L))

Check for
updates

Interpretable Imitation Learning with Symbolic Rewards

NICOLAS BOUGIE, NEC-AIST Al Cooperative Research Laboratory, National Institute of Advanced
Industrial Science and Technology, Japan

TAKASHI ONISHI, NEC-AIST AI Cooperative Research Laboratory, National Institute of Advanced
Industrial Science and Technology, Japan and NEC Corporation Data Science Research Laboratories, Japan
YOSHIMASA TSURUOKA, NEC-AIST AI Cooperative Research Laboratory, National Institute of
Advanced Industrial Science and Technology, Japan and Department of Information and Communication

Engineering, The University of Tokyo, Japan

Sample inefficiency of deep reinforcement learning methods is a major obstacle for their use in real-world
tasks as they naturally feature sparse rewards. In fact, this from-scratch approach is often impractical in
environments where extreme negative outcomes are possible. Recent advances in imitation learning have
improved sample efficiency by leveraging expert demonstrations. Most work along this line of research
employs neural network-based approaches to recover an expert cost function. However, the complexity
and lack of transparency make neural networks difficult to trust and deploy in the real world. In contrast,
we present a method for extracting interpretable symbolic reward functions from expert data, which offers
several advantages. First, the learned reward function can be parsed by a human to understand, verify and
predict the behavior of the agent. Second, the reward function can be improved and modified by an expert.
Finally, the structure of the reward function can be leveraged to extract explanations that encode richer
domain knowledge than standard scalar rewards. To this end, we use an autoregressive recurrent neural
network that generates hierarchical symbolic rewards represented by simple symbolic trees. The recurrent
neural network is trained via risk-seeking policy gradients. We test our method in MuJoCo environments
as well as a chemical plant simulator. We show that the discovered rewards can significantly accelerate the
training process and achieve similar or better performance than neural network-based algorithms.

CCS Concepts: « Computing methodologies — Reinforcement learning; Inverse reinforcement learning;
Apprenticeship learning;

Additional Key Words and Phrases: Interpretable reinforcement learning, imitation learning, interpretable
imitation learning, reinforcement learning

ACM Reference format:

Nicolas Bougie, Takashi Onishi, and Yoshimasa Tsuruoka. 2023. Interpretable Imitation Learning with Sym-
bolic Rewards. ACM Trans. Intell. Syst. Technol. 15, 1, Article 4 (December 2023), 34 pages.
https://doi.org/10.1145/3627822

Authors’ addresses: N. Bougie, NEC-AIST Al Cooperative Research Laboratory, National Institute of Advanced Industrial
Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan; e-mail: nicolas-bougie@aist.go.jp; T. Onishi, NEC
Data Science Research Laboratories, 1753 Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8666, Japan; e-mail:
takashi.onishi@aist.go.jp; Y. Tsuruoka, Department of Information and Communication Engineering, Graduate School of
Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan; e-mail:
yoshimasatsuruoka@g.ecc.u-tokyo.ac.jp.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2157-6904/2023/12-ART4 $15.00

https://doi.org/10.1145/3627822

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



https://orcid.org/0000-0001-9856-0038
https://orcid.org/0009-0007-1018-7613
https://orcid.org/0000-0002-0707-1077
https://doi.org/10.1145/3627822
https://doi.org/10.1145/3627822
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627822&domain=pdf&date_stamp=2023-12-19

4:2 N. Bougie et al.

1 INTRODUCTION

In recent years, deep reinforcement learning (DRL) has achieved great successes in sequential
decision-making problems, including game playing and robot control. However, it remains hard
to apply DRL to practical problems due notably to its sample inefficiency. Namely, these methods
require many training trials for converging to an optimal action policy. In addition, a difficulty in
applying DRL to real-world problems is that for many tasks of interest, there is no obvious dense
reward function to maximize—dense rewards lead to less frequent updates and reduction in the
training time. Therefore, an important challenge of DRL methods is sample efficiency.

Among the current state-of-the-art approaches to improve learning efficiency, a promising di-
rection is imitation learning, a framework of learning an agent’s objectives, values, or rewards by
observing expert demonstrations. The simplest form of imitation learning is behavioral cloning
[34, 63], which aims to clone the provided demonstrations. Another versatile form of supervi-
sion is inverse reinforcement learning (IRL) [20, 102], which infers the expert cost function
that prioritizes entire trajectories over others. More recently, Generative Adversarial Imitation
Learning (GAIL) [35] has been introduced to infer the expert cost function from expert data by
training a discriminator neural network to distinguish the agent and expert behaviors through its
observations and actions.

However, most of the previous work on imitation learning is centered around deep neural net-
works. Although the representational power of deep neural networks (DNN’s) enables imitation
learning in complex and high-dimensional environments, such DNN-based models are “black box”
models in nature. In other words, it is hard to explain what knowledge the model has learned and
why the expert reward has been assigned. In addition, the discovered cost function cannot be eas-
ily tuned or modified by a human. However, if the expert reward is understandable and modifiable,
then a human could adjust it and design restrictions to achieve the intended agent behavior. Thus,
DNN-based methods are difficult to use in cooperation with a human as it is not possible to un-
derstand the reasons behind a reward. The ability to explain what has been learned is important
in earning people’s trust and developing a robust and responsible system, especially in industrial
domains.

In recent years, it has been shown that the lack of interpretability poses a serious problem when
humans need to be involved in the decision-making loop [68]. Being unable to explain the rea-
soning behind black-box decisions is unacceptable for safety-critical systems [48]. DNNs exhibit
complex functional forms, involving thousands of non-linear operators and transformations. This
complexity poses a significant barrier to the deployment of DRL policies in real-world settings due
to the difficulty to understand, verify, trust, and predict the behavior of the reinforcement learn-
ing (RL) agent. These challenges are especially relevant in industrial applications such as process
control (e.g., chemical plants). Many previous studies have been dedicated to making DNNs more
interpretable [17, 25, 60]. However, none of them focuses on the explanation of knowledge learned
by imitation learning models (e.g., GAIL) in a way that the model can be adjusted, modified, or im-
proved by a human. Perhaps the closest work to ours is that by Pan et al. [64], in which visual
explanations are provided via post hoc explanations of a trained GAIL model. Our method, how-
ever, directly learns interpretable symbolic rewards that can be understood, verified, and improved
by humans. In this work, “verifiable” specifically means that a human can manually validate or
confirm the results rather than relying on any form of formal methods or automated verification
processes.

In light of this, we propose an interpretable imitation learning approach (iIL) that learns
symbolic reward functions. Learning interpretable symbolic reward functions has several desirable
features. (1) Interpretability: Insights from simple mathematical expressions can often be gleaned
by inspecting them. In addition, the learned reward function can be modified or improved by a

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:3

human to adjust the agent’s behavior. (2) Verifiability: Unlike neural network-based approaches,
which can be difficult to reproduce, a symbolic reward is easily verifiable, and the reward function
exhibits predictable behaviors. (3) Explainability: The structure of the reward function can be used
to extract explanations. In contrast with standard IRL approaches that solely provide to the agent a
scalar reward, our method provides rich and complex information that explains the decisions of the
expert. As a result, the agent can quickly capture important features and dynamics of the system.

We present a two-staged algorithm (iIL) for learning symbolic reward functions. First, we extract
an expert cost function from expert demonstrations by employing a (deep) IRL model, which can
include any state-of-the-art algorithms. Second, we construct a surrogate symbolic reward. The
symbolic reward function is represented by a symbolic tree, where the leaves are input variables
and the nodes are simple mathematical operators. To deal with large state-action spaces, the sym-
bolic reward tree is decomposed in a hierarchical fashion, where a high-level tree coordinates a
set of low-level trees. At execution, the high-level and low-level trees operate as a single tree—the
reward is calculated by starting from the root node of the high-level tree. The trees are learned by
training an autoregressive recurrent neural network (RNN) via risk-seeking policy gradients.
We then learn a policy from that symbolic reward function with reinforcement learning. We fur-
ther show that the structure of the discovered reward function can be used to extract explanations
that encode more complex and richer information than standard scalar rewards, significantly im-
proving the final performance. The experiments reveal that our method can accurately capture
the expert cost function in robotic tasks and a chemical plant simulator. Furthermore, we compare
the performance of agents trained with our symbolic reward function and deep IRL models and
demonstrate that our agent can achieve comparable performance to “black-box” methods. We fur-
ther show that the explanations extracted from the trees are critical to enhance sample efficiency
and final performance. Finally, we discuss how the learned symbolic reward function can be used
by a human to understand task-relevant features of the environment, as well as two strategies for
manually modifying symbolic rewards.

We summarize our contributions as follows:

e A novel interpretable imitation learning method that leverages black-box IRL methods to
produce a fully interpretable symbolic reward.

o A RNN-based algorithm that searches the space of symbolic reward functions directly within
the RL loop.

e A hierarchical representation of the reward function to enable learning in tasks featuring
large state—action spaces.

e A novel technique to provide more complex and richer information than standard scalar
rewards—explanations, being extracted by parsing the symbolic tree.

2 RELATED WORK

Our work lies at the intersection of imitation learning and interpretable/explainable Al This
section provides a comprehensive comparison with those studies. Note that for the brevity of
the description, we outline together interpretable and explainable methods. We further provide a
brief comparison with reward shaping methods. In this article, explainability refers to a technical
understanding of the connection between the inputs and outputs of a particular Al model.
Therefore, given a generated output, a human is able to understand how it originated from the
input features. For instance, in a previous study [61], an explanation is defined as a collection
of features of the interpretable domain that have contributed for a given example to produce a
decision. Another possible way to provide such an explanation may be to generate a heatmap
that highlights the pixels of an input image that had the most influence on the decision [32].

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:4 N. Bougie et al.

However, interpretability relates to literally explaining what is happening behind the curtain.
Thus, interpretability refers to the ability to explain or present results in understandable terms to
humans [16]. A similar definition is provided by Rudin et al. [71], which consider interpretability
as the ability of intrinsically interpretable models and explainability as the ability to explain
models by using post hoc interpretability techniques. Intrinsic interpretability relates to a machine
learning model that is constructed to be inherently interpretable or self-explanatory at the time
of training by restricting the complexity of the model, including building decision tree policies
[3, 56]. These definitions were also employed in recent surveys [26, 97].

2.1 Imitation Learning

Imitation learning has been a successful paradigm for improving the sample efficiency of rein-
forcement learning agents by leveraging prior knowledge about the task. A major line of work is
behavioral cloning [34, 63], in which the agent aims to clone the provided expert demonstrations.
Namely, it directly maximizes the likelihood of the expert actions under the training agent policy.
In a different spirit, IRL approaches [20, 102] such as GAIL [35] aim to discover a reward or an ex-
pert cost function based on the provided demonstration data. The central idea in GAIL is to recover
the expert cost function by training a (neural network) discriminator that distinguishes expert tra-
jectories from trajectories of the learned policy. Most of the previous studies in imitation learning
employ neural networks to learn from expert data. However, these approaches are not directly
applicable to safety-critical applications where interpretability is of utmost importance. Besides,
such methods can be challenging to use in cooperation with humans as the discovered expert
cost function or reward cannot be straightforwardly tuned, modified, or improved by an expert.
Finally, it can be difficult to encode complex and/or multiple pieces of information with a single
scalar reward, which differs from human learning that can access complex information signals
such as language [22]. In contrast, we present a method that extracts symbolic reward functions
from expert data, allowing the use of iIL in safety-critical applications. Moreover, we demonstrate
that the structure of the discovered reward function can be used to generate explanations that
have richer expressivity than scalar rewards.

2.2 Interpretable Machine Learning

In recent years, a number of approaches have attempted to make deep networks more interpretable.
Most methods can be grouped into three broad classes [61, 101]: (i) explaining the learned concepts
in the abstract domain of DNN, (ii) explaining the decisions by relevance propagation and estimat-
ing corresponding concepts in the input domain, and (iii) leveraging symbolic techniques to ex-
plain and interpret a DNN. For instance, some methods [14, 27] in the first category produce logic
rules to explain the learned concepts of a DNN. The second type of explanation is the meaning
of hidden neurons. The idea is to associate abstract concepts with the activation of some hidden
neurons [1, 19, 40, 43, 67, 70]. Finally, the third category generally trains a surrogate model ex-
pressed through symbolic expressions that comprise mathematical expressions [2, 38, 80, 90]. The
proposed method belongs to the third group but specifically targets some challenges inherent in
DRL such as discovering interpretable reward functions and using them to guide the agent’s train-
ing. To this end, we propose an algorithm to discover mathematical expressions that mimic the
expert cost function found by a deep IRL model. A more detailed comparison with interpretable
DRL is provided in the next section.

2.3 Interpretable Reinforcement Learning

Several approaches have been proposed to address the interpretability issues inherent in DRL. One
line of work is post hoc methods, where these methods are used in addition to the original model

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:5

to help users understand the reasons for the decisions. For instance, the user can receive visual
explanations that highlight the most relevant regions of the state space [39, 76, 87, 98]. Another
solution is to employ an attention mechanism to identify task-relevant information [52]. In this
framework, the output of the attention layer is leveraged to identify the most important features of
the state space. However, the interpretation of strategic states for real-world applications may not
be as simple as the objects in a grid game. However, some methods generate textual explanations
for choosing an action [31, 88]. Another study proposed to learn a vector Q-function, where each
component explains preferences between actions based on reward decomposition [37]. Another
popular post hoc explainer is Shapley Additive Explanations [96], which attributes feature impor-
tance to the inputs of a (deep) predictor for a single data sample by “removing” input features
and measuring the changes on the output [51]. Hence, in post hoc methods, an explanation can
be used to clarify, justify, or explain an action choice. However, such approaches do not offer full
interpretability, as they focus on explaining the local reasons for a decision. In a different spirit,
the idea of explaining the knowledge learned by imitation learning models (e.g., GAIL) has been
employed by Pan et al. [64]. The authors proposed to discover visual explanations via post hoc
interpretation of a trained GAIL model. Our method, however, directly learns interpretable sym-
bolic rewards that can be understood and improved by humans. To the best of our knowledge, we
propose the first approach that can discover knowledge learned by IRL approaches in a way that
the model can be adjusted, modified, or improved by a human

Since achieving full interpretability is very challenging, another line of work focuses on high-
level interpretability. In particular, these methods focus on their high-level interpretability, as their
lower-level components rarely claim to be interpretable. For instance, in Reference [94], the high-
level agent forms a representation of the world and task at hand that is interpretable for a human
operator while the low-level employs a neural network [6]. Although such hierarchical approaches
can rarely claim full interpretability, they benefit from the flexibility of neural approaches while
providing explanations regarding the strategy of the agent [45, 78, 81, 94, 100].

Model approximation is an approach that employs a self-interpretable model to mimic the tar-
get agent’s policy and then derives explanations from the self-interpretable model for the target
DRL agent. For instance, VIPER [3] leverages ideas from model compression and imitation learn-
ing to learn decision tree policies guided by a DNN policy. Specifically, they learn a decision tree
policy that plays Atari Pong on a symbolic abstraction of the state space rather than from pixels.
In a similar spirit, another study [50] introduced Linear model U-trees to approximate a neural
network’s predictions, using a tree structure that is transparent, allowing rule extraction and mea-
suring feature influence. A similar approach [89] presented Neurally Directed Program Search
(NDPS), for solving the challenging non-smooth optimization problem of finding a programmatic
policy with maximal reward. NDPS works by first discovering a neural policy using DRL and then
performing a local search over programmatic policies that aims to minimize the distance from this
neural target policy.

Since most previous work in explainable deep learning focuses on explaining only a single de-
cision in terms of input features, a recent study [86] extends explainability to the trajectory level.
They introduced Abstracted Policy Graphs that are Markov chains of abstract states. This rep-
resentation summarizes a policy so that individual decisions can be explained in the context of
expected future transitions. A recent follow-up [5] presented a policy representation via a novel
variant of the CART decision tree algorithm. Instead of mimicking the target agent’s policy, self-
interpretable modeling builds a self-explainable model to replace the policy network. Since the
new model is interpretable, one can easily derive an explanation for the target agent [99]. A top-
down attention may be employed to direct observation of the information used by the agent to
select its actions, providing easier interpretation than of traditional models [62]. Neuroevolution

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:6 N. Bougie et al.

can also be used for training self-attention architectures for vision-based reinforcement learning
tasks [84]. To avoid making any assumptions as to either unbiasedness of beliefs or optimality of
policies, INTERPOLE [36] aims to discover the most plausible explanation in terms of decision
dynamics and boundaries. In EDGE [30], the authors proposed a novel self-explainable model that
augments a Gaussian process with a customized kernel function and an interpretable predictor,
capturing both correlations between timesteps and the joint effect across episodes. Our work dif-
fers fundamentally from the DRL explanation research mentioned above in terms of the objective
pursued. Although the focus of DRL explanation research is typically on developing methods to
explain the behavior of a trained agent, our work is focused on discovering interpretable reward
functions through expert demonstrations, which can align the agent’s behavior with the desired
behavior. Consequently, our main goals are to both understand/verify the learned behavior and
accelerate the agent’s exploration.

Another relevant idea is reward decomposition [37], which decomposes rewards into sums of se-
mantically meaningful reward types, so that actions can be compared in terms of tradeoffs among
the types. Decomposing the reward function and seeing the influence of aspects in the reward
toward the decision-making process as well as the correspondence between each other is a rea-
sonable way to explainability. To explain skill learning, Shu et al. [78] utilized hierarchical policies
that decide when to use a previously learned policy and when to learn a new skill. However, ac-
tion preferences can then be explained by contrasting the future properties predicted for each
action [47]. For multi-agent tasks, a method called counterfactual multi-agent policy gradient uti-
lizes a counterfactual advantage function to perform local agent training [21]. Nevertheless, this
method ignores the correlation and interaction between local agents, leading to poor performance
on more complex tasks. Recently, Wang et al. [92] combine the Shapley value with the Q-value and
perform reward decomposition at a higher level in multi-agent tasks to guide the policy gradient
process, allowing us to explain how the global reward is divided during training and how much
each agent contributes. However, the present study seeks to guide learning while providing reward
interpretability in sparse reward tasks. In such tasks, reward decomposition may be difficult to ap-
ply as the extrinsic reward is zero for most of the timesteps. To alleviate this challenge, we seek
to discover dense symbolic rewards from expert trajectories rather than decomposing extrinsic
rewards.

In a different spirit, when inputs are high-dimensional raw data, one solution is to extract sym-
bolic representations on which a human can reason and make assumptions. Since such methods
tend to abstract away irrelevant details, the reasons for a decision can be quickly and effectively un-
derstood by humans. For instance, a few methods have proposed to distill DRL into decision trees
[18, 46]. An expert may also bootstrap the learning process, as shown by Silva et al. [79], where
the policy tree is initialized from human knowledge. Some previous studies [23, 24] proposed to
learn a symbolic policy by learning a relevant symbolic representation prior to using Q-learning.
The symbolic representation includes interactions between objects in the environment. However,
it is not clear how to apply such methods to tasks without well-defined objects such as in process
industries or robot control. In Soft Decision Tree [12], the authors proposed to train a soft decision
tree to mimic the action classification of a DRL policy. The resulting soft decision trees provide a
form of interpretability of how the policy operates. A well-known framework for learning sym-
bolic policies is genetic programming [58]. In GPRL [33], a genetic programming model is trained
to discover a symbolic policy on an environment approximation referred to as a world model. In
this work, we rely on an autoregressive RNN to learn a symbolic reward function from expert data
and show that the learned reward can be used to guide the agent’s training. One common problem
when learning symbolic policies is that the performance is capped by the policy being imitated.
This is because most of the approaches learn symbolic policies as a classification problem—without

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:7

interacting with the environment. However, we focus on learning symbolic reward functions from
expert data. Namely, the proposed approach differs from most of the previous work in that we learn
interpretable symbolic reward functions from expert data rather than modeling the agent’s policy.
Since our agent still has access to the environmental reward, the performance is not capped by
the quality of the demonstrations. Besides, using expert data provides a significant speedup in the
training process, while highlighting the most important features in the environment.

A study closely related to ours employs genetic programming to mimic the rewards provided
by the environment [77]. Namely, they use a genetic programming model to clone the rewards re-
ceived by the agent. However, we argue that expert data can provide more meaningful explanations
as they are likely to cover task-relevant regions of the environment. In addition, the discovered
reward function can be used to accelerate the agent’s training, and the expert can directly mod-
ify and improve the learned reward function. Furthermore, rather than learning reward functions
with genetic programming, we propose to employ an auto-regressive RNN that tends to perform
better on high-dimensional and complex data.

2.4 Symbolic Regression in Machine Learning

Symbolic regression is a search technique that seeks to discover symbolic expressions. As men-
tioned above, the standard paradigm for symbolic regression is genetic programming, where a
population of trees is evolved based on a fitness function. However, to deal with high-dimensional
problems, it may be possible to employ DNNs for symbolic regression [104].

This idea of employing a RNN to generate symbolic expressions has been previously employed
in the field of neural architecture search [66, 104]. In particular, a RNN produces a sequence of
tokens that represents the architecture and activation functions of a RNN. However, to the best of
our knowledge ilL is the first attempt to utilize an autoregressive RNN to learn symbolic reward
functions. To overcome challenges inherent in large and complex inputs, we further propose a hi-
erarchical decomposition of the reward function (see Section 3.2.1). A few approaches have applied
the idea of symbolic regression to recover mathematical expressions from a dataset using a neural
network [72] that emits batches of expressions as a sequence of mathematical operators. In a prior
study [42], the authors directly learn a symbolic policy and propose an anchoring algorithm to deal
with multi-dimensional action spaces. Although these methods have achieved significant results
in some tasks, neural network-based methods still remain superior in terms of final performance.
Besides, it is not clear how to scale such symbolic policies to large and complex tasks. However,
we propose to learn a surrogate symbolic reward function that offers several advantages: (1) our
method does not decrease the final performance, (2) the symbolic reward can be used to guide the
agent’s training, and (3) the discovered reward can be used to identify meaningful features of the
environment and explain the expert’s intention.

2.5 Reward Shaping

Reward shaping methods involve designing a reward function that encourages the agent to take
actions that lead to a desired behavior. This involves modifying the original reward function with
a shaping reward that incorporates domain knowledge. The additional reward terms can be either
hand-crafted or learned from data and are designed based on the domain knowledge of the prob-
lem. Early work of reward shaping [15, 69] focused on crafting the shaping reward function, but
did not consider that the shaping rewards may change the optimal policy. Besides the shaping ap-
proaches mentioned above, other important approaches of reward shaping include the automatic
shaping methods [29, 55], multi-agent reward shaping [13], and some recent ideas such as ethics
shaping [95], belief reward shaping [54], and reward shaping via meta-learning [105]. Mirchan-
dani et al. [57] proposed a reward-shaping method that leverages interactions between an agent

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:8 N. Bougie et al.

and a human to shape sparse rewards associated with human instruction goals and the current
state of the environment. Specifically, their method utilizes termination and relevance classifiers
to shape the reward signal. Similarly, Tabrez and Hayes [83] presented a framework called Reward
Augmentation and Repair through Explanation, which employs partially observable Markov de-
cision processes to approximate the understanding of collaborators in joint tasks. However, the
framework requires careful consideration of the tradeoff between reward modification and aban-
donment, and it may be limited by the complexity of the POMDP approximation. In addition,
reward shaping can also suffer from several limitations. One of the main challenges is that the
additional reward terms must be carefully designed to avoid overfitting to the specific problem
domain. This can be a difficult and time-consuming task, and it can limit the generalization of
the approach to other problem domains. Besides, the use of reward shaping can introduce human
bias in the learning process, which can lead to suboptimal solutions [44]. Instead of investigating
how to learn helpful shaping rewards, our work studies a different problem where an exploration
reward is discovered from expert trajectories. The proposed exploration reward can be viewed as
a form of reward shaping that distills valuable priors about the domain from expert trajectories.
One key advantage is that this framework does not require any handcrafted rewards or additional
labeled data for discovering the exploration bonus. In addition, since the exploration reward is
represented as a symbolic tree, it can be understood and verified by humans, providing a form of
explainability.

In recent years, curiosity [65] has also been proposed as a form of reward shaping. The intrinsic
motivation measure may include mutual information between actions and end states [28], sur-
prise [65], state prediction error [9], learned skills [8], state visit counts [82], empowerment [73],
or progress [7]. Curiosity seeks to accelerate exploration by providing an additional intrinsic re-
ward. The present work differs from curiosity-driven learning in that it attempts to learn complex
reward functions through the use of expert priors, rather than replacing reward with a fixed in-
trinsic objective that aims to encourage exploration of the entire state—action space. Additionally,
unlike curiosity-driven approaches that encode rewards primarily through deep neural networks,
our goal is to discover interpretable reward functions. By doing so, we aim to achieve a higher
level of transparency and understanding in the learning process, allowing for better analysis and
interpretation of the training objective.

3 METHOD

The central idea behind ilL is to discover symbolic rewards from expert data and then extract a pol-
icy from that symbolic reward function with reinforcement learning. As illustrated in Figure 1, our
approach involves two main stages: (1) recovering the expert’s cost function with (deep) inverse
reinforcement learning and (2) discovering a surrogate symbolic reward function by cloning the
expert’s cost function. Then, a policy is trained with reinforcement learning guided by the reward
and explanations extracted from the symbolic reward function.

3.1 Recovering the Expert’s Cost Function

The first stage involves a deep IRL model that is trained to recover the expert cost function. To do
so, we assume access to M trajectories {(so, ao), (51, a1), - - ., (Sar, anr)} of state—action pairs (s, a)
that were collected by observing an expert attempting to achieve the goal being pursued in the
task.

In this work, we employ the well-known GAIL model [35]. At its core, GAIL aims to recover
an estimate of the reward signals underlying the Markov Decision Process from the expert’s
demonstration. Since directly recovering reward functions from expert data is often intractable
in high-dimensional state—action spaces, it turns the inverse reinforcement learning problem into

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:9

Trajectories T Expert cost function ¢, Symbolic reward tree x

Symbolic Reward
Learning

Explanation e,
Exploration bonus b,

e

| Agent
state| |reward Action
Sl I r( I, a!
S| Environment i<_

Fig. 1. Overview of the ilL method. In the first stage, an inverse-based model recovers the expert cost function
based on an expert dataset and transitions experienced by the agent. In the second stage, a symbolic reward
function represented as a symbolic tree is learned. Finally, the symbolic tree is used to guide the agent with
an exploration reward b and an explanation e. Consequently, along with the extrinsic reward the agent tries
to maximize the weighted sum of the exploration and extrinsic reward, distilling the expert behavior via the
exploration bonus.

its equivalent dual problem of occupancy measure matching. Thus, the agent seeks to match the
distribution of state—action transitions generated by its own policy to the distribution generated
by the expert’s policy. After recovering the expert cost function with GAIL, we utilize it as a sur-
rogate objective for discovering symbolic reward functions, as described in the following sections.
In contrast with the original GAIL method that directly trains the agent to maximize the expert
cost function, in iIL the agent learns to maximize the sum of the extrinsic and symbolic reward.

To recover an estimate of the reward signals, GAIL trains a discriminative classifier to distin-
guish between state—action pairs generated from the agent’s policy and state—action pairs gen-
erated from the expert’s policy. In practice, a discriminator Dy is trained to distinguish agent
transitions (s, @) ~ magens from expert transitions (s, @) ~ Zexpers. The discriminator Dy is trained
via gradient descent to minimize the following loss with respect to its parameters ¢:

LGAIL = E(s,a)wrugem [lOg(Dtﬁ (S, a))] + E(s,a)wrexp”, [log(l - D¢ (S, a))] (1)

InilL, we use as the expert cost ¢ the output of the fitted discriminator: ¢ = D(s, a), where (s, a)
is a state—action transition. The agent transitions used to train the discriminator are progressively
collected throughout the training process (see Algorithm 2) in Section 4). Then we construct a
dataset D of all state-action-cost tuples (s;, a;, ¢;), which contains both policy and expert transi-
tions augmented with the expert cost ¢; discovered by GAIL,

D = {(s0, a0, D (50, @0))s (51, a1, Dy (51, a1)), - - - } = {(50, @0, €0), (51, a1, €1), - - - }. (2)

3.2 Discovering a Symbolic Reward Function

Now that we have described how the expert cost function is recovered, how does it translate to our
symbolic reward function? In the second stage, to discover a symbolic reward, we train a surrogate
model to emulate the expert cost function. Namely, we propose to use an auto-regressive recurrent
generator network. The generator network models a distribution over symbolic operators, inputs,
and constants (Figure 2). Each operator is a simple mathematical function such as max or sum.
The operators are selected from a library O, where the operators can be unary, binary, or ternary.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:10 N. Bougie et al.

Parent Cﬁ P ? -

. .
! .

Generator : , . )
: :
. .
: .

Distribution i E Symbolic tree
over symbols ! I : I
Symbols ‘...._.: ‘______; ‘...>

Symbol generation

Fig. 2. Overview of symbolic tree generation. We present a simple tree generation, comprising two leaves
and one node. An auto-regressive recurrent generator receives as input a representation of the parent token,
and outputs a distribution over the possible symbols. The produced symbol is then added to the symbolic
tree. This process generates a simple symbolic reward function: 0.2 X s4.

O includes simple arithmetic functions as well as logic operators and constants. A description
is provided in the supplementary information. For the brevity of description it does not include
constants.

The set of tokens produced by the generator network can be viewed as a symbolic reward tree,
a type of tree in which internal nodes are mathematical or logical operators, and the leaves are
input variables or constants. The input variables are denoted as s;, where 1 < j < g, q are the
number of input variables. A tree x : S X A — R maps an observation of the observation space S
and an action of the action space A to a scalar reward b € R.

In detail, the generator network parameterized by 0 sequentially emits a categorical distribution
over the operators in O. For the ease of the notation, a tree x is represented by a sequence of tokens
x = {x1,...,x7}, where x; is the token at the ith position and T is the maximum tree size. The
tokens are emitted sequentially while building the corresponding tree. Namely, each time a token
is provided by the generator, it is added to the symbolic tree. The tree is obtained by using a pre-
order traversal visit of the nodes and leaves. The process repeats until the symbolic tree is complete
(i.e., all branches are terminal nodes) or the tree reaches the maximum length allowed. To capture
the structure of the tree, we feed a representation of the parent token as the input to the RNN. By
doing so, each token sampled by the RNN takes into account the previous tokens. The likelihood
for the ith token of the traversal is given by

|x]
p(x,0) = [ [ plxi | x1.-150), 3)
i=1
where p(x; | x1,(-1); @) is the likelihood for the ith token to be emitted by the generator given the
previously emitted tokens x,(;_).
The trees generated by the RNN are evaluated on the dataset D that has been collected in the first
stage. Given a candidate tree x, we compute the mean-square error for each example (s, a,c) ~ D
in the dataset as

D]

> = x(siany (4)
i=1

MSE = ——
| D |

where x(s;, a;) is the reward produced by the tree x given the transition (s;, a;). We can use the

prediction error R as the training signal for updating the RNN: R(x) = m

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:11

Since R is non-differentiable with respect to 0, we rely on REINFORCE [93] to optimize the
generator. The list of tokens that the generator produces can be viewed as a list of actions a;.r
to design a symbolic reward function. The generator can therefore be trained with reinforcement
learning with R as the reward signal. Note that in the remainder of this article, to avoid confusion
with the symbolic reward we refer to R as the training signal. To prevent premature convergence,
we add the weighted generator’s sample entropy to the training signal R. The policy gradient
objective J(#) maximizes the expectation of a training signal R(x) under symbolic rewards from
the policy

J(0) = Ex_p(xj0)[R(x)]. 5
The REINFORCE policy gradient can be used to maximize this expectation via gradient ascent,
VoJ(0) = Ex-p(xj0)[Vo logp(x | O)R(x)], (6)

where an empirical estimation of this quantity can be computed over a batch of m sample expres-

sion,
m

1
VoJ(0) ~ — > [Vologp(x® | )R(x®)], ()
m k=1
where m is the number of symbolic trees that the generator samples in one batch and x(*) is the
kth tree.

The above update is an unbiased estimate for our gradient but tends to have a high variance.
To reduce the variance, it is a common practice to employ a baseline function b that is subtracted
from the training signal R(x X)),

1< .
VoJ(0) ~ — > [Vologp(x® | 6)(Rx™M) - b)]. (8)
iyt

As long as the baseline b is not a function of the current batch of trees, the gradient estimate
remains unbiased. In this article, we use a moving average baseline of the previous training signals.

3.2.1 Hierarchical Symbolic Trees. One possible issue with the above algorithm is learning large
trees. The complexity of real-world tasks often requires building large trees to capture the under-
lying complexity of the expert cost function, which may cause the generator to be slow to train.
To overcome this problem, we introduce a hierarchical decomposition of the tree learning prob-
lem. The central concept is to learn a set of K shallow trees that focus on different aspects of the
expert cost function and coordinate their outputs with a high-level tree (see Figure 3). The idea of
hierarchical symbolic trees is primarily designed to enable the swift discovery of large trees, as at
execution we construct a single tree x that encapsulates both the high-level and low-level trees.
To do so, we replace the high-level tree’s leaves that represent the output of a low-level tree with
the associated symbolic trees.

We consider a high-level generator that organizes a set of K low-level trees, {xi, ..., xx}. Each
low-level tree is learned by a low-level generator. The high-level tree’s leaves are input variables or
the output of a low-level tree. However, the low-level trees’ leaves are input variables or constants.
The hierarchical learning problem is to simultaneously learn the HI-level generator gy, called
a HI-generator, as well as the LO-level generators {gio, e, gfo}. The aim of the learner is to
achieve a high training signal (in the sense of REINFORCE) when the HI-generator and the low-
level generators are run together.

In practice, we use a two-staged optimization—we alternate between optimizing the ggr network
and gr o networks (Algorithm 1). During the first stage, the HI-level generator is trained by using
the best low-level trees that have been previously discovered by the LO-level generators. During

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:12 N. Bougie et al.

High-level

:_: Low-level

glLo 'S Lo g Lo

Fig. 3. An illustration of the hierarchical symbolic reward generation scheme. The HI-level generator gy is
trained to organize the low-level trees {x1,x2,x3} learned by the low-level generators {9io’gio’gio}' The
final symbolic reward is based on the joint evaluation of the high-level xf and low-level {x1, x2, x3} trees.

the second stage, the LO-level generators aim to discover new solutions that will improve the global
prediction based on the best HI-level tree discovered so far. The process continues until the end of
the learning or an optimal solution is found. Note that at the beginning of the training, the initial
best trees are randomly sampled by the corresponding generators. By doing so, the algorithm can
incrementally improve the overall symbolic reward function—this can be viewed as progressively
building the branches of the global tree. It should be emphasized that since the training of LO-level
generators can be done concurrently, the method can result in a running time similar to that of a
single LO-level generator.

3.3 Training RL Guided by the Symbolic Reward Function

Now that we have described how the symbolic reward function is learned, we can train any on-
policy or off-policy method such as Proximal Policy Optimization (PPO) [75] to select action
sequences that explore states for which the symbolic reward function is large. In other words, we
would like the agent to explore states surrounding expert trajectories.

To do so, we evaluate the symbolic tree x given the current state and action (s;, a;) to generate an
exploration reward b;, which is further summed up with the task-reward r; to give an augmented
reward ¥; = r; + Bb;, where f is a hyperparameter. The augmented reward has a nice property
from the reinforcement learning point of view—it is a dense reward that smoothly encourages the
agent to take actions toward the final goal. In addition, as the exploration bonus distill the expert’s
intentions, it can be used to effectively guide the agent’s exploration and provide meaningful priors
about the task. As a result, learning with such a reward is significantly faster and often leads to
better final performance in terms of the cumulative task reward.

3.4 Explaining the Reward to the Agent

In addition to the exploration reward b;, we propose to guide the agent’s training with explanations.
One issue in RL, and especially IRL, is the nature of the rewards received by the learner. The
learning agent is given a single scalar value of reward at each timestep that encodes a single piece
of information such as the agent has reached the goal, the agent hit a wall, and so on. Although
multiple bits of information can be encoded by summing up the associated rewards or providing
multiple rewards, it can throw away vital information, lead to incorrect solutions, and prevent

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:13

ALGORITHM 1: Hierarchical training of the HI and LO-level generator networks.

Initialize gy and {g} .. ... 950}
Sample initial best high-level tree x7; ~ gu;
Sample initial best low-level trees {(x] ~ 9io)’ U gfo)}
for t=0, ...,T steps do
Generate a batch 8 of HI-level trees {xp, ...} ~ gur
Evaluate the expected training signal for each tree R(xy) < evaluate(xg, X, . .., xg)
Select the best tree x;; in 8
if R(x};) > R(x};) then
Store the new best tree x7; « xj;

end if
Train the generator gy on batch 8
for k=0, ...,K do > Training of low-level generators is done in parallel
Generate a batch B of LO-level trees {x;0, ...} ~ g’L‘O
Evaluate the expected training signal for each tree R(xr0) —
evaluate(x;{,xa‘, ey XLO» - - ,x1*<)

Select the best tree x7, in 8
if R(x]) > R(x;) then
Store the new best tree x;
end if
Train the generator g]’: on batch 8
end for
end for

<o

the agent from directly understanding how and why the environment has been affected by its
actions. However, one might notice that the structure of the symbolic reward—a symbolic tree,
can be naturally parsed to explain the underlying reasons for the reward. We call this parsing an
explanation and we augment the agent’s input with such an explanation. As a result, the agent
can quickly capture the important features and underlying factors that affect the reward function,
significantly reducing the training time.

3.4.1 Generating Explanations. An explanation is a vector e that contains the evaluation of
certain sub-trees (e.g., the branches) of the reward tree x, e = [vy, ..., vp], where v; corresponds
to the evaluation of a sub-tree of the reward tree. For instance, v; may represent whether the input
so is larger than i—; or whether the temperature in the distillation column of a chemical plant is larger
than 20 degrees. Thus, each sub-tree partially explains a reason underlying the symbolic reward at
different levels of abstraction, depending on the sub-tree being evaluated.

The vector e is filled by using a pre-order traversal (i.e., by visiting each node depth-first, then
left-to-right) and evaluating the value of the nodes. To ensure that only relevant attributes are
kept, we store the values of the nodes with a depth d at most. As a result, the agent becomes aware
of the reasons for the reward. In future work, we anticipate using more sophisticated algorithms
to identify the most task-relevant sub-trees for generating explanations. An example of the tree
parsing is shown in Figure 4.

3.4.2 Learning from Explanations. Let us define e;_; to be the explanation generated at time
t — 1. To capture temporal information the present work relies on an aggregator function that
is implemented as a RNN, a Gated Recurrent Unit (GRU) [10], which is a variant of a RNN.
Since temporality is critical in the context of explanations, introducing a RNN into DRL networks

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:14 N. Bougie et al.

Depth limit
d

Fig. 4. An illustration of the explanation extraction. In this example, we only display four sub-trees vy, vs,
v3, and v4 being contained in the first branch.

to capture temporal dependencies is an efficient solution to improve practicability of explanations.
We refer to the explanation that is perceived by the policy 744en: at time t as é;. First, é; is obtained
by feeding the previous explanation e;_; and the previous hidden states h;_, to a RNN. We define
é; as the previous hidden state h,_; outputted by the RNN, as follows:

¢ = hy_1 = GRU (h;—3, [¢(e;-1)]), )

where h;_; is the hidden states at time ¢t — 1 and ¢ is an embedding function that embeds the
explanation e;_; to a latent space.

Then, é; is used to condition the input of the policy 74gens. Namely, the policy parameters 6, are
obtained by maximizing (augmented) rewards with the following constraints for action generation:

a; = ”agent(ot’ ét§9n)’ (10)

where a; is the action selected by the agent at time ¢ and o, is the current observation.

4 EXPERIMENTS

Environments. Experiments are conducted on two sets of environments. First, we evaluate the
proposed method on robotic tasks implemented in MuJoCo [85]. We consider the following four
tasks: (1) Half Cheetah, (2) Hopper, (3) Walker 2d, and (4) Ant. The relative simplicity of this
environment allowed us to measure the performance of the present method as well as the quality
of the symbolic rewards and explanations. To further verify that the proposed method can scale
to complex control tasks, we also conducted an evaluation on four hand manipulation tasks: (1)
Hand Manipulate Block, (2) Hand Manipulate Egg, (3) Hand Manipulate Pen, and (4) Hand Reach.
In those tasks, the agent is trained to manipulate physical objects via a humanlike robot hand. In the
second set of experiments, we evaluate our framework on significantly more challenging tasks that
feature sparse rewards, large state—action spaces, and complex dynamics. Namely, the experiments
are conducted on a simulator of a vinyl monomer acetate (VAM) plant [53], a type of chemical
plant widely used in process industries. This set of experiments aims to demonstrate that ilL. can
be used on real-world industrial problems. The agent seeks to control the chemical plant under
disturbances, which entails returning to steady conditions to maximize the production load.
VAM plant The VAM plant reflects the characteristics and practical problems of real process
plants. The simulator is composed of eight components for materials feeding, reacting, and

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:15

recycling. The process is observed via 109 sensors that measure the volume, flux, temperature,

concentration, and pressure of the chemical substances. To complete the task, the agent has to (1)

avoid failures in equipment that can be triggered by disturbances; (2) stabilise and correct internal

or external disturbances—recover from disturbances; and (3) maintain the process in a steady state.

The environment includes 19 disturbance scenarios that can be used to evaluate these properties.
We selected the following disturbance scenarios:

e Change Feed Pressure AcOH (“Pressure AcOH”): The raw material acetic acid feed compo-
sition is changed due to condition changes of the acetic acid plant. This disturbance can
be observed by detecting changes in the raw material feed and water composition. The in-
tensity level varies randomly between [1,50]. The agent controls the PIDs: PC130, LC130,
FC130, FC170, and PC210.

e Change Feed Pressure C2H4 (“Pressure C2H4”): The raw ethylene feed pressure is changed
due to condition changes of the ethylene plant. This disturbance can be observed by de-
tecting changes in the raw material flow rate. The intensity level varies randomly between
[70, 140]. The agent controls the PIDs: PC130, LC130, FC130, and TC150 (“Pressure C2H4-4").

e Day and Night (“Day/Night”): A day and night cycle leads to atmosphere changes, resulting
in non-steady conditions and fluctuations in internal temperatures. This disturbance can
be observed by detecting changes in cooling water consumption and temperature sensor
values. The intensity level varies randomly between [1,50]. The agent controls the PIDs:
PC130, LC130, FC310, TC150, and FC170.

e Heavy rain (“Rain”): The heat dissipation for the atmosphere is increased at all heaters due
to cooling by heavy rain. The intensity level varies randomly between [1,50]. The agent
controls the PIDs: PC210, FC501, TC501, FC130, and TC201.

Concretely, the state space consists of the sensor readings. The action space consists of a set of
PIDs to control—these PIDs are selected based on their relevance with the scenario. The ranges
of actions are defined as [—x;%,+x,%] from the initial values. In our experiments, we set x; =
0.60 and x, = 1.35. The agent interacts with the environment once every minute for 60 virtual
minutes, which corresponds to one episode. In the absence of domain knowledge and to replicate
real-world problems where rewards are naturally sparse, a general-purpose choice is to set the
reward function as

ez = {1.0 if(lx=x /() <€) 1)

0.0 otherwise

where x is the current state, x; is the target state, x5 is a steady state value, and € is a threshold
value. In practice, we set x; = x5 and € = 0.01.

Experimental settings. We choose the commonly used PPO algorithm as our basic RL algo-
rithm. The actor and critic networks consist of three fully connected layers with 128 hidden units.
Tanh is used as the activation function. Training is carried out with a fixed learning rate of 7.0x10™*
using the Adam optimizer [41], with a batch size of 128. The policy is trained for four epochs after
each episode. To facilitate the learning of agents, we use an observation normalization scheme.
That is, we whiten each dimension by subtracting the running mean and then dividing by the
running standard deviation.

The dataset of expert trajectories consists of M = 10* transitions recorded by observing an ex-
pert controlling the agent. To ensure reproducibility, the expert is a teacher policy (PPO) that has
been trained to achieve a near-optimal solution. GAIL uses the same hyperparameters as in the
original implementation. The agent transitions are sampled uniformly from a policy buffer con-
sisting of 10° transitions. The dataset D is balanced as we stored the same number of expert and

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:16 N. Bougie et al.

ALGORITHM 2: Pseudo-code of the update-rule of the models.

Fill expert buffer D¢*P¢"" with expert transitions
Initialize policy buffer D?°i¥ by running the policy
Initialize D < @

while true do

Recover the expert cost function based on D¢*P¢"* and Drelicy > Stage 1
Construct the dataset D — {(sq, ag, ¢o), (S1,a1,€1), ...}
Discover a surrogate symbolic reward function from D > Stage 2

Train the agent POliCY Tagent for H EPOChS
Store agent transitions in DPOcY
end while

agent transitions augmented with the expert cost. The generator networks are RNNs comprising
an LSTM layer with 64 hidden units. Training is carried out with a fixed learning rate of 1073 using
the Adam optimizer [41], with a batch size of m = 256. The list of operators can be found in the
supplementary information. In addition to these operators, the tree could contain the following
constants: {0.1,0, 1, 0.5, 10}. Only the high-level tree uses logic operators. Since a tree takes as in-
put a state and action, the input variable s; denotes the element at index j of the tuple (s, a). We
set the maximum length of high-level trees to 40 and 15 for low-level trees, and K = 5. We limit
the depth of the node evaluated during the explanation extraction to d = 3. The GRU network
that encodes the explanations features 32 hidden units and takes as input the embedded represen-
tation of an explanation passed through a fully connected layer of size 32. We set f = 0.3 and the
exploration reward is normalized by dividing it by a running estimate of the standard deviations
of the exploration returns. To prevent premature convergence, we also use a tanh constant of 2.5
and a temperature of 5.0 for the sampling logits [4] and add the generator’s sample entropy to the
training signal weighted by 0.0003. Participants involved in the ablation studies had backgrounds
unrelated to robot control and process control, but were provided a brief description of the task
prior to conducting the experiments.

To adapt the symbolic reward to novel situations encountered by the agent, we recompute the
expert cost function and fine-tune the generators every H = 50 epochs. This is because in GAIL
the training of the deep inverse model (stage 1) and that of the agent are interleaved. Therefore, we
periodically update the expert cost function (stage 1) and then fine-tune the symbolic reward func-
tion (stage 2). The pseudo-code of this update-rule is shown as Algorithm 2. Note that repeating
stages 1 and 2 may not be necessary depending on the choice of the deep IRL model that recovers
the expert cost function from demonstration data.

Baseline methods. The simplest baseline for our approach is just the basic RL algorithm (i.e.,
PPO) applied to the task reward. As suggested by some prior work and our experiments, this is a
relatively weak baseline in the tasks where the reward is sparse. As the second baseline, we take
the state-of-the-art IRL method GAIL combined with PPO. The agent trained with GAIL learns to
maximize the sum of the extrinsic reward and expert cost function c. The cost function is defined
as the output of the fitted discriminator, ¢ = Dy (s, a), where (s, a) is a state—action transition, as
described in Section 3.1. This comparison is of interest, since GAIL leverages neural network-based
rewards (expert cost function) to guide its agent’s exploration, while in iIL the agent is guided with
symbolic rewards. We also introduce another baseline based on Reference [77] (PPO-GP), where
the symbolic reward function is learned via the genetic programming method described in the
article. Finally, we compare ilIL that uses rewards to guide the agent (ilL-r), and the same setting
augmented with the explanations provided by our method (iIL-re).

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:17

— ilLr 5000
4000
3000

2000

Average return
Average retumn

1000

0 100 200 300 400 500 [ 100 200 300 400 500
Number of Episodes Number of Episodes

(a) Half cheetah (b) Hopper

6000

4000

2000

Average return
Average return

-2000

20 300 200 300
Number of Episodes Number of Episodes

(c) Walker 2d (d) Ant

Fig. 5. Performance of different imitation learning algorithms and DRL baselines on MujJoCo tasks. All meth-
ods are tested with 10 random seeds.

4.1 Robotic Tasks

We first perform experiments on four different robotic tasks built on top of MuJoCo: (1) Half Chee-
tah, (2) Hopper, (3) Walker 2d, and (4) Ant. As shown in Figure 5, our method can learn comparable
or superior policies, which entails that the discovered symbolic rewards are relevant to the agent’s
learning. As expected, ilL-r ends up reaching similar final performance with GAIL. However, our
method has a slightly faster convergence rate. One possible explanation is that iIL tends to abstract
away irrelevant details and remove noise, compared to GAIL, which may overfit the demonstration
data. In addition, we can observe that the extracted explanations provide a significant speedup (iIL-
re) in the training process. This is because the agent has access to the underlying factors affecting
the reward function, conveying richer insights than scalar rewards. Besides, explanations can be
viewed as a form of feature engineering where the novel features are automatically extracted from
demonstration data, providing additional prior assumptions about the domain to the agent. Over-
all, this experiment highlights that iIL drastically reduces the training time in environments with
sparse rewards and demonstrates that the proposed approach can achieve similar performance to
(non-interpretable) NN-based IRL models.

4.2 ShadowHand Robotic Tasks

Next, we tried to verify that our method can scale to more complex robot control tasks, trained as
before with the same set of symbols. Experiments are conducted on four robotic tasks implemented
in MuJoCo, where the agent learns to manipulate physical objects via a humanlike robot hand: (1)
Hand Manipulate Block, (2) Hand Manipulate Egg, (3) Hand Manipulate Pen, and (4) Hand Reach.
The performance metric we use is the percentage of goals that the agent is able to reach. An
episode is considered successful if the distance between the agent and the goal at the end of the
episode is less than a threshold defined by the task. In Table 1, we can observe that our strategy
helps to greatly improve final performance, indicating that meaningful symbolic rewards can be
captured. The results further demonstrate that using explanations is beneficial for accelerating

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:18 N. Bougie et al.

Table 1. Learning Hand Control in MuJoCo

Percentage of goals achieved

Method Hand Manipulate Block Hand Manipulate Egg Hand Manipulate Pen Hand Reach

ill-r 0.75+0.04 0.74+0.07 0.58+0.06 0.84+0.06
ill-re 0.78+0.02 0.79+0.09 0.62+0.04 0.84+0.07
PPO 0.32+0.08 0.49+0.05 0.02+ 0.03 0.53+0.07
PPO-GP 0.28+0.09 0.47+0.09 0.03+ 0.04 0.70+0.07
GAIL 0.75+0.11 0.72+0.07 0.59+ 0.08 0.82+0.05

Results are averaged over 10 random seeds (+std). No seed tuning is performed. Bold values indicate the best
performing method.

the agent’s training. The superior performance of ilL can be attributed to its ability to leverage
expert knowledge that captures the underlying structure of the task, as well as dense rewards that
accelerate the learning process. In addition, ilL. manages to solve some highly challenging tasks
on which the other methods fail to get any reward.

4.3 Chemical Plant Control under Disturbances

Second, we evaluate the proposed method on a set of tasks from the VAM environment, which
replicates the features and problems of real-world process control plants. In process industries,
explainability is critical to enable cooperation with human operators as well as explaining and
verifying what has been learned. Note that this environment is significantly more complex than
MuJoCo due to its dynamics, large state—action spaces, and low sample efficiency.

Figure 6 plots the learning curves of all the models. In the four tasks, our strategy greatly im-
proves convergence speed and performance compared to plain PPO. Unlike our algorithm, PPO
that learns without reusing prior knowledge about the task fails to capture the dynamics of the
task and/or learn from sparse rewards, resulting in poor performance. By examining its learned
policies, we notice that soon after the beginning of a disturbance, PPO cannot avoid failures in
equipment. However, our method can quickly discover how to recover from a disturbance by us-
ing both the symbolic rewards as well the explanations extracted from the symbolic trees. As in
the previous experiment, ilL. and GAIL achieve similar final performance. In addition, by gleaning
insights from the symbolic tree, a human operator can swiftly discover task-relevant features and
partially explain the reasons for the agent’s behavior. For instance, by examining the learned sym-
bolic rewards we could notice that during heavy rain, it is important to maintain the temperature
of the reactor’s catalyst bed by increasing the TC201 unit. In another example (Pressure C2H4), if
ethylene feed pressure is decreased, then it is necessary to decrease the gas pipeline head pressure
(PC130) to introduce more ethylene in the feed. We further discuss this question in Section 5. Over-
all, this experiment demonstrates that our method can scale to real-world industrial problems and
provides enough prior knowledge to the agent to improve its sample efficiency.

4.4 Ablation Analysis

We also present ablation studies to investigate (1) the quality of the discovered reward functions,
(2) the quality of the extracted explanations, (3) the disagreement with the IRL model, (4) the
robustness to noisy data, (5) the impact of the amount of data, (6) the impact of the symbolic tree
size, (7) the use of GRU to capture temporal information, (8) the impact of the RL algorithm, (9) a
strategy for manual reward fine-tuning, (10) reward fine-tuning via human preferences, and (11)
predicting the agent’s behavior via reward parsing.

4.4.1 Quality of the Symbolic Rewards. To interpret how relevant/good is the learned symbolic
reward, we present in Figure 7 an example of a symbolic reward in Hopper and Pressure C2H4.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:19

— ilLr 1.2 — lLer
0.87 —— ilL-re 10 —— ilL-re
£ 061 E;g GP S g
2 . 508 PPO-GP
2 GAIL 2 GAIL
© 0.4 206
I c
[ [
202 z04
0.2
0.0
0.0
0{19 ) S %D\QQ ’&0\@\60\%0 f],QQ‘I/q’Q*’Lb‘Q rioQ {13.’0%00 Q ,19 © Q.’Q \QQ ’09 ,\@ \bQ '&Q (190
Number of Episodes Number of Episodes
(a) Pressure AcOH (b) Pressure C2H4
08 — L 10 — ilLr
—— ilL-re 08 ~—— ilL-re
Eo0s ggg GP g Egg GP
2 s 206 3
g GAIL s : GAIL
g04 804
0.2 0.2
00 0.0
R SECICICIC 0P S SEPRSSPPRP S
Number of Episodes Number of Episodes
(c) Day/Night (d) Rain

Fig. 6. Performance for different disturbance scenarios on the VAM plant. Results are averaged over 10 runs
(£std).

While qualitatively evaluating the reward functions is challenging for a non-expert, we can draw
several observations. First, the learned rewards feature a small number of operators compared
to standard DNNs, which entails that it is significantly easier to understand the reward function.
Second, the second reward function primarily relies on inputs that are notoriously task-relevant in
the VAM plant. Finally, the previous experiments demonstrated that an agent trained from them
can achieve a large return in all tasks, which suggests that they accurately capture the expert’s
intention.

Moreover, we can observe that it would be relatively easy for a knowledgeable human to modify
the symbolic tree to incorporate prior knowledge, such as by adding a new branch or changing an
operator. A new branch may cover a novel situation that is not presented in the training data. It
would also be possible to fine-tune the reward function by modifying the constants. However, the
GAIL model is largely opaque and cannot be manually tuned.

4.4.2  Quality of the Explanations. We present a quantitative analysis of the quality of the ex-
planations. The question we aim to answer in this evaluation is “Are the extracted explanations
found by iIL really relevant to the agent policy?” We propose a measurement that the impact of
the explanations on the output policy can be quantified by evaluating the policy solely augmented
with the explanations (ilL-e). Table 2 shows the results of PPO that solely receives explanations.
The results demonstrate that leveraging explanations leads to a higher average return compared
to plain PPO. In other words, the explanations carry task-relevant information that can be used
to guide the agent’s training. Note that in the absence of well-shaped rewards provided by the
symbolic tree, PPO is trained from sparse reward signals. Therefore, the final return achieved by
ilL-e is lower than the one of ilL-re. In addition, by inspecting the explanations, we noticed that
they primarily carry information with a high level of abstraction. For instance, in the rain task, on

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:20 N. Bougie et al.
if_then_else
max ‘
/\ e add 777grez\t;r7(h;\n
max ‘ N
/\ ‘ dist  max
o~
min min log mul log min 5/\5 ‘
o RN
/\ /\ ‘ ‘/// dist max /‘\ s s
div  sig max mult_by_10 sqrt ss mul
| \ A \
AN T~ div_by_10 add s n2 .
: abs | T~ ‘ | PN
si4  si7 mul min dist S L divby 10 sy
/\ | | ‘ | | ‘ RS |
. b sub 556
div min s o
max min /\- ‘ /N ‘ ‘
/\ /\ n2  min ! s .
| AN S T
s;3 sum 1 s;3  S6 812 M om0 sq‘" »
Va2 2N i L o
0.2 s3 s;5 tanh  s5 1
| sqrt
N
S22 abs  sg5
(a) Hopper (b) Pressure C2H4

Fig. 7. Two examples of discovered symbolic rewards on Hopper and Pressure C2H4. We report the symbolic
rewards after 100 training epochs.

Table 2. Final Mean Performance (+ std) of Our Method Augmented with Explanations

Robot Control VAM Plant
Method Half Cheetah  Hopper =~ Walker 2d Ant Pressure AcOH Pressure C2H4 Day/Night Rain
ilL-e 3,922+655 3,099+£541  4,622+608  3,563+404 0.54+0.14 0.49+0.11 0.41+£0.09  0.59+0.12
ilL-re 5,582+877 4,925+489  8,348+818  4,884+862 0.75+0.13 0.92+0.15 0.66+0.07  0.85%0.13
PPO 3,470+185 2,522+596  2,420+483  2.954+850 0.49+0.12 0.40+0.16 0.0£0.01  0.37+0.05
GAIL 4,144+682 3,490+829 6,998+1,176  4,371+809 0.63+0.09 0.68+0.08 0.62+0.10  0.63+0.13

Averages over 10 runs.

average 12 attributes of the explanations are related to the temperature in the components of the
plants. By augmenting the agent’s input with such high-level information, the agent can quickly
learn how to act—to restore the stability of the plant, without extensive exploration.

4.4.3 Disagreement with the IRL Model. In this section, we analyze the disagreement between
the learned symbolic reward function and the IRL model that initially recovered the expert cost
function (i.e., GAIL). We report in Figure 8 the error =| x(s¢, a;) — ¢; | of our model that does
not employ a hierarchical decomposition of the reward tree (left) and with hierarchical tree learn-
ing (right). To measure the ability of iIL to scale to complex environments, we report the results
obtained in the Pressure C2H4 task. As can be observed, both approaches accurately mimic the
expert cost function. However, the hierarchical approach further reduces the average prediction
error as it learns larger trees that cover a broader range of situations.

We also computed the percentage of timesteps where our reward function is significantly dif-
ferent from the expert cost function (error > 0.1). We found that the hierarchical approach can
accurately imitate the expert cost function 98.3% of the time and 72.4% of the time for the non-
hierarchical approach. In addition, in both environments, the present method exhibits a small error.
This suggests that the symbolic reward function can generalize well and capture important fea-
tures of the system. As a result, one can expect our agent trained with a symbolic reward to reach

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:21

08 08

Predicted Reward
Predicted Reward

X 0.
True Reward True Reward
(a) Flat tree learning (b) Hierarchical tree learning

Fig. 8. True vs. learned reward in the Pressure C2H4 task. A fully aligned reward model would have all points
on a straight line. The size of the dots corresponds to the number of points with the same true and learned
reward.

performance comparable to that of “black-box” methods. Overall, the results highlight that the hi-
erarchical reward approach enables the discovery of symbolic rewards that mimic more accurately
the expert cost function, leading to a small disagreement with GAIL.

4.4.4 Noisy Data. We evaluated the robustness of the proposed method to noisy data by
adding different levels of noise to the expert cost function. Namely, we add with probability
{0.0,0.05,0.10, 0.20} independent Gaussian noise to the expert cost, with mean zero and standard
deviation proportional to the root mean square of the dependent variable in the cost of the expert
data (Figure 9). Because symbolic rewards focus on the most important features of the dataset, the
learned reward function discards noisy and irrelevant details. Namely, although the expert cost
function is noisy, the model can leverage other (accurate) transitions without being oversensitive
to noise in the data. Thus, the final performance of the agent trained with a symbolic reward
function achieves similar performance to the original one. However, the agent trained with GAIL
directly perceives the noisy expert cost function, resulting in lower performance. As a result, iIL
can be used even when the expert demonstrations are noisy and inaccurate. Note that if the cost
function is very noisy, then iIL is likely to learn noise in the data, resulting in low final performance
comparable to GAIL.

4.4.5 Amount of Data. One legitimate question is to study the impact of the amount of data
on the agent’s performance. Ideally, (1) the policy performance should not be too sensitive to this
hyperparameter as the generator should capture a relevant symbolic reward from a small amount
of data. (2) The generator should be able to improve the quality of the learned reward function as
the amount of data increases, since novel data can cover different regions of the environment. We
perform a study for a various number of examples (s, a, c) on Hopper, Walker 2d, Pressure C2H4,
and Rain. Figure 10 shows that the iIL performance is robust to the choice of this hyperparameter.
In addition, even a small amount of data is sufficient to learn an effective symbolic reward function.
Finally, as expected a larger dataset increases the quality of the learned reward function. However,
there is no significant performance increase when using 100K training examples, as 30K expert
transitions are sufficient to cover most of the situations.

4.4.6 Impact of the Tree Size. We now report in Figure 11 evaluations showing the effect of
different maximum tree size. The maximum tree size indicated on the x-axis depicts the maximum
size for the high-level tree (left) and low-level trees (right). Figure 11 demonstrates that agents
trained with a larger maximum tree size budget obtain higher mean returns after similar numbers
of updates. However, despite a small maximum tree size (20/10), our method can still learn accurate

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:22 N. Bougie et al.

L L
5000 i
‘ ilL-re 8000 ‘ } ilL-re
. GAIL . GAIL
£ 4000 £ .
& & 6000
o o
g 3000 3
2 2
& & 4000
<€ 2000 <
3 8
= =
1000 2000
0 0
0.0 0.05 0.1 0.2 0.0 0.05 0.1 0.2
Noise parameter Noise parameter
(a) Hopper (b) Walker 2d
1.0 1.0
L L
| ilL-re ilL-re
0.8 = GALL 08 . GAIL
£ 1 £
2 2
71 5
4 4
%06 T 06
3 3
3 8
2 2
& &
Y04 204
& s
3 3
= =
0.2 0.2
00 0.0 0.05 0.1 0.2 00 0.0 0.05 0.1 0.2
Noise parameter Noise parameter
(c) Pressure C2H4 (d) Rain

Fig. 9. Effect of sub-optimal demonstrations on ilL and GAIL. We produce sub-optimal demonstrations by
adding Gaussian noise to the expert cost function with the probability shown on the x-axis. The vertical lines
depict the standard deviation across 10 runs of each experiment.

— PRO 10000 | )
i =
e || i e £ { \ el
& w00 E |
K S 6000
S ||| 3
& & 4000
£ 2000 §
= 1000 I I 2 mu‘ l
o 5K 10K 0K 100K o 5K 10K 30K 100K
RS S R 2 S—
(a) Hopper (b) Walker 2d
PPO 107 PPO

10 | ‘ ‘ =L i =L

Mean Episode Retum
——
———
- —
Mean Episode Retum
g8 R 2 2
o

100K sk 10K 100K

30K 30K
Number of Expert Transitions Number of Expert Transitions

(c) Pressure C2H4 (d) Rain

Fig. 10. Average return obtained after training ilL with different amounts of expert data. The vertical lines
depict the standard deviation across 10 runs of each experiment.

symbolic reward functions. We can draw the observation that as the maximum tree size increases,
the learning effect on the agent gradually improves. Nonetheless, for the results with (40/15) and
(60/40) maximum size, we can see that even though the maximum tree size significantly differs,
the difference in learning effect can be negligible. This can happen because the smallest setting is
sufficient to clone the expert cost function. As a result, our method can be trained with a relatively
small maximum tree size, facilitating the interpretation of the symbolic rewards by humans.

4.4.7 Temporal Information. In this study, we conducted an ablation analysis to evaluate the
impact of a GRU on the performance of the proposed method. Specifically, we compared the

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:23

6000 T . 10000
‘ !
; i | 1 ‘ |
5000 | | | | | ’
c 1 ! i ! ¢ 9000 1 1
= | i = i i
gewo| i R T B
'3 | o 1 i | |
s 1 g 8000 | | 1
5 i P T
a | a | | | |
& 2000 I d 7000 I | | |
< | < | | | ! i
© i @ i | | | i
o) o $ | |
= 1000 2 5000 | |
i |
0
5000 !
1055 2010 40115 4030 60/40 105 20/10 4015 40/30  60/40
Tree size Tree size
(a) Hopper (b) Walker 2d

Mean Episode Return
o o =
©» © ©o

Mean Episode Return
o o =
® © o

o c
3

i 07 ! |
06 ! 06 |
05 1055 20/10 4015  40/30  60/40 0 1055 2010 40115  40/30  60/40
Tree size Tree size
(c) Pressure C2H4 (d) Rain

Fig. 11. Distributions of the accumulated reward over the 50 trials for different maximum tree sizes, each
corresponding to a vertical line. On each vertical, the 50 trial results are binned in five intervals. Each bin
is then displayed as a circle at height equal to the average value of the bin and of size proportionate to the
number of results in the bin. The dashed line represents the lowest and highest return obtained over the 50
trials. The maximum tree size indicated on the x-axis (e/e) depicts the maximum size for the high-level tree
(left) and low-level trees (right).

Table 3. Final Mean Performance (+ std) of Our Method with and without
GRU to Capture Temporal Information

Robot Control VAM Plant
Method Half Cheetah ~ Hopper =~ Walker 2d Ant Pressure AcOH Pressure C2H4 Day/Night Rain
ilL-e 3,922+655 3,099+541  4,622+608 3,563+404 0.54+0.14 0.49+0.11 0.41+0.09  0.59£0.12
ilL-re 5,582+877 4,925+489 8,348+818 4,884+862 0.75+0.13 0.92+0.15 0.66+0.07  0.85%0.13
ilL-e (no GRU) 3,151+312 2,712+418  4,211+284  3,042+511 0.51+0.13 0.39+0.12 0.38+0.09  0.56%0.11
ilL-re (no GRU) 5,120+918 4,486+453  7,543£704 4,684+752 0.71+0.13 0.79+0.17 0.60+£0.11  0.81£0.12

Averages over 10 runs.

performance of the method with and without the GRU to determine the extent to which the GRU is
necessary for capturing temporal information of explanations. The results of the ablation analysis
(Table 3) show that the version of the method with a GRU significantly outperforms the version
without a GRU on all tasks. Specifically, the version with the GRU achieves higher final mean per-
formance. These results suggest that a GRU is an important component of the method and is useful
for capturing the temporal information. One compelling reason for the effectiveness of the GRU is
the model’s ability to recall previous explanations. By recalling previous explanations, our method
can aggregate several explanations that can guide the agent’s exploration. This is because when
acting, the agent should account for previous actions and states visited, which can be captured
by the GRU. Overall, the results of the ablation analysis demonstrate the importance of using the
GRU for aggregating explanations.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:24 N. Bougie et al.

Table 4. Final Mean Performance (+ std) of Our Method Trained with
Different Learning Algorithms (TRPO and A2C)

Robot Control VAM Plant
Method Half Cheetah ~ Hopper Walker 2d Ant Pressure AcOH Pressure C2H4 Day/Night Rain
iIL(TRPO)  4,123+1,012  4,623+711 8,223+1,003 4,398+913 0.68+0.16 0.91+0.14 0.60+0.12  0.79+0.15
ilL(A2C) 5,730+788 5,540+505  8,525+818  5,019+699 0.77+0.12 0.91+0.15 0.64+0.08  0.83+0.15
ilL(PPO) 5,582+877 4,925+489  8,348+818  4,884+862 0.75%0.13 0.92+0.15 0.66+0.07  0.85+0.13
PPO 3,470+185 2,522+596  2,420+483  2.954+850 0.49+0.12 0.40+0.16 0.0+0.01  0.37%0.05
GAIL 4,144+682 3,490 £829 6,998+1,176  4,371+809 0.63+0.09 0.68+0.08 0.62+0.10  0.63+0.13

Averages over 10 runs.

4.4.8 Learning Algorithm. To further evaluate the effectiveness and generalizability of the pro-
posed method, we performed experiments with two additional RL algorithms: Trust Region Pol-
icy Optimization (TRPO) [74] and Advantage Actor-Critic (A2C) [59]. For both algorithms,
we used the same architecture and hyperparameters as in the PPO experiments, except for the spe-
cific changes required to accommodate each algorithm. The results of the experiments (Table 4)
highlight that our method is effective with different RL algorithms, achieving similar or better per-
formance compared to the baseline methods. We can further observe that in some tasks, ilL(A2C)
could achieve higher final mean performance than iIL(PPO). Notably, the proposed method trained
with TRPO and PPO achieved similar performance; however, PPO is more stable than TRPO. When
trained with A2C, we noticed a significant improvement in the learning efficiency compared to
PPO trained with the original reward signal. These findings indicate that the proposed method is
not constrained to a particular reinforcement learning algorithm and can be applied to different
algorithms with similar effectiveness. This highlights the versatility of ilL. and its potential to be
utilized in a wide variety of RL applications.

4.4.9 Manual Reward Fine-tuning. In some reinforcement learning applications, the reward
function provided by the environment may not be sufficient to achieve the desired behavior or
performance. In these cases, a human can manually modify the symbolic reward function to guide
the agent toward the desired behavior. Here we discuss the process of manually fine-tuning the
reward function and how it can be used to improve the performance of the agent. We should em-
phasize that the interpretability of the learned reward is a crucial aspect that empowers humans to
take an active role in guiding the agent’s behavior. The process of manually modifying the reward
function involves adjusting the weights and symbols of the reward function to prioritize certain
objectives or penalize certain behaviors. This can be done by analyzing the agent’s behavior and
identifying areas where it can be improved. Specifically, synthesized symbolic rewards are not only
readable to human users but also interactive, allowing non-expert users with a basic understanding
of the task to diagnose and make edits to improve their performance.

To demonstrate this, we asked three humans to read, interpret, and edit symbolic rewards to
improve their performance. For example, if the agent is exhibiting risky behavior, then the penalty
for taking risky actions can be increased to discourage such behavior. However, if the agent is not
exploring the environment enough, then the weights of branches corresponding to exploration can
be increased to encourage exploration. Symbols can further be modified or deleted according to
the human’s intention. To enable interactive fine-tuning, there were seven rounds of fine-tuning
for each reward. Specifically, we performed a case study on Hopper and Walker 2d. In Hopper,
we noticed that humans manually fine-tuned the reward function by increasing the weight of
the branch of the symbolic tree that encourages the agent to go further, while decreasing the
weight of a branch of the tree that dissuades large action values. In Walker 2d, performance could
be enhanced by pruning a branch of the tree that encouraged too-high velocity, making early

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:25

Table 5. Final Mean Performance (+ std) of Our
Method Trained Using the Original Symbolic
Reward and the Fine-tuned Version

Robot Control

Method Hopper  Walker 2d
ilL-e 3,099+541 4,622+608
ilL-re 4,925+489 8,348+818

ilL-e (fine-tuned)  3,242+518 5,110+587

ilL-re (fine-tuned) 5,349+466 8,531+823
We asked each of the three humans to modify two
symbolic trees that were discovered via iIL. There were
five rounds to enable humans to visualize their changes.
Averages over 10 runs.

exploration too challenging. A few other constants were adjusted to improve the symbolic reward.
The results can be found in Table 5. Overall, after a few iterations of modifying the reward function
and analyzing the agent’s behavior, we were able to achieve a significant improvement in the
agent’s performance. We discuss limitations and possible areas of improvement in Section 5.

4.4.10 Reward Fine-tuning via Human Preferences. As an alternative to directly modifying the
symbolic reward, it is possible to act on the generator network to generate symbolic rewards more
aligned with the demonstrator’s intention. As a proof of concept, we propose to fine-tune the gen-
erator model with human preferences. That is, following Christiano et al. [11], we asked human
labellers to pick the most suitable symbolic reward for given short trajectories. Namely, the human
overseer was given two short trajectory segments, in the form of short movie clips (60 frames) with
their associated rewards. The human overseer could see five short clips and then was requested to
rank the two symbolic rewards. We then derived a new expert cost function in the form of a pref-
erence predictor, similarly to a previous work [11]. The generator network was then fine-tuned
using those preference-based rewards so that the generated trees will maximize the preference-
based rewards. In this set of experiments, we collected a total of 300 preferences. As shown in
Table 6, there is a large gap between original and fine-tuned models. Besides, experimental results
verify that the fine-tuned model aligns better with human judgment than the original model, ef-
fectively distilling human’s intention. We can further observe that preference-based fine-tuning
could achieve slightly higher performance than manual reward fine-tuning (Section 4.4.9), which
suggests that human preferences are an effective way of fine-tuning iIL.

4.4.11 Predicting Agent Behavior via Reward Parsing. As mentioned above, parsing symbolic
rewards offers the potential to understand and predict the agent’s behavior. To demonstrate this
potential, we designed an ablation analysis based on Pressure AcOH, Pressure C2H4, Day/Night,
and Rain tasks. We collected trajectories of agents trained with symbolic and/or extrinsic rewards.
Then, we asked three humans to compare pairs of final states—a true final state and a negative
final state, and judge which states was the most likely to be reached given the reward used to
train the corresponding agent. In summary, humans were shown pairs of final states (50 pairs),
and were requested to pick the most likely state to be reached given the reward used to train the
agent. We report in Figure 12 the accuracy for (1) symbolic and (2) extrinsic rewards. Experimental
results demonstrate that the symbolic reward-trained agents had a significantly higher agreement
rate with the human evaluators compared to the extrinsic reward-trained agents. The results sug-
gest that parsing symbolic rewards can improve the interpretability and predictability of agent

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:26 N. Bougie et al.

Table 6. Final Mean Performance (+ std) of Our Method Trained
Using the Original Symbolic Reward and the Fine-tuned Version via
Human Preferences

Robot Control VAM Plant

Method Hopper Walker 2d
ilL-e 3,099+541 4,622+608
ilL-re 4,925+489 8,348+818
ilL-e (manually fine-tuned) 3,242+518 5,110+587

ilL-re (manually fine-tuned) 5,349+466 8,531+823
ilL-e (preference fine-tuned) 3,429+542 5,594+602
ilL-re (preference fine-tuned) 5,621+499 8,778+788

We also report results of manual fine-tuning obtained in Section 4.4.9.
Averages over 10 runs.

1.0 = lLre
Extrinsic
0.8
30.6 { ‘ '
©
5
3
<04
0.2
0.0 - "
Pressure AcOH Pressure C2H4 Day/Night Rain

Task

Fig. 12. Accuracy for behavior prediction for our method and using extrinsic rewards. We report the results
averaged for three humans and 50 comparisons for each.

behavior, enabling humans to better understand and control the behavior of Al systems. One pos-
sible reason for this difference in performance is that symbolic rewards provide a more granular
and transparent framework for designing and evaluating reward functions. In contrast, extrinsic
rewards may be more complex and difficult for humans to understand, as they often involve indi-
rect and implicit incentives that may not be directly aligned with the task objectives. Overall, our
study highlights the potential of symbolic reward parsing as a valuable tool for understanding and
predicting agent behaviors. We further discuss this question and future work in Section 5.

5 DISCUSSION

Our work takes a step toward achieving interpretable imitation learning. We have constructed
a mechanism based on symbolic rewards and showed that the method can help exploration in
challenging sparse-reward environments. The symbolic reward functions learned by using our
method exhibit significantly fewer operators compared to standard DNN methods. The experi-
ments demonstrate the effectiveness of this approach by achieving improvements on notoriously
difficult tasks such as controlling a chemical plant under disturbances. Notably, iIL could scale to
real-world applications including tasks featuring complex dynamics and large state—action spaces.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:27

They also clearly demonstrate the benefits of iIL to improve sample efficiency in RL, including in
safety-critical applications. Other advantages of the proposed symbolic method lie in the compact-
ness of the discovered rewards as well as their verifiably and interpretability.

It can be observed that manually verifying the reward model is a tedious task in tasks featuring
a large number of parameters. Despite our efforts to reduce human involvement, the most com-
plex tasks still require more feedback than we would like. Therefore, minimizing the amount of
data required for verifying the reward function or developing new types of automatic verification
remains an important direction to explore. Future work should explicitly consider how easy it is
for a human to verify a reward function. In the remainder of the discussion section, we further
discuss possible methods to reduce human effort, such as visualization tools of the rewards or
counterfactual explanations.

That being said, we acknowledge that our approach has certain limitations and potential av-
enues for future research. As shown in Section 4.4.1, the learned symbolic reward functions are
relatively easy to parse and understand for a human. However, if the tree size becomes very large,
then it may become difficult for a human to quickly inspect the reward function. The complexity
of the symbolic reward trees is defined in terms of the maximum number of features and com-
plexity of the operators. As shown in the Appendix, we selected simple operators to ensure that
insights can be gleaned at inspection—without relying on complex analysis. Besides, we set the
maximum length to 40 and 15 for high-level trees and low-level trees, respectively. Setting this
parameter is a tradeoff between accuracy and interpretability. As long as the length of the trees
remains within an acceptable range, we argue that iIL is drastically easier to understand for a hu-
man compared to DNN-based methods that involve thousands of nested operators and non-linear
transformations. To facilitate the parsing of the symbolic rewards, we are interested in building
a visualization framework, but we leave it to future work. For instance, the framework may high-
light which branches in the tree are executed based on the input and logic operators being used in
the tree. We also anticipate generating short textual descriptions of the reward function by parsing
the symbolic tree, which can be provided to a human. Such a description may include the weight
of each input variable on the final prediction, providing to the operator a method to grasp the
importance of the features at each timestep.

Since iIL involves several learnable components, hyperparameter tuning can be a non-trivial
task given the number of hyperparameters that need to be tuned. We agree that this is a poten-
tial limitation that may affect the performance of the method. In our experiments, we conducted
a simple hyperparameter tuning process to obtain a set of hyperparameters that achieve good
performance across multiple tasks. Nonetheless, we acknowledge that the optimal set of hyper-
parameters may vary depending on the specific task and the characteristics of the environment.
Therefore, automatically adjusting the maximum length of high-level and low-level trees is an im-
portant direction that we are willing to explore to reduce the burden of parameter tuning. One
way would be to dynamically adjust maximum lengths based on the training signal. Ideally, we
would want maximum tree lengths to automatically increase in complex environments to enable
the discovery of complex symbolic rewards, but we leave it to future work to explore this direction
further.

As mentioned above, an important interpretability feature of symbolic rewards is the possibility
to be parsed by a human to understand and predict the agent’s behavior. In Section 4.4.10, we
suggest that iIL is a versatile first step toward understanding agent behaviors. The reward for
a state can be explained factually by visualizing the symbolic tree. However, it is argued that a
more natural [49] and persuasive [91] form of explanation is the counterfactual, which provides
reasons why an alternative outcome does not occur instead. In ongoing work, we want to continue
to explore the potential of predicting agent behaviors, refining and expanding our methods of

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:28 N. Bougie et al.

analysis, and evaluating the model in more challenging environments. This involves evaluating
counterfactual (symbolic) explanations for the generated rewards and building visualization tools.
To further extend this research, future work should focus on evaluating the ability of humans to
predict agent behaviors via reward parsing on a more extensive range of tasks and a larger number
of human participants.

One may notice that the choice of suitable operators is an important aspect of symbolic regres-
sion. The choice of the elementary functions used by iIL can significantly affect the performance
of the method. Optimizing the operator set is not the main objective of this work. Therefore, we
used a rather small, yet sufficient set of elementary operators consisting of arithmetic and logic
operators. One avenue for research is to automatically ground the operators to adapt iIL to the
target domain.

Another question is the computational complexity of the method. The time needed for training
the generators ranges from several seconds to a few minutes for a very large number of training
epochs. However, the running time of the algorithm increases linearly with the input size. To ac-
celerate the training under this setting, we introduced a hierarchical decomposition of the reward
function. By analyzing the flat and hierarchical approaches, we observed that the latter improves
both the prediction accuracy of the reward as well as the training speed. In this article, we trained
the model with relatively large inputs (>100) and found that iIL remains significantly faster than
training PPO to achieve similar final performance. Therefore, we argue that the computational
overload is acceptable in comparison with the benefits offered by the proposed approach.

An avenue for research is a qualitative evaluation of symbolic rewards that should be inves-
tigated more deeply. While our experiments allowed us to quantitatively demonstrate that the
symbolic rewards can help the agent to learn, it remains challenging to qualitatively evaluate the
discovered rewards. In Section 4.4.1, we show two examples of symbolic rewards; however, we
acknowledge that it would be necessary to qualitatively evaluate a larger number of discovered
symbolic rewards. Asking human experts to rate the rewards may be a solution. Another solution
for qualitative evaluation is to ask experts to design rewards and then compare them with the
discovered symbolic rewards. This research direction is left for future work.

Another exciting future direction is to evaluate the proposed method on physical robots and
plants. In this article, we focused on simulations that reflect real-world characteristics to verify
our approach. Namely, we carefully considered scenarios as close as possible to reality. Based on
the presented results, we can expect our method to benefit in sample efficiency and to significantly
reduce the number of interactions. While testing on real robots would be ideal for pragmatic appli-
cations, due to practical limitations we leave this direction for future work. In addition, we aspire
to expand the evaluation of our method to more diverse environments such as game playing, three-
dimensional navigation, or traffic simulation.

As discussed in the Introduction, a key motivation in discovering interpretable rewards from
expert data is to enable humans to modify or improve the reward. By doing so, prior knowledge
about the task can be distilled, and the behavior of the agent can be adjusted to quickly reach the
goal being pursued. In contrast, deep neural network approaches are generally impossible to use
in cooperation with humans. As a first step toward achieving this goal, we presented an algorithm
to discover symbolic rewards from expert data. In this work, we focus on the method to discover
these interpretable rewards, and we have demonstrated that the symbolic rewards can be parsed
by a human. In Section 4.4.9, we presented an ablation study to demonstrate how a human could
improve and fine-tune the learned symbolic reward function. As shown, manually fine-tuning
the reward function can be effective; however, we also acknowledge that interactive fine-tuning
can be a time-consuming task. In the future, we anticipate fine-tuning the generator via human
preferences [11]. Rather than directly modifying the reward function, it may be possible to achieve

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:29

the desired agent behavior by leveraging human preferences and reinforcement learning. Such an
idea has been recently introduced for fine-tuning large language models [103]. In Section 4.4.10,
we presented a proof of concept where the generator is fine-tuned with a small amount of human
preferences. We believe that similar approaches hold great potential in fine-tuning iIL, where the
learned reward function can be better aligned with the human’s preferences without the need to
directly handcraft the symbolic reward. This article merely hints at the potential applications for
a symbolic reward, applications that we aim to exploit more fully in future work.

6 CONCLUSION

Standard imitation learning approaches have provided a significant speedup in the training pro-
cess. However, they generally rely on DNN models, which entails that it is hard to explain what
knowledge the models has learned from expert data, and they cannot be verified or improved by
a human. To bridge this gap, we propose to learn a surrogate symbolic reward function from an
expert cost function. Namely, we propose to train an autoregressive RNN to generate symbols that
together represent a tree. To deal with large state—action spaces, we present a hierarchical decom-
position of the reward function. We further introduce a mechanism that extracts explanations by
leveraging the structure of the tree to enrich the reward signal. We demonstrate the approach on
two sets of control tasks, achieving similar or better performance than DNN-based IRL models
in terms of average return and sample efficiency. In addition, the experiments showed that the
learned symbolic rewards can be used in cooperation with a human. Namely, a human expert can
(1) modify or improve the reward and (2) glean important features of the environment by parsing
the reward. The results suggest that symbolic rewards can be a strong alternative to NN-based IRL
models, especially when human interpretability is of utmost importance.

APPENDIX
A SYMBOLIC REWARD TREES

The list of operators being used in our experiments is described in the table below. For describing
the operators, we use a, b, and ¢ as the name of the input(s), which are respectively the first, second,
and third inputs of the operator (depending on the arity).

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



4:30 N. Bougie et al.

Operator (name) Arity Type Description
add 2 arithmetic a+b (sum)

sub 2 arithmetic a-b (subtraction)

mul 2 arithmetic axs b (multiplication)

div 2 arithmetic a/b (division)

cos 1 arithmetic Trigonometric cosine

sin 1 arithmetic Trigonometric sine

tan 1 arithmetic Trigonometric tangent

exp 1 arithmetic Exponential

log 1 arithmetic Natural logarithm

sqrt 1 arithmetic Square-root

n2 1 arithmetic a raised to power 2

neg 1 arithmetic Numerical Negative

abs 1 arithmetic Absolute value

tanh 1 arithmetic Hyperbolic tangent

inv 1 arithmetic Reciprocal

min 2 arithmetic Minimum of a and b

max 2 arithmetic Maximum of a and b

dist 2 arithmetic Absolute distance between a and b
div_by_10 1 arithmetic Divide a by 10.0

mult_by_10 1 arithmetic Multiply a by 10.0

binom 1 arithmetic Binomial

is_negative 1 logic Return 1 if a is negative or 0
is_positive 1 logic Return 1 if a is positive or 0
greater_than 2 logic Return 1 if a is greater than b
smaller_than 2 logic Return 1 if a is smaller than b
equal_to 2 logic Return 1 if a is equal to b

or 2 logic Logical AND between a and b
and 2 logic Logical OR between a and b

if then_else 3 logic Return a if the condition c is True and b otherwise

REFERENCES

[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. 2018. Sanity checks for
saliency maps. Adv. Neural Inf. Process. Syst. 31 (2018), 9525-9536.

[2] Ahmed M. Alaa and Mihaela van der Schaar. 2019. Demystifying black-box models with symbolic metamodels. Adv.
Neural Inf. Process. Syst. 32 (2019), 11304-11314.

[3] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifiable reinforcement learning via policy extraction.
Adv. Neural Inf. Process. Syst. 31 (2018), 2499-2509.

[4] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. 2017. Neural optimizer search with reinforcement learn-
ing. In International Conference on Machine Learning. PMLR, 459-468.

[5] Tom Bewley and Jonathan Lawry. 2021. Tripletree: A versatile interpretable representation of black box agents and
their environments. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 11415-11422.

[6] Benjamin Beyret, Ali Shafti, and A. Aldo Faisal. 2019. Dot-to-dot: Explainable hierarchical reinforcement learning
for robotic manipulation. In Proceedings of the IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS °19). IEEE, 50145019,

[7] Nicolas Bougie and Ryutaro Ichise. 2020. Exploration via progress-driven intrinsic rewards. In Artificial Neural

Networks and Machine Learning—Proceedings of the 29th International Conference on Artificial Neural Networks

(ICANN’20). Springer, 269-281.

Nicolas Bougie and Ryutaro Ichise. 2020. Skill-based curiosity for intrinsically motivated reinforcement learning.

Mach. Learn. 109 (2020), 493-512.

—
[o)
=

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.



Interpretable Imitation Learning with Symbolic Rewards 4:31

[9] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. 2019. Exploration by random network distillation. In
International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=H11JJnR5Ym

[10] Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Trans-
lation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP’14), 1724—
1734.

[11] Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. 2017. Deep reinforcement
learning from human preferences. Advances in Neural Information Processing Systems 30, (2017).

[12] Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, Ann Nowé, Tim Miller, Rosina Weber, and Daniele Magazzeni.
2019. Distilling deep reinforcement learning policies in soft decision trees. In Proceedings of the IJCAI Workshop on
Explainable Artificial Intelligence. 1-6.

[13] Sam Devlin and Daniel Kudenko. 2011. Theoretical considerations of potential-based reward shaping for multi-agent
systems. In Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems. ACM,
225-232.

[14] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam, and Payel Das.
2018. Explanations based on the missing: Towards contrastive explanations with pertinent negatives. Adv. Neural
Inf. Process. Syst. 31 (2018).

[15] Marco Dorigo and Marco Colombetti. 1994. Robot shaping: Developing autonomous agents through learning. Artif.
Intell. 71, 2 (1994), 321-370.

[16] Filip Karlo Dosilovi¢, Mario Br¢i¢, and Nikica Hlupi¢. 2018. Explainable artificial intelligence: A survey. In Proceedings
of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO ’18). IEEE, 0210-0215.

[17] Mengnan Du, Ninghao Liu, and Xia Hu. 2019. Techniques for interpretable machine learning. Commun. ACM 63, 1
(2019), 68-77.

[18] Saso Dzeroski, Luc De Raedt, and Kurt Driessens. 2001. Relational reinforcement learning. Mach. Learn. 43, 1 (2001),
7-52.

[19] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2009. Visualizing higher-layer features of a
deep network. University of Montreal 1341, 3 (2009), 1.

[20] Chelsea Finn, Sergey Levine, and Pieter Abbeel. 2016. Guided cost learning: Deep inverse optimal control via policy
optimization. In International Conference on Machine Learning. PMLR, 49-58.

[21] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. 2018. Counterfac-
tual multi-agent policy gradients. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[22] Eli Friedman and Fred Fontaine. 2018. Generalizing across multi-objective reward functions in deep reinforcement
learning. arXiv:1809.06364. Retrieved from https://arxiv.org/abs/1809.06364

[23] Artur d’Avila Garcez, Aimore Resende Riquetti Dutra, and Eduardo Alonso. 2018. Towards symbolic reinforcement
learning with common sense. arXiv:1804.08597. Retrieved from https://arxiv.org/abs/1804.08597

[24] Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. 2016. Towards deep symbolic reinforcement learning.
arXiv:1609.05518. Retrieved from https://arxiv.org/abs/1906.05518

[25] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. 2018. Explaining expla-
nations: An overview of interpretability of machine learning. In Proceedings of the IEEE 5th International Conference
on Data Science and Advanced Analytics (DSAA °18). IEEE, 80-89.

[26] Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, and Wulong Liu. 2021. A survey
on interpretable reinforcement learning. arXiv preprint arXiv:2112.13112 (2021).

[27] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. Counterfactual visual explanations.
In International Conference on Machine Learning. PMLR, 2376-2384.

[28] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. 2016. Variational intrinsic control. arXiv:1611.07507. Re-
trieved from https://arxiv.org/abs/1611.07507

[29] Marek Grzes and Daniel Kudenko. 2008. Learning potential for reward shaping in reinforcement learning with tile
coding. In Proceedings AAMAS Workshop on Adaptive and Learning Agents and Multi-Agent Systems (ALAMAS-ALAg
08). 17-23.

[30] Wenbo Guo, Xian Wu, Usmann Khan, and Xinyu Xing. 2021. Edge: Explaining deep reinforcement learning policies.
Adv. Neural Inf. Process. Syst. 34 (2021), 12222-12236.

[31] Bradley Hayes and Julie A. Shah. 2017. Improving robot controller transparency through autonomous policy expla-
nation. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction. IEEE, 303-312.

[32] Lei He, Nabil Aouf, and Bifeng Song. 2021. Explainable deep reinforcement learning for UAV autonomous path
planning. Aerosp. Science Technol. 118 (2021), 107052.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.


https://openreview.net/forum?id=H1lJJnR5Ym
https://arxiv.org/abs/1809.06364
https://arxiv.org/abs/1804.08597
https://arxiv.org/abs/1906.05518
https://arxiv.org/abs/1611.07507

4:32 N. Bougie et al.

[33] Daniel Hein, Steffen Udluft, and Thomas A. Runkler. 2018. Interpretable policies for reinforcement learning by ge-
netic programming. Eng. Appl. Artif. Intell. 76 (2018), 158-169.

[34] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew
Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John Agapiou, Joel Z. Leibo, and Audrunas Gruslys. 2018. Deep Q-
learning from demonstrations. In Proceedings of the Annual Meeting of the Association for the Advancement of Artificial
Intelligence.

[35] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning. In Proceedings of Advances in Neural
Information Processing Systems. 4565-4573.

[36] Alihan Hityiik, Daniel Jarrett, Cem Tekin, and Mihaela Van Der Schaar. 2021. Explaining by imitating: Understanding
decisions by interpretable policy learning. In International Conference on Learning Representations.

[37] Zoe Juozapaitis, Anurag Koul, Alan Fern, Martin Erwig, and Finale Doshi-Velez. 2019. Explainable reinforcement
learning via reward decomposition. In IJCAI/ECAI Workshop on Explainable Artificial Intelligence.

[38] Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Frangois Charton. 2022. End-to-end symbolic
regression with transformers. Advances in Neural Information Processing Systems 35, (2022), 10269-10281.

[39] Jinkyu Kim and Mayank Bansal. 2020. Attentional bottleneck: Towards an interpretable deep driving network. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 322-323.

[40] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T. Schiitt, Sven Dahne, Dumitru
Erhan, and Been Kim. 2019. The (un) reliability of saliency methods. In Explainable Al: Interpreting, Explaining and
Visualizing Deep Learning. Springer, 267-280.

[41] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv:1412.6980. Retrieved
from https://arxiv.org/abs/1412.6980

[42] Mikel Landajuela, Brenden K. Petersen, Sookyung Kim, Claudio P. Santiago, Ruben Glatt, Nathan Mundhenk, Jacob F.
Pettit, and Daniel Faissol. 2021. Discovering symbolic policies with deep reinforcement learning. In International
Conference on Machine Learning. PMLR, 5979-5989.

[43] Sebastian Lapuschkin, Stephan Wéldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Miiller. 2019. Unmasking Clever Hans predictors and assessing what machines really learn. Nat. Commun. 10,
1(2019), 1-8.

[44] Adam Daniel Laud. 2004. Theory and Application of Reward Shaping in Reinforcement Learning. Ph.D. Dissertation.
Advisor(s) Dejong, Gerald. AAI3130966.

[45] Matteo Leonetti, Luca Iocchi, and Peter Stone. 2016. A synthesis of automated planning and reinforcement learning
for efficient, robust decision-making. Artif. Intell. 241 (2016), 103-130.

[46] Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol, Marcello Restelli, and Danilo Romano.
2020. Combining reinforcement learning with rule-based controllers for transparent and general decision-making
in autonomous driving. Robot. Auton. Syst. 131 (2020), 103568.

[47] Zhengxian Lin, Kin-Ho Lam, and Alan Fern. 2021. Contrastive explanations for reinforcement learning via embed-
ded self predictions. In International Conference on Learning Representations. Retrieved from https://openreview.net/
forum?id=Ud3DSz72nYR

[48] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. 2020. Explainable ai: A review of machine
learning interpretability methods. Entropy 23, 1 (2020), 18.

[49] Peter Lipton. 1990. Contrastive explanation. Roy. Inst. Philos. Suppl. 27 (1990), 247-266.

[50] Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. 2019. Toward interpretable deep reinforcement learning
with linear model u-trees. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery
in Databases (ECML PKDD ’18). Springer, 414-429.

[51] Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. Adv. Neural Inf. Process.
Syst. 30 (2017).

[52] Ronny Luss, Amit Dhurandhar, and Miao Liu. 2022. Interpreting reinforcement policies through local behaviors.
Retrieved from https://openreview.net/forum?id=7qaCQiuOVf

[53] Yuta Machida, Shigeki Ootakara, Hiroya Seki, Yoshihiro Hashimoto, Manabu Kano, Yasuhiro Miyake, Naoto Anzai,
Masayoshi Sawai, Takashi Katsuno, and Toshiaki Omata. 2016. Vinyl Acetate Monomer (VAM) plant model: A new
benchmark problem for control and operation study. Proc. I[FAC Symp. Dynam. Contr. Process Syst. Incl. Biosyst. 49, 7
(2016), 533-538.

[54] Ofir Marom and Benjamin Rosman. 2018. Belief reward shaping in reinforcement learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 32.

Bhaskara Marthi. 2007. Automatic shaping and decomposition of reward functions. In Proceedings of the 24th Inter-

national Conference on Machine Learning. 601-608.

Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles Kamhoua, Evangelos E Papalexakis,

and Fei Fang. 2023. MAVIPER: Learning decision tree policies for interpretable multi-agent reinforcement learning.

(55

=

(56

—

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.


https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=Ud3DSz72nYR
https://openreview.net/forum?id=7qaCQiuOVf

Interpretable Imitation Learning with Symbolic Rewards 4:33

[57
[58
[59
[60
[61
[62

[63

[64

(65
(66
[67
[68
[69

[70

[71
[72
[73
[74
[75
[76

[77

[78

[79

[80

In Proceedings of the Machine Learning and Knowledge Discovery in Databases: European Conference (ECML PKDD’22).
Springer, 251-266.

] Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. 2021. Ella: Exploration through learned language ab-
straction. Adv. Neural Inf. Process. Syst. 34 (2021), 29529-29540.

] Melanie Mitchell. 1998. An Introduction to Genetic Algorithms. MIT Press.

] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David
Silver, and Koray Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement learning. In Proceedings of the
International Conference on Machine Learning. 1928—1937.

] Christoph Molnar. 2020. Interpretable Machine Learning. Lulu.com.

] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Miiller. 2018. Methods for interpreting and understanding
deep neural networks. Digit. Sign. Process. 73 (2018), 1-15.

] Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo Jimenez Rezende. 2019. Towards
interpretable reinforcement learning using attention augmented agents. Adv. Neural Inf. Process. Syst. 32 (2019).

] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. 2018. Overcoming explo-
ration in reinforcement learning with demonstrations. In Proceedings of the IEEE International Conference on Robotics
and Automation. 6292-6299.

] Menghai Pan, Weixiao Huang, Yanhua Li, Xun Zhou, and Jun Luo. 2020. XGAIL: Explainable generative adversarial
imitation learning for explainable human decision analysis. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 13344A$1343.

] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. 2017. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning. PMLR, 2778-2787.

] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient neural architecture search via param-
eters sharing. In International Conference on Machine Learning. PMLR, 4095-4104.

] Gregory Plumb, Denali Molitor, and Ameet S Talwalkar. 2018. Model agnostic supervised local explanations. Ad-
vances in Neural Information Processing Systems 31 (2018).

] Erika Puiutta and Eric Veith. 2020. Explainable reinforcement learning: A survey. In International Cross-domain Con-
ference for Machine Learning and Knowledge Extraction. Springer, 77-95.

] Jette Randlev and Preben Alstrem. 1998. Learning to drive a bicycle using reinforcement learning and shaping. In
International Conference on Machine Learning (ICML *98), Vol. 98. 463-471.

] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why Should I Trust You?”: Explaining the Predictions
of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’16). Association for Computing Machinery, 1135-1144.

] Cynthia Rudin. 2019. Stop explaining black box machine learning models for high stakes decisions and use inter-
pretable models instead. Nat. Mach. Intell. 1, 5 (2019), 206-215.

] Subham Sahoo, Christoph Lampert, and Georg Martius. 2018. Learning equations for extrapolation and control. In
International Conference on Machine Learning. PMLR, 4442-4450.

] Christoph Salge, Cornelius Glackin, and Daniel Polani. 2014. Empowerment—An introduction. In Guided Self-
Organization: Inception, 67-114.

] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. 2015. Trust region policy opti-
mization. In International Conference on Machine Learning. PMLR, 1889-1897.

] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization
algorithms. arXiv:1707.06347. Retrieved from https://arxiv.org/abs/1707.06347

] Pedro Sequeira and Melinda Gervasio. 2020. Interestingness elements for explainable reinforcement learning: Under-
standing agents’ capabilities and limitations. Artif. Intell. 288 (2020), 103367.

] Hassam Ullah Sheikh, Shauharda Khadka, Santiago Miret, Somdeb Majumdar, and Mariano Phielipp. 2022. Learning
intrinsic symbolic rewards in reinforcement learning. In International Joint Conference on Neural Networks ([JCNN’22).
1-8. DOI: https://doi.org/10.1109/IJCNN55064.2022.9892256

] Tianmin Shu, Caiming Xiong, and Richard Socher. 2018. Hierarchical and interpretable skill acquisition in multi-task
reinforcement learning. In International Conference on Learning Representations. Retrieved from https://openreview.
net/forum?id=SJJQVZWO0b

] Andrew Silva and Matthew Gombolay. 2019. Neural-encoding human experts’ domain knowledge to warm start
reinforcement learning. arXiv:1902.06007. Retrieved from https://arxiv.org/abs/1902.06007

] Sarath Sreedharan, Utkarsh Soni, Mudit Verma, Siddharth Srivastava, and Subbarao Kambhampati. 2022. Bridging
the Gap: Providing post-hoc symbolic explanations for sequential decision-making problems with inscrutable rep-
resentations. In The 10th International Conference on Learning Representations (ICLR’22). OpenReview.net. Retrieved
from https://openreview.net/forum?id=o-1v9hdSult

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.


https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/IJCNN55064.2022.9892256
https://openreview.net/forum?id=SJJQVZW0b
https://arxiv.org/abs/1902.06007
https://openreview.net/forum?id=o-1v9hdSult

4:34 N. Bougie et al.

[81] Mohan Sridharan, Michael Gelfond, Shiqi Zhang, and Jeremy Wyatt. 2015. A refinement-based architecture for
knowledge representation and reasoning in robotics. arXiv:1508.03891. Retrieved from https://arxiv.org/abs/1508.
03891

[82] Alexander L. Strehl and Michael L. Littman. 2008. An analysis of model-based interval estimation for Markov decision
processes. J. Comput. Syst. Sci. 74, 8 (2008), 1309-1331.

[83] Aaquib Tabrez and Bradley Hayes. 2019. Improving human-robot interaction through explainable reinforcement
learning. In Proceedings of the 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI '19). IEEE,
751-753.

[84] Yujin Tang, Duong Nguyen, and David Ha. 2020. Neuroevolution of self-interpretable agents. In Proceedings of the
Genetic and Evolutionary Computation Conference. 414-424.

[85] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine for model-based control. In Proceedings
of the IEEE/RS] International Conference on Intelligent Robots and Systems. IEEE, 5026-5033.

[86] Nicholay Topin and Manuela Veloso. 2019. Generation of policy-level explanations for reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 2514-2521.

[87] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 11 (2008).

[88] Jasper van der Waa, Jurriaan van Diggelen, Karel van den Bosch, and Mark Neerincx. 2018. Contrastive explanations
for reinforcement learning in terms of expected consequences. arXiv:1807.08706. Retrieved from https://arxiv.org/
abs/1807.08706

[89] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. 2018. Programmat-
ically interpretable reinforcement learning. In International Conference on Machine Learning. PMLR, 5045-5054.

[90] Marco Virgolin, Andrea De Lorenzo, Francesca Randone, Eric Medvet, and Mattias Wahde. 2021. Model learning
with personalized interpretability estimation (ml-pie). In Proceedings of the Genetic and Evolutionary Computation
Conference Companion. 1355-1364.

[91] Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual explanations without opening the black
box: Automated decisions and the GDPR. Harv. JL Tech. 31 (2017), 841.

[92] Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu. 2020. Shapley g-value: A local reward approach to solve
global reward games. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 7285-7292.

[93] Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn. 8, 3 (1992), 229-256.

[94] Bohan Wu, Jayesh K. Gupta, and Mykel Kochenderfer. 2020. Model primitives for hierarchical lifelong reinforcement
learning. Auton. Agents Multi-Agent Syst. 34, 1 (2020), 1-38.

[95] Yueh-Hua Wu and Shou-De Lin. 2018. A low-cost ethics shaping approach for designing reinforcement learning
agents. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[96] H. Peyton Young. 1985. Monotonic solutions of cooperative games. Int. . Game Theory 14, 2 (1985), 65-72.

[97] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2022. Explainability in graph neural networks: A taxonomic
survey. IEEE Trans. Pattern Anal. Mach. Intell. (2022).

[98] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. 2016. Graying the black box: Understanding dqns. In International
Conference on Machine Learning. PMLR, 1899-1908.

[99] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, [gor Babuschkin, Karl Tuyls, David Reichert,
Timothy Lillicrap, Edward Lockhart, et al. 2019. Deep reinforcement learning with relational inductive biases. In
International Conference on Learning Representations.

[100] Haodi Zhang, Zihang Gao, Yi Zhou, Hao Zhang, Kaishun Wu, and Fangzhen Lin. 2019. Faster and safer training by
embedding high-level knowledge into deep reinforcement learning. arXiv:1910.09986. Retrieved from https://arxiv.
org/abs/1910.09986

[101] Yu Zhang, Peter Tino, Ale§ Leonardis, and Ke Tang. 2021. A survey on neural network interpretability. IEEE Trans.
Emerg. Top. Comput. Intell. (2021).

[102] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, Anind K. Dey, et al. 2008. Maximum entropy inverse rein-
forcement learning. In Proceedings of the AAAI International Conference on Artificial Intelligence (AAAI *08), Vol. 8.
1433-1438.

[103] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, and
Geoffrey Irving. 2019. Fine-tuning language models from human preferences. arXiv:1909.08593. Retrieved from
https://arxiv.org/abs/1909.08593

[104] Barret Zoph and Quoc Le. 2017. Neural architecture search with reinforcement learning. In International Conference

—

on Learning Representations. Retrieved from https://openreview.net/forum?id=r1Ue8Hcxg

[105] Haosheng Zou, Tongzheng Ren, Dong Yan, Hang Su, and Jun Zhu. 2019. Reward shaping via meta-learning.
arXiv:1901.09330. Retrieved from https://arxiv.org/abs/1901.09330

Received 5 September 2022; revised 20 September 2023; accepted 25 September 2023

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 4. Publication date: December 2023.


https://arxiv.org/abs/1508.03891
https://arxiv.org/abs/1807.08706
https://arxiv.org/abs/1910.09986
https://arxiv.org/abs/1909.08593
https://openreview.net/forum?id=r1Ue8Hcxg
https://arxiv.org/abs/1901.09330

