
Programming Techniques R. MORRIS, Editor

NEATER2: A PL/I Source
Statement Reformatter

KENNETH CONROW AND RONALD G. SMITH

Kansas State University,* Manhattan, Kansas

NEATER2 accepts a PL/I source program and operates on it to
produce a reformatted version. When in the LOGICAL mode,
NEATER2 indicates the logical structure of the source program
in the indentation pattern of its output. Logic errors discovered
through NEATER2 logical analysis are discovered much more
economically than is possible through compilation and trial
runs. A number of options are available to give the user full
control over the output format and to maximize the utility of
NEATER2 as an aid during the early stages of development of
a PL/I source deck. One option, USAGE, causes NEATER2 to
insert into each logical unit of coding a statement which will
cause the number of times each one is executed to be recorded
during execution. This feature is expected to provide a major
aid in optimization of PL/I programs.

KEY WORDS AND PHRASES: logical analysis of PL/I source, reformatting
of PL/I source, documentation ald, execution time usage data
CR CATEGORIES: 1.52, 4.12, 4.19, 4.42

Int roduction

The availability of high level languages and the com-
parative ease of programming in them make it possible
to attack problems which would have been beyond solu-
tion only a few years ago. For simple numerical problems
and repetitive sequential operations, no particular diffi-
culty is experienced in keeping in mind the logical struc-
ture of a program, and no particular aid is required to
achieve logically correct coding before a program is ex-
posed to the compiler where it is syntactically corrected.
However, with a program which responds to a great vari-
ety of different input combinations in a great variety of
different ways, the complexity of logical paths through
the program soon surpasses comprehension and some
mechanized programming aid which assists in reviewing
and correcting its logical structure becomes economically
attractive.

In response to our own need for such a programming
aid in the PL/ I language, we have developed a PL/I
program called NEATEi~2.1 NEATER2 accepts a PL/I

* Kenneth Conrow is with the Depar tment of Chemistry and
Ronald G. Smith is with the Computing Center
1 An earlier, less versatile, slower program, called N E A T E R is
available from the IBM Corp., Program Information Dept. , 40
Saw Mill River Road, Hawthorne, NY 10532, under order number
360D-03.6.018. An erratum is available from the authors.

V o l u m e 13 / N u m b e r 11 / N o v e m b e r , 1970

source program and operates on it to produce a refor-
matted version. When in the logical mode, NEATER2
indicates the logical structure in the source program by
the indentation pattern in its output. The source code is
also neatened by omission of nonessential blanks within
statements. Figure 1 illustrates NEATER2 output with
several simple logical patterns and two more complex
logical patterns. Figure 2 provides a more realistic ex-
ample, which also illustrates the re~son for speaking of
the program as neatening a source deck.

In Figure 1 an example of NEATER2 output in which a
minimum set of key words and delimiters that produce
output in the logical format is demonstrated. The output
has been rearranged to fit in a smaller space for the illus-
tration; normally, the logical level numbers and the state-
ment numbers appear at the right margin, and the two
columns in the illustration appear as two separate pages.
A diagnostic indicating an unexpected ELSE in the source
stream is included to illustrate one result of the logical
analysis.

In Figure 2 the performance of NEATER2 is illustrated
in one example where its utility seems particularly high.
In this example, a routine which reads in two matrices,
A(FD, MD) and B(MD, LD), and forms the product
matrix, P(FD, LD), is processed by the PL/ I precom-
piler to assign specific dimensions to the matrices. The
precompiler also changes each array into a vector and the
precompiler subroutine provides an expression from
which the location of each element in the vectors corre-
sponding to each element in the matrices will be calcu-
lated. No pretense is made that this is a practical use of
the precompiler; it merely illustrates the kind of use it
may be put to. The precompiler output is treated by
NEATER2, and the neatened version printed out.

The precompiler output is filled with many more un-
necessary blanks than were present in its input. The logi-
cal structure in the program is far from obvious in either
of the first two versions. The complete removal of un-
necessary blanks within statements, the construction of
logical formatting with the default format, the recogni-
tion of the label on the end statement, the behavior of the
logical level, and the generation of statement numbers are
all illustrated in the NEATER2 output at the bottom.

Utility of NEATER2

We have come to think of NEATER2 as a precompiler
since it may be used prior to compilation of a source deck.
In most of its modes of operation, NEATER2 is merely a
reformatter--it changes the arrangement of the source
coding without changing its content. Only when USAGE
is on (see below) does NEATER2 act to change the source
coding by adding statements in the source stream. NEAT-
ER2 is in no sense a replacement for the preprocessor
stage of the PL/ I compiler since it does an entirely dif-

C o m m u n i c a t i o n s of t h e ACM 669

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362790.362796&domain=pdf&date_stamp=1970-11-01

KSO'S P L I I NEAT

N2PFMO:
PROCEDURE(.....) ;
Do ° m ;

IF A....A THEN
eoooo;

oooeo;

IF A A THEN
o o o = I o ;
ELSE
A ;

oeoQe°;
DO;
e o . o , ;
E N D ;

e o l o o e ;
IF A . . . A TIIEN

IF A . . . A TEEN
°oloQ,;

IF A . . . A THEN
IF A . . . A TEEN

ELSE
A,o.;

IF A . . . A r H E N
IF A A T~E"q

ELSE
A ° ° . ;

ELSE
A . . ° ;

° o D e ° ° ;
IF A . . . A THEN

DI);
e°oo;

END;

IF A . . . A r I IEN
DU ;
o°o ;
E N D ;

ELSE
IF A...4 ThEN

OO;
oooo;
E NI) ;

ooooo~

BEGIN;
IF A.° .A THEN

IF A ° . . A THEN

o , o o ;
E ~ID ;

ELSE
|E A . . . 4 THEN
° ° o ° ;

ENr, ;

ENER ANN PRECOMPILER P A v e 1

! i - * ; I $2
I [O * * E R R O R * ~ , * AT SE:QNO 51 SRCELS
i 2 ELSE ? 52

2 4 IF A...A THEN 2 54
i 5 DO; 3 5b
22 b I F A..,A TIIEN "4 56
2 / IF A . . . A THEN 5 57
2 7; 5 b8
2 8 ELSE 5 s8
I c) I F A...A THEN b bg

2 [C IF A . . . A TIIEN I by,
2 II ~o; £ 61
2 12 ; t 62
l 133 E N D ; n 63
2 14 IF A . . . A THEN 4 64
3 15 ; 4 ~:5
.~ i.~ ; ~ 66
l t7 ENI); ~ 67
2 IU ELSE 2 67
3 1'~ A . . . ; 2 6,8
3 2C ; 1 6"t

2C IF A . . . A THEN 2 IC
~ 21 IF A . . . A TEEN ¢ 71
! 22 ; 3 72
2 23 ELSE) 72
3 24 IF A . . . A THEN 4 73
3 25 ; 4 74

25 ELSE 4 74
26 IF A...A THEN 5 75

7 26 ~C; 6 76
2 27 . . . ; 6 77
1 2g ENI3 ; 6, 7E
2 2 9 ELSE b 76
3 30 IF A . . . A THEN 6 79
3 31 ; 6 ~)(

3 32 ELSE 6 8C
i 33 IF A . . . A THEN ? 81
2 3~ ; l £2
3 35 ELSE 7 R2
3 36 IF A . . . A THEN 8 8~
3 37 DO; '~ R4

2 37 ; ~ 8 5
I 36 E'~n ; 9 8C
4 3'4 ; 1 81
4 46 END N2DEMQ; I B8
,4 41
1 4 2
2 4 3
3 4 4
4 4:5
5 4 6
5 4 T

5 49

) 5 c
2 5L

KSUCCII STEP I NEAT EXECUTION TIME = .OOi HRS.

KSUOLZI JO(B A000816£ EXECUTIU'q TIME = .OCI HRS.

REIUR,'q C{IQE = 12

F i G . 1

ferent thing from the preprocessor. I t does share the prop-
erty of being a useful program to expose a source deck to
before actual compilation is attempted.

At present, in the absence of an aid like NEATER2,
one tends to postpone a serious search for logic errors
until trial runs of the program have demonstrated its
necessity. Such a delay of a search for logic errors until
after syntax correction has been made represents a de-
parture from the most desirable progression in program
development. Used prior to compilation, NEATER2
makes convenient and economical the process of reducing

a program concept into logically correct PL / I coding.
NEATER2 will reveal logic errors by producing unex-
pected indentation patterns and will reveal a certain few
syntax errors (e.g. missing colons or semicolons) by pe-
culiarities in indentation pattern or by specifically flagging
them (e.g. missing THENs or unexpected ELSEs).
This process does not require syntactically correct PL/]
since NEATER2 runs on colons, semicolons, quotes com-
ments, and the very few keywords, IF ... THEN, ELSE,
DO, BEGIN, PROC, PROCEDURE, END, and ON.
(See Figure 1 for example.)

670 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 13 / N u m b e r 11 / N o v e m b e r , 1970

MMULT:PROC;

CCMPILE-TIME MACRO PROCESSOR
MACRO SOURCE2 LISTING

I
2
3
4
S
6
7
8
9

I0
II
12
13
16
15
16

MMULT:PROC;
%DCL(FD,MD,LO,FI)MMD,MOMLO, FDMLD)FIXED;
%DCL GFSL C H A Q ; gGFSL='GET FILE{SYSIN) LIST ' ;
%DCL LINEAR [NIRY(CHAR,CHAR)RETURNSICHAR);
%FD: IO;~MD:B;XLD: I2 ;
%FI)MMD=FI)*MD; %MDML)=M~D*LO; ~FDMLG=FOmLD;
DCL P(FOMLC),AIFDM'MO),BIMDMLD);
GFSL(A,B) ;
DO I = I TU FO; DO K : I TO LOT PI = L I N E A R I I , K) ; P I P I) : O;
DO J = I TU Mn;
P (P I) = P(P I) + A i L I N E A R I I , J)) a B I L I N E A R (J , K)) ;
%LINEAR:PROC{L,~ICHAR;
DCL(L,M)CHAR;
IF M= 'J ' THEN R E T U R ~ I M D I I ' * I * I I L I I ' - I I + ' I I M) ;
IF M = ' K ' THEN RETUR~ILOII'*I'IILII'-I)+'IIM);
%ENO LINEAR; ENO MMULT;

GELqERATED SOURCE STATEMENTS.

MMULT :PROC;
DCL P{ 120) , h i SO) , 8 (96) ;

GEl F ILEISYSIN) LIST (A , 8) ;
DO I = i TO I0 ; O0 K = I TO 12
; P (P l) = O;
DO J = I TO 8 ;
P I P I) = P [P I) ~- A{ 8 * (I - l) * J) * B(

END t~MLJLT ;

Pl = 12*{I-I)+K

12#|J-l}+K);

1
? 1
8 1
9 1
9

10 1
11 1
16

MMULT:

KSU'S PL / I NEATENER AND PRECOMPILER

PROC;
DCL P (1 2 G) , A I B O) , B (9 6) ;
GET F I L E [S Y S I N) L I S T (A , B } ;

DO l = I TO I 0 ;
DO K=I TO 12;
P I = I 2 * (I - I) + K ;
P (P I)=O;

I)0 J=l TO 8;
P I P I) = P I P I) + A [B * (I - I I + J

END MMULT;
) # B I I 2 # I J - I) + K I ;

PAGE

1
2
3
4
5
6
77
8
9

13

FzG. 2

Since N E A T E R 2 economically reformats a source
program, the initial keypunching can be rapidly done in
free form with any number of s ta tements per card, and a
formatted listing and card deck with one s ta tement per
card obtained. The very first proofreading of the source
deck can be done on a listing which simultaneously re-
veals logical structure. Since the programmer has at
least a part ial conception of the logical structure he re-
quires, he can compare the logical structure of his coding
efforts as revealed by N E A T E R 2 with his concept to
see whether he has correctly transcribed his intention.
Detailed desk checking of the program logic with diverse
sets of input data is greatly facilitated by a logically
format ted version of the program.

When the program appears logically correct, a freshly
neatened source deck may be obtained and syntactic
correction accomplished by using the compiler for the
first time. Having a freshly format ted and sequenced
deck during syntax correction and early trial runs is a
great convenience because each source listing appears

in logical format. This sequence of program development
is especially a t t ract ive because of its economy: N E A T E R 2
runs from 3 to 6 times faster than the compiler. Hence,
logic errors discovered through N E A T E R 2 are much
more economically discovered than those discovered by
compilations and trial runs.

Certain terminal errors, namely unmatched quotes and
unclosed comments, can cause immediate cessation of
compilation by the P L / I compiler. This is a frustrat ing
occurrence because additional submissions are required
before the whole of the source deck is scanned. Since
N E A T E R 2 is relatively fast and since its object is logical
analysis ra ther than production of compiled coding, con-
tinued processing of a source s t ream which contains
these blunders can be tolerated, so N E A T E R 2 was
designed to accommodate these source errors in a more
constructive way than the compiler does. N E A T E R 2
a t tempts to localize the problem and to continue its
analysis of the logic of the source program from an early
point after the detection of the difficulty. The output from

V o l u m e 13 / N u m b e r 11 / N o v e m b e r , 1970 C o m m u n i c a t i o n s o f t h e ACM 671

N E A T E R 2 in the event of unmatched quotes or un-
closed comments is not suitable for compilation, and the
errors are labeled as terminal errors.

In the case of an unmatched quote, the first semicolon
after the start of the statement in which an unmatched
quote was recognized is arbitrarily taken as the end of the
statement, and analysis is resumed from that point after
an appropriate error message has been given.

In the case of an unclosed comment, illogical handling
of statements which intervene between the comment
opener and the closure of the next comment in the source
stream will be the indication of the omission. In the event
tha t there is no closure within three to four thousand
characters, N E A T E R 2 merely isolates the "/*" of the
opening, writes an error message, and proceeds to t reat
the comment as if it were a statement, which again makes
obvious the omission.

To increase its effectiveness as a precompiler, NEAT-
ER2 has been programmed to return a completion code.
I f N E A T E R 2 discovers an error (or makes an error which
is detected by the P L / I execution time interrupts) then
an error code will be returned to the operating system
upon completion of NEATER2 ' s execution. The scheme
used for the error code is similar to that employed by the
P L / I compiler: with a 16 returned for a terminal error;
a 12 returned for severe errors; an 8 returned for errors,
which it is supposed will not interfere with successful
compilation and execution of NEATER2 ' s output; and a
4 for warnings, which seem certain not to interfere with
subsequent compilation and execution. I f N E A T E R 2
is used as a precompiler and its output is passed to the
compiler, condition parameters may be used in the job
control language on the compile step to prevent compila-
tion if N E A T E R 2 has detected errors of any specified
level of severity. Similarly, a punched reformatted source
deck can conditionally be obtained by use of condition
codes on a P U N C H step after a N E A T E R 2 step.

While N E A T E R 2 is most useful as a precompiler, it
also has important auxiliary util i ty as a documentation
aid. Clearly, a listing of a program in which the logical
structure is revealed by an indentation pat tern is a far
more valuabe documentation of the program than an
ordinary, unindented listing. Persons acquainting them-
selves with a program for the first time will be able to
visualize the logical structure without the laborious prepa-
ration of flowcharts.

In an academic environment, N E A T E R 2 is a useful
aid in precisely demonstrating to students the nature of
their logical errors. Teachers and consultants can locate
these errors much more rapidly in a neatened listing than
in a listing of the student 's original source deck.

R e q u i r e m e n t s for U s e o f N E A T E R 2

N E A T E R 2 has no special requirements or limitations
in the source deck. Any keyword which is important to
N E ATER 2 and which will be correctly identified by the
compiler from its context will be correctly identified by

NEATER2, as well. Statements like

" IF IF T H E N IF T H E N T H E N A = B;"

are correctly formatted. Comments do not interfere with
the logical analysis or upset the usefulness of the for-
mat ted version which N EA TER2 produces.

While N E A T E R 2 will correctly process any P L / I
source deck, the advantage gained from the formatting
it effects can be maximized by adopting the following
atti tude. The source code should make maximum use of
DO groups as T H E N or ELSE clauses and minimum use
of T H E N GO TO ... and ELSE GO TO ... statements.
The use of DO groups in the T H E N or ELSE clauses
results in an indentation pat tern which very graphically
presents the logical situation in the source deck, whereas
extensive use of conditional branches minimizes the logi-
cal indentation pat tern and makes the N E A T E R 2 output
graphically less useful.

Widespread use of DO groups and minimal use of
s ta tement labels also facilitate the rearrangement of a
source deck if it proves necessary to correct logic errors
during its development. N E A T E R 2 clearly identifies
logical blocks. I t puts every s tatement on a separate
card. Therefore, both statements and logical blocks can
easily and independently be moved from place to place
within a neatened program. The few statement labels
which are used are output on the left margin by N E A T E R 2
so that they may easily be spotted in a quick scan of the
program, and any changes in them necessitated by a
rearrangement of the logical units of the program are
easily made.

P a r a m e t e r s t o N E A T E R 2

Parameters are given to N E A T E R 2 in the form of a
P L / I comment s ta tement beginning in column 2 of a
card in the input stream:

/ . N E A T E R P A R M S : / ,

where the dots are replaced by the desired parameters
without spaces but separated by commas. If the user
wishes, he may omit a N E A T E R P A R M S card, and
N E A T E R 2 will operate using a set of default parameters.

(a) COMPRESS I LOGICAL. When in the com-
press mode, N E A T E R 2 removes all unnecessary blanks
from a source program and outputs it as one massive
block of type. By having it punch in this mode, a program
deck is produced in its physically most compact form,
convenient for storage or shipping to another installation.
The logical format can be recovered by a second run
through N E A T E R 2 in the logical mode.

The logical mode is the mode which seems the most
useful one; it is in this mode that N E A T E R 2 produces
logically formatted output and logical level numbers.

The level numbers put out by N E A T E R 2 at the right
of each output line when in the logical mode bear little
relationship to the level numbers or the nesting level
which are given on request by the P L / I compiler. NEAT-
ER2 augments the level for each IF, DO, B E G I N ,

672 Communicat ions of the ACM Volume 13 / Number 11 / November, 1970

PROC, or PROCEDURE, and decrements it after each
IF sequence is completed and after each END statement
is processed. The principal use of the logical levels is to
facilitate pairing of IFs and ELSEs or DOs and ENDs,
especially when they are separated by a page or more.
Logical analysis is not done in the compress mode; so
level numbers are not put out in the compress mode.

(b) PRINT I NOPRINT. This option controls the pro-
duction of printed output by NEATER2. If NEATER2
is to be used as a precompiler, with its "punch" output
being passed to the PL/ I compiler, then a duplicate
listing of the source program would be obtained, and
unnecessary time would be spent. Specifying either
NOPRINT to NEATER2 or NOSOURCE to the PL / I
compiler will eliminate the duplicate listing. When
NEATER2 produces an error message, the sequence
number of the concerned statement (~1) is produced as
part of the message; so errors can be associated with the
statements which produced them even if NOPRINT has
been specified, provided the compiler runs. In early runs,
if condition codes on the compile step are likely to prevent
the compiler from running, then, of course, PRINT
should be specified so that it is certain that a listing with
which to associate error messages with the source stream
statements is available.

If PRINT is specified to NEATER2 and NOSOURCE
is specified to the compiler, the compiler's error messages
may be associated with the statements in the source
stream because the sequence numbers produced by
NEATER2 in the logical mode are identical with the
statement numbers produced by the compiler on a syn-
tactically correct source program. If syntax errors cause
the compiler to insert semicolons or make other changes
which alter the compiler's statement count, then, of
course, NEATER2's sequence numbers will not corre-
spond with the compiler's statement numbers.

(c) PUNCHINOPUNCH. This option has two main
utilities. When a source deck punched in free format is
exposed to NEATER2, it is convenient to have it produce
a punched formatted deck to use in further program de-
velopment. At intervals during the program development
as the logical formatting deteriorates due to insertions,
deletions, and rearrangements, it is convenient to obtain
a freshly punched formatted deck for use for a time until
the logic has again changed so much that the formatting
must agafn be repeated. This utility assumes rather in-
frequent runs through NEATER2.

Alternatively, NEATER2 can be used as a precom-
piler stage before compilation of a source program under
development. In this event, the PUNCH option is used
to generate a data set which serves as input to the com-
piler.

(d) COMMENT]NOCOMMENT. COMMENT has
the effect of suppressing the removal of unnecessary blanks
from COMMENT statements. Its utility is to maintain
formatting which a user may have incorporated in his
comments.

V o l u m e 13 / Number 11 / November, 1970

(e) DECLAREINODECLARE. DECLARE is paral-
lel to COMi~ENT; it has the effect of suppressing the
removal of unnecessary blanks from declare statements.
This is particularly important with declarations of com-
plex structures, where programmers commonly use
formatting to indicate the heirarchical structure. NEAT-
ER2 does not format declarations of structures; the
DECLARE option merely permits the programmer's
formatting to pass through NEATER2 without loss.

(f) USAGEINOUSAGE. The parameter USAGE
causes NEATER2 to insert into each block, group, or
clause of the source coding a statement which will cause
the number of times each such logical unit is executed to
be recorded during execution. This feature is expected to
be a valuable aid in optimizing PL/ I source programs.
If USAGE reveals that a certain segment is executed
with extremely high frequency, then attention may be
turned to reducing the number of occasions such a region
is executed and efforts to optimize the coding can be
concentrated in that region. Logical oversights which
result in a certain section of coding being unreachable or
unnecessary will be revealed by a zero usage. USAGE
statistics gathered during execution of an interactive pro-
gram will gather information about that program's
utilization which should aid immensely in the design of a
more efficient version. Specifically, USAGE causes addi-
tional coding in a PL/ I source deck as follows:

(1) After the statement after each label, "UV(n)=
UV(n) W 1;" is inserted.

(2) AFTER each DO, BEGIN, PROC, or PROCEDURE,
the same statement is inserted. (In case both (1)
and (2) are true, only a single insertion is made.)

(3) Each simple then clause or else clause is surrounded
by "DO; UV(n) = UV(n) ~ 1;" and "END;".

The value of the integer n is augmented by 1 before
each insertion of the UV ... statement. An initial value of
zero is used for n, unless some other value is set by the
parameter USAGEINDEX = n.

At the end of a NEATER2 run in which USAGE was
enabled, or when it is signalled, NEATER2 puts out a
declare statement which properly dimensions and initial-
izes the usage vector (UV), and a put statement which
will cause the assumulated usages to be printed. To make
the USAGE option maximally useful, PL/ I source pro-
grams should be so structured that they exit through
their end statement. In this event NEATER2's insertion
of the declare and put statements just prior to the end
statement for the procedure (after any label on the END
statement) is accomplished by use of the parameter
s t r ing/ .NEATERPARMS: NOUSAGE, USAGEINDEX
=0./. In this case, the output from NEATER2 is ready
to compile. If no such closing parameters are fed, the
declare and put statements for UV are generated after
the logical end of the program. It will be necessary to man-
ually move them into the correct place in the neatened deck.

(g) PARMINOPARM. The PARMINOPARM option

C o m m u n i c a t i o n s o f t h e ACM 673

controls whether or not N E A T E R 2 reproduces in its
output stream the parameter strings which control it.
I f PARM is on, N E A T E R 2 reproduces its parameter
strings. This feature was incorporated so that the com-
bination P A R M , P U N C H would be a useful one. With
this combination, the deck which N E A T E R 2 produces
will contain the same parameter strings as the deck it
was produced from. This means that a deck can be kept
in active development over a period of time with several
reformattings by N E A T E R 2 without any further atten-
tion being paid to maintenance of the correct parameter
set for any special requirements of tha t deck. The general
control PARM can be countermanded on an individual
parameter string basis by putt ing an asterisk in column 1
in front of / , N E A T E R P A R M S : ... , / . Neater parame-
ters prefaced in this way are not reproduced in the output
stream, even if PARM is on.

(h) D E F A U L T . I t is not required to give N E A T E R 2
parameters, as it will assume a default parameter set if
none are given. If an initial parameter string is given,
then any parameters not mentioned in the given string
are given default values. If, after a period of processing
by NEATER 2 , it is desired to delete an accumulation of
parameters in one command, the parameter D E F A U L T
is given. D E F A U L T implies P R I N T , LOGICAL, NO-
PUNCH, N O C O M M E N T , N O D E C L A R E , NOUSAGE,
NOPARM, SEQNO = 0, I N S E T = 3, L E F T M A R G I N I N
= 2, R I G H T M A R G I N I N = 72, L E F T M A R G I N O U T = 2,
R I G H T M A R G I N O U T = 72, S T A T E M E N T M A R G I N =
10, and U S A G E I N D E X = 0.

(i) R ES ET. The keyword R E S E T causes the logical
level and the sequence number to be reset to zero, and a
new page to be started. This parameter is useful if a
number of procedures are being batched through NEAT-
ER2, and if it is desired that each one gives the appear-
anee of having been processed separately.

(j) PAGE. The parameter PAGE causes the printed
output to skip to the top of the next page. I t should be
used instead of R E S E T if pagination is desired in the mid-
dle of a procedure or other block, because it does not alter
the logical level or the sequence numbering.

(k) SEQNO. The parameter S E Q N O = n permits the
initialization to any desired positive integral value of the
sequence number (n + 1) which N E A T E R 2 assigns to
its initial record of output . This feature is useful if only a
portion of a procedure is to be reneatened and if it is de-
sired to have the sequence numbers run through the whole
program. To achieve the correct logical history in such a
usage, the required preceding labeled do statements, un-
labeled do statements, and if statements may be inserted
at the beginning of the fragment.

(1) INSET. The parameter I N S E T = n is one of the
parameters available to control the formatting which
N E A T E R 2 effects. I N S E T sets the number of spaces
which N E A T E R 2 indents for each logical level. IN S ETs
from 2 to 5 are most satisfactory, but for special purposes
an I N S E T of 0 finds use.

(m) S T A T E M E N T M A R G I N . The parameter
S T A T E M E N T M A R G I N = n is used to control another
aspect of the formatting which N E A T E R 2 effects. I t
sets the column in which the first character of a s ta tement
at logical level 1 will appear. In the event tha t I N S E T
is zero, S T A T E M E N T M A R G I N sets the column in
which all statements begin.

(n) L E F T M A R G I N I N , R I G H T M A R G I N I N , LEFT-
MA RG IN O U T, R I G H T M A R G I N O U T . Adjustment of
input and output margins in N E A T E R 2 has the follow-
ing advantages. Completely freeform punching of the
initial program deck is enabled (except, of course, /* in
columns 1 and 2). Such a deck fed to N E A T E R 2 can
become a conventionally margined source deck with one
s tatement to a card in a single economical pass, thus
saving on keypunching time. Adjustment of the output
margins permits utilization of the full width of the output
medium: columns 2-80 in punched output and columns
1-132 in printed output. This is principally useful in
minimizing the cluttering effect tha t statements too long
to fit in a single output line tends to have on neatened
output.

(o) U S A G E I N D E X . The parameter USAGEIN-
D E X = n may be used to set the value (n + 1) in the first
s tatement of the type "UV(n) = UV(n) + 1;" inserted
when USAGE is on. This is useful if several different
procedures are being N E A T E N E D separately for even-
tual combination into a run for gathering usage data.
Similarly, if only a portion of a program is being re-
neatened with USAGE on, and the usage vector indices
are to be continuous, this parameter may be used.

Diagnostics Produced

The principal expression of the logical diagnosis which
N E A T E R 2 effects is the formatting of the output in the
illustrated indentation pattern. Logical errors are dis-
covered by the user when the indentation of the output
fails to correspond with his intention. I t cannot be over-
emphasized that N E A T E R 2 output must be scanned
for unexpected indentation patterns before it can be as-
sumed that a program is logically correct. Most kinds of
logic errors will be expressed as an unexpected indenta-
tion pat tern and will not be expressed in an error message
or a condition code greater than 0.

In those cases in which N E A T E R 2 does produce a
diagnostic message (and a nonzero condition code),
the message appears in one of the following forms.

* * * E R R O R * * * A T S E Q N O m m m m
* * * E R R O R * * * A T S E Q N O m m m m
* * * E R R O R * * * A T S E Q N O m m m m
* * * E R R O R * * * A T S E Q N O m m m m

The sequence number (± 1)
diagnostic arose is printed

C O D E
C O D E m m m m m
C O D E m m m m m nnman
C O D E aaaaaaaaaaaaaaa

of the s ta tement in which the
to aid in the location of the

difficulty. The code which follows is a mnemonic which
indicates the nature of the error. Of the 40 or so different
diagnostic messages which may be produced by NEAT-

674 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 13 / N u m b e r 11 / N o v e m b e r , 1970

ER2, the majority are concerned with consistency in the
N E A T E R P A R M S . If N E A T E R 2 has changed the re-
quested formatting because of inconsistencies, the changed
format settings are indicated in the numeric output after
the error code. If a parameter is not recognized, the un-
recognized portion of the parameter string is reproduced
to assist the user in making his correction. About 10 dis-
tinct error messages are produced which serve to pinpoint
logic errors in the source deck.

P e r f o r m a n c e Notes

We have already remarked that NEATER2 processes
a PL/I source deck at 3 to 6 times the speed that the
compiler does. This performance was attained by careful
choice of PL/I source statements so as to maximize the
in-line execution of the compiled program and then to
minimize the size and execution time of the compiled
program. The source program is long (ca. 1500 statements),

'but the compiled coding from each statement is typically

short as a result of constant revision to optimally tune the
program to version 5 of the P L / I compiler. The program
gives best results with R E O R D E R specified, and with
compilation with O P T = 0 2 . The program CSECT is
about 22K bytes; the load module about 39K bytes, and
the storage area about 18K bytes; so the whole of NEAT-
ER2 should run easily in a 60K byte partition.

Most modes of operation of N E A T E R 2 make relatively
minor changes in the speed at which it (or, subsequently,
the compiler) processes a source deck; so they may be
used freely at very little expense. The compiler does proc-
ess a compressed source deck slightly more rapidly than
it processes a logically formatted deck. When USAGE is
on, an extensive apparatus to gather usage information is
constructed, and marked performance degradation is
observed. NEATER2 is slowed about 25 percent, the
compiler about 20 percent, and execution about 40 per-
cent when this option is employed.

RECEIVED JUNE, 1970

A

T

The Linear Quotient Hash Code

JAMES R. BELL AND CHARLES H. KAMAN
Digital Equipment Corporation, Maynard, Massachusetts

A new method of hash coding is presented and is shown to
possess desirable attributes. Specifically, the algorithm is
simple, efficient, and exhaustive, while needing little time per
probe and using few probes per lookup. Performance data
and implementation hints are also given.

KEY WORDS AND PHRASES: hashing, hash code, scatter storage, calculated
address, search, table, lookup, symbol table, keys
CR CATEGORIES: 3.74, 4.9

1. I n t r o d u c t i o n

Hash coding, also known as address calculation or
storage scattering, is a way to drastically reduce the time
spent by a program in searching tables. Several hash
codes are proposed or reviewed in the literature [1, 2, 3].

In this paper we first describe the desired attributes of a
hash code, next propose a new hash code to fit these spec-
ifications, and finally present data on the performance of
this new code.

2. Desired Attr ibutes o f a Hash Code

B y the term hash code we mean an algorithm which
associates with each key an address in a given table. If

V o l u m e 13 / Number 11 / November, 1970

a match for the key is already in the table, the result
should be the index of the match. I f not, the result should
be the index of some empty location in the table.

In general the hash algorithm makes a sequence of
probes into the table. The sequence terminates when a
probe selects either the match for the key or an empty
location. Alternatively, at some point the sequence may
recycle and the table is declared full.

We may list the desired attributes of a hash code as
follows:

(1) The algorithm should be simple. This leads to a
short, quickly written, easily understood program.

(2) The algorithm should generate an efficient, exhaus-
tive sequence: Every location should be probed exactly
once before the table is declared full.

(3) The time per probe should be minimal.
(4) The average number of probes per lookup should

be minimal.
I t is this set of specifications which will serve as our

goal.

3. T h e Linear Q u o t i e n t M e t h o d

We shall first define the terms necessary for the al-
gorithm. Let n represent a prime number chosen as the
length of the table. Let K represent the key sought. Let
Q and R represent the quotient and remainder created by
the division of K by n. Let h l be the address of the i th
probe into the table, i.e. its index in the table.

We shall now define the linear quotient hash code to

C o m m u n i c a t i o n s o f t h e ACM 675

