Algorithms

L. D. FOSDICK, Editor

ALGORITHM 401

AN IMPROVED ALGORITHM TO PRODUCE
COMPLEX PRIMES [Al]

Pauvr BratiuEy (Reced. 25 Feb. 1970)

Département d’informatique, Université de Montréal,
C.P. 6128, Montréal 101, Quebec, Canada

KEY WORDS AND PHRASES:
complex numbers
CR CATEGORIES: 5.39

number theory, prime numbers,

integer procedure cprimes(m, PR, PI);
value m; integer m; integer array PR, PI;

comment The procedure generates the complex prime numbers
located in the one-eighth plane defined by 0 < y < z. Any prime
found in that area has seven more associated primes: —z + ¥¢,

+ 2z — yi, =y = x¢. These associated primes must be generated

externally to cprimes. The first complex prime generated by

cprimes is 1 + 4, which exceptionally lies on z = y and has only
three associated primes.

The algorithm generates a list of complex primes in order of
increasing modulus: the parameter m of the call is the highest
modulus to be included in the list and should satisfy m > 2.
PR and PI will contain respectively the real and imaginary
parts of the generated list, with PR > PI > 0 for each prime.
The value of the procedure is the number of primes generated.

Algorithm 311 [1], sieve 2, is used to generate the rational
primes less than m?2 Then it is known (see, for instance [2])
that a rational prime p of the form p = 4n 4 1 can be expressed
as p = a? + b?, and factorized as (¢+b7)(@—b7) in the complex
plane, where a + b7 and ¢ — b7 are complex primes. For our
present purpose we choose ¢ > b and include only @ + b7 in the
list. A rational prime p of the form p = 4n + 3 remains prime
in the complex plane, so we include p + 07 in the list if p < m.
Finally, the complex prime 1 + ¢ may be thought of as one of
the factors of the remaining rational prime 2 = (14+£)(1—1).

Although this algorithm and Algorithm 372 [3] are not directly
comparable, since they produce the list of complex primes in a
different order, the accompanying remark suggests that the
present algorithm is often to be preferred.

REFERENCES:

1. CuarTrES, B. A. Algorithm 311, Prime number generator 2.
Comm. ACM 10 (Sept. 1967), 570.

2. Haroy, G. H., anp E. M. WrigHT. An Iniroduction to the
Theory of Numbers, 4th ed. Clarendon Press, Oxford, 1965,
Chs XII and XV,

3. DunuawM, K. B. Algorithm 372, An Algorithm to produce
complex primes, CSIEVE. Comm. ACM 18 (Jan. 1970),
52-53;

begin

integera, b, ¢, d, ¢, ¢, j, p, ¢;

integer array P2[1:0.7Xm T 2/in(m)],

P3[1:1.4Xm/In(m)];

e := sieve 2(m 12, P2);

PR[1] := PI[l] :=aqa := ¢ := 1;

b= 0;

for d := 2 step 1 until ¢ do

begin
p = P2ll; ¢:=p—1;
if (¢g+4) X 4 5 g then
begin

if p < m then

Volume 13 / Number 11 / November, 1970

begin b := b + 1;
end
else
begin
L1

P3[b] := p end

ifa < b then
begin
if P3la] T 2 < p then
begin
¢c:=c¢+1;
a:=a-+1; Pl] := 0;
go to L1
end
end;
q := enlier(sqri(p/2)+1);
for ¢ := ¢ step 1 until p do
begin
J = sqri(p—i12);
ifi 1247 1 2 = pthen go to L2
end
comment Note that the jump to L2 is always made before
the cycle is terminated;
L2:
c:=c¢+1;
end
end;
L3:
ifa < b then
begin
c:=c¢+1;
a:=a+1;
go to L3
end;
cprimes 1= ¢
end cprimes

PRlc] :=2; Pllc] :=j

I

PR[c] :
PlIic] :

P3[a];
0;

i

ALGORITHM 402

INCREASING THE EFFICIENCY OF
QUICKSORT™* [M1]

M. H. van EmpEN (Recd. 15 Dec. 1969 and 7 July 1970)

Mathematical Centre, Amsterdam, The Netherlands

* The algorithm is related to a paper with the same title and by
the same author, which was published in Comm. ACM 13 (Sept.
1970), 563-567.

KEY WORDS AND PHRASES: sorting, quicksort
CR CATEGORIES: 5.31, 3.73, 5.6, 4.49

procedure gsori(a, 11, ul);
value I1, ul; integer 1, ul; array a;

comment This procedure sorts the elements a[ll}], a[l14-1], --- |
a[v1] into nondescending order. It is based on the idea deseribed
in [1]. A comparison of this procedure with another procedure,
called sortvec, obtained by combining C. A. R. Hoare’s quicksort
[2] and R. S. Scowen’s gquickersort [3], in such a way as to be
optimal for the Algol 60 system in use on the Electrologica X-8
computer at the Mathematical Centre is shown below. Here

Communications of the ACM 693

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362790.362804&domain=pdf&date_stamp=1970-11-01

“repetitions” denotes the number of times the sorting of a
sequence of that ‘“length’ is repeated; ‘“‘average time’’ is the
time in seconds averaged over the repetitions; “gain” is the
difference in time relative to time taken by sortvec.

procedure length repetitions average time gain
sortvec 30 23 .09

qsort 30 23 .06 +.37
sortvec 300 16 1.25

gsort 300 16 1.03 +.17
sortvec 3000 9 17.43

gsort 3000 9 15.25 +.13
sortvec 30000 2 232.46

gsort 30000 2 197.96 +.15
REFERENCES :

1. vaNn EmpEN, M. H. Increasing the efficiency of quicksort.
Comm. ACM 13 (Sept. 1970), 563-567.
2. Hoarg, C. A, R. Algorithm 64, quicksort. Comm. ACM 4
(July 1961), 321-322,
3. Scowen, R. S. Algorithm 271, quickersort. Comm. ACM 8
(Nov. 1965), 669;
begin
integer p, g, iz, iz;
real z, 2z, y, 22, 2;
procedure sort;
begin
integer [, u;
L:=11; wu:= ul;
part:
pi=1l; ¢g:=wu; x:
if z > z then
beginy := z; ap] :
ifu —1>1then
begin
TT =X X =Py 22 1= z; 12 1= g

alpl; z := alqgl;

z = 2z; alg] := z := y end;

left:
for p := p + 1 while p < ¢ do
begin
z = a[p];
if x > zz then go to right
end;
p =g — 1; go to out;
right:
for ¢ := ¢ ~ 1 while ¢ > p do
begin
z := a[g];
if z < 2z then go to dist
end;
g:=p; p:=p—1; z:=2; z:=alpj;
dist:
if z > z then
begin
Yy :=2z; afp] =z := z;
algl i=z:=y
end;
if £ > zz then
begin 2z := z; iz := p end;
if z < 2z then
begin 2z := z; iz := g end;
go to left;
out:
if p # iz A\ z # 2z then
begin a[p] := zz; alir] := = end;
if ¢ # 7z A\ 2z # 2z then
begin alg] := 2z; aliz] := 2 end;
ifu—g>p—1then
begin l1 :=[; ul := p — 1;
else

l:=¢g+ 1lend

694 Communications of the ACM

begin ul :=u; 1 :=¢+1; u:=p — 1end;
if ul > 11 then sort;
if u > [then go to part
end
end of sort;
if ul > [1 then sort
end of gsort

REMARK ON ALGORITHM 343 [F1]

EIGENVALUES AND EIGENVECTORS OF A REAL
GENERAL MATRIX {J. Grad and M. A. Brebner.
Comm. ACM 11 (Dec. 1968), 820-826]

Wirriam Knigar AND WinpLiam MERSEREAU (Recd. 7
Apr. 1970)

Computing Center, University of New Brunswick,
Fredericton, New Brunswick, Canada

KEY WORDS AND PHRASES: eigenvalues, eigenvectors,
latent roots, Householder’s method, QR algorithm, inverse iter-
ation

CR CATEGORIES: 5.14

This remark reports certain failures of Algorithm 343 when
applied to pathological matrices. The smallest example is a 4 X 4
matrix for which 16 guard bits (5+ digits) proved insufficient; all
computed eigenvalues were incorrect in the most significant digit.

The algorithm was implemented on an IBM System/360 model
50 using Fortran IV-G. The program was not modified to operate
completely in double precision as was done for Knoble’s certifica-~
tion [2]. Satisfactory agreement was obtained for the three sample
matrices given with the algorithm.

Ezample A
—50 53 52 51
—52 1 53 52
—53 0 1 53
—51 53 52 52

The exact eigenvalues are all 1. The computed eigenvalues follow.
(Computed eigenvalues are reported rounded to 2 places after
the decimal point, any further figures being, rather obviously,
pointless.)

2.35
1.03 £ 1387
—-0.41

The maximum error in a computed eigenvalue exceeds 2 percent
of the largest element of the matrix.

Ezample B
—41 55 4 3 2 51
- 2 10 55 4 3 2
-3 0 10 55 4 3
— 4 0 0 10 55 4
—55 0 0 0 10 55
—51 55 4 3 2 61

The exact eigenvalues are all 10. The computed eigenvalues:

1476 + 2.92 ¢
9.70 & 5.33 ¢
5564 x 239 ¢

The maximum error in a computed eigenvalue exceeds 9% of the
largest element in the matrix.

Volume 13 / Number 11 / November, 1970

Ezample C

-91 —94 0 0 0 0 0 0
95 98 0 0 0 0 0 0
90 99 5 0 0 0 0 0
90 0 99 6 0 0 0 0
90 0 0 99 7 0 0 0
90 0 0 0 99 8 0 0
90 0 0 0 0 99 9 0
99 99 0 0 0 0 99 10

The exact eigenvalues are 3, 4, 5, 6, 7, 8, 9, 10. The computed
eigenvalues are:

12.68
10.96 + 3.73 ¢
647 + 538 <
2.09 + 3.73 ¢
0.27

Although all eigenvalues are real, the imaginary part of one pair
of computed eigenvalues exceeds 5 percent of the largest element
of the matrix. This matrix, like the other two, was maliciously
devised to take advantage of the program; it is indicative of this
that the transpose, being already in lower Hessenberg form, fares
much better, all computed eigenvalues being correct to within
=+0.05.

Although, in view of the known sensitivity of multiple eigen-
values to small changes of certain elements of certain matrices,
such counter examples are to be expected, it is probably worth
putting a few examples on record as the casual and unsophisticated
user is more apt to take warning of the dangers of eigenvalue
computations in single precision from a concrete case.

REFERENCES:

[1] Grap, J., aANp M. A. BreBNER. Algorithm 343, Eigenvalues
and eigenvectors of a real general matrix. Comm. ACM 11
(Dec. 1968), 820-826.

{21 KnoBLE, H. D. Certification of Algorithm 343. Eigenvalues
and eigenvectors of a real general matrix. Comm. ACM 13
(Feb. 1970), 122-124.

REMARKS ON

ALGORITHM 372 [Al]

AN ALGORITHM TO PRODUCE COMPLEX
PRIMES, CSIEVE [K. B. Dunham. Comm. ACM 13
(Jan. 1970), 52-53]

ALGORITHM 401 [Al]

AN IMPROVED ALGORITHM TO PRODUCE COM-
PLEX PRIMES [P. Bratley. Comm. ACM 13 (Nov.
1970), 693]

PauL BraTLEY (Reed. 25 Feb. 1970)

Département d’informatiqué, Universite de Montréal,
C.P. 6128, Montréal 101, Quebec, Canada

KEY WORDS AND PHRASES:
bers, complex numbers
CR CATEGORIES: 5.39

number theory, prime num-

Algorithm 372 was run on the CDC 6400 at the University of
Montreal. The variable 7 is undefined if the for-loop at label 4 is
completed. The statement

t:=3541;

should be added immediately before label B. Algol purists may
also care to remove redundant semicolons after go to 4 and go to

Volume 13 / Number 11 / November, 1970

B, and the redundant parentheses in one if-statement. With these
changes the algorithm produced correct results for several values
of m.

The comment in Algorithm 372 is slightly inaccurate. The first
prime generated by the algorithm is 1 4+ ¢, which does not have
PR > PI, and which has not seven but three associated primes.

It is not possible to compare the speeds of Algorithm 372 and
Algorithm 401 directly since they generate primes in a different
order. However, the following test was run. A value of m was
chosen, and Algorithm 401 was used to list all the complex primes
with modulus less than m. The time taken and the number of
primes produced were noted. Then Algorithm 372 was used to
produce an equal number of primes, the time taken again being
noted. Times observed are shown in Table I.

TABLE 1
.. Algorithm 401 . Time taken by Algorithm .
Limit > T tak Rat
moduis e this TG o pradues the s i o
25 60 0.278 0.331 1.2
50 189 1.577 2.140 1.4
75 373 4.217 7.602 1.8
100 623 8.618 20.214 2.4
150 1266 23.732 79.481 3.4

The conclusion from the figures in Table I is that if the speed
with which the complex primes are generated is of paramount
importance then Algorithm 401 should be preferred to Algorithm
372.

As written Algorithm 401 will use more memory than Algorithm
372 since it is convenient and perspicuous to use steve2 in an un-
modified form, which makes it necessary to store temporarily all
the rational primes less than m?. However, if space is tight then
sieve2 can easily be modified so as to generate rational primes one
at a time on successive calls, and in this way the use of the long
array P2 can be avoided. If this modification is made Algorithm
401 will in fact use less store than Algorithm 372, which wastefully
stores many useless values in PM. It is also to be noticed that the
factors 0.7 and 1.4 occurring in the declarations of P2 and P3 may
be diminished for large m: all that is necessary is that P2 should
be long enough to hold the rational primes less than m?, and that
P3 should be long enough to hold the rational primes which are
not greater than m and which are of the form 4n + 3. Some space
may be saved similarly in sieve2, which is called from Algorithm
401.

The policy concerning the contributions of algorithms
to Communications of the ACM has been revised and was
published in the August 1970 issue, page 513. Copies of
“Algorithm Policy/Revised August 1970” will be mailed
upon request.

Important new features in the revised policy statement
are: the acceptance of translations of algorithms; a change
in policy on PL/I algorithms; clarification of conditions
for acceptance, particularly with reference to providing
evidence of a correct algorithm.

Communications of the ACM 695

