA groups as the next-layer
node candidates.

Step 5: Add an edge to connect every mid-layer node with its next layer node or terminal
node.
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— Step 6: The above steps are carried out in an iterative manner until every DPA goes to one
specific terminal node.

In the proposed roadmap, the definitions and notations of mid-layer node, terminal node and
edge are given as follows:

— Terminal node: If a group of DPAs shares the same defence method and can not be further
divided, then this group of DPAs constructs a terminal node in the roadmap. In the roadmap,
a terminal node is labelled as “node name/defence solution”.

— Mid-layer node: A mid-layer node represents a group of DPAs that have confirmed similarity
on a list of DPA measurements, which includes the three core measurements. In the roadmap,
a mid-layer node is denoted as a circle labelled as DPA family name. The size of the node
represents the size of the family in terms of the number of DPAs.

— Edge: An edge represents a connection between two mid-layer nodes or from a mid-layer
node to its terminal node. In the roadmap, the edge is represented as a directed line/curve
from the left to the right.

As a result, Figure 2 presents the DPA roadmap that consists of 221 DPAs and 111 defence
solutions reported in the literature during 2010-2022. For the convenience of defence solution
search, we have provided in the Appendix the full list of DPAs as Table 7 and Table 6, the full list
of DPA defence method as Table 8, and the full list of terminal nodes as Table 5.

In addition, the Github gate is set up to maintain all the supplementary documents including the
full list of DPAs, defence solutions, and perturbation functions, and serve as a public platform to
not only enable traceability, but also provide the open access for researchers to add in new DPAs
for roadmap updates.

As seen from the roadmap, the DPA group (NES - Natural Evolutionary Strategies) is the
result of the initial DPA grouping, by the similarity of core measurements, data type: images, victim
model: Supervised, and Perturbation Core: NES. Consider the DPA group shares the same defence
solution of Augmented Training, and can be further divided according to perturbation core, thus
we create three terminal nodes NES/Augmented Training, NES-FGSM/Augmented Training, and
NES-PGD/Augmented Training.

4.2 Victim Model Tracking

The increasing adoption of machine learning-driven models in production systems demands rig-
orous attention into defending against DPAs. With the proposed roadmap, a DPA can be tracked
hierarchically according to its VM, PC, DT and attack configuration characteristics, and reach a
predicted defence solution. For an unknown DPA, the map is also able to make prediction accord-
ing to the attributes of DPA other than the VM. In this sense, the proposed map has a good coverage
of all type of DPAs [4, 22, 29, 70, 86, 93, 121, 139, 141, 197, 198, 227, 239, 243, 258, 265]. For defence,
we give special attention to computer vision VMs and Neural Nets in that these techniques have
been widely used in industry production systems, and a substantial number of poisoning attacks
and defence mechanisms have been developed in this domain. Figure 2 presents an example DPA
tracking, from the supervised VM to the terminal node: Clean-Label/data sanitizing.

4.3 Validation Case Study

Clean-Label attack, also known as Poison Frogs [213], is a family of data poison attacks target-
ing neural nets. This DPA family is known to attack image and video data [158, 213]. In this at-
tack, clean labeled data are injected for training, as opposed to maliciously labeled instances, and
hence does not require control over the labels in training data, but causes the retrained model to
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Supervised[32]

NG

Fig. 3. An example DPA tracking in the proposed roadmap, from the supervised VM to the terminal node:
Clean-Label/data sanitizing.

Table 4. The Characteristics of Poison Frogs with Comparison to Traditional DPA

No | Characteristics Poison Frogs DPA Traditional DPA

1 Perturbation core Watermarking PGD

2 Data type Image and Audio Any

3 Victim Model Supervised Any

4 Visibility Visible Visible/Perceptual

5 Perturbation Search | Random Gradient-Based

6 Perturbation Scope | Universal Individual

7 Threat Model Non Additive-All (W,G,B) Additive-All (W,G,B)
8 Attack Frequency One Time Iterative

mis-classify test data into a specific target class. Clean-Label attacks are considered more com-
plex than poison-label attacks that have both training examples and labels maliciously modified,
because they are stealthy and resistant to data filtering or detection, making it difficult to find a
mitigation solution. Table 4 describes the characteristics of the Poison Frogs attack with a compar-
ison to traditional DPA. The common defence against the Poison Frog attack is data sanitization.
As reported in [58], data sanitizing including anomaly detection, training loss, and singular-value
decomposition have all been bypassed by a complex Clean Label attack. To tackle this issue, new
constructive defence solutions are currently under investigation [178].

From the defence point of view, we can trace an attack in the proposed roadmap, and pre-
dict an effective solution. Taking Poison Frog attack as an example, after locating the right
VM, we can trace the target architecture and identify the group of DPAs following the path of
(VM=Supervised) — (TA=NN) — (TA=CNN) — (DT=Image) — (PC=Watermarking) — (Visibil-
ity=Visible) — (PS=Universal) — (TM=Non Additive-All (W,G,B) — (PS=Random). Figure 3 shows
the path how the Poison Frog attack is traced to a terminal node, which indicates that the poten-
tial defence solution is data sanitizing and/or high dimensional robust estimation. Since the data
sanitization has been bypassed [58] for this attack, then the most effective defence mechanism is
the high dimensional robust estimation approach.
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5 FUTURE DIRECTIONS

In the efforts to developing a real world navigation roadmap service for bridging DPA to defence,
the future works are concluded as follows.

5.1 Capture Parameter Differentiation

The proposed roadmap supports a maximum five-step derivation, which corresponds to five
DPA measurements, namely target architecture, perturbation core, visibility, perturbation search,
and defence method. However, parameter level differentiation is not yet captured in the current
roadmap.

For victim model dependent DPAs, finding an attack point can be formulated as optimization
with respect to a performance measure, subject to the condition that an optimal solution of the
victim model [26]. Thus, capturing DPA parameter differentiation will empower the roadmap to
track the attack points and predict applicable defence solution accurately.

5.2 Response to Emerging Attacks

Despite our best efforts to trace all DPAs and defences between 2004 and 2022, there might be some
DPAs that have been missed out. Nevertheless, our roadmap-building process has set up a path
for other researchers to follow and expand the research to cover broader DPAs not yet included in
our roadmap.

It is a fact that almost every day there are new DPAs designed, developed, and launched. In
response to emerging attacks, it is desirable for future work to develop such a framework that we
can regulate the conditions on which we can create new nodes, split and/or merge exiting nodes
to update the roadmap.

5.3 Roadmap on Perturbation Core

Under the condition of a known attack, the perturbation core is a deterministic factor to the be-
haviour of a DPA, as the result of adversarial perturbations is often highly aligned with the attack
vectors of the victim model [98]. Thus, extending the proposed roadmap to be supportive of per-
turbation core categorization and navigation which is,

Mg e A= D.

Developing such a {f, {} correlated attack-to-defence mapping will be another significant future
work for effective countermeasure and defence.

5.4 Roadmap on Data Type

As discussed above, DPA has a clear dependency on the data type at the application level. To be
able to shortlist proper defence solution quickly, it is insightful for us to observe how input data
types impact DPAs performance, which is to develop the roadmap of

Mg(X),c : A e D,

where function g determines the data type of X.

6 CONCLUSION

The vast adoption of data-driven machine learning systems has increased the threat of DPA to-
wards compromising these systems which demand a laborious analysis of DPA. To help the aca-
demics and practitioners avoid spending time researching how to defend against a specific at-
tack, by first searching the literature studying the DPA and mapping it out into multiple proposed
defences, and finally testing the mapped set of defences to evaluate its efficacy (trial and error
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approach), this paper introduced a DPA characteristic model, and proposed a DPA roadmap to
identify the rules to devise a DPA from the view point of attackers.

DPA in practice is built with multiple mutually dependent layers that work in cohesion. In de-
veloping the roadmap, it is essential to identify such a framework in which a DPA can be character-
ized using layers of attacks, prototyping, formulation, and implementation. In response to this, we
developed a unified DPA characterization framework with a focus on the victim model, which pro-
vides the rules and the baseline for DPA grouping. This allows the defenders to track an unknown
DPA according to the attack characteristics discovered so far, navigate through the multi-layer
roadmap, and determine the effective solution. The defender normally has a good knowledge of
the model in protection (i.e., VM). In this context, the proposed DPA roadmap enables the defender
to use this knowledge to quickly shortlist the potential defence solutions.
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Table 6. List of Data Poisoning Attacks Driven by Mathematical Perturbation Function

175:23

No | Attack Name Mathematical Function Defence

1 DPA-M-PGD PGD [127, 157, 157] Certified Robust [132]

2 | DPA-M-Auto-PGD Auto-PGD [60, 61] WSNNS [76]

3 | DPA-M-LL-PGD LL-PGD [131] WSNNS [76]

4 DPA-M-PGD Iterative PGD Iterative [217] Vector Defence [118]

5 DPA-M-PGD-Single Shot PGD-Single Shot [114] Vector Defence [118]

6 DPA-M-MT-Linf/MT-L2 MT-Linf/MT-L2 [99] Adversarial Training [38]
7 | DPA-M-L-BFGS BFGS [92] APE-GAN [216]

9 | DPA-M-FGSM FGSM [7] FGSM Counter [246]

10 | DPA-M-LL-FGSM LL-FGSM(Step-LL) [236] Prakash et al. [188]

11 | DPA-M-ADA-FGSM ADA-FGSM [217] Carrara et al. [37]

12 | DPA-M-IFGSM(MI-Linf/MI-L2) | IFGSM(MI-Linf/MI-L2) [60] Prakash et al. [188]

13 | DPA-M-MI MI [60] Adversarial Training [38]
14 | DPA-M-MI-FGSM MI-FGSM(Momentum Iterative) [206] Mustafa et al. [174]

15 | DPA-M-TGSM TGSM [200] Feature Distillation® [150]
16 | DPA-M-IFGSM IFGSM [60] SAP [68]

17 | DPA-M-ZOO Z0O [47] Hybrid Random Forest [71]
18 | DPA-M-cADV cADV Colorisation attack [21] JPEG defence [63]

19 | DPA-M-tAdv tADV texture transfer attack [20] JPEG defence [63]

20 | DPA-M-StAdv Spatial Transformation [255] Adversarial Training [38]
21 | DPA-M-BIM BIM(Iterative FGSM) [127] Progressive Defence [242]
22 | DPA-M-BIM-A BIM-A [127] Vector Defence [118]

23 | DPA-M-BIM-B BIM-B [127] Vector Defence [118]

24 | DPA-M-FFF Fast Feature Fool [171] Adversarial Training [38]
25 | DPA-M-ILCM Iterative Least-likely class method [127] | Adversarial Training [38]
26 | DPA-M-BIM Momentum BIM [174] Mustafa [174]

27 | DPA-M-Shadow Attack Semantic spoofed certificates [94] Mustafa [174]

28 | DPA-M-JSMA Gradient Based [97] Vector Defence [118]

29 | DPA-M-NTM Metamorphic Relation Based [41] AT [129]

30 | DPA-M-MGA Momentum Gradient Based [45] Vector Defence [118]

31 | DPA-M-WitchCraft Gaussian Noise [54] Certified Robustness [132]
32 | DPA-M-QL Attack Gradient Estimation [101] Adversarial Training [38]
33 | DPA-M-Basic Least-Likely-Class Iterative Methods [7] | Adversarial Training [38]
34 | DPA-M-One Pixel One Pixel [226] Pixel Defend [212]

35 | DPA-M-Momentum Iterative Momentum Iterative [73] Super resolution [174]

36 | DPA-M-JigSaw Attack UAP [168] Adversarial Training [38]
37 | DPA-M-UPSET and ANGRI UPSET and ANGRI Adversarial Training [38]
38 | DPA-M-Houdini Houdini [56] Adversarial Training [38]
39 | DPA-M-ATN AAE-ATN [17] Adversarial Training [38]
40 | DPA-M-SimBA SimBA [95] Randomisation [61]

41 | DPA-M-SimBA-DCT SimBA-DCT [101] Randomisation [61]

42 | DPA-M-Patch Attack Generated Patch [138] Pixel Defend [212]

43 | DPA-M-Adversarial Patch Adversarial Patch [60] Pixel Defend [212]

44 | DPA-M-DPatch DPatch [95] Pixel Defend [212]

45 | DPA-M-Carlini & Wagner C&W [36] Stochastic Elements [31]
46 | DPA-M-IFS IFS [95] Adversarial Training [38]
47 | DPA-M-QL Attack QL [101] Adversarial Training [38]
48 | DPA-M-QeBB QeBB [127] Adversarial Training [38]
49 | DPA-M-MGA Unlimited MGA [45] Vector Defence [118]

50 | DPA-M-MGA Direct MGA [45] Vector Defence [118]

51 | DPA-M-MGA Indirect MGA [45] Vector Defence [118]

52 | DPA-M-FGSM Unlimited FGSM [261] Mustafa [174]

53 | DPA-M-FGSM Direct FGSM [261] Mustafa [174]

54 | DPA-M-FGSM Indirect FGSM [261] Mustafa [174]

55 | DPA-M-IFGSM Ensemble FGSM [261] Mustafa [174]

56 | DPA-M-MI-FGSM FGSM [261] Mustafa [174]

57 | DPA-M-TI-FGSM FGSM [261] Mustafa [174]

ACM Computing Surveys, Vol. 56, No. 7, Article 175. Publication date: April 2024.
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Table 7. List of Data Poisoning Attacks Driven by Algorithm

No [ Algorithm Name Algorithm Defence
DPA-A-APGD APGD [60, 61] Differential fon [61]
DPA-A-PPGD PPGD [129] PAT [129]
DPA-A-Cassidi Cassidi [129] PAT [129]

DPA-A-DeepFool

Deelfool [169]

Divide - Denoise [170]

LPA [128]

Trades [128]

DPA-A-Fast-LPA

Fast-LPA [128]

Trades [128]

DPA-A-Square Attack

Square Attack [12, 111]

Bandlimiting * [142]

DPA-A-AutoAttack

Auto Attack [60]

Stochastic Elements [31]

1
2
3
4
5 DPA-A-LPA
6
7
8
9

DPA-A-NewtonFool

NewtonFool [179, 186, 194]

Adversarial Training [38

10 | DPA-A-R-FGSM

Rand-FGSM [235]

Adversarial Training [38

11 | DPA-A-N-FGSM

NFGSM [209]

Adversarial Training [38

12| DPA-A-Fast-FGSM

FASTFGSM [235]

&

Adversarial Training [3

13 | DPA-A-Rapid-FGSM

Rapid-FGSM [209]

Adversarial Training [38

14 | DPA-A-Robust-FGSM

Robust-FGSM [209]

JPEG Compression [150]

15 | DPA-A-UAP

UAP Universal Adversarial Perturbation [127]

Shardped Edges [68]

16 | DPA-A-TUAP

Targeted Universal Adversarial Perturbation [127]

Adversarial Training [38, 177]

17 | DPA-A-TUAP-DeepFool

TUAP - DeepFool [127]

Adversarial Retraining [177

18 | DPA-A-TUAP-CW

TUAP-CW [127]

Adversarial Training [38]

19 | DPA-A-DFO

Stochastic Derivative Free Optimization [165]

Adversarial Retraining [177

20 | DPA-A-CW CW-L0 [36] Vectro Defence [118] PixelDefend [224]
21 | DPA-A-CW -12 [36] Vectro Defence [118] PixelDefend [224]
22| DPA-A-CW CW-Loo [36] Vectro Defence [118] PixelDefend [224]

23| DPA-A-AdvPreprocessing

Tmage Scaling [90, 191]

Robust scaling algorithm and Image reconstruction [191]

24 | DPA-ShadowAttack

Shadow Attack [94]

Random Smoothing Certified Defence” [94]

25_| DPA-A Biggio

Biggio P [24]

Adversarial Training [38]

26_| DPA-AFrogsAttack

Frogs Poisonning [213]

Data Sanitizing [58]

Salt and Pepper [159]

27_| DPA-A-Salt-Pepper
28| DPA-A-SignHunter

Adversarial Training [38]

Gradient Based [9]

ion [142]

35 | DPA-ATastMN

Adversarial Training [38

30 | DPA-A-FAB

Fast Minimum-norm (FMN) Attack [187]

lly distorted with a Fast Adaptive [59]

Adversarial Training [38

31 | DPA-A-BB

distorted with a Fast Adaptive [59]

Adversarial Training [38

32 | DPA-A-KKT Based

RKT [123]

Adversarial Training [38

33 | DPA-A-Square Attack

L1-APGDAndL1-AutoAttack(APGD — AT) [12, 111]

Logit Squeezing’ [212], Pixel Defend [212]

34 | PIA (partial Information Attack)

(QLA variation) [109]

Logit pairing [119]

JSMA-F [36]

Vector Defence [118]

JSMA [36]

Vectro Defence [118)

37 | DPA-A-JPEG-Leo

JPEG-L, [28]

JPEG Compression” [64]

38 | DPA-A-ReColorAdv. ReColorAdv [128] PAT [129]
39 | DPA-A-SimBA (simple black box attack) L1-APGD And L1-AutoAttack(APGD-AT) [101] Pixel Defend [101]
40 | DPA-A-SimBA-DCT (simple black box attack) (SimBA variation) [101] Pixel Defend [212]

41 | DPA-A-Parsimonious(Efficient Combinatorial Optimization)

L1-APGD And L1-AutoAttack (APGD-AT), Single and Multi APGD [167]

Randomisation [61]

42 | DPA-A-DFO -(1+1)-ES

DFO variation-(1+1)-ES [165]

‘Adversarial Retraining [177]

43 | DPA-A-DFO-CMA-ES

DFO variation CMA-ES [165]

Adversarial Retraining [177]

44 | DPA-A-Bandits

Bandits [110]

Logit Squeezing’ [212

45 | DPA-A-Bandits

Banditsy [110]

Logit Squeezing” [212

46 | DPA-A-Banditsy D

BanditsyD [110]

Logit Squeezing’ [212

47 | DPA-A-NES

NES [250]

Adv Training [31]

48 | DPA-A-NES-GE

NES-GE [109]

Adv Training [31]

49 | DPA-A-NES-PIA

NES-PIA [109]

Adv Training [31]

50 | DPA-A-ZOO Attack

700 Attack [146]

Shardped Edges [68

51 | DPA-A-ZOO-SGD

ZOO-SGD [146]

&

Stochastic Element [6!

52 | DPA-A-ZOO-SignSGD

ZO0O-SignSGD [146]

&

Stochastic Element [6!

53 | DPA-A-ZOO-M-signSGD

ZO-M-signSGD [146]

Stochastic Element [68

54 | DPA-A-ZOO-NES

ZOO-NES [146]

2

Stochastic Element [6!

55 | DPA-A-ZOO-SCD

Z00-5CD [146]

&

Stochastic Element [6!

56 | DPA-A-FMN

FMN [187]

Adversarial Training [38]

57 | DPA-A-Semantic Attack

Semantic [94, 164]

‘Adversarial Training [38]

58 | DPA-A-Discretized Inputs

Discrete Gradient Ascent PGD / PGA [133]

One Hot [32]

59 | DPA-A-CROWN-IBP

Shadow-Penalties [94]

Random Smoothing Certified Defence” [94]

60 | DPA-A-BPDA

BPDA (Gradient Free) [264]

‘Adversarial Training [38]

61 | DPA-A-BNN-GA

BNN-GA (Gradient Free) [264]

Adversarial Training [38]

62 | DPA-A-BNN-ZOO

BNN-ZOO (Gradient Free) [264]

Stochastic Element [68]

63| DPA-A-Koh-Liang attack

Koh-Liang [122]

Adversarial Training [38]

64 | DPA-A-ZOO-ADAM

ZOO-ADAM [47]

Gradient Masking [27]

65 | DPA-A-ZOO-Newton

ZOO-Newton [47]

Gradient Masking [27]

66 | DPA-A-SADS

Saddle Point [206]

Byzantine-Robust Distribution [260]

67 | DPA-A-FMN

Fast Minimum-norm [187]

Adversarial Training [38]

68 | DPA-A-Physical Attack

Recusrsive Impersonation [215]

Adversarial Training

69 | DPA-A-BAE

BERT-based Adversarial Examples [91]

Synonym Encoded

70| DPA-A-DecpWordBug

DeepWordBug [91]

Synonym Encoded [244

71 | DPA-A-FasterGenetic

FasterGenetic [91]

Synonym Encoded

72 | DPA-A-Genetic

Genetic [91]

Synonym Encoded

73 | DPA-A-HotFlip

HotFlip [91]

Synonym Encoded

74 | DPA-A-IGA-Pruthi

IGA-Pruthi [91]

Synonym Encoded [244

75 | DPA-A-PSO TextAttack [91] Synonym Encoded [244
76 | DPA-A-TextBugger TextAttack [137] Synonym Encoded [244
77_| DPA-A-TextFooler TextAttack [116] Synonym Encoded [244
78 | DPA-A-VIPER TextAttack [91] Synonym Encoded [244
79 | DPA-A-GASC GASC [11] Synonym Encoded Method [244]

80 | DPA-A-GNLAE

GNLAE [11]

Synonym Encoded Method [244]

81 | DPA-A-BAE-R

BERT based Adversarial Examples [0

Synonym Encoded [24-

82 | DPA-A-BAE-T

BERT based Adversarial Examples

o)

Synonym Encoded [2

83 | DPA-A-BAE-R/T

BERT based Adversarial Examples

)

Synonym Encoded [2

84 | DPA-A-BAE-R+I

BERT based Adversarial Examples [

Synonym Encoded

85 | DPA-A-WordBug Replace-1 WordBug [88 Randomised Smoothing [268
36| DPA-A-WordBug - Temporal Head WordBug [88 ised Smoothing [268
37 | DPA-A-WordBug - Temporal Tail WordBug [88 I Smoothing [268
38 | DPA-A-WordBug - Combined WordBug [88 Smoothing [268

89 | DPA-A-Adv-tr whitebox

FHotFlip 77

Adversarial Training [38

90 | DPA-A-Adv-tr blackbox

HotFlip [77

3

Adversarial Training [3

91 | DPA-A-Input Reduction Word Deletion [172] Adversarial Training [38
92| DPA-A-Morpheus Morpheus [172] Adversarial Training [38
93| DPA-A-Practical Swarm OPT Swarm OPT [201] Adversarial Training [38

94 | DPA-A-PWWWS

PWWWS [195]

Adversarial Training [38
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Table 7. Continued

No Algorithm Name Algorithm Defence

95 DPA-A-GSA GSA [245] Adversarial Training [38

96 DPA-A-seq2sick seq2sick [51] Adversarial Training [38

97 DPA-A-Kuleshov Kuleshov [126] Adversarial Training [38

98 DPA-A-FGPM FGPM [245] Adversarial Training [38

99 DPA-A-Gaussian Noise Gaussian Noise [54] Certified Robustness [132]

100 | DPA-A-Bernoulli Noise Attack Bernoulli Noise Attack [248] Adversarial Retraining [38]

101 DPA-A-Discrete Token Replacement | Discrete Token Replacement [184] Randomised Smoothing [268]

102 | DPA-A-No Overlap Poisoning No Overlap Poisoning [240] Adversarial Retraining [38]

103 | DPA-A-Spoofing Spoofing [147] Data Sanitizing [58]

104 | DPA-A-Spare Binary Vectors Spare Binary [82] Adversarial Retraining [38

105 DPA-A-PC-lhc PC-lhc [26] Adversarial Retraining [38

106 | DPA-PS-lhc PS-lhc [23] Adversarial Retraining [38

107 | DPA-A-A-Subtle A-Subtle [7] Hard Class Labels [8]

108 | DPA-A-M-Naively Poisoning Naively Poisoning [42] Adversarial Training [38]

109 | DPA-A-GAN GAN [216] Data Sanitizing [58]

110 | DPA-A-Kantchelian Attack Kantchelian [120] Robust Split for decision trees [44]
111 | DPA-A-Flipping Flipping [272] Data Sanitizing [58

112 | DPA-A-Rotating Rotating [78] Data Sanitizing [58

113 | DPA-A-Cropping Cropping [135] Data Sanitizing [58

114 | DPA-A-Color Jittering Color Jittering [182] Data Sanitizing [58

115 | DPA-A-Edge Enhancement Edge Enhancement [53] Data Sanitizing [58

116 | DPA-A-Fancy PCA Fancy PCA [230] Data Sanitizing [58

117 | DPA-A-Mixing Images FineGan [223] Data Sanitizing [58

118 | DPA-A-Random Erasing Random Erasing [275] Data Sanitizing [58

119 | DPA-A-Style Reconstruction tyle Reconstruction [49] Data Sanitizing [58

120 | DPA-Grad-CAM Grad-CAM [40] Data Sanitizing [58

121 | DPA-A-Hash Hash Collision [72] Data Sanitizing [58

122 DPA-A-fishAttack fishAttack [213] Data Sanitizing [58

123 | DPA-A-SPSA SPSA [238] JPEG Compression [64]

124 | DPA-A-RGF RGF [52] JPEG Compression [64]

125 | DPA-A-FGS-Single Step GS-Single Step [79] Shardped edges [68

126 | DPA-A-IFGS Iterative Step IFGS [232] Shardped edges [68

127 | DPA-A-FD-GE Single Step FD-GE [19] Shardped edges [68

128 | DPA-A-IFD-GE Iterative IFD-GE Iterative [19] Shardped edges [68

129 | DPA-A-PCA-GE Single Step PCA-GE Single Step [19] Shardped edges [68

130 | DPA-A-PCA-Query PCA-Query Reduction Iterative [19] | Shardped edges [68

131 | DPA-A-AA AA [136] Shardped edges [68

132 | DPA-A-AAA AAA [136] Shardped edges [68

133 | DPA-A-ADI-PGD ADI [149 Shardped edges [68

134 | DPA-A-R-ADI ADI [149 Shardped edges [68

135 | DPA-A-ADI+OSD ADI [149 Shardped edges [68

136 | DPA-A-BayesOPT Attack Bayes [202 Shardped edges [68

137 | DPA-A-GP-Based BayesOPT Bayes [202 Shardped edges [68

138 | DPA-A-Additive GP-BayesOPT Bayes [202 Shardped edges [68

139 | DPA-A-Bayes-OPT with Selection Bayes [202 Shardped edges [68

140 | DPA-A-GP-BO-Auto Bayes [202 Shardped edges [68

141 | DPA-A-ADDGP-BO Bayes [202 Shardped edges [68

142 | DPA-A-PIA PIA [208] Cascade Adversarial Training [176
143 DPA-A-Fredriksn et al. 2014 redriksn [87] Cascade Adversarial Training [176
144 | DPA-A-Shokri et al. 2017 Shokri [220] Cascade Adversarial Training [176
145 | DPA-A-Long et al. 2018 Long [19 Cascade Adversarial Training [176
146 | DPA-A-Rahman et al. 2018 Rahman [19] Cascade Adversarial Training [176
147 | DPA-A-Hayes et al. 2019 Hayes [19] Cascade Adversarial Training [176
148 | Hilprecht et al. 2019 Hilprecht [19] Cascade Adversarial Training [176
149 | Jayaraman et al. Jayaraman [19] Cascade Adversarial Training [176
150 | DPA-A-Nasr et al. 2019 Nasr [19] Cascade Adversarial Training [176
151 | DPA-A-Melis et al. 2019 Melis [19] Cascade Adversarial Training [176
152 | DPA-A-Sablayrolles et al. 2019 Sablayrolles [19] Cascade Adversarial Training [176
153 | DPA-A-Salem et al. 2019 Salem [19] Cascade Adversarial Training [176
154 | DPA-A-Song et al. 2019 Song [19] Cascade Adversarial Training [176
155 DPA-A-Truex et al. 2019 Truex [19] Cascade Adversarial Training [176
156 | DPA-A-Chen et al. 2020 Chen [19] Cascade Adversarial Training [176
157 | DPA-A-Hishamoto et al. 2019 Hishamoto [19] Cascade Adversarial Training [176
158 | DPA-A-Song and Raghunathan Song and Raghunathan [19] Cascade Adversarial Training [176
159 | DPA-A-LinBP+RR LinBP [102 Random and Pixel Defend [212
160 | DPA-A-LinBP+ElasticNet LinBP [102 Random and Pixel Defend [212
161 | DPA-A-LinBP+SVR LinBP [102 Random and Pixel Defend [212
162 DPA-A-LinBP+I+FGSM LinBP [102 Random and Pixel Defend [212
163 DPA-A-LinBP+I+FGSM+ILA LinBP [102 Random and Pixel Defend [212
164 | DPA-A-LinBP+I+FGSM+ILA+SGM | LinBP [102 Random and Pixel Defend [212
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Table 8. List of Defence Solutions

No | Defence Name

1 Certified Robustness [132, 192]
2 Differential Approximation [61]
3 Randomised [61]

4 Detector based [61]

5 Counter [7, 14, 115, 166]

6 Vector Defence [118]

7 | BAT [241]

8 Madry [157]

9 Malade [152]

10 | WSNNS [76]

11 | Prakash et al. [188]

12 | SAP [63]

13 | PixelDefend [224]

14 | Mustafa et al. [174]

15 | D3 algorithm [170]

16 | Feinman et al. [83]

17 | Carrara et al. [37]

18 | RRP [256]

19 | Bhagoji et al. [18]

20 | ReabsNet [46]

21 | Zheng and Hong [274]

22 | Det [134]

23 | Grosse et al. [100]

24 | RCE [181]

25 | NIC [153]

26 | Cao and Gong [33]

27 | Hendrycks and Gimpel [35]
28 | Feature Distillation [150]
29 | LID [154]

30 | Cohen etal. [57]

31 | S2SNet [84]

32 | Gongetal. [97]

33 | Metzen et al. [164]

34 | Dasetal. [63]

35 | CCNs [194]

36 | Naetal [176]

37 | Magnet [163]

38 | MultiMagnet [155]

40 | ME-Net [259]

41 | SafetyNet [151]

42 | Papernot and McDaniel [183]
43 | Feature Squeezing [218]

44 | Abbasi and Gagné [3]

45 | Strauss et al. [225]

46 | Tramer et al. [236]

47 | MTDeep [210]

48 | Defence-GAN [216]

19 | APE-GAN [216]

50 | Zantedeschi et al. [267]

51 | Liuetal. [143]

52 | Hybrid Random Forest [71]
53 | Bandlimiting [142]

54 | Probabilistic adversarial robustness [231]
55 | Adversarial Retraining [177]
56 | JPEG Compression [64]

(Continued)
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Table 8. Continued

No | Defence Name

57 | Adversarial Training [38]

58 Cascade adversarial training [176]

59 no-Pixel Defend [212]

60 One Hot [32]

61 Mask Gradient [27]

62 | Image Denoising [174]

63 Data Sanitizing [58]

64 | High dimensional robust estimation [69]
65 | Vector Defence [118]

66 | Regularization [31]

67 | Gradient Masking [27]

68 | Stochastic Elements [31]

69 | RobustScaling [190]

70 | Logit Squeezing” [212]

71 | Super resolution [174]

72 | Thermometer Encoding [32]

73 | BAT [253]

74 | Data Augmentation [221]

75 | Data Sanitizing [58]

76 | Defensive Distillation [34]

77 | Filter (Gaussian, AVerage, Median) [263]
78 | PAT [129]

79 | PGD-AdvT [157]

80 | Ensemble-AdvT [236]

81 | Augmented Adv Training [31]

82 | JPEG Compression [16]

83 Guided Denoiser [52]

84 | Stochastic Element [68]

85 Shardped Edges [68]

86 | Adversarial Purification [262]

87 Certified Robustness [132]

88 | Random and Pixel Defend [212]

89 Semantic defence [117]

90 | Synonym Encoded Method [244]

91 Dirichlet Neighborhood Ensemble [276]
92 | Randomised Smoothing [268]

93 | K-LID-SVM [249]

94 | LSD defence [81]

95 | DBSCAN Preprocessing Sanitizing [62]
96 | Non-convex Guarantee [10]

97 | Byzantine-Robust Distribution [260]
98 | Hiding Prediction Information [55]

99 | Adv Regularization [106]

100 | Multi Model Based defence [237]

101 | Modifying the network structure [199]
102 | Principled adversarial training [203]
103 | Perturbation Subtracting defence [50]
104 | Gradient band-based adversarial training [48]
105 | Data Randomization [15]

106 | JPEG Encoding [219]

107 | Gaussian Blur [273]

108 | Selective Dropout [5]

109 | Robust Split with Information Gain [44]
110 | Hardening Random Forest [13]

111 | Robust Split for decision trees [44]
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