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i n t e g e r  p r o c e d u r e  eprimes(m, PR,  P I )  ; 
v a l u e  m; i n t e g e r  m; i n t e g e r  array  PR,  PI ;  

c o m m e n t  The procedure generates  the  complex prime numbers  
located in the one-eighth plane defined by 0 < y < x. Any prime 
found in t h a t  area has seven more associated primes:  - x  + yi, 

x - yi,  ± y ± xi. These associated primes mus t  be genera ted  
external ly  to cprimes. The first complex prime genera ted  by  
cprimes is 1 + i, which exceptional ly lies on x = y and has only 
three  associated primes. 

The a lgor i thm generates  a l ist  of complex primes in order of 
increasing modulus:  the parameter  m of the call is the highest  
modulus  to be included in the  list and should sat isfy m > 2. 
PR and P I  will conta in  respect ively the real and imaginary  
par ts  of the genera ted  list, wi th  PR _> P I  > 0 for each prime. 
The  value of the procedure is the number  of primes generated.  

Algor i thm 311 [1], sieve 2, is used to generate  the  ra t ional  
primes less t h a n  mL Then  it  is known (see, for ins tance  [2]) 
t ha t  a ra t ional  prime p of the form p = 4n -b 1 can be expressed 
as p = a 2 -4- b 2, and factorized as (a+bi)(a--bi)  in the complex 
plane, where a + bi and a - bi are complex primes. For  our 
present  purpose we choose a > b and include only a 4- bi in the 
list. A ra t ional  prime p of the form p = 4n + 3 remains prime 
in the complex plane, so we include p + 0i in the l ist  if p < m. 
Finally,  the complex prime 1 + i may be though t  of as one of 
the factors  of the remaining ra t ional  prime 2 = ( 1 + i ) ( 1 - i ) .  

Al though this  a lgor i thm and Algor i thm 372 [3] are not  direct ly 
comparable,  since they produce the list of complex primes in a 
different order, the accompanying remark  suggests t h a t  the 
present  a lgor i thm is of ten to be preferred. 

REFERENCES : 
1. CHARTRES, B . A .  Algor i thm 311, Pr ime number  genera tor  2. 

Comm. A C M  10 (Sept. 1967), 570. 
2. HARDY, G. H., AND E. M. WRIGHT. A n  Introduction to the 

Theory of Numbers, 4th ed. Clarendon Press,  Oxford, 1965, 
Chs X I I  and XV. 

3. DUNI~AM, K. B. Algori thm 372, An Algor i thm to produce 
complex primes, CSIEVE.  Comm. A C M  18 (Jan. 1970), 
52-53; 

b e g i n  
i n t e g e r  a, b, e, d, e, i, j ,  p, q; 
i n t e g e r  array  P2[1:0.7Xm T 2~In(m)], 

P3[1 : 1 .4Xm/ln(m)]  ; 
e := sieve 2 (m~2 ,  P2);  
PR[1] := PI[1] := a := c := i ;  
b : = 0 ;  
for  d := 2 s t e p  1 u n t i l  e do  
b e g i n  

p := P2[d]; q := p - -  1; 
i f  (q+4)  X 4 ~ q t h e n  
b e g i n  

i f  p < m t h e n  

LI:  

b e g i n  b := b -4- 1; 
e n d  
else  
b e g i n  

P3[b] := p e n d  

i f  a < b t h e n  
b e g i n  

i f P 3 [ a ]  T 2 < p t h e n  
b e g i n  

c := c + 1; PR[c] := P3[a]; 
a := a +  1; Pl[c] := O; 
go t o  L1 

e n d  
e n d  ; 
q := entier(sqrt(p/2)-bl);  
for  i := q s t e p  1 u n t i l  p do 
b e g i n  

j := sqr t (p - i~ ' 2 ) ;  
i f i  T 2 T j  T 2 = p t h e n  go t o L 2  

e n d  
c o m m e n t  Note  t h a t  the jump to L2 is always made before 

the  cycle is t e rmina ted ;  
L2: 

c := c A- 1; PR[e] := i; Pile] := j 
e n d  

en  d; 
L3: 

i f  a _< b t h e n  
b e g i n  

c := c "-b 1; PR[c] := P3[a]; 
a := a -4- 1; PI[c] := 0; 
go t o  L3 

e n d  ; 
cprimes := c 

e n d  eprimes 
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p r o c e d u r e  qsort(a, ll ,  u l ) ;  
v a l u e  ll ,  u l ;  i n t e g e r  11, u l ;  a r r a y  a; 

c o m m e n t  This  procedure sorts  the elements  all1], a[/lq-1], • -. , 
a[ul] into nondescending order. I t  is based on the idea described 
in [1]. A comparison of this  procedure wi th  another  procedure,  
called sortvec, obta ined  by combining C. A. R. Hoare ' s  quicksort 
[2] and R. S. Scowen's quickersort [3], in such a way as to be 
opt imal  for the Algol 60 sys tem in use on the Electrologica X-8 
computer  at  the Mathemat i ca l  Centre  is shown below. Here 
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"repe t i t ions"  denotes the number of times the sorting of a 
sequence of tha t  " l eng th"  is repeated;  "average t ime"  is the 
time in seconds averaged over the repeti t ions;  "ga in"  is the 
difference in time relative to time taken by sortvec. 

procedure length repetitions average time gain 
sortvee 30 23 .09 
qsort 30 23 .06 + .37  
sortvec 300 16 1.25 
qsort 300 16 1.03 + .17  
sortvec 3000 9 17.43 
qsort 3000 9 15.25 + .13  
sortvec 30000 2 232.46 
qsort 30000 2 197.96 + .15  

REFERENCES: 
1. VAN EMDEN, M. H. Increasing the efficiency of quicksort.  

Comm. A C M 1 8  (Sept. 1970), 563-567. 
2. HOARE, C. A. R. Algorithm 64, quicksort. Comm. A C M  

(July 1961), 321-322. 
3. SCOWEN, R. S. Algorithm 271, quickersort.  Comm. A C M 8  

(Nov. 1965), 669; 
b e g i n  

i n t e g e r  p, q, ix, iz; 
real  x, xx, y, zz, z; 
p r o c e d u r e  sort; 
b e g i n  

i n t e g e r  l, u; 
l := l l ;  u := u l ;  

part: 

p : = l ;  
i f x > z  
b e g i n  y 
i f  u - -  l 
b e g i n  

right: 

dist: 

out: 

q := u; x := alp]; z := a[q]; 
t h e n  
:= x; alp] := x := z; a[q] := z := y e n d ;  
> 1 t h e n  

xx := x; ix := p; zz := z; iz := q; 

f o r p  := p + l w h i l e p  < q d o  
b e g i n  

x := alp]; 
i f  x ~ xx t h e n  go to  right 

e n d  ; 
p := q - -  1 ; g o t o o u t ;  

for q := q - -  1 w h i l e q  > p d o  
b e g i n  

z := a[q]; 
i f  z ~ zz t h e n  go t o  dist 

end;  
q := p; p := p - -  1; z := x; x := alp]; 

b e g i n u l  := u; ll  := q + 1; u := p -  l e n d ;  
i f  u l  > ll t h e n  sort; 
i f  u > 1 t h e n  go to  part 

e n d  
e n d  of sort; 
i f  u l  > 11 t h e n  sort 

e n d  of qsort 
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This remark reports  certain failures of Algori thm 343 when 
applied to pathological matrices.  The smallest  example is a 4 X 4 
matrix for which 16 guard bits  (5+ digits) proved insufficient; all 
computed eigenvalues were incorrect in the most  significant digit.  

The algori thm was implemented on an IBM System/360 model 
50 using For t ran  IV-G. The program was not modified to operate 
completely in double precision as was done for Knoble 's  certifica- 
t ion [2]. Sat isfactory agreement was obtained for the three sample 
matrices given wi th  the algorithm. 

Example  A 

i f  x > z t h e n  
b e g i n  

y := x; a[pI := x := z; E x a m p l e B  
a[q] := z := y 

end;  --41 
i f x  > x x t h e n  -- 2 
b e g i n x x  :~ x; ix := p e n d ;  -- 3 
i f z  < z z t h e n  -- 4 
b e g i n  zz := z; iz := q e n d ;  --55 
go t o  left; --51 

i f p  # ix A x ~ xx t h e n  
b e g i n  alp] := xx; a[ix] := x end;  
i f q  # iz A z # zz t h e n  
b e g i n  a[q] := zz; a[iz] := z end;  
i f u  -- q > p - -  l t h e n  
b e g i n  11 := l; u l  := p - 1; 1 := q + l e n d  
e lse  

- 5 0  53 52 51 
- 52 1 53 52 
- 53 0 1 53 
- 51 53 52 52 

The exact eigenvalues are all 1. The computed eigenvalues follow. 
(Computed eigenvalues are reported rounded to 2 places after 
the decimal point ,  any fur ther  figures being, ra ther  obviously, 
pointless.) 

2.35 
1.03 ± 1.38 i 

-0 .41  

The maximum error in a computed eigenvalue exceeds 2 percent  
of the largest  element of the matrix.  

55 4 3 2 51 
10 55 4 3 2 
0 10 55 4 3 
0 0 10 55 4 
0 0 0 10 55 

55 4 3 2 61 

The exact eigenvalues are all 10. The computed eigenvalues: 

14.76 ~ 2.92 i 
9.70 ± 5.33 i 
5.54 ~ 2.39 i 

The maximum error in a computed eigenvalue exceeds 9% of the 
largest  element in the matrix.  
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E x a m p l e  C 

- 9 1  - 9 4  0 0 0 
95 98 0 0 0 
90 99 5 0 0 
90 0 99 6 0 
90 0 0 99 7 
90 0 0 0 99 
90 0 0 0 0 
99 99 0 0 0 

The exact eigenvalues are 3, 4, 5, 6, 
eigenvalues are:  

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
8 0 0 

99 9 0 
0 99 10 

7, 8, 9, 10. The computed 

12.68 
10.96 ± 3.73 i 
6.47 ::t: 5.38 i 
2.09 ± 3.73 i 
0.27 

Al though all eigenvalues are real, the imaginary  pa r t  of one pair  
of computed eigenvalues exceeds 5 percent  of the  largest  e lement  
of the  matr ix .  This  matr ix ,  like the o ther  two, was maliciously 
devised to take advan tage  of the  program; it  is indica t ive  of this  
t h a t  the  t ranspose,  being already in lower Hessenberg form, fares 
much  bet ter ,  all computed eigenvalues being correct  to wi th in  
±0.05. 

Al though,  in view of the  known sens i t iv i ty  of mult iple  eigen- 
values to small  changes of cer tain elements  of cer ta in  matr ices ,  
such counter  examples are to be expected, i t  is p robab ly  wor th  
pu t t i ng  a few examples on record as the  casual and unsophis t ica ted  
user is more ap t  to take  warning of the  dangers  of eigenvalue 
computa t ions  in single precision from a concrete case. 
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Algor i thm 372 was run  on the  CDC 6400 a t  the  Univers i ty  of 
Montreal .  The var iable  i is undefined if the  for- loop at  label A is 
completed.  The s t a t e m e n t  

i := j -}-  1; 

should be added immedia te ly  before label B. Algol pur is ts  may 
also care to remove r edundan t  semicolons af ter  go to  A and go t o  

B, and the r edundan t  parentheses  in  one i f - s t a tement .  Wi th  these 
changes the  a lgor i thm produced correct  resul ts  for several  values 
of m. 

The comment  in Algor i thm 372 is s l ight ly  inaccurate .  The first 
pr ime genera ted  by  the  a lgor i thm is 1 -{- i,  which does not  have 
P R  > P I ,  and which has not  seven bu t  three  associated primes. 

I t  is not  possible to compare the  speeds of Algor i thm 372 and 
Algor i thm 401 di rect ly  since they  generate  primes in a different 
order. However,  the  following tes t  was run.  A value of m was 
chosen, and Algor i thm 401 was used to l ist  all the  complex primes 
wi th  modulus less t h a n  m. The t ime t aken  and the  number  of 
primes produced were noted. Then  Algor i thm 372 was used to 
produce an equal number  of primes, the  t ime t aken  again being 
noted. Times observed are shown in Table  I. 

T A B L E  I 

Limit on Algorithm 401 Time taken Time taken by Algorithm Ratio of 
produced this (secs) 372 to produce the same 

modulus number of primes number of primes (sees) times taken 

25 60 0.278 0.331 1.2 
50 189 1.577 2.140 1.4 
75 373 4.217 7.602 1.8 

100 623 8.618 20.214 2.4 
150 1266 23.732 79.481 3.4 

The conclusion from the  figures in Table  I is t h a t  if the  speed 
wi th  which the  complex primes arc generated is of pa r amoun t  
impor tance  then Algor i thm 401 should be preferred to Algor i thm 
372. 

As wr i t ten  Algor i thm 401 will use more memory  t han  Algor i thm 
372 since i t  is convenient  and perspicuous to use sieve2 in an  un- 
modified form, which makes  i t  necessary to s tore temporar i ly  all 
the  ra t ional  primes less t h a n  m 2. However,  if space is t igh t  then  
sieve2 can easily be modified so as to generate  ra t ional  pr imes one 
a t  a t ime on successive calls, and in this  way the use of the  long 
ar ray  P2 can be avoided.  If th is  modificat ion is made Algor i thm 
401 will in fact  use less store t han  Algor i thm 372, which wasteful ly  
s tores many  useless values in P M .  I t  is also to be noticed t h a t  the  
factors  0.7 and 1.4 occurring in the  declara t ions  of P2 and P3 may  
be diminished for large m: all t h a t  is necessary is t h a t  P2 should 
be long enough to hold the  ra t ional  primes less t h a n  m S, and t h a t  
P3 should be long enough to hold the ra t ional  primes which are 
not  greater  t han  m and which are of the  form 4n + 3. Some space 
may  be saved s imilar ly  in sieve2, which is called from Algor i thm 
401. 

The  policy concerning the  con t r ibu t ions  of a lgor i thms 
to Communica t ions  of  the A C M  has been revised and  was 
publ ished in the  August  1970 issue, page 513. Copies of 
"Algor i thm Pol icy /Revised  August  1970" will be mailed 
upon request.  

I m p o r t a n t  new fea tures  in the  revised policy s t a t e m e n t  
are: the  acceptance  of t r ans la t ions  of a lgor i thms;  a change 
in policy on P L / I  a lgor i thms;  clarif ication of condi t ions  
for acceptance,  par t i cu la r ly  wi th  reference to provid ing  
evidence of a correct  a lgori thm. 
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