
4

Perspective Games

ORNA KUPFERMAN, School of Computer Science and Engineering, The Hebrew University, Israel

GAL VARDI, School of Computer Science and Engineering, The Hebrew University, Israel,

and TTI-Chicago, USA

We introduce and study perspective games, which model multi-agent systems in which agents can view only
the parts of the system that they own. As in standard multi-player turn-based games, the vertices of the game
graph are partitioned among the players. Starting from an initial vertex, the players jointly generate a compu-
tation, with each player deciding the successor vertex whenever the generated computation reaches a vertex
she owns. A perspective strategy for a player depends only on the history of visits in her vertices. Thus, unlike
observation-based models of partial visibility, where uncertainty is longitudinal—players partially observe all
vertices in the history, uncertainty in the perspective model is transverse—players fully observe part of the
vertices in the history.

We consider deterministic and probabilistic perspective games, with structural (e.g., Büchi or parity) and
behavioral (e.g., LTL formulas) winning conditions. For these settings, we study the theoretical properties
of the game as well as the decidability and complexity of the problem of deciding whether a player has a
winning perspective strategy, in terms of both the game graph and the objectives. We compare perspective
strategies with memoryless ones, and study an extension of the temporal logic ATL� with path quantifiers
that capture perspective and memoryless strategies.

CCS Concepts: • Theory of computation → Modal and temporal logics; Automata over infinite

objects;

Additional Key Words and Phrases: Multi-agent systems, deterministic and probabilistic games, partial
visibility

ACM Reference format:

Orna Kupferman and Gal Vardi. 2024. Perspective Games. ACM Trans. Comput. Logic 25, 1, Article 4 (Janu-
ary 2024), 26 pages.
https://doi.org/10.1145/3627705

1 INTRODUCTION

Design and control of multi-agent systems correspond to the synthesis of winning strategies in a
game that models the interaction between the agents. The game is played on a graph whose paths
correspond to computations of the system. We study here settings in which each of the players
has control in different parts of the system. Thus, the game is turn-based: starting from an initial
vertex, the players jointly generate a play, namely a path in the graph, with each player deciding
the successor vertex when the play reaches a vertex she controls. The objectives of the players in

An extended abstract of this article appeared in the proceedings of LICS 2019 [36].
Authors’ addresses: O. Kupferman, School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel;
e-mail: orna@cs.huji.ac.il; G. Vardi, School of Computer Science and Engineering, The Hebrew University, Israel, and TTI-
Chicago, USA; e-mail: galvardi@ttic.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
1529-3785/2024/01-ART4
https://doi.org/10.1145/3627705

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

https://doi.org/10.1145/3627705
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3627705
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627705&domain=pdf&date_stamp=2024-01-17

4:2 O. Kupferman and G. Vardi

the game refer to the infinite play that they generate. Each objective is a Borel set α in the Cantor
topology onVω [44], whereV is the set of vertices of the graph. In some settings, the specification
of α is structural: it is specified as an ω-regular condition on V (e.g., Büchi or parity). In other
settings, the specification of α is behavioral: the vertices in V are labeled by assignments to a set
AP of atomic propositions—these with respect to which the system is defined, and α is a language
of infinite words in (2AP)ω .

A strategy for a player directs her how to continue a play that reaches her vertices. We distin-
guish between deterministic (a.k.a. pure) strategies, which choose a successor vertex, and random-

ized strategies, which choose a probability distribution over the successor vertices [20]. We also
distinguish between games with full visibility, where strategies may depend on the full history of
the play, and games with partial visibility, where strategies depend only on visible components of
the history. The traditional approach to partial visibility assumes longitudinal uncertainty, where
in all vertices, the players observe the assignment only to an observable subset of the atomic propo-
sitions [5, 16, 18, 37, 50]. With longitudinal uncertainty (a.k.a. observation-based uncertainty), we
model systems in which each of the underlying components can only view and control a subset
of the system’s variables. For example, a program that interacts with a user with private variables.
There, the strategies of the players cannot distinguish between different paths in which the ob-
servable atomic propositions behave in the same manner.

We introduce and study perspective games, which model transverse uncertainty—a new type of
partial visibility. As in standard turn-based games, the vertices of the game graph are partitioned
among the players, who jointly generate a computation. In a perspective game, the visibility of
each player is restricted to her vertices. Thus, a perspective strategy for a player cannot distinguish
among histories that differ in visits to vertices owned by other players. Perspective games capture
multi-agent systems in which agents can view only the parts of the system that they control. For
example, a communication network in which a company that owns part of the routers has to
make routing decisions based only on information about visits to its routers [1], a component in a
composite reactive system that does not observe the interaction of the environment with the other
components [42], and switched systems where components are activated by a scheduler and are
not aware of the evolution of the system while being switched off [40, 43]. As another example,
consider a system that consists of a few clients that take turns using a server. Each client can
observe the current state of the server while using it, but it cannot monitor the server while other
clients are using it. Thus, each client has perspective visibility. Perspective games are different
from all models of partial visibility studied so far. Indeed, in a perspective game, both players
have full visibility on the parts of the system they control, and no visibility (in particular, even
no information on the number of transitions taken) on the parts they do not control. Thus, while
in games with longitudinal uncertainty players observe all vertices, but partially, in perspective
games visibility and lack of visibility are transverse—some vertices the players do not see at all,
and some they fully see.

Perspective strategies are related to memoryless strategies, which depend only on the current
vertex of the game. Clearly, every memoryless strategy is perspective. Indeed, the current vertex
is visible to the player who controls the vertex. Perspective strategies are also related to stuttering-

invariant strategies in asynchronous games [27, 29]. In these games, the players are unaware of the
time that has elapsed (and number of steps that other components have made) between their steps.
As the strategies in these games are memoryless, the setting is simpler than that of perspective
games. The model closest to perspective games is that of [49], which considers games with partial
visibility in an asynchronous setting. There, moves that have no visible effect to a player are hid-
den from that player. In other words, whenever a play traverses an edge from vertexv to vertexv ′,
then the traversal is visible only to players that can distinguish betweenv andv ′. Thus, perspective

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:3

games are a special case of the model in [49]. Unlike perspective games, partial visibility in [49] is
longitudinal. It is shown in [49] that the problem of deciding whether a player has a winning strat-
egy is decidable, yet the complexity of the described algorithm is not tight. Another related model
is the one studied in [42], of control-flow composition. Motivated by software and web services
systems, the authors study systems composed from a library of components. Components gain
and relinquish control over the computation, and their behavior is independent of the history of
the computation. A similar setting is that of switched systems that are turned on and off along the
computation [23]. Beyond differences in the visibility model (for example, in [42] a component has
no information about the history, including earlier calls to itself, and [23] distinguishes between
active and dormant switched systems, depending on the awareness of components to the environ-
ment when they are switched off), the problems studied in [23, 42] are different and concern the
synthesis of a system from cooperative components. In contrast, we study a game setting, where
components have zero-sum objectives.

We start by studying some theoretical aspects of perspective games. We consider two-player
games with a winning condition L that is either structural, namely L ⊆ Vω , or behavioral, namely
L ⊆ (2AP)ω . Player 1 aims for a play whose computation is in L, thus a winning strategy of
Player 1 is one that guarantees that the generated play is in L no matter how Player 2 pro-
ceeds. We show that in the deterministic setting, perspective strategies (P-strategies) are weaker
than ones with full visibility (F -strategies). Thus, there are games that Player 1 wins with an F -
strategy yet does not win with a P-strategy. The weakness of P-strategies applies; however, only
for Player 1. Thus, Player 1 has a P-strategy that wins against all P-strategies of Player 2 iff
Player 1 has a P-strategy that wins against all F -strategies of Player 2. In the probabilistic set-
ting, P-strategies are weaker for both players. Finally, in both the deterministic and probabilistic
settings, perspective games are not determined. Thus, there are games in which Player 1 does
not have a winning (or almost-surely winning, in the probabilistic setting) P-strategy for L nor
Player 2 has a winning P strategy for the complement of L. While the proofs and examples re-
quired for establishing the above results are novel, the obtained picture is similar to that known
for other studied models of partial visibility [16, 18].

The prime problem when reasoning about games is to decide whether a player has a win-
ning strategy. Here, the differences between perspective games and other models of partial
visibility become significant: handling longitudinal uncertainty typically involves some subset-
construction-like transformation of the game graph into a game graph of exponential size with
full visibility. Accordingly, deciding games with longitudinal uncertainty is EXPTIME-complete
in the graph [5, 11, 16, 18]. In perspective games, we can avoid this exponential blow-up in the
size of the graph and trade it with an exponential blow-up in the (typically much smaller) winning
condition! Essentially, while in the longitudinal setting we have uncertainty about the current
position of the graph, which forces an exponential blow-up in the graph, the transverse setting
induces uncertainty about the current position of an automaton for the winning condition, which
forces an exponential blow-up in the winning condition. Technically, our algorithm constructs
an alternating tree automaton that accepts exactly all trees that describe winning P-strategies for
Player 1. The branches of the trees correspond to the possible choices of Player 1, and the au-
tomaton sends to each branch requirements induced by all the possible behaviors of Player 2. We
analyse the complexity of our algorithm for behavioral winning conditions given by deterministic
or universal co-Büchi or parity automata, as well as by LTL formulas, and show that the problem
is EXPTIME-complete for all above types of automata and is 2EXPTIME-complete for LTL. In all
cases, the complexity in terms of the graph is polynomial. As for the lower bound, we show that the
problem is EXPTIME-hard already for a fixed-size graph and a winning condition given by a deter-
ministic automaton on finite words. Our lower-bound proof is by a reduction from a linear-space

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:4 O. Kupferman and G. Vardi

alternating Turing machine (ATM), and it uses the partial visibility in order to force Player 1,
who generates an accepting computation, to respect the transition function of the Turing machine
in all positions of the configurations. Indeed, the position that the winning condition checks
is decided by Player 2 in a preamble to the game that Player 1 does not observe. To sum up,
while solving perspective games is exponentially harder than solving full-visibility games, the
exponential blow-up is only in the winning condition. The graph-complexity of perspective
games coincides with that of games with no uncertainty and is exponentially lower than that of
games with longitudinal uncertainty.

In the probabilistic setting, we show that partial observability enables the players to draw num-
bers uniformly at random. Essentially, by letting Player j choose a number x j ∈ {0, . . . ,n− 1}, we
get that x1 + x2 mod n is uniformly distributed in {0, . . . ,n − 1}. This enables perspective games
with winning conditions specified by deterministic co-Büchi automata to model the emptiness
problem for probabilistic co-Büchi automata. Since the latter problem is undecidable [7, 17], so is
the problem of deciding whether Player 1 has a randomized P-strategy that almost-surely wins
the corresponding perspective game.

Deciding games with behavioral winning condition is strongly related to ATL� model check-
ing [5]. The temporal logic ATL� offers selective quantification over computations in multi-agents
system. Specifically, the path quantifier 〈〈A〉〉, for a set A of players, ranges over the set of compu-
tations that the players in A can force the system into. In particular, the initial vertex of a game G
satisfies 〈〈Player 1〉〉ψ iff Player 1 has a winning strategy in the gameG with winning conditionψ .
The path quantifier 〈〈A〉〉 assumes F -strategies. The general extension of ATL� to multi-agents sys-
tems with partial visibility is undecidable, as it enables cooperation between players that proceed
asynchronously [46, 48]. Numerous decidable settings have been studied [5, 6, 9, 10, 12, 45]. As has
been the case with games, uncertainty is longitudinal and results in model-checking algorithms
whose graph complexity is exponentially higher than that of ATL� with no uncertainty.

We introduce Perspective-ATL�, which extends ATL� with two new path quantifiers, 〈〈A〉〉P
and 〈〈A〉〉M , that range over the set of computations that the players in A can force the system into
using perspective and memoryless strategies, respectively. We solve the model-checking problem
for Perspective-ATL� with two players, and show that it is 2EXPTIME-complete, as is the one for
ATL�. For formulas that use only 〈〈A〉〉 and 〈〈A〉〉P path quantifiers, the graph complexity of our
algorithm is only polynomial. Thus, handling transverse uncertainty is exponentially easier than
longitudinal uncertainty. On the other hand, model checking of fixed-size formulas with a path
quantifier 〈〈A〉〉M is NP-hard, making the graph complexity of Perspective-ATL� hard for NP and co-
NP. On the positive side, we show that for Perspective-ATL, which extends ATL with perspective
and memoryless path quantification, model-checking is polynomial in both the system and the
specification. Essentially, this follows from the fact that the strategies required for satisfying ATL
objectives are memoryless, and hence perspective, and so 〈〈A〉〉P and 〈〈A〉〉M coincide with 〈〈A〉〉.
The 〈〈A〉〉M path quantifier can be viewed as a special case of path quantifiers with imperfect recall,
namely when the players in A have no uncertainty, but are limited in their memory [52].

Finally, we study perspective games with structural winning conditions. Since memoryless
strategies are perspective, decision procedures for games with winning conditions that admit mem-
oryless strategies apply for perspective games. This includes the Büchi, parity, and Rabin condi-
tions. For the generalized Büchi and Streett conditions, which do not admit memoryless strategies,
we study the power of P-strategies and show that while the generalized Büchi winning condition
does not always admit memoryless strategies, it does admit perspective ones. Thus, the solution
of perspective games with a generalized Büchi condition amounts to solving games with full visi-
bility. On the other hand, the Streett winning condition does not admit perspective strategies. Still,
we are able to describe an algorithm that decides perspective Streett games whose complexity is

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:5

exponential in the number of pairs in the Streett condition and only polynomial in the graph. We
use the characterization of structural winning conditions that admit perspective strategies in order
to point to a fragment of LTL that admits such strategies in behavioral perspective games.

2 PERSPECTIVE GAMES

A game graph is a tuple G = 〈AP ,V1,V2,v0,E,τ 〉, where AP is a finite set of atomic propositions,
V1 and V2 are disjoint sets of vertices, owned by Player 1 and Player 2, respectively, and we let
V = V1 ∪ V2. Then, v0 ∈ V1 is an initial vertex, which we assume to be owned by Player 1, and
E ⊆ V ×V is a total edge relation, thus for every v ∈ V there is v ′ ∈ V such that 〈v,v ′〉 ∈ E. The
function τ : V → 2AP maps each vertex to a set of atomic propositions that hold in it. The size |G | of
G is |E |, namely the number of edges in it. In the beginning of a play in the game, a token is placed
onv0. Then, in each turn, the player that owns the vertex that hosts the token chooses a successor
vertex and moves there the token. A play ρ = v0,v1, . . . inG, is an infinite path inG that starts inv0;
thus 〈vi ,vi+1〉 ∈ E for all i ≥ 0. The play ρ induces a computation τ (ρ) = τ (v0),τ (v1), . . . ∈ (2AP)ω .
A game is a pair G = 〈G,L〉, where G is a game graph, and L ⊆ (2AP)ω is a behavioral winning

condition, namely an ω-regular language over the atomic propositions, given by an LTL formula
or an automaton.1 Intuitively, Player 1 aims for a play whose computation is in L, while Player 2
aims for a play whose computation is in comp(L) = (2AP)ω \ L. Formally, we distinguish between
different classes of strategies and objectives for the players, defined below. Sometimes we also refer
to games with a structural winning condition. There, L ⊆ Vω is given by an ω-regular winning
condition (e.g., Büchi or parity) over V . Accordingly, the graph G may not be labeled by atomic
propositions.

2.1 The Deterministic Setting

Let Prefs(G) be the set of nonempty prefixes of plays inG. For a sequence ρ = v0, . . . ,vn of vertices,
let Last(ρ) = vn . For j ∈ {1, 2}, let Prefsj (G) = {ρ ∈ Prefs(G) : Last(ρ) ∈ Vj }. Thus, Prefsj (G) is the
subset of Prefs(G) consisting of prefixes of plays whose last vertex is inVj . A strategy for Player j is
a function fj : Prefsj (G) → V such that for every ρ ∈ Prefsj (G), we have that 〈Last(ρ), fj (ρ)〉 ∈ E.
That is, a strategy for Player j maps prefixes of plays that end in a vertexv she owns to a successor
of v . For technical convenience, we add ϵ to Prefs1 (G) and require all strategies f1 of Player 1 to
have f1 (ϵ) = v0. Thus, all plays start with Player 1 placing the token on v0. The outcome of two
strategies f1 and f2 of Player 1 and Player 2, respectively, is the play obtained when the players
follow the strategies f1 and f2. Formally, Outcome(f1, f2) = v0,v1, . . . is such that for all i ≥ 0, if
vi ∈ Vj , then vi+1 = fj (v0, . . . ,vi).

The above definition assumes that both players have full visibility of the play generated by their
strategies. We now consider a setting where the visibility of Player j is restricted to vertices she
owns. Note that since Player j decides the successor in these vertices, she also knows about visits
to the successors, even if she does not own them. Formally, for a prefix ρ = v0, . . . ,vi ∈ Prefs(G)
and j ∈ {1, 2}, the perspective of Player j on ρ, denoted Perspj (ρ), is the restriction of ρ to vertices
vi ∈ Vj . We denote the perspectives of Player j on prefixes in Prefsj (G) by PPrefsj (G). Formally,
PPrefsj (G) = {Perspj (ρ) : ρ ∈ Prefsj (G)}. Note that PPrefsj (G) ⊆ V ∗j . A perspective strategy for
Player j is then a function fj : PPrefsj (G) → V such that for every ρ ∈ PPrefsj (G), we have that
〈Last(ρ), fj (ρ)〉 ∈ E. That is, a perspective strategy for Player j maps her perspective of prefixes of
plays that end in a vertexv she owns to a successor ofv . A well known special case of perspective
strategies are memoryless ones: The strategy fj is memoryless if for every ρ ∈ PPrefsj (G), we have

1In Sections 2.3 and 3, we define LTL and automata formally. For the examples in this section, we specify L in LTL using
the temporal operators � (always), � (eventually), and � (next).

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:6 O. Kupferman and G. Vardi

Fig. 1. The game graph Gmatch over AP = {p,q, #, $}. The vertices of Player 1 are circles, and those of

Player 2 are squares. The initial vertex is v#.

that fj (ρ) depends only on Last(ρ). That is, a strategy is memoryless if it does not distinguish
between prefixes of plays that reach the same vertex. Note that a memoryless strategy for Player j
can be viewed as a function fj : Vj → V .

We use F and P to indicate the visibility type of strategies, namely whether they are full (F) or
perspective (P). Consider a game G = 〈G,L〉. For α , β ∈ {F , P }, we say that Player 1 (α , β)-wins G
if there is an α-strategy f1 for Player 1 such that for every β-strategy f2 for Player 2, we have that
τ (Outcome(f1, f2)) ∈ L. Similarly, Player 2 (α , β)-wins G if there is an α-strategy f2 for Player 2
such that for every β-strategy f1 for Player 1, we have that τ (Outcome(f1, f2)) � L.

Example 1. Consider the game graphGmatch appearing in Figure 1. Let G = 〈Gmatch,φ〉 be a game
withφ = �� ((p∧ � �p)∨(q∧ � �q)). Thus, Player 1 aims for computations that include infinitely
many occurrences of windows of the formp ·true·p orq ·true·q. It is easy to see that Player 1 (F , F)-
wins G. Indeed, consider a strategy f1 for Player 1 in which she chooses to proceed from v# to vp

whenever the visit to v# was preceded by a visit to up , and chooses to proceed to vq whenever the
visit to v# was preceded by a visit to uq . Then, for every strategy f2 of Player 2, the computation
τ (Outcome(f1, f2)) satisfiesψ = � ((($ ∧ �p) → � � �p) ∧ (($ ∧ �q) → � � �q)), which implies
φ. In fact, Player 1 also (P , F)-wins G. To see this, consider a strategy f ′1 for Player 1 in which
she proceeds fromv# tovp andvq alternately. That is, in odd visits to the vertexv# she choosesvp ,
and in even visits to v# she chooses vq . Then, for every strategy f ′2 for Player 2, the computation
Outcome(f ′1 , f

′
2) is such that every visit in vp is followed by u$,up or u$,uq ,v#,vq , and every visit

in vq is followed by u$,uq or u$,up ,v#,vp , guaranteeing that φ is satisfied.

The winning strategies of Player 1 in Example 1 assume full visibility of Player 2. The follow-
ing theorem states that the visibility type of Player 2 does not matter.

Theorem 2. For every game G, we have that Player 1 (F , F)-wins G iff Player 1 (F , P)-wins G,

and Player 1 (P , F)-wins G iff Player 1 (P , P)-wins G.

Proof. Let G = 〈G,L〉. First, consider an F or P strategy f1 of Player 1, and assume that
τ (Outcome(f1, f2)) ∈ L for every F -strategy f2 of Player 2. Clearly, τ (Outcome(f1, f2)) ∈ L for
every P-strategy f2 for Player 2.

For the other direction, consider an F or P strategy f1 of Player 1, and assume that we have
τ (Outcome(f1, f2)) � L for some F -strategy f2 of Player 2. Let ρ = Outcome(f1, f2). We de-
fine a P-strategy f ′2 for Player 2 such that for every prefix ρ ′ of ρ with Last(ρ ′) ∈ V2 we have
f ′2 (Persp2 (ρ ′)) = f2 (ρ ′). Note that for every two distinct prefixes ρ ′, ρ ′′ of ρ with Last(ρ ′),
Last(ρ ′′) ∈ V2, the lengths of Persp2 (ρ ′) and Persp2 (ρ ′′) are different, thus f ′2 is well defined.
Now, as Outcome(f1, f

′
2) = Outcome(f1, f2), we have that τ (Outcome(f1, f

′
2)) � L, and we are

done. �

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:7

Since the visibility type of Player 2 does not matter, we can omit it from our notation. Namely,
for α ∈ {F , P }, we say that Player 1 α-wins G if there is an α-strategy f1 for Player 1 such that
for every strategy f2 for Player 2 (either F or P), we have that τ (Outcome(f1, f2)) ∈ L.

On the other hand, the visibility type of Player 1 does matter. That is, F -strategies for Player 1
are strictly stronger than P-strategies. Formally, we have the following:

Theorem 3. There is a game G such that Player 1 F -wins G yet Player 1 does not P-win G.

Proof. Let G = 〈Gmatch,ψ 〉, with ψ = � ((($ ∧ �p) → � � �p) ∧ (($ ∧ �q) → � � �q)). Thus,
ψ requires Player 1 to proceed to vp after visits to up and to proceed to vq after visits to uq . In
Example 1, we showed that Player 1 F -wins G. On the other hand, Player 1 does not P-win G.
Indeed, when Player 1 has a perspective visibility, her choices betweenvp andvq are independent
of the choices of Player 2. Therefore, for every P-strategy f1 of Player 1, there is a strategy f2 of
Player 2 such thatψ is not satisfied in τ (Outcome(f1, f2)). �

Games with full visibility are determined. That is, for every game G = 〈G,L〉, either Player 1 has
a strategy that ensures the satisfaction of L, or Player 2 has a strategy that ensures the satisfaction
of comp(L) [18, 44]. In the game from the proof of Theorem 3, the strategy f2 of Player 2 is not
winning—it just prevents f1 from winning. In fact, no strategy of Player 2 is winning. Formally,
we have the following:

Theorem 4. Perspective games are not determined.

Proof. Consider the game graph Gmatch, and let ψ = � ((($ ∧ �p) → � � �p) ∧ (($ ∧ �q) →
� � �q)). As argued above, Player 1 does not P-win 〈Gmatch,ψ 〉. In addition, as Player 1 does F -
win 〈Gmatch,ψ 〉, we have that Player 2 does not P-win 〈Gmatch,¬ψ 〉, and we are done. �

2.2 A Probabilistic Setting

We now extend the setting to a probabilistic one. A probability distribution on a finite set A is a
function κ : A → [0, 1] such that

∑
a∈A κ (a) = 1. The support of κ is the set Supp(κ) = {a ∈ A :

κ (a) > 0}. We denote by D (A) the set of probability distributions on A. A randomized strategy

for Player j is a function дj : Prefsj (G) → D (V) such that for every ρ ∈ Prefsj (G) and for
every v ∈ Supp(дj (ρ)), we have 〈Last(ρ),v〉 ∈ E. Perspective randomized strategies are defined
similarly, as дj : PPrefsj (G) → D (V). An event is a measurable set L ⊆ (2AP)ω of computations.
Given (possibly perspective) randomized strategies д1 and д2 of the two players, the probabilities
of events are uniquely defined [32]. Intuitively, the probability of an event L is the probability to
obtain a play whose computation is in L. We denote by Prд1,д2 (L) the probability of L when the
randomized strategies д1 and д2 are used. We also use Prд1,д2 (ψ), for an LTL formulaψ , referring to
the event L(ψ) = {w : w |= ψ }. It is known that ω-regular languages, and hence also LTL formulas,
are measurable [55].

For a randomized strategy д1 of Player 1, we say that д1 is an almost-winning strategy if
Prд1,д2 (L) = 1 for every randomized strategy д2 of Player 2. As in the deterministic case, we
use F and P to indicate whether the randomized strategies have full or perspective visibility and
talk about (α , β)-almost winning, for α , β ∈ {F , P }.

In games with full visibility for both players, it is known that Player 1 has an almost winning
(randomized) strategy iff she has a winning (deterministic) strategy [44]. This no longer holds for
perspective games:

Theorem 5. There is a game G such that Player 1 (P , F)-almost wins G yet Player 1 does not

P-win G.

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:8 O. Kupferman and G. Vardi

Proof. Let G = 〈Gmatch,θ#〉, for θ# = � ((p ∧ �# ∧ � �p) ∨ (q ∧ �# ∧ � �q)). Consider the
randomized P-strategy д1 of Player 1 in which whenever she visits the vertex v#, she moves to
the successorvp with probability 1

2 and to the successorvq with probability 1
2 . It is easy to see that

д1 is a (P , F)-almost winning strategy in G. However, for every P-strategy f1 for Player 1, there
is a strategy f2 for Player 2 such that ρ (Outcome(f1, f2)) does not satisfy θ#, thus Player 1 does
not P-win G. �

In Theorem 2, we show that in deterministic games, the visibility type of Player 2 does not
matter. In the probabilistic setting, it does matter.

Theorem 6. There is a game G such that Player 1 (P , P)-almost wins G yet Player 1 does not

(P , F)-almost win G.

Proof. Let G = 〈Gmatch,θ$〉, for θ$ = � ((p ∧ �$ ∧ � �p) ∨ (q ∧ �$ ∧ � �q)). Consider the
strategy д1 described in the proof of Theorem 5. Note that д1 is a (P , P)-almost winning strategy in
G. Indeed, for every randomized P-strategy д2 of Player 2, we have Prд1,д2 (θ$) = 1. On the other
hand, for every randomized P-strategy д′1 of Player 1, there is an F -strategy д′2 of Player 2 such
that Prд′1,д

′
2
(θ$) = 0. Hence, Player 1 does not have a (P , F)-almost winning strategy in G. �

Finally, as in the deterministic case, it may be that no player almost wins a given perspective
game:

Theorem 7. Perspective games are not almost determined.

Proof. Consider the game graphGmatch, and letψ = � � �((p → � �p)∧ (q → � �q)). It is easy
to see that neither Player 1 almost P-wins 〈Gmatch,ψ 〉 nor Player 2 almost P-wins 〈Gmatch,¬ψ 〉.

�

2.3 Perspective Alternating Temporal Logic

The logic ATL� offers selective quantification over computations in multi-agents systems [5].
There are two types of formulas in ATL�: state formulas, whose satisfaction is related to a spe-
cific vertex in a game that models the system, and path formulas, whose satisfaction is related to a
specific computation. Formally, an ATL� state formula is one of the following:

(S1) p, for p ∈ AP .
(S2) ¬φ1 or φ1 ∨ φ2, where φ1 and φ2 are ATL� state formulas.
(S3) 〈〈A〉〉ψ , where A ⊆ {Player 1, Player 2} is a set of players andψ is an ATL� path formula.

An ATL� path formula is one of the following:

(P1) An ATL� state formula.
(P2) ¬ψ1 orψ1 ∨ψ2, whereψ1 andψ2 are ATL� path formulas.
(P3) �ψ1 orψ1Uψ2, whereψ1 andψ2 are ATL� path formulas.

The logic ATL� consists of the set of state formulas generated by the rules (S1–3). Additional
Boolean connectives and temporal operators are defined from ¬, ∨, �, andU in the usual manner;
in particular, �ψ = trueUψ and �ψ = ¬� ¬ψ . The same way CTL is a fragment of CTL�, the
logic ATL is the fragment of ATL� that consists of all formulas in which every temporal operator
is immediately preceded by a path quantifier. The logic LTL consists of path formulas obtained by
applying rules P1-3 above with P1 including only atomic propositions.

The semantics of ATL� is defined with respect to a game graphG = 〈AP ,V1,V2,v0, E,τ 〉. Before
we define the semantics, we need some notations. Recall that given two strategies f1 and f2 of
Player 1 and Player 2, respectively, we define Outcome(f1, f2) as the play obtained by letting
Player 1 and Player 2 follow f1 and f2 from the initial state of G. Here, we adjust the outcome

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:9

function to get as a parameter a vertex from which the play starts and a set of two strategies, one
for each player. Thus, given a vertex v and a set F = { f1, f2}, of Player 1 and Player 2 strategies,
we define Outcome(v,F) = v0,v1, . . ., where v0 = v and for all j ∈ {1, 2} and i ≥ 0, if vi ∈ Vj ,
then vi+1 = fj (v0, . . . ,vi).

We write v |= φ to indicate that vertex v satisfies a state formula φ and write ρ |= ψ to indicate
that the play ρ = ρ0, ρ1, . . . satisfies a path formulaψ . For i ≥ 0, let ρi denote the suffix of ρ from
position i . Thus, ρi = ρi , ρi+1, ρi+2, The satisfaction relation |= is defined, for all verticesv and
plays ρ of G, inductively as follows:

(S1) v |= p, for p ∈ AP , iff p ∈ τ (v).

(S2) v |= ¬φ1 iff v |=/ φ1, and v |= φ1 ∨ φ2 iff v |= φ1 or v |= φ2.
(S3) v |= 〈〈A〉〉ψ iff there exists a set F of strategies, one for each player in A, such that for all

sets F̃ of strategies, one for each player not inA, and for all plays ρ ∈ (Outcome(v,F ∪F̃)),
we have ρ |= ψ .

(P1) ρ |= φ for a state formula φ iff ρ0 |= φ.

(P2) ρ |= ¬ψ1 iff ρ |=/ ψ1, and ρ |= ψ1 ∨ψ2 iff ρ |= ψ1 or ρ |= ψ2.
(P3) ρ |= �ψ1 iff ρ1 |= ψ1, and ρ |= ψ1Uψ2 iff there exists a position i ≥ 0 such that ρi |= ψ2

and for all positions 0 ≤ j < i , we have ρ j |= ψ1.

For example, the ATL� formula 〈〈Player 1〉〉((� �¬req) ∨ (�� grant)) asserts that Player 1 has a
strategy to enforce computations in which either only finitely many requests are sent, or infinitely
many grants are given.

The logic Perspective-ATL� extends ATL� by augmenting the 〈〈A〉〉 path quantifier by parame-
ters on the class of the strategies of the players in A (by Theorem 2, the class of the strategies of
the players not in A is not important). In addition to 〈〈A〉〉, which corresponds to full visibility, we
have the path quantifiers 〈〈A〉〉P and 〈〈A〉〉M , where the strategies are perspective and memoryless,
respectively. Formally, we have the following:

—v |= 〈〈A〉〉Pψ iff there exists a set F of P-strategies, one for each player in A, such that
for all sets F̃ of (F or P) strategies, one for each player not in A, and for all plays ρ ∈
(Outcome(v,F ∪ F̃)), we have ρ |= ψ .

—v |= 〈〈A〉〉Mψ iff there exists a set F of memoryless strategies, one for each player in A,
such that for all sets F̃ of F -strategies, one for each player not in A, and for all plays ρ ∈
(Outcome(v,F ∪ F̃)), we have ρ |= ψ .

In the model-checking problem for Perspective-ATL�, we are given a game graph G and a
Perspective-ATL� formulaψ , and we must decide whether v0 |= ψ .

We also consider Perspective-ATL, which extends ATL with perspective and memoryless path
quantification.

3 AUTOMATA

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · c ∈ T , where x ∈ D∗ and c ∈ D,
then also x ∈ T . The elements of T are called nodes, and the empty word ε is the root of T . For
every x ∈ T , the nodes x · c , for c ∈ D, are the successors of x . Nodes without successors are called
leaves. A path π of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π , either x is a leaf
or there exists a unique c ∈ D such that x · c ∈ π . Given an alphabet Σ, a Σ-labeled D-tree is a pair
〈T ,τ 〉 where T is a tree and τ : T → Σ maps each node of T to a letter in Σ.

For a setX , letB+ (X) be the set of positive Boolean formulas overX (i.e., Boolean formulas built
from elements inX using∧ and∨), where we also allow the formulas true and false. For a setY ⊆ X

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:10 O. Kupferman and G. Vardi

and a formula θ ∈ B+ (X), we say thatY satisfies θ iff assigning true to elements inY and assigning
false to elements in X \ Y makes θ true. An alternating tree automaton is A = 〈Σ,D,Q,qin ,δ ,α〉,
where Σ is the input alphabet,D is a set of directions,Q is a finite set of states,δ : Q×Σ→ B+ (D×Q)
is a transition function, qin ∈ Q is an initial state, and α specifies the acceptance condition (a
condition that defines a subset ofQω ; we define several types of acceptance conditions below). For
a state q ∈ Q , we use Aq to denote the automaton obtained from A by setting the initial state to
be q. The size of A, denoted |A|, is the sum of lengths of formulas that appear in δ .

The alternating automaton A runs on Σ-labeled D-trees. A run of A over a Σ-labeled D-tree
〈T ,τ 〉 is a (T ×Q)-labeled IN-tree 〈Tr , r 〉. Each node ofTr corresponds to a node ofT . A node inTr ,
labeled by (x ,q), describes a copy of the automaton that reads the node x of T and visits the state
q. Note that many nodes of Tr can correspond to the same node of T . The labels of a node and its
successors have to satisfy the transition function. Formally, 〈Tr , r 〉 satisfies the following:

(1) r (ε) = 〈ε,qin〉.
(2) Let y ∈ Tr with r (y) = 〈x ,q〉 and δ (q,τ (x)) = θ . Then there is a (possibly empty) set

S = {(c0,q0), (c1,q1), . . ., (cn−1,qn−1)} ⊆ D×Q , such that S satisfies θ , and for all 0 ≤ i ≤ n−1,
we have y · i ∈ Tr and r (y · i) = 〈x · ci ,qi 〉.

For example, if 〈T ,τ 〉 is a {0, 1}-tree with τ (ε) = a and δ (qin ,a) = ((0,q1) ∨ (0,q2)) ∧ ((0,q3) ∨
(1,q2)), then, at level 1, the run 〈Tr , r 〉 includes a node labeled (0,q1) or a node labeled (0,q2), and
includes a node labeled (0,q3) or a node labeled (1,q2). Note that if, for some y, the transition
function δ has the value true, then y need not have successors. Also, δ can never have the value
false in a run.

A run 〈Tr , r 〉 is accepting if all its infinite paths satisfy the acceptance condition. Given a run
〈Tr , r 〉 and an infinite path π ⊆ Tr , let inf (π) ⊆ Q be such that q ∈ inf (π) if and only if there are
infinitely many y ∈ π for which r (y) ∈ T × {q}. That is, inf (π) contains exactly all the states that
appear infinitely often in π . We consider here three acceptance conditions defined as follows. A
path π satisfies:

— a Büchi condition α ⊆ Q if and only if inf (π) ∩ α � ∅.
— a co-Büchi condition α ⊆ Q iff inf (π) ∩ α = ∅.
— a parity condition α : Q → {1, . . . ,k } iff the minimal color i ∈ {1, . . . ,k } for which inf (π) ∩
α−1 (i) � ∅, is even. The number k of colors in α is called the index of the automaton.

— a Rabin condition α = {〈α1, β1〉, . . . , 〈αk , βk 〉} ⊆ 2Q × 2Q iff for some 1 ≤ i ≤ k we have that
inf (π) ∩ αi � ∅ and inf (π) ∩ βi = ∅.

For the three conditions, an automaton accepts a tree iff there exists a run that accepts it. We
denote by L(A) the set of all Σ-labeled D-trees that A accepts.

Below we discuss some special cases of alternating automata. The alternating automaton A is
nondeterministic if for all the formulas that appear in δ , if (c1,q1) and (c2,q2) are conjunctively
related, then c1 � c2. (i.e., if the transition is rewritten in disjunctive normal form, there is at most
one element of {c} × Q , for each c ∈ D, in each disjunct). The automaton A is universal if all
the formulas that appear in δ are conjunctions of atoms in D × Q , and A is deterministic if it is
both nondeterministic and universal. The automaton A is a word automaton if |D | = 1. Then, we
can omit D from the specification of the automaton and denote the transition function of A as
δ : Q × Σ→ B+ (Q). If the word automaton is nondeterministic or universal, then δ : Q × Σ→ 2Q ,
and we often extend δ to sets of states and to finite words: for S ⊆ Q , we have that δ (S, ϵ) = S
and for a word w ∈ Σ∗ and a letter σ ∈ Σ, we have δ (S,w · σ) = δ (δ (S,w),σ). Sometimes we
are interested in reachability via a nonempty path that visits some α ⊆ Q . For this, we define
δα : 2Q × Σ+ → 2Q as follows. First, δα (S,σ) = δ (S,σ) ∩ α . Then, for a word w ∈ Σ+, we define

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:11

δα (S,w ·σ) = δ (δα (S,w),σ)∪ (δ (S,w ·σ)∩α). Thus, either α is visited in the prefix of the run that
reads w after leaving S , or the last state of the run is in α . It is not hard to prove by an induction
on the length ofw that for all states q ∈ Q , we have that q ∈ δα (S,w) iff there is a run from S onw
that reaches q and visits α after leaving S . Finally, we say that a Σ-labeled D-tree 〈T ,τ 〉 is regular

if for all letters σ ∈ Σ, we have that τ−1 (σ) is a regular language over D. Note that a regular tree
can be generated by a (D, Σ)-transducer: a deterministic automaton over D in which each state is
labeled by a letter in Σ. Then, τ (x), for a node x ∈ D∗, is the letter that labels the transducer state
that is reachable by reading x .

We denote each of the different types of automata by three-letter acronyms in {D,N ,U ,A} ×
{B,C, P ,R} × {W ,T }, where the first letter describes the branching mode of the automaton (deter-
ministic, nondeterministic, universal, or alternating), the second letter describes the acceptance
condition (Büchi, co-Büchi, parity, or Rabin), and the third letter describes the object over which
the automaton runs (words or trees). For example, APT are alternating parity tree automata and
UCT are universal co-Büchi tree automata.

4 DECIDING BEHAVIORAL PERSPECTIVE GAMES IN THE DETERMINISTIC SETTING

In this section, we study the problem of deciding whether Player 1 has a winning perspective
strategy in a given behavioral game, thus where the winning condition is given by an automaton or
an LTL formula. We also study the complexity of the Perspective-ATL� model-checking problem.

4.1 Upper Bound for Universal Automata

Consider a game graph G = 〈AP ,V1,V2,E,v0,τ 〉. For a vertex v ∈ V2, a (V +2 · V1)-path from v is
a finite path v1,v2, . . . ,vk ∈ V +2 · V1 in G such that v1 = v . A Vω

2 -path from v is an infinite path
v1,v2, . . . ∈ Vω

2 in G such that v1 = v . When Player 1 moves the token to a vertex v ∈ V2, the
token may traverse a (V +2 · V1)-path ρ from v , in which case it returns to V1 in Last(ρ), or it may
traverse a Vω

2 -path from v , in which case it never returns to a vertex in V1.
Consider a UCW U = 〈2AP ,Q,q0,δ ,α〉 and a state q ∈ Q . Suppose that the token is placed

in some vertex v ∈ V1 and that the objective of Player 1 is to force the token into computations
in L(Uq). Assume further that Player 1 chooses to move the token to a successor v ′ of v . We
distinguish between two possibilities.

—v ′ ∈ V1. Then, the new objective of Player 1 is to force the token fromv ′ into computations
in L(Uq′), for all the states q′ ∈ δ (q,τ (v)).

—v ′ ∈ V2. Then, we distinguish between two cases.
– There is aVω

2 -path ρ fromv ′ and τ (ρ) � L(Uq′) for some q′ ∈ δ (q,τ (v)). We then say that
v ′ is a trap for 〈v,q〉. Indeed, Player 2 can stay in vertices inV2 and force the token into a
computation not in L(Uq′), ensuring the desired behavior for Player 1 is not satisfied.

– v ′ is not a trap for 〈v,q〉, in which case, for every (V +2 ·V1)-path ρ · v ′′ from v ′, Player 1

should force a token that is placed in v ′′ into computations in L(Uq′), for all states q′ ∈
δ (q,τ (v) · τ (ρ)).

The above intuition motivates the following definition of updated objectives. For a pair 〈v,q〉 ∈
V1 × Q , standing for an objective of Player 1 to force a token placed on v to be accepted from q,
and a choice v ′ ∈ V of a successor of v , we define the set Sv ′

v,q ⊆ (V × Q × {⊥,�}) ∪ {false} of
updated objectives – these that Player 1 has to satisfy in order to fulfil her 〈v,q〉 objective after
choosing v ′. The {⊥,�} flag in the updated objectives is used for tracking visits in α : an updated
objective 〈v ′′,q′, c〉 ∈ Sv ′

v,q has c = � if Player 2 can force a visit in α when U runs from q to q′

along a word that labels a path from v via v ′ to v ′′. Formally, we define Sv ′
v,q as follows. First, if

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:12 O. Kupferman and G. Vardi

v ′ is a trap for 〈v,q〉, then Sv ′
v,q = {false}. Indeed, once Player 1 chooses a vertex that is a trap for

〈v,q〉, she cannot fullfil her objective. Otherwise, Sv ′
v,q ⊆ (V × Q × {⊥,�}), and a triple 〈v ′′,q′, c〉

is in Sv ′
v,q iff one the following holds:

—v ′ ∈ V1, v ′′ = v ′, and q′ ∈ δ (q,τ (v)). Then, c = � iff q′ ∈ α .
—v ′ ∈ V2, there is a (V +2 · V1)-path ρ · v ′′ from v ′, and q′ ∈ δ (q,τ (v) · τ (ρ)). Then, c = � iff

there is a (V +2 ·V1)-path ρ · v ′′ from v ′ such that q′ ∈ δα (q,τ (v) · τ (ρ)).

Note that it may be that v ′ is not a trap for 〈v,q〉, yet there is no (V +2 ·V1)-path from v ′. That is, all

the paths from v ′ stay in vertices in V2 and are in L(Uq′) for all q′ ∈ δ (q,τ (v)). Then, Sv ′
v,q = ∅.

Theorem 8. Let G = 〈G,U〉 be a game, where G is a game graph and U is a UCW. We can

construct a UCT AG over V -labeled V1-trees such that AG accepts a V -labeled V1-tree 〈V ∗1 ,η〉 iff

〈V ∗1 ,η〉 is a winning P-strategy for Player 1. The size of AG is polynomial in |G | and |U |.

Proof. LetU = 〈2AP ,Q,q0,δ ,α〉. We define AG = 〈V ,V1,Q
′,q′0,δ

′,α ′〉, where

—Q ′ = V ×Q × {⊥,�}. Intuitively, whenAG is in state 〈v,q, c〉, it accepts strategies that force
a token placed on v into a computation accepted byUq .

— q′0 = 〈v0,q0,⊥〉.
— For all 〈v,q,b〉 ∈ V × Q × {⊥,�} and letter v ′ ∈ V , if Sv ′

v,q = {false} or ¬E (v,v ′), then
δ ′(〈v,q,b〉,v ′) = false. Otherwise,

δ ′(〈v,q,b〉,v ′) =
∧

〈v ′′,q′,c〉∈Sv′
v,q

(v ′′, 〈v ′′,q′, c〉).

Thus, for every updated requirement 〈v ′′,q′, c〉 ∈ Sv ′
v,q , the automaton sends a copy in state

〈v ′′,q′, c〉 to direction v ′′. Note that several updated requirements may be sent to the same
direction. Indeed, different (V +2 ·V1)-paths from v ′ may induce different words thatU reads
fromq. Moreover, sinceU is universal, it may send copies in different states even for a single
word. Note; however, that all states sent to direction v ′′ agree on their V -element, which is
v ′′. Note also that when Sv ′

v,q = ∅, we get that δ ′(〈v,q,b〉,v ′) = true.
— α ′ = V ×Q × {�}. Recall that a � flag indicates that Player 2 may reach theQ-element in an

updated requirement traversing a path that visits α . Accordingly, the co-Büchi requirement
to visit α only finitely many times amounts to a requirement to visit states with � only
finitely many times. �

Theorem 9. Let G = 〈G,U〉 be a game, where G is a game graph and U is a UCW. We can

construct an NBTA′G overV -labeledV1-trees such that there is a winning P-strategy for Player 1 in

G iff L(A′G) is not empty. The size of A′G is polynomial in |G | and exponential in |U |.

Proof. By Theorem 8, we can construct a UCT AG over V -labeled V1-trees such that L(AG)
is not empty iff there is a winning P-strategy for Player 1 in G. The size of AG is polynomial
in |G | and |U |. The transformation from AG to A′G can be done by the method of [39]. Below
we analyze the construction and show how the fact that AG is deterministic in the V component
implies that it is polynomial in |G | and exponential in |U |.

For k ≥ 1, we denote [k] = {1, . . . ,k }. The construction in [39] transforms the UCT AG =
〈V ,V1,Q

′,q′0,δ
′,α ′〉 to an NBT A′G with states S = 2Q ′×[k] × 2Q ′×[k], where k is such that |Q ′ | · k

bounds the size of an NRT that is equivalent to AG , which is exponential in |Q ′ |. Also, for every
state 〈P ,O〉 ∈ S , we haveO ⊆ P , and if 〈q, i〉 and 〈q′, i ′〉 are in P with q = q′, then i = i ′. Therefore,
the states in S can be written as 2Q ′ ×2Q ′ × F , where F is the set of functions f : Q ′ → [k]. Recall

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:13

that the states of the UCT AG are Q ′ = V × Q × {⊥,�}, and that AG is deterministic in the V -
component. Hence, the translation of AG to an NRT is polynomial in |G | and exponential in |U |,
and thus k is only polynomial in |G |. Also, for every 〈P ,O〉 ∈ S , if 〈v,q, c, i〉 and 〈v ′,q′, c ′, i ′〉 are in
P , then since AG is deterministic in the V -component, we have v = v ′. Therefore, the states in S
can be written asV ×2Q×{⊥,�} ×2Q×{⊥,�} ×F , where F is the set of functions f : Q×{⊥,�} → [k].
Hence, |S | is polynomial in |G | and exponential in |U |. �

Since the nonemptiness problem for an NBT A can be solved in quadratic time [56], and we
can return a transducer of size O (|A|) that witnesses the nonemptiness, we can conclude with an
upper bound:

Corollary 10. Deciding whether Player 1 P-wins in a perspective game 〈G,U〉 for a UCWU is

in EXPTIME. The problem can be solved in time polynomial in |G | and exponential in |U |. Moreover,

when Player 1 P-wins, the algorithm returns a witness P-strategy by means of a transducer of size

polynomial in |G | and exponential in |U |.

While, as we show in Section 4.3, UCWs are powerful enough in order to reason about objec-
tives in LTL, we now show that Corollary 10 holds, in fact, also when the objective is given by
a UPW.

Theorem 11. Deciding whether Player 1 P-wins in a perspective game 〈G,U〉 for a UPW U is

in EXPTIME. The problem can be solved in time polynomial in |G | and exponential in |U |. Moreover,

when Player 1 P-wins, the algorithm returns a witness P-strategy by means of a transducer of size

polynomial in |G | and exponential in |U |.

Proof. In the proof of Theorem 8, we constructed a UCT where the updated objectives included
a flag in {⊥,�} to indicate visits in the co-Büchi condition. When the objective is given by a
UPW U , we define the updated objective to include the minimal color visited. That is, Sv ′

v,q ⊆
(V×Q×{1, . . . ,k })∪{false}, wherek is the index ofU , is such that an updated objective 〈v ′′,q′, c〉 is
in Sv ′

v,q if Player 2 can force a run inU from q to q′ in which the minimal color that is visited along
a word that labels a path from v via v ′ to v ′′ is c . Then, by a construction similar to the one in the
proof of Theorem 8, we obtain a UPTAG overV -labeledV1-trees such thatAG accepts aV -labeled
V1-tree 〈V ∗1 ,η〉 iff 〈V ∗1 ,η〉 is a winning P-strategy for Player 1. The size ofAG is polynomial in |G |
and |U |. By [39], UPT emptiness can be reduced to UCT emptiness with a polynomial blowup.2

Thus, we can obtain a UCTA′G of size polynomial in |G | and |U |, such thatA′G accepts aV -labeled
V1-tree 〈V ∗1 ,η〉 iff 〈V ∗1 ,η〉 is a winning P-strategy for Player 1. Similar to the UPT AG , the UCT
A′G is deterministic in the V -component. Hence, we can transform the UCT A′G to an NBT A′′G
by the method of [39] as shown in the proof of Theorem 9. The size of A′′G is polynomial in |G |
and exponential in |U |. Now, the claim follows from the fact that the nonemptiness problem for
NBT can be solved in quadratic time [56], and we can return a transducer of size O (|A′′G |) that
witnesses the nonemptiness. �

4.2 Lower Bound for Deterministic Automata

We show an EXPTIME lower bound for co-safe specifications. Anω-regular language L is co-safety
if for every word w ∈ Σω , if w ∈ L, then w has a prefix x such that x · y ∈ L for all y ∈ Σω [4].
It is easy to see that a co-safety language can be recognized by a DBW whose only state in α is
an accepting sink, and similarly by a DCW whose only state not in α is an accepting sink. Such

2The transformation in [39] is from APT to UCT, and it involves an exponential blowup in the size of the alphabet. The
extended alphabet directs the UCT in resolving nondeterminism. Hence, in the case of UPT, the alphabet does not change.

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:14 O. Kupferman and G. Vardi

automata are at the bottom of Wagner’s hierarchy [58], they are termed weak[−+] automata,
to indicate the automaton is weak with at most one transition from a rejecting component
to an accepting component, and we denote the deterministic weak[−+] word automata by
DWW[−+].

Theorem 12. LetG = 〈G,A〉 be a game, whereG is a game graph andA is a DWW[−+]. Deciding

whether Player 1 has a winning P-strategy in G is EXPTIME-hard. Furthermore, it is EXPTIME-hard

already for a fixed-size G.

Proof. We show a reduction from the membership problem for a linear-space ATM. An ATM
is a tuple M = 〈Qe ,Qu , Σ, Γ, Δ, qinit , qacc,qrej〉, where Qe and Qu are finite sets of existential and
universal states, and we let Q = Qe ∪Qu . Then, Σ and Γ are input and working alphabets, respec-
tively, with Σ ⊆ Γ, and Δ ⊆ Q × Γ × Q × Γ × {L,R} is a transition relation. Finally, qinit ,qacc , and
qrej are the initial, accepting, and rejecting states, respectively, and we assume that qinit ∈ Qe . In
the membership problem, we get as input an ATM M and an input word w ∈ Σ∗, and we decide
whether M accepts w .

A configuration of M describes its state, the content on the working tape, and the location of the
reading head. SinceM is a linear space ATM, there is some linear functionp : IN→ IN such that the
number of cells used by the working tape in every configuration of M on its run on w is bounded
by p (|w |). We describe a configuration of M by a word u · q · γ · v , for u,v ∈ Γ∗, γ ∈ Γ, and q ∈ Q .
Then, M is in state q, the content of the tape is u ·γ ·v , and the reading head points to γ . The initial
configuration of M on w , is then qinit · w · � p (|w |)−|w | , for the special letter � ∈ Γ. If the current
state is qacc or qrej , then the configuration is final and has no successors. Otherwise, the successors
of a configuration u · q · γ · v are determined by Δ. For every tuple 〈q,γ ,q′,γ ′,d〉 ∈ Δ, there is a
successor configuration obtained by moving to state q′, writing γ ′ instead of γ , and moving the
head one cell to the left or right, depending on d . If q ∈ Qe , the configuration is existential, and
M can choose a successor configuration and continue the run from it. If q ∈ Qu , the configuration
is universal, and M continues from all successor configurations. Thus, the possible computations
of M on w induce a game graph whose vertices are M’s configurations, and w is accepted iff
Player 1, which proceeds in vertices associated with existential configurations, has a strategy
to win from the initial configuration in a reachability game whose target are vertices associated
with configurations with qacc . The membership problem for linear-space ATM is EXPTIME-hard
already for M of a fixed size, and when Δ alternates between existential and universal states [15],
thus Δ ⊆ (Qe × Γ ×Qu × Γ × {L,R}) ∪ (Qu × Γ ×Qe × Γ × {L,R}).

The game graph described above assumes F -strategies and its size is exponential in |w |. The
big challenge in our reduction is to use P-strategies in order to work with a fixed-size graph.
We first describe the main ideas of the reduction, and then describe it formally. The vertices of
Player 1 are going to maintain information about the last transition (in particular, the current
state of M), but no information about the tape content. The vertices of Player 2 are going to
maintain information about the last transition (in particular, the current state of M), and the letter
under the tape head. In each Player 1 turn, she chooses a transition in Δ that corresponds to the
current state and letter, and moves to a Player 2 vertex accordingly. Since the current letter is
not encoded in Player 1’s vertices, then Player 1 might lie, but then the DWW[−+] would make
sure that she loses the game. Also, the Player 2 vertex that Player 1 chooses to move to must
correspond to the current letter. Again, if Player 1 lies about it, then the DWW[−+] makes sure
that she loses the game. In a Player 2 turn, she chooses a transition according to the current state
and letter—both encoded in her vertices, and moves to a corresponding Player 1 vertex. Recall
that the transitions in M alternate between existential and universal states. Accordingly, there is
exactly one Player 2 vertex between two Player 1 vertices in the play. This fact enables Player 1

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:15

to maintain the tape configuration although she sees only her vertices. Player 1 wins whenever
a vertex that corresponds to qacc is reached.

The DWW[−+] A makes sure that Player 1 does not lie about the current letter, both when
choosing her transitions, and when passing the control to Player 2. Since there are exponentially
many possible tape contents, A cannot maintain the full tape content. Instead, A maintains only
the letter in some specific position 0 ≤ k ≤ p (|w |) − 1 on the tape. The position k is chosen by
Player 2 during a preamble we add to the game. Player 1 does not see the preamble, and thus
she does not know k . Accordingly, in order to avoid losing, Player 1 should not lie about any of
the tape cells and thus should faithfully simulate the computation of M on w . Hence, Player 1
has a winning P-strategy iff M accepts w .

We now describe the reduction formally. Given an ATM M = 〈Qe ,Qu , Σ, Γ, Δ, qinit , qacc,qrej〉
with a linear-space complexity function p : IN → IN, and a word w = w0,w1,w2, . . . ∈ Σ∗, we
construct a game G = 〈G,A〉 such that G is of a fixed size, A is polynomial in |w |, and Player 1
P-wins G iff M accepts w . For j ∈ {e,u}, let Δj ⊂ Δ be the transitions from states in Q j . The game
graph G = 〈AP ,V1,V2,v0,E,τ 〉 is defined as follows:

—AP = {v0,u0,qinit } ∪ Δ.
—V1 = {v0,qinit }∪Δu . The vertexv0 is the initial vertex, the vertexqinit corresponds to the com-

putation being in state qinit before traversing any transition, and vertices 〈q,γ ,q′,γ ′,d〉 ∈ Δu

correspond to the computation being in state q′ after traversing the transition 〈q,γ ,q′,γ ′,d〉.
—V2 = {u0} ∪ (Δe × Γ). The vertex u0 is where Player 2 chooses the location k that is

monitored by the DWW[−+]A. A vertex 〈t ,γ 〉 ∈ Δe × Γ corresponds to a transition t ∈ Δe

chosen by Player 1 at the previous round, and of the letter γ that Player 1 claims to be
under the current tape head.

— The set E contains the following edges:
– 〈v0,u0〉, 〈u0,u0〉, and 〈u0,qinit〉. We call these edges the preamble of G.
– 〈qinit , 〈t ,γ 〉〉 for every t = 〈qinit ,γ1,q

′,γ2,d〉 ∈ Δe and γ ∈ Γ.
– 〈t , 〈t ′,γ 〉〉, for every t = 〈q1,γ1,q2,γ2,d〉 ∈ Δu , t ′ = 〈q2,γ

′
1,q
′,γ ′2,d

′〉 ∈ Δe , and γ ∈ Γ.
– 〈〈t ,γ ′1〉, t ′〉, for every t = 〈q1,γ1,q2,γ2,d〉 ∈ Δe and t ′ = 〈q2,γ

′
1,q
′,γ ′2,d

′〉 ∈ Δu .
The self loop at u0 enables Player 2 to choose how long to stay in u0. Since Player 1 has
perspective visibility, she does not know the number of rounds that Player 2 chooses to
stay in u0. Edges involving transitions describe the computation, to be checked by A.

— For every v ∈ {v0,u0,qinit } ∪ Δu , we have τ (v) = {v}, and for every v = 〈t ,γ 〉 ∈ Δe × Γ, we
have τ (v) = {t }.

The DWW[−+] A = 〈Σ, S, s0,δ ,α〉 is defined as follows:

— Σ = {v0,u0,qinit } ∪ Δ.
— S = {s0, sacc, srej } ∪

⋃
0≤k≤p (|w |)−1 S

k , where Sk = {〈k,γ ,h〉 : γ ∈ Γ, 0 ≤ h ≤ p (|w |) − 1}.
A triple 〈k,γ ,h〉 in Sk indicates that the letter in position k in the tape is γ , and that
the position of the reading head is h. For 0 ≤ k ≤ |w | − 1, let sk

0 = 〈k,wk , 0〉, and for

|w | ≤ k ≤ p (|w |) − 1, and let sk
0 = 〈k, �, 0〉.

— δ : S × Σ→ S is defined as follows:
(1) For s ∈ {sacc, srej } and σ ∈ Σ, we have δ (s,σ) = s .
(2) For every s ∈ S and σ ∈ {v0,qinit } we have δ (s,σ) = s .
(3) δ (s0,u0) = s0

0 , and for t ∈ Δ we have δ (s0, t) = s0.

(4) Let s = sk
0 . If 0 ≤ k ≤ p (|w |) − 2 then δ (s,u0) = sk+1

0 . If k = p (|w |) − 1 then δ (s,u0) = sacc .
Thus, the behavior of Player 2 in the preamble of G determines the position k that A
monitors.

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:16 O. Kupferman and G. Vardi

(5) For every k and s ∈ Sk \ {sk
0 } we have δ (s,u0) = s .

(6) Let s = 〈k,γ ,h〉 ∈ Sk and t = 〈q,γ1,q
′,γ2,d〉 ∈ Δ. If d = R, then we denote d ′ = 1 and

otherwise d ′ = −1. Then, we have the following:
– If h + d ′ � {0, . . . ,p (|w |) − 1}, then δ (s, t) = srej .
– If h + d ′ ∈ {0, . . . ,p (|w |) − 1}, then
∗ If h = k , then
· If γ = γ1 and q′ = qacc , then δ (s, t) = sacc .
· If γ = γ1 and q′ � qacc , then δ (s, t) = 〈k,γ2,h + d

′〉.
· If γ � γ1, then δ (s, t) = srej .

∗ If h � k , then
· If q′ = qacc then δ (s, t) = sacc .
· If q′ � qacc then δ (s, t) = 〈k,γ ,h + d ′〉.

— α = {sacc }. �

4.3 Tight Complexities

We are now ready to show tight complexities for the problem of deciding a given perspective
game for different classes of behavioral winning conditions. Recall that the input G = 〈G,L〉 to the
problem has two parameters. Thus, in addition to the joint complexity of the problem, namely the
complexity in terms of both |G | and the automaton or formula that describes L, we are interested
also in its graph complexity, namely the complexity in terms of |G |, assuming L is given by a fixed-
size automaton or formula. Indeed, typically the size of G is much bigger than the size of the
winning condition, and is the computational bottleneck [41].

Theorem 13. Let G = 〈G,ψ 〉 be a game, where ψ is an LTL formula. Deciding whether Player 1
has a winning P-strategy inG, and finding a winning P-strategy, is 2EXPTIME-complete. Furthermore,

the problem is 2EXPTIME-hard already for a fixed-size game graph. The graph complexity of the

problem is PTIME-complete.

Proof. For the upper bound, we construct an NBW A¬ψ of size exponential in |ψ | such that

L(A¬ψ) = {w : w |=/ ψ } [57]. We dualize A¬ψ to obtain a UCW forψ , and then use Corollary 10.
The lower bound for the graph complexity follows from the PTIME-hardness of alternating

reachability [28]. We now prove the 2EXPTIME lower bound. In [5] it is shown that deciding
whether Player 1 has a winning F -strategy in a game G = 〈G,ψ 〉 is 2EXPTIME-hard already for a
fixed-size game graph G, and an LTL formula ψ with a fixed number of atomic propositions. The
proof in [5] reduces the realizability problem [51] for an LTL formula ψ with a fixed number of
atomic propositions to a game G = 〈G,ψ 〉withG = 〈2AP ×{1}, 2AP ×{2}, ((2AP×{1})× (2AP×{2}))∪
((2AP × {2}) × (2AP × {1})), 〈∅, 1〉,AP ,τ 〉, where for every u ∈ 2AP we have τ (〈u, 1〉) = τ (〈u, 2〉) =
u. Thus, G alternates between vertices of Player 1 and Player 2. Hence, although Player 1 has
perspective visibility, she knows the entire play. Therefore, Player 1 has a winning F -strategy in
G iff she has a winning P-strategy. Therefore, deciding whether Player 1 has a winning P-strategy
is 2EXPTIME-hard already for a fixed-size game graph. �

Theorem 14. Let G = 〈G,A〉 be a game, where A is a DWW[−+] or UPW. Deciding whether

Player 1 has a winning P-strategy in G, and finding a winning P-strategy, is EXPTIME-complete.

Furthermore, the problem is EXPTIME-hard already for a fixed size game graph. The graph complexity

of the problem is PTIME-complete.

Proof. The EXPTIME lower bound follows from Theorem 12, and the lower bound for the
graph complexity follows from the PTIME-hardness of alternating reachability [28]. The upper
bound follows from Theorem 11. �

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:17

4.4 The Case of Memoryless Strategies

Recall that memoryless strategies are a special case of perspective ones. In this section we study the
problem of deciding games in which Player 1 is restricted to memoryless strategies. Surprisingly,
the graph complexity in this seemingly simpler setting is NP-complete, thus it is harder than the
polynomial graph complexity for perspective strategies.

Theorem 15. Let G = 〈G,L〉 be a game. Deciding whether Player 1 has a winning memoryless

strategy in G, and finding a winning memoryless strategy, is PSPACE complete when L is given by an

LTL formula, and is NP-complete when L is given by a DWW[−+] or a UPW. In both cases, the graph

complexity of the problem is NP-complete.

Proof. We start with the case where L is given by an LTL formula, thus G = 〈G,ψ 〉. Given G,
we guess a memoryless strategy for Player 1 in G. Thus, for each vertex v ∈ V1, we choose an
outgoing edge. LetG ′ be the graph obtained fromG by removing all outgoing edges from vertices
in V1 that are not chosen. It is easy to see that the guessed strategy for Player 1 is winning from
vertex v0 iff all the computations from v0 in G ′ satisfy ψ . This can be checked in PSPACE using
LTL model checking [53]. Hence, going over all possible memoryless strategies can be done in
PSPACE. Hardness in PSPACE follows from LTL model checking. Indeed, when all vertices belong
to Player 2, the problem coincides with checking that all computations of G satisfyψ .

We continue to the case where L is given by a DWW[−+] or a UPW A. Here too, we guess
and check a winning strategy for Player 1. Here, however, we can check a guessed witness in
polynomial time by checking the emptiness of the intersection of the language of G ′ with the
complement of A, which is an NPW or a DWW[+-] (that is, a deterministic weak automaton for
the safety property obtained by dualizing a DWW[−+]). Hence, the problem is in NP.

We describe a reduction from the problem 2DP (two vertex-disjoint paths), proved to be NP-
complete in [24]. In 2DP, we are given a directed graph G = 〈V ,E〉 and two vertices v,u ∈ V ,
and have to determine whether there are disjoint paths from u to v and from v to u. That is,
whether there are paths s1, s2, . . . , sk and s ′1, s

′
2, . . . , s

′
k ′ such that s1 = s ′

k ′ = u, s ′1 = sk = v , and
s1, s2, . . . , sk−1, s

′
1, s
′
2, . . . , s

′
k ′−1 are all different.

Given a graph G = 〈V ,E〉, and two vertices v,u ∈ V , define the game graph G ′ =
〈AP ,V , ∅,v,E,τ 〉, where AP = {p1,p2}, τ (v) = {p1}, τ (u) = {p2}, and τ (u ′) = ∅ for all u ′ � {v,u}.
Thus, Player 1 owns all vertices, the initial vertex is v , it is labeled by p1, and it is the only vertex
in which p1 holds. Also,u is labeled by p2, and it is the only vertex in which p2 holds. Now, consider
the (co-safety) language L ⊆ (2{p1,p2 })ω where w ∈ L iff w has a prefix in p1 · true

∗ · p2 · true
∗ · p1.

Thus, L is the set of plays that satisfy the LTL formula ψ = p1 ∧ �� (p2 ∧ �� p1). Clearly, L can
be defined also by a DWW[−+] or a UPW of a fixed size.

We prove that 〈G,v,u〉 ∈ 2DP iff Player 1 wins 〈G ′,L〉 using a memoryless strategy. Assume
first that 〈G,v,u〉 ∈ 2DP. Let v = s1, s2, . . . , sk = u = s ′1, s

′
2, . . . , s

′
k ′ = v be as described above.

Consider the memoryless strategy f : V → V with f (si) = si+1, for 1 ≤ i < k and f (s ′i) = s ′i+1, for
1 ≤ i < k ′. It is easy to see that Outcome(v, f) is an infinite path that repeatedly traverses disjoint
paths from u to v and from v to u. Thus, Outcome(v, f) ∈ L and Player 1 wins 〈G ′,L〉.

For the other direction, assume that Player 1 wins 〈G ′,L〉 using a memoryless strategy. Let
f : V → V be a memoryless strategy for Player 1 such that Outcome(v, f) ∈ L. Recall that
Outcome(v, f) = v, f (v), f 2 (v), f 3 (v), Since Outcome(v, f) is in L, there is a minimal j > 0
such that f j (v) = v and there is 0 < i < j such that f i (v) = u. We claim that for all 1 ≤ l1 <
l2 ≤ j, we have that f l1 (v) � f l2 (v). Note that this would complete the proof, as it implies that
Outcome(v, f) witnesses that 〈G,v,u〉 ∈ 2DP. So, assume by way of contradiction that there are
1 ≤ l1 < l2 ≤ j with f l1 (v) = f l2 (v). Then, Outcome(v, f) = v, f (v), . . . (f l1 (v), . . . f l2−1 (v))ω .
We distinguish between two cases. First, if l2 = j, we get a contradiction either to the minimality

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:18 O. Kupferman and G. Vardi

of j or to the existence of 0 < i < j such that f i (v) = u. Then, if l2 < j, we get a contradiction to
Outcome(v, f) being in L. �

Remark 1. NP-hardness of the 2DP problem is used in [31] to prove the NP-hardness of the
problem of deciding whether Player 1 has a memoryless winning strategy in generalized-Büchi
games. Thus, ones with a structural generalized-Büchi winning condition. We could have used
a similar idea, or describe a direct reduction from the problem in [31] for the NP-lower bound
in the proof of Theorem 15. Indeed, our reduction there is valid also with ψ = �� p1 ∧ �� p2,
which corresponds to the structural generalized-Büchi condition {{v}, {u}}. The formula ψ , how-
ever, is not co-safety, and the above would have covered only the case L is given by a UPW. Unlike
games with a structural generalized-Buchi winning condition, games with a structural DWW[−+]
winning condition correspond to reachability games, and deciding whether Player 1 has a mem-
oryless winning strategy in structural DWW[−+] games amounts to deciding the game, which
can be done in linear time. In Section 6, we elaborate on memoryless and perspective strategies in
games with structural winning conditions. �

Remark 2. In [8], the authors study the complexity of deciding whether an edge-labeled graph
contains a simple path that is labeled by a word from a given regular language. Showing that the
problem is NP-hard, the authors describe a reduction from 3SAT. The reduction constructs, given
a propositional formula θ in 3CNF, a labeled complete directed grid and a regular expression that
forces a simple path in the grid to correspond to an assignment satisfying θ . The reduction and its
proof are very complicated. The outcome of memoryless strategies are simple lasso-shaped paths.
This connection suggests that the reduction we describe in the proof of Theorem 15 can be adjusted
for showing NP-hardness of the problem studied in [8]. Below we describe such a reduction.

Given 〈G,v,u〉, consider the graph G ′ obtained from G by duplicating v to vin (with edges that
enter v in G) and vout (with edges that leave v in G), and labeling edges from vout and to vin by p1,
and duplicating u to uin (with edges that enter u in G) and uout (with edges that leave u in G), and
adding an edge labeled p2 from uin to uout . It is not hard to see that the same arguments used in
our proof can be used to show that 〈G,v,u〉 is in 2DP iff G ′ has a simple path that starts in vout

that is labeled by a word in p1 · true
∗ · p2 · true

∗ · p1. �

4.5 Perspective-ATL� Model Checking

For ATL� and ATL, the model-checking problems are known to be 2EXPTIME-complete and
PTIME-complete, respectively, and the graph complexity is PTIME-complete [5]. Adding longitudi-
nal uncertainty makes the graph complexity EXPTIME-complete [5]. As we now show, perspective
partial visibility comes at no cost, whereas memoryless one increases the graph complexity.

Theorem 16. The model-checking problem for Perspective-ATL� is 2EXPTIME-complete. The

problem is 2EXPTIME-hard already for a fixed-size game graph. When the only path quantifiers are

〈〈A〉〉 and 〈〈A〉〉P , the graph complexity is PTIME-complete. With path quantifiers 〈〈A〉〉M , the graph

complexity is in ΔP
2 , and is NP- and coNP-hard. The model-checking problem for Perspective-ATL is

PTIME-complete.

Proof. We start with Perspective-ATL�. The lower bounds follow from Theorems 13 and 15. In
particular, co-NP-hardness for the graph complexity of Perspective-ATL� with 〈〈A〉〉M path quanti-
fiers follows by a reduction from the problem complementing 2DP used in the proof of Theorem 15.

For the upper bound, let G be a game graph and let φ be a Perspective-ATL� formula. As in the
algorithm for CTL� model checking [21], we label each vertex v inG by all state subformulas of φ
that hold in v . We do this in a bottom-up fashion, starting from the innermost state subformulas
of φ. For an innermost state subformula φi and a vertex v , we decide whether φi holds in v as

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:19

follows. If φi = 〈〈A〉〉ψ for some A ⊆ {Player 1, Player 2}, then we use ATL� model-checking [5].
If φi = 〈〈A〉〉Pψ , then we proceed as follows. If A = {Player 1} or A = {Player 2}, then we use
Theorem 13. If A = {Player 1, Player 2} orA = ∅, then we claim that φi = ∃ψ or φi = ∀ψ , and use
CTL� model checking. Note that while the equivalences are trivial for 〈〈A〉〉, they require a proof
for 〈〈A〉〉P , as it is not clear that P-strategies can force the play to all computations. To see that they
can, assume that v |= ∃ψ for a vertex v . So, there is a play ρ = v1,v2, . . . from v that satisfies
ψ . Then, Player 1 and Player 2 can cooperate to ensure the satisfaction of ψ using P-strategies
f1 and f2 such that for every prefix ρ ′ = v1, . . . ,vi of ρ, if vi ∈ Vj , then fj (Perspj (ρ ′)) = vi+1.
Since for every two distinct prefixes ρ ′ and ρ ′′ of ρ that end in Vj , the lengths of Perspj (ρ ′) and
Perspj (ρ ′′) are not equal, then fj is well-defined.

We continue to the case φi = 〈〈A〉〉Mψ . As in the upper bound in Theorem 15, we guess a memo-
ryless strategy for the players inA, and check that all the paths in the graph obtained by removing
edges that are not chosen by the strategy satisfyψ . The complexity is PSPACE, with graph complex-
ity NP. Now, when we proceed in a bottom-up fashion, each evaluation of an 〈〈A〉〉Mψ subformula
requires such a call, which increases the graph complexity to ΔP

2 .3

We continue to Perspective-ATL. Consider a formula of the form 〈〈A〉〉Pθ or 〈〈A〉〉Mθ , for θ of
the form �φ1, �φ1 or φ1Uφ2, for some state formulas φ1 and φ2. Note that in all three cases, we
have that 〈〈A〉〉Pθ and 〈〈A〉〉Mθ are both equivalent to 〈〈A〉〉θ . Indeed, if the players A can ensure
the satisfaction of θ by F -strategies, then they can do it using memoryless strategies, and such
strategies are also P-strategies. Hence, every Perspective-ATL formula is equivalent to the ATL
formula obtained by replacing each 〈〈A〉〉P or 〈〈A〉〉M path quantifiers by 〈〈A〉〉. The claim then follows
from the PTIME-completeness of ATL model-checking [5]. �

Remark 3. While finding the exact graph complexity of model checking Perspective-ATL� for-
mulas with 〈〈A〉〉M path quantifiers is interesting from a complexity-theoretical point of view, it
does not contribute much to our story. A possible tightening of our analysis is via the complexity
class BH, which is based on a Boolean hierarchy over NP. Essentially, it is the smallest class that
contains NP and is closed under union, intersection, and complement [59]. BH is contained in ΔP

2 ,
and we conjecture that as has been the case with flow logic [35], the graph complexity of the frag-
ments of Perspective-ATL� obtained by restricting the number of subformulas of form 〈〈A〉〉Mψ
correspond to levels in the BH hierarchy. �

5 DECIDING PERSPECTIVE GAMES IN THE PROBABILISTIC SETTING

In Theorem 5, we showed that there are games in which Player 1 has a (P , F)-almost winning
strategy, but no P-winning strategy. In this section, we show that reasoning about perspective
games in the probabilistic setting is undecidable for behavioral objectives given by a DCW (and
thus also for DPW and NBW).

Theorem 17. The problems of deciding whether Player 1 (P , F)-almost wins and whether she

(P , P)-almost wins a DCW perspective game are undecidable.

Proof. We show a reduction from the emptiness problem of probabilistic co-Büchi word au-
tomata (PCW, for short), proved to be undecidable [7, 17]. A PCW is P = 〈Σ,Q,q0,δ ,α〉, where Σ
is the alphabet, Q are the states, q0 is the initial state, α ⊆ Q is a co-Büchi acceptance condition,
and the transition function δ : Q × Σ × Q → [0, 1] is such that for all q ∈ Q and σ ∈ Σ, we have∑

q′ ∈Q δ (q,σ ,q′) = 1. A word w ∈ Σω is accepted by P if the acceptance probability of w in P,

3The complexity class ΔP
2 includes all problems that can be solved by a deterministic polynomial-time Turing machine that

has an oracle to a nondeterministic polynomial-time Turing machine, a.k.a PNP.

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:20 O. Kupferman and G. Vardi

Fig. 2. The game graph G. In every vertex exactly one atomic proposition in Σ ∪ {0, . . . ,n − 1} ∪ {#} holds.

denoted by PrP (w), is 1. The undecidability proof in [7, 17] applies already to PCWs for which the
range of δ are rational numbers. Accordingly, we can assume that there is a common divisor r of
all probabilities in P, such that 1

r
is an integer. Let n = 1

r
. By duplicating states in P we can further

assume that all the positive probabilities inP are equal to 1
n

. Thus, for everyq ∈ Q and σ ∈ Σ, there

are exactly n states, denoted qσ
0 , . . . ,q

σ
n−1, such that δ (q,σ ,qσ

k
) = 1

n
for every k ∈ {0, . . . ,n − 1}.

We construct a game G = 〈G,A〉, where A is a DCW, such that P is nonempty iff Player 1
(P , F)-almost wins G. Intuitively, the probabilistic transitions of P are simulated by randomized
strategies of the players in G.

The game graph G with AP = Σ ∪ {0, . . . ,n − 1} ∪ {#} is shown in Figure 2. A play in G has an
infinite sequence of rounds, such that in each round Player 1 chooses σ ∈ Σ, Player 2 chooses an
index i ∈ {0, . . . ,n − 1}, and then Player 1 chooses an index j ∈ {0, . . . ,n − 1}. Since Player 1 has
perspective visibility, the choices of i and j are independent. Accordingly, each player in G has the
possibility to ensure exact simulation of the probabilistic transitions ofP by choosing transitions to
the {0, . . . ,n − 1} vertices inG uniformly at random. Indeed, if Player 2 chooses i ∈ {0, . . . ,n − 1}
uniformly at random and then Player 1 chooses j without knowing i , then irrespective of the
(possibly randomized) choice of j by Player 1, the index (i + j) mod n is distributed uniformly in
{0, . . . ,n−1}. Likewise, if Player 1 chooses j uniformly at random, then (i+j) mod n is distributed
uniformly no matter what Player 2 does.

The DCW A = 〈Σ′,Q ′,q′0,δ ′,α ′〉 is obtained from P as follows:

— Σ′ = Σ ∪ {0, . . . ,n − 1} ∪ {#}.
—Q ′ = Q ∪ (Q × Σ) ∪ (Q × Σ × {0, . . . ,n − 1}).
— q′0 = q0.
— δ ′ : Q ′ × Σ′ → Q ′ is defined as follows:

– For q ∈ Q and σ ∈ Σ, we have δ ′(q,σ) = 〈q,σ 〉.
– For 〈q,σ 〉 ∈ Q × Σ and i ∈ {0, . . . ,n − 1}, we have δ ′(〈q,σ 〉, i) = 〈q,σ , i〉.
– For 〈q,σ , i〉 ∈ Q × Σ × {0, . . . ,n − 1} and j ∈ {0, . . . ,n − 1}, we have δ ′(〈q,σ , i〉, j) =
qσ

(i+j) mod n
.

– For every q ∈ Q ′ we have δ ′(q, #) = q.
– For every q ∈ Q and k ∈ {0, . . . ,n − 1} we have δ ′(q,k) = q.
– For every q ∈ (Q × Σ) ∪ (Q × Σ × {0, . . . ,n − 1}) and σ ∈ Σ we have δ ′(q,σ) = q.

— α ′ = α .

We now prove the correctness of the reduction, namely that P is nonempty iff Player 1 (P , F)-
almost-wins 〈G,A〉, and that P is nonempty iff Player 1 (P , P)-almost-wins.

Assume first that P is nonempty, and let w ∈ L(P). Let д1 be a randomized P-strategy of
Player 1 such that the transitions to the Σ vertices are chosen deterministically according to w

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:21

(namely, in the kth round Player 1 chooses the kth letter ofw), and the choice of j ∈ {0, . . . ,n−1}
is done uniformly at random. Since for every random choice of i ∈ {0, . . . ,n − 1} by Player 2 the
index (i + j) mod n is distributed uniformly, then for every randomized strategy д2 of Player 2
we have Prд1,д2 (L(A)) = PrP (w) = 1.

Assume now that P is empty. Let д2 be a randomized P-strategy of Player 2 such that i ∈
{0, . . . ,n − 1} is chosen uniformly at random. Note that in a randomized P-strategy of Player 1,
the choice of j cannot depend on i . Hence, for every randomized P-strategy of Player 1, the index
(i + j) mod n is distributed uniformly. Therefore, for every strategy д1 of Player 1, we have that
Prд1,д2 (L(A)) is the probability that P accepts a word w that is drawn according to some distribu-
tion that is induced by д1. Since for every word w we have PrP (w) < 1, then Prд1,д2 (L(A)) < 1.

Thus, we showed that P is nonempty iff Player 1 (P , F)-almost-wins. In fact, since the strategy
д2 of Player 2 defined above is perspective, then we also have that P is nonempty iff Player 1
(P , P)-almost-wins. �

6 DECIDING STRUCTURAL PERSPECTIVE GAMES

An extensively studied problem is to determine which games admit memoryless strategies, namely,
in which games Player 1 has a winning F -strategy iff she has a winning memoryless strategy [54].
Recall that every memoryless strategy is perspective. Indeed, vertices inVj are included in the per-
spective viewpoint of Player j. Therefore, games that admit memoryless strategies (for example,
reachability, Büchi, co-Büchi, Rabin, and parity games [13]) also admit P-strategies.4

In this section, we study which structural winning conditions admit P-strategies. The question
is particularly interesting for conditions that do not admit memoryless strategies. Let us recall the
generalized-Büchi and Streett winning conditions, which do not admit memoryless strategies. A
path ρ ∈ Vω satisfies:

— a generalized Büchi condition α = {α1, . . . ,αk } ⊆ 2V iff inf (ρ) ∩ αi � ∅ for all 1 ≤ i ≤ k .
— a Streett condition α = {〈β1,α1〉, . . . , 〈βk ,αk 〉} ⊆ 2V × 2V iff inf (ρ) ∩ βi � ∅ implies inf (ρ) ∩
αi � ∅ for all 1 ≤ i ≤ k .

As we now show, while generalized Büchi games do not admit memoryless strategies, they do
admit perspective ones. Intuitively, it follows from the fact that Player 1 can satisfy the different
conjuncts of the generalized Büchi condition in a round-robin fashion by maintaining a counter
that directs her which conjunct to satisfy next.

Theorem 18. Generalized-Büchi games admit P-strategies.

Proof. Let G = 〈V1,V2,v0,E〉 be a game graph, let V = V1 ∪ V2 with |V | = n, and let α =
{α1, . . . ,αk } ⊆ 2V be the generalized Büchi winning condition. For a vertex v , we denote by Gv

the game graph obtained from G by changing the initial vertex to be v . We show that if Player 1
F -wins 〈G,α〉, then she also P-wins it. Let f1 be a winning F -strategy for Player 1 in 〈G,α〉, and let
U ⊆ V be the set of vertices that are reachable when Player 1 plays according to f1. That is,v ∈ U
iff there is a strategy f2 of Player 2 such that v is in Outcome(f1, f2). Note that since U is the set
of reachable vertices, a vertex v ∈ U ∩V2 cannot have successors in V \U . Since f1 is a winning
strategy in 〈G,α〉, and satisfaction of the winning condition is independent of finite prefixes, then
f1 is also a winning strategy in 〈Gv ,α〉, for every v ∈ U . Hence, for every 1 ≤ i ≤ k and for
every v ∈ U , the strategy f1 induces a winning strategy for Player 1 in the Büchi game on Gv

4The above also suggests that the study of probabilistic P -strategies for these objectives is not interesting, as the corre-
sponding perspective games are determined, and thus there is no advantage to a probabilistic strategy over a deterministic
one.

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:22 O. Kupferman and G. Vardi

with the objective αi ∩U . We denote this game by Gv,i = 〈Gv ,αi ∩U 〉. Since Büchi games admit
memoryless strategies, Player 1 has a memoryless winning strategy дv,i

1 for the Büchi game Gv,i

for every v ∈ U and 1 ≤ i ≤ k . Consider the following P-strategy f ′1 for Player 1. Starting with

i = 1, she plays according toдv0,i
1 and maintains a counter that is increased each time the play visits

a vertex in V1. Since дv0,i
1 is winning and memoryless, the play must reach some vertex in αi ∩U

within at most n rounds. When the counter is at least n and the play reaches a vertex v ∈ U ∩V1,
then Player 1 resets the counter, increases i to (i mod k) + 1, and starts playing according to дv,i

1
(with the new i). Note that if at some point the play reaches some v ∈ αi ∩U ∩V2 and then stays
in V2, then the play must satisfy α according to the definition of U . Also, since vertices in U ∩V2

do not have successors in V \ U , if Player 2 does not stay in V2 for infinitely many rounds after
visiting v ∈ αi ∩U ∩V2, then when the play moves back to a vertex v ′ ∈ V1, we have v ′ ∈ U , and
therefore eventually the play reaches u ′ ∈ U ∩ V1 when the counter is at least n. Hence, f ′1 is a
winning P-strategy for Player 1 in 〈G,α〉. �

For a Streett condition, maintaining a counter is not sufficient, as Player 1 should also be
aware of vertices that Player 2 may have visited, making P-strategies weaker than ones with full
visibility:

Theorem 19. Streett games do not admit P-strategies.

Proof. We prove the claim already for Streett games with index 2. LetGmatch be the game graph
from Figure 1, and let α = {〈{vp }, {up }〉, 〈{up }, {vp }〉} be a Streett winning condition. Thus, α re-
quires that the vertexvp is visited infinitely often iff the vertexup is visited infinitely often. It is easy
to see that Player 1 has a winning F -strategy, in which from the vertexv# she chooses to proceed
tovp whenever the visit tov# was preceded by a visit toup , and chooses to proceed tovq whenever
the visit tov# was preceded by a visit touq . However, Player 1 does not have a winning P-strategy.
Indeed, a P-strategy for Player 1 in Gmatch must be independent of the choices of Player 2, and
for every such strategy of Player 1, Player 2 has a strategy with which α is not satisfied. �

We can now conclude with the complexity of deciding whether Player 1 has a winning P-
strategy in all common structural perspective games.

Theorem 20. Consider a structural perspective game G = 〈G,α〉. Let k be the index of α . Deciding

whether Player 1 P-wins G can be done in time polynomial in |G | and k for α that is Büchi, co-Büchi,

or generalized Büchi, and in time polynomial in |G | and exponential in k for α that is parity, Rabin,

or Streett.

Proof. For Büchi, co-Büchi, generalized Büchi, parity, and Rabin, the complexity follows from
known results about games with full visibility5 [14, 38, 47, 56]. Indeed, all above winning conditions
admit P-strategies. For all but generalized Büchi, this follows from the fact they admit memoryless
strategies, and for generalized Büchi it follows from Theorem 18.

For Streett, Theorem 19 implies that we should develop a new algorithm. We denote α =
{〈β1,α1〉, . . . , 〈βk ,αk 〉}. First, we reduce the Streett game 〈G,α〉 to a game 〈G ′,ψ 〉, where G ′ is
obtained fromG by assigning to vertices atomic propositions in AP = {p1, . . . ,pk ,q1, . . . ,qk } such
that pi ∈ τ (v) iff v ∈ αi and qi ∈ τ (v) iff v ∈ βi . Let ψ =

∧
1≤i≤k �� qi → �� pi . Clearly,

Player 1 has a winning P-strategy in 〈G,α〉 iff she has a winning P-strategy in 〈G ′,ψ 〉. Now, by
Theorem 11, it is sufficient to show that we can reduce the LTL formula ψ to a UPW A of size
polynomial in k . Essentially, A consists of k disjoint components, each with three states, and the

5Thus, improvements in the classical game setting lead to improvements in perspective games. In particular, for parity it
is O (|G |log(k)+6) and for Rabin it is O (|G |k+1 · k !).

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:23

i-th component is responsible for checking whether the ith conjunct in ψ is satisfied. Formally, a
UPW A such that L(A) = L(ψ) we constructed as follows:

Recall that ψ specifies a Streett winning condition, thus ψ =
∧

1≤i≤k �� qi → �� pi . We
construct a UPWA such that L(A) = L(ψ). The UPWA consists ofk disjoint components, and the
ith component is responsible for checking whether the ith conjunct in ψ is satisfied. Every word
w ∈ (2AP)ω has exactly k runs in A, one run in each component. The ith component consists
of three states S i = {si

q , s
i
p , s

i
⊥} that monitor visits in vertices with labels qi and pi . The parity

acceptance condition α ′ is such that for every 1 ≤ i ≤ k we have α ′(si
p) = 2, α ′(si

q) = 3 and

α ′(si
⊥) = 4. If a run π is contained in the ith component then inf (π) ⊆ S i . Thus, α ′ requires that if

a run visits infinitely often in si
q then it should also visit infinitely often in si

p . Formally, we have

A = 〈2AP , S, s0,δ ,α
′〉, where:

— S = {s0} ∪
⋃

1≤i≤k S
i .

— δ : S × 2AP → S is defined as follows. For a letter σ ∈ 2AP we have:
– δ (s0,σ) = {si

⊥ : 1 ≤ i ≤ k }. Thus, we start k runs, one for each component S i .
– For every 1 ≤ i ≤ k and every s ∈ S i we have:
∗ If pi ∈ σ then δ (s,σ) = {si

p }.
∗ If pi � σ and qi ∈ σ then δ (s,σ) = {si

q }.
∗ If pi ,qi � σ then δ (s,σ) = {si

⊥}.
— α ′ : S → {1, . . . , 4} is such that α ′(s0) = 1 and for every 1 ≤ i ≤ k we have α ′(si

p) = 2,

α ′(si
q) = 3 and α ′(si

⊥) = 4. �

We note that deciding the existence of a winning memoryless strategy in the case of generalized-
Büchi or Streett games is NP-complete in the size of the game graph, with NP-hardness applied
already for generalized-Büchi winning conditions with index 2 [31]. By Theorem 20, the graph
complexity of deciding the existence of winning perspective (rather than memoryless) strategies
is exponentially lower.

Finally, the study of structural winning conditions that admit P-strategies also induce fragments
of LTL that admit P-strategies in the behavioral setting:

Theorem 21. Consider a game G = 〈G,ψ 〉. If ψ is an LTL formula of the form
∨

1≤i≤k (�� pi ∧
� �qi) or

∧
1≤i≤k �� pi for propositional assertions pi and qi over AP , then Player 1 F -wins G iff

Player 1 P-wins G.

7 DISCUSSION

Traditional partial visibility is longitudinal —in all vertices, the players observe the assignment only
to an observable subset of the atomic propositions. We introduced and studied perspective games,
which model a new type of partial visibility in multi-agent systems. Perspective games model set-
tings with transverse uncertainty—players observe the assignment to all the atomic propositions,
but only in the vertices they own. As discussed in Section 1, transverse uncertainty is present in
communication networks, switched systems, and other composite systems in which each of the
underlying components can view only the parts of the system it controls. We showed that while
transverse uncertainty shares many theoretical properties with longitudinal uncertainty, it is easier
to handle. The bottom line of our results is that unless the specification formalism is a determin-
istic automaton, the complexities of the problems we study coincide with their complexity in a
setting with no uncertainty, and for all classes of specifications, the complexity stays polynomial
in the size of the game graph. Intuitively, this follows from the fact that the transverse setting adds
uncertainty only about the state of an automaton that follows the play traversed by the token, and

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:24 O. Kupferman and G. Vardi

such uncertainty anyway exists in nondeterministic or alternating automata. This is in contrast
with longitudinal uncertainty, where algorithms are exponential in the game graph.

Synchronizing uncertainty due to partial visibility with uncertainty due to branches in the au-
tomaton is not easy. From a technical point of view, we left open the complexity of deciding per-
spective games with objectives given by NBWs. In order to handle LTL, our results on UCWs
suffice. It would still be interesting to investigate the complexity for NBWs, as the challenge there
is similar to challenges one faces in other problems in which a solution for LTL is based on its
exponential translation to UCW, which is not legitimate when the starting point is an NBW (cf.,
Safraless synthesis [30, 39]). Another problem we left open is the decidability of probabilistic per-
spective games with LTL objectives. Indeed, the undecidability result for DCWs uses undecidability
results known for probabilistic co-Büchi automata, and which have no temporal-logic analogue.
Additional future work includes an extension of the results to strategy logic [19], as well as the
development of symbolic algorithms for solving perspective games, which proved interesting and
useful in the longitudinal setting [16, 18].

From a more conceptual point of view, we see several interesting directions for future research.
The extension to games with more than two players is straightforward if the game stays zero-sum,
thus the objectives of the players form a partition of (2AP)ω . Once we consider settings in which
each player has her own objective, and the objectives may overlap, the game becomes non-zero-

sum, and we care about its stable outcomes. Non-zero-sum games with longitudinal uncertainty
are studied in [22, 26]. The combination of rationality with uncertainty is computationally
challenging. For example, deciding whether a Nash Equilibrium exists in games with three or
more players is undecidable [26]. In a follow-up work, [34] studies non-zero-sum games with
transverse uncertainty, namely perspective multi-player games. It is shown there that transverse
uncertainty leads to undecidability in settings with three or more players that include coalitions
or non-zero-sum objectives. On the positive side, in two-player non-zero-sum perspective games,
finding and reasoning about stable outcomes is decidable, and in fact, unlike the case with
longitudinal uncertainty, can be done in the same complexity as in games with full visibility.
Another interesting issue in both types of uncertainty is games with coalitions. There, one should
distinguish between collaboration that is reflected in joint objectives and collaboration that is
reflected in sharing of knowledge. Several extensions to ATL� formalize different collaboration
schemes in the context of partial visibility [10, 25], possibly in conjunction with other restrictions
on the architecture or the strategies of the players [2, 3]. We conjecture that the computational
advantage of the perspective viewpoint is carried over to these models. The computational
advantage also motivates a characterization of LTL properties that admit perspective strategies.
The general problem is PSPACE-hard, with an easy reduction from LTL satisfiability, and the
challenge is to extend the syntactic fragment we describe in Section 6.

Finally, a variant of perspective games in which uncertainty is reduced are perspective games
with notifications, studied in [33]. There, uncertainty is still transverse, yet a player may be notified
about events that happen between visits in vertices she owns. It would be interesting to combine
longitudinal and transverse uncertainty. Thus, to consider games where a player can view only
the parts of the system she controls, and even in them, her visibility is partial. We conjecture that
reasoning about such games is exponential in both the graph and its winning condition.

REFERENCES

[1] S. Agarwal, M. S. Kodialam, and T. V. Lakshman. 2013. Traffic engineering in software defined networks. In Proceedings

of the 32nd IEEE International Conference on Computer Communications. 2211–2219.
[2] Th. Ågotnes. 2006. Action and knowledge in alternating-time temporal logic. Synthese 149, 2 (2006), 375–407.
[3] N. Alechina, B. Logan, N. Hoang Nga, and A. Rakib. 2009. A logic for coalitions with bounded resources. In Proceedings

of the 21st International Joint Conference on Artificial Intelligence. 659–664.

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

Perspective Games 4:25

[4] B. Alpern and F.B. Schneider. 1987. Recognizing safety and liveness. Distributed Computing 2, 3 (1987), 117–126.
[5] R. Alur, T.A. Henzinger, and O. Kupferman. 2002. Alternating-time temporal logic. Journal of the ACM 49, 5 (2002),

672–713.
[6] B. Aminof, G. De Giacomo, A. Murano, and S. Rubin. 2018. Synthesis under assumptions. In Proceedings of the 16th

International Conference on Principles of Knowledge Representation and Reasoning. 615–616.
[7] C. Baier, N. Bertrand, and M. Größer. 2008. On decision problems for probabilistic Büchi automata. In Proceedings of

the 11th International Conference on Foundations of Software Science and Computation Structures. Springer, 287–301.
[8] C. Barrett, R. Jacob, and M. Marathe. 2000. Formal-language-constrained path problems. SIAM Journal on Computing

30, 3 (2000), 809–837.
[9] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin. 2017. Verification of broadcasting multi-agent systems against

an epistemic strategy logic. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Vol. 17.
91–97.

[10] R. Berthon, B. Maubert, A. Murano, S. Rubin, and M.Y. Vardi. 2017. Strategy logic with imperfect information. In
Proceedings of the 32nd IEEE Symposium on Logic in Computer Science. 1–12.

[11] D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. A. Henzinger. 2010. Strategy construction for parity games
with imperfect information. Information and Computation 208, 10 (2010), 1206–1220.

[12] N. Bulling and W. Jamroga. 2014. Comparing variants of strategic ability: How uncertainty and memory influence
general properties of games. Autonomous Agents and Multi-Agent Systems 28, 3 (2014), 474–518.

[13] T. Cachat. 2002. Two-way tree automata solving pushdown games. In Proceedings of the Automata Logics, and Infinite

Games. E. Grädel, W. Thomas, and T. Wilke (Eds.), Lecture Notes in Computer Science, Vol. 2500, Springer, 303–317.
[14] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. 2017. Deciding parity games in quasipolynomial time. In

Proceedings of the 49th ACM Symposium on Theory of Computing. 252–263.
[15] A. K. Chandra and L. J. Stockmeyer. 1976. Alternation. In Proceedings of the 17th IEEE Symposium on Foundations of

Computer Science. 98–108.
[16] K. Chatterjee and L. Doyen. 2010. The complexity of partial-observation parity games. In Proceedings of the 16th

International Conference on Logic for Programming Artificial Intelligence and Reasoning. Springer, 1–14.
[17] K. Chatterjee, L. Doyen, H. Gimbert, and T.A. Henzinger. 2010. Randomness for free. In Proceedings of the 35th Inter-

national Symposium on Mathematical Foundations of Computer Science. Springer, 246–257.
[18] K. Chatterjee, L. Doyen, T. Henzinger, and J.-F. Raskin. 2007. Algorithms for omega-regular games with imperfect

information. Logical Methods in Computer Science 3, 3 (2007).
[19] K. Chatterjee, T. A. Henzinger, and N. Piterman. 2010. Strategy logic. Information and Computation 208, 6 (2010),

677–693.
[20] L. de Alfaro, T.A. Henzinger, and O. Kupferman. 1998. Concurrent reachability games. In Proceedings of the 39th IEEE

Symposium on Foundations of Computer Science. 564–575.
[21] E.A. Emerson and C.-L. Lei. 1987. Modalities for model checking: Branching time logic strikes back. Science of Com-

puter Programming 8, 3 (1987), 275–306.
[22] E. Filiot, R. Gentilini, and J.-F. Raskin. 2018. Rational synthesis under imperfect information. In Proceedings of the 33rd

IEEE Symposium on Logic in Computer Science. ACM, 422–431.
[23] D. Fisman and O. Kupferman. 2009. Reasoning about Finite-State Switched Systems. In Peroceedings of the 5th Inter-

national Haifa Verification Conference, Lecture Notes in Computer Science, Vol. 6405. Springer, 71–86.
[24] S. Fortune, J. Hopcroft, and J. Wyllie. 1980. The directed subgraph homeomorphism problem. Theoretical Computer

Science 10, 2 (1980), 111 – 121.
[25] V. Goranko and W. Jamroga. 2016. State and path coalition effectivity models of concurrent multi-player games. Au-

tonomous Agents and Multi-Agent Systems 30, 3 (2016), 446–485.
[26] J. Gutierrez, G. Perelli, and M. J. Wooldridge. 2018. Imperfect information in Reactive Modules games. Information and

Computation 261, 4 (2018), 650–675.
[27] J.Y. Halpern and M.Y. Vardi. 1986. The complexity of reasoning about knowledge and time: Extended abstract. In

Proceedings of the 18th ACM Symposium on Theory of Computing. ACM, 304–315.
[28] N. Immerman. 1981. Number of quantifiers is better than number of tape cells. Journal of Computer and Systems Science

22, 3 (1981), 384–406.
[29] W. Jamroga, W. Penczek, P. Dembinski, and A.W. Mazurkiewicz. 2018. Towards partial order reductions for strategic

ability. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems. 156–165.
[30] B. Jobstmann and R. Bloem. 2006. Optimizations for LTL synthesis. In Proceedings of the 6th International Conference

on Formal Methods in Computer-Aided Design. 117–124.
[31] B. Jobstmann, A. Griesmayer, and R. Bloem. 2005. Program repair as a game. In Proceedings of the 17th International

Conference on Computer Aided Verification, Lecture Notes in Computer Science, Vol. 3576. 226–238.
[32] J.G. Kemeny, J.L. Snell, and A.W. Knapp. 1976. Denumerable Markov Chains. Springer.

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

4:26 O. Kupferman and G. Vardi

[33] O. Kupferman and N. Shenwald. 2020. Perspective games with notifications. In Proceedings of the 40th Conference on

Foundations of Software Technology and Theoretical Computer Science, Vol. 182. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 51:1–51:16.

[34] O. Kupferman and N. Shenwald. 2021. Perspective multi-player games. In Proceedings of the 36th IEEE Symposium on

Logic in Computer Science. 1–13.
[35] O. Kupferman and G. Vardi. 2019. Flow logic. Logical Methods in Computer Science 15, 4 (2019).
[36] O. Kupferman and G. Vardi. 2019. Perspective games. In Proceedings of the 34th IEEE Symposium on Logic in Computer

Science. 1 – 13.
[37] O. Kupferman and M.Y. Vardi. 2000. Synthesis with incomplete information. In Advances in Temporal Logic. Kluwer

Academic Publishers, 109–127.
[38] O. Kupferman and M.Y. Vardi. 2004. From complementation to certification. In Proceedings of the 10th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science,
Vol. 2988. Springer, 591–606.

[39] O. Kupferman and M.Y. Vardi. 2005. Safraless decision procedures. In Proceedings of the 46th IEEE Symposium on

Foundations of Computer Science. 531–540.
[40] D. Liberzon. 2003. Switching in Systems and Control. Birkhauser.
[41] O. Lichtenstein and A. Pnueli. 1985. Checking that finite state concurrent programs satisfy their linear specification.

In Proceedings of the 12th ACM Symposium on Principles of Programming Languages. 97–107.
[42] Y. Lustig and M.Y. Vardi. 2013. Synthesis from component libraries. Software Tools for Technology Transfer 15, 5–6

(2013), 603–618.
[43] M. Margaliot. 2006. Stability analysis of switched systems using variational principles: An introduction. Automatica

42, 12 (2006), 2059–2077.
[44] D.A. Martin. 1975. Borel determinacy. Annals of Mathematics 102, 2 (1975), 363–371.
[45] B. Maubert and A. Murano. 2018. Reasoning about knowledge and strategies under hierarchical information. In Pro-

ceedings of the 16th International Conference on Principles of Knowledge Representation and Reasoning.
[46] G.L. Peterson and J.H. Reif. 1979. Multiple-person alternation. In Proceedings of the 20th IEEE Symposium on Founda-

tions of Computer Science. 348–363.
[47] N. Piterman and A. Pnueli. 2006. Faster solutions of rabin and streett games. In Proceedings of the 21st IEEE Symposium

on Logic in Computer Science. 275–284.
[48] A. Pnueli and R. Rosner. 1990. Distributed reactive systems are hard to synthesize. In Proceedings of the 31st IEEE

Symposium on Foundations of Computer Science. 746–757.
[49] B. Puchala. 2010. Asynchronous omega-regular games with partial information. In Proceedings of the 35th International

Symposium on Mathematical Foundations of Computer Science. Springer, 592–603.
[50] J.H. Reif. 1984. The complexity of two-player games of incomplete information. Journal of Computer and Systems

Science 29, 2 (1984), 274–301.
[51] R. Rosner. 1992. Modular Synthesis of Reactive Systems. Ph.D. Dissertation. Weizmann Institute of Science, Israel. UMI

Order Number: DP17517.
[52] P.Y. Schobbens. 2004. Alternating-time logic with imperfect recall. Electronic Notes in Theoretical Computer Science 85,

2 (2004), 82–93.
[53] A.P. Sistla and E.M. Clarke. 1985. The complexity of propositional linear temporal logic. Journal of ACM 32, 3 (1985),

733–749.
[54] W. Thomas. 1995. On the synthesis of strategies in infinite games. In Proceedings of the 12th Symposium on Theoretical

Aspects of Computer Science, Lecture Notes in Computer Science, Vol. 900. Springer, 1–13.
[55] M.Y. Vardi. 1985. Automatic verification of probabilistic concurrent finite-state programs. In Proceedings of the 26th

IEEE Symposium on Foundations of Computer Science. 327–338.
[56] M.Y. Vardi and P. Wolper. 1986. Automata-theoretic techniques for modal logics of programs. Journal of Computer and

Systems Science 32, 2 (1986), 182–221.
[57] M.Y. Vardi and P. Wolper. 1994. Reasoning about infinite computations. Information and Computation 115, 1 (1994),

1–37.
[58] K. Wagner. 1979. On ω-regular sets. Information and Control 43, 2 (1979), 123–177.
[59] G. Wechsung. 1985. On the boolean closure of NP. In Proceedings of the International Conference on Fundamentals of

Computation Theory,Lecture Notes in Computer Science, Vol. 199. Springer, 485–493.

Received 17 January 2023; accepted 14 September 2023

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 4. Publication date: January 2024.

