
introduced is the paradigm of decom-
posing instructions into sequences of
micro-operations. Can you explain how
that works?

The x86 instruction set has some
very complex instructions. Imagine a
“hyperbolic arc tangent instruction.”
It’s easy to express the software intent
as an instruction, but the required set
of actions is way more than any practi-
cally realizable hardware can do in one
step. That means it’s going to be a se-
quence of simpler things, whether you
like it or not.

So, you have a complex instruction
that does a load from memory and
some sort of calculation: “Add to the BX
Register the contents of this memory
location over here.” In order to execute
it, both of those values have to be avail-
able. That was no problem for the older
Intel 386 and 486 pipelines, which were
designed to execute everything in order.

What we did as part of P6 was to add
out-of-order execution, which means
we’ll do what we find in any order we
feel like so long as the values are there.
If they’re not there, we will just put it
aside, move on to the next thing, and
try to do that.

So you’re not just converting X86 to
RISC instructions and executing them
in sequence.

Not at all. The essence of micro-
operations is twofold. One is to decom-
pose complex instructions into what the
hardware can actually do. The other is

D
AV I D PA P WO R T H , R E C I P I E N T

of the 2022 ACM Charles
P. “Chuck” Thacker Break-
through in Computing
Award, accepted a big job in

1990 when he joined Intel’s P6 micro-
processor team as lead designer. The
P6—commercialized as the Pentium
Pro—was intended to leapfrog micro-
processor design, and it did. Thanks
to Papworth’s broad understanding of
the hardware-software interface and
adroit leadership of more than 500 ar-
chitects, designers, validators, and en-
gineers, the P6 introduced a new micro-
architectural paradigm that is still in
use today. Here, Papworth recalls how it
all went down.

In the 1980s, before joining Intel, you
worked at a startup called Multiflow,
which pioneered Very Long Instruc-
tion Word (VLIW) architecture. VLIW
exploits instruction-level parallelism
by enabling the compiler to schedule
pipelines of instructions across dif-
ferent functional units—a technique
known as superscalar processing. How
did VLIW influence your work on Intel’s
P6 microprocessor?

The main thing Multiflow did that
was carried forward into the P6 was the
idea of a very wide superscalar. But Mul-
tiflow was all about scheduling things
in software and doing as little as pos-
sible in the hardware. By contrast, the
predecessors of the Pentium Pro were
more of the mindset that “We can build

this, and the software will follow.”
There was a group of us—Bob Colwell

(https://bit.ly/3sEzgwc) and myself, in
particular—who had experienced how
effective it can be for hardware and soft-
ware to work together. We had a pretty
good sense of what software can do,
and what it expects from the hardware.
We also had ideas about how hardware
could exploit parallelism and use run-
time information to improve schedul-
ing. We worked through the challenges
of trading off between hardware and
software while still maintaining com-
patibility with the PC software base.

One of the main innovations the P6

Q&A
Achievement in
Microarchitecture
David Papworth, a 30-year veteran of Intel, on what led to the P6 microprocessor and how
that changed the microarchitectural paradigm.

DOI:10.1145/3627709  Leah Hoffmann

50 COMMUNICATIONS OF THE ACM | JANUARY 2024 | VOL. 67 | NO. 1

O
opinion

I
N

T
E

L
 C

H
I

P
 I

M
A

G
E

 B
Y

 F
R

I
T

Z
C

H
E

N
S

 F
R

I
T

Z
/W

I
K

I
P

E
D

I
A

 (
C

C
0

 1
.0

 D
E

E
D

)

https://dx.doi.org/10.1145/3627709
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627709&domain=pdf&date_stamp=2023-12-21

helping Intel’s legal department de-
fend against patent cases. What was
that like?

The legal work wasn’t as stressful
as building microprocessors. I found I
could be extremely helpful to the law-
yers in explaining complicated tech-
nology, and I liked using the other side
of my brain. I was also good at staring
down a plaintiff’s attorney during de-
positions and answering questions
truthfully without giving them the
sound bites they were looking for. In
federal case depositions, it’s a nine-
hour day, and you spend seven hours
on the record. The lawyers are trying
to catch just three extra words that
they can take out of context and put in
a brief. I was skilled at conveying com-
plex technology in legally artful terms,
and I had a steady stream of this work
for many years.

However, the patent litigation land-
scape slowly changed over this time to
be less favorable to plaintiffs and more
favorable to defendants, particularly
in difficult districts such as Marshall,
TX (https://bit.ly/45xnTVg). By 2019,
the number of high-profile cases had
fallen off dramatically, and then in
2020, COVID hit. At that point, I was 64
years old, and with the quarantines, it
wasn’t a good time to get back into big
microprocessor design projects. So I
retired from Intel, and now I spend my
days on my farm looking out over the
fields and raising my grandson with
my wife Katie. 

Leah Hoffmann is a technology writer based in Piermont,
NY, USA.

© 2024 ACM 0001-0782/24/01

to split them up into what, in software,
are called data precedence arcs. So, you
have the add operation, which is simple,
and most machines can do that directly.
There’s also a load that goes with it: “Get
this value from memory and prepare it
to be put on the other side of the adder.”

Instead of executing those two
operations at the same time, we broke it
up. We’ll do the load when we can, and
oftentimes that’s well before the other
side of the add is ready. And sometimes
it’s not. Either way, you don’t want to sit
there twiddling your thumbs. You can
look at ahead, find the next instruc-
tions, and do them.

And there are no paired pipelines for all
these instructions, just a bunch of func-
tional units to which operations are
scheduled based on their availability.

Right. Things can execute when their
operands are ready and there’s a func-
tional unit ready to handle them. This
is controlled by the process of register
renaming, which takes the data prece-
dence graph expressed by the software
and encountered at runtime and maps
that onto resources capable of contain-
ing that result for as long as it’s needed.

You also introduced some important
validation and testing protocols.

When Intel launches a successful mi-
croprocessor, a couple years later, it will
be selling a hundred million micropro-
cessors a year. Let’s imagine you have
to recall two years of production. That’s
200 million microprocessors, each of
which costs on the order of $100 to ser-
vice and replace. That’s $20 billion!

Now, you can’t sit paralyzed and
not launch the thing. But unless you’re
Google or Apple and can make the soft-
ware work around your microprocessor,
you’re just deathly afraid of that conun-
drum, so you do as much as you can to
validate it pre-production.

Building something as complex as a mi-
croprocessor requires a lot of juggling
when it comes to requirements and
constraints. Can you talk about some of
the design trade-offs you made?

I think the simplest example is 16-bit
performance. The Intel 8088 was one of
the company’s most influential micro-
processors. It was a 16-bit computation
machine, and it had lots of quirks. For
example, it would clear the upper byte
of a register, then load something into
the low byte of that register and read it
as a composite thing. That causes hor-
rible violence to the way we built and
executed our register rename table, and
there’s really no reason to do it.

So we decided to deprecate it—to
say, “We’ll make it work, but it doesn’t
have to be fast.” Our reasoning was that
the workstations that used the Pen-
tium Pro would be set up to run with
modern software, but their compilers
could deal with lower performance in
that area and still be compatible with
a 20-year-old version of Lotus 1-2-3. We
thought it would be fine to make that
performance trade-off, but the market
taught us it wasn’t entirely fine. Be-
cause the first thing they did with the
Pentium Pro is run all of these old DOS
benchmarks, and some of them didn’t
look very flattering.

Is that something you did differently in
subsequent iterations of the Pentium?

Yes. As an architect, you have to
design machines that can run a lot
of software. Perhaps you’d like to do
floating point really, really well. Do the
people running on a PC or even a work-
station really care? Some do. It sells
computers. You can say, “Hey, LINPACK
gets this great number.” But at the end
of the day, you pick, as best you can, a
bunch of performance benchmarks,
tailor the pipeline to do that, and then
see how it works out.

After the Pentium Pro, you worked on
the Pentium 2 and 3 and 4—at which
point you launched a second career

“I found I could be
extremely helpful
to the lawyers
in explaining
complicated
technology, and I
liked using the other
side of my brain.”

“We worked through
the challenges of
trading off between
hardware and
software while
still maintaining
compatibility with the
PC software base.”

JANUARY 2024 | VOL. 67 | NO. 1 | COMMUNICATIONS OF THE ACM 51

opinion

O

