
How to design Future-Ready Microservices? Analyzing
microservice patterns for Adaptability

João Francisco Lino Daniel
Free University of Bozen-Bolzano

Bozen-Bolzano, Trentino - Alto Adige
Italy

joao.daniel@student.unibz.it

Xiaofeng Wang
Free University of Bozen-Bolzano

Bozen-Bolzano, Trentino - Alto Adige
Italy

xiaofeng.wang@unibz.it

Eduardo Martins Guerra
Free University of Bozen-Bolzano

Bozen-Bolzano, Trentino - Alto Adige
Italy

eduardo.guerra@unibz.it

ABSTRACT
Microservices have become the de facto choice for large, complex
systems, due to their drivers of cohesion and decoupling. According
to this architectural style, the system is divided into small, inde-
pendently deployable units, called microservices. In the literature,
there are several architectural patterns for this style. Despite this,
little is to be found focusing on extensibility. Further, in previous
works, we analyzed the trade-offs involving some of those patterns,
and among other findings, we identified some issues regarding
extensibility in some cases. In the current work, we aimed to an-
alyze how patterns affect the extensibility of microservice-based
systems. We considered three specific approaches to extensibility:
Microservice Internal Flexibility, Microservice Extensibility, and
System Extensibility. We found 91 patterns in the literature, and
analyzed 18 of them, of six different categories. The outcomes of
this analysis are hoped to be useful for bringing extensibility as a
key quality attribute when designing microservice-based systems.

KEYWORDS
microservices extensibility, microservices patterns, quality attributes
analysis
ACM Reference Format:
João Francisco Lino Daniel, Xiaofeng Wang, and Eduardo Martins Guerra.
2023. How to design Future-Ready Microservices? Analyzing microservice
patterns for Adaptability. In 28th European Conference on Pattern Languages
of Programs (EuroPLoP 2023), July 05–09, 2023, Irsee, Germany. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3628034.3628046

1 INTRODUCTION
Microservices Architecture (MSA) is an architectural style in which
the system gets divided into small, independently deployed parts,
called microservices [8]. This style is driven by low coupling and
high cohesion levels of the modules. For that reason, it has become
the defacto architectural style for large, complex systems. Among
other benefits, it enables each microservice to evolve independently
of others, as well as changes to be added as new microservices
instead of altering existing code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP 2023, July 05–09, 2023, Irsee, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0040-8/23/07. . . $15.00
https://doi.org/10.1145/3628034.3628046

Nonetheless, MSA does not immediately yield these benefits. It
is necessary to carefully deal with recurring issues, such as how to
divide the responsibilities into microservices, or how to establish
communication between different microservices, avoiding tightly
coupling them.

However, practitioners are not alone in overcoming those issues.
In the literature, there are studies about MSA patterns, conducting
case analysis on usage of patterns [1], and also systematic map-
pings [11]. Also, there are works that classify patterns according to
different groups [3, 7, 10] and act as a quick reference for profes-
sionals.

In previous works, we analysed the trade-offs of microservices
patterns regarding size, coupling, and data sharing [5]. We also
explored the relation between the patterns and architecture met-
rics [6]. From these experiences, we decided to have a broader study
on extensibility, which comprehends the features of size, coupling,
and cohesion [2].

In this work, our goals are expressed as the Research Ques-
tion (RQ): “How does each pattern affect adaptability in a
Microservices-basedArchitecture?” . This RQ is broad and general,
so it can be further specified. First, we define a small terminology
that will help to understand the specification:

• service is a logical unit that contains a set of cohesive oper-
ations;

• microservice is a deployment unit, at runtime, it is a single
process that might contain one or more services;

• system is a set of microservices that work together for a
greater purpose; a system might be considered a part of a
larger system (system with (sub)systems).

With these terms, we specify the RQ with the following Specific
Research Questions (SRQ).

SRQ1)Microservice Internal Flexibility: How does each
pattern affect the ability of a single service to evolve internally
without changing its interface?
SRQ2) System Extensibility: How does each pattern affect
the ability of the system to incorporate new microservices?
SRQ3) Microservice Extensibility: How does each pattern
affect the ability to add new features to an existing microser-
vice?

The rest of this document is organized as follows. In Sec. 2 is the
methodology, where we detail the steps followed during this work.
In Sec. 3 we present the patterns included in this work, with their
description and sources. The analysis regarding the extensibility
of each one, we present in Sec. 4. We discuss the results in Sec. 5,
where we compile outcomes and lessons. We discuss the limitations

https://doi.org/10.1145/3628034.3628046
https://doi.org/10.1145/3628034.3628046
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3628034.3628046&domain=pdf&date_stamp=2024-02-05

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Daniel, Wang & Guerra

and the their mitigations in Sec. 6. Finally, in Sec. 7 we conclude
this work.

2 METHODS
2.1 Study Design
We systematically analyzed the patterns of two pattern catalogs: the
Microsoft Cloud Design Patterns page1, and Chris Richardson’s Mi-
croservices Pattern Language2. We chose these two sources because,
from previous works [4, 5], our perception is that the profession-
als broadly use these catalogs due to their accessibility, and both
websites are maintained by experienced and reliable sources.

Initially, we gathered all the patterns present in the pattern
languages. In total, we found 91 pattern documentation pages. This
complete list counted with a variety of patterns, and even repeated
patterns (sometimes under different names, but essentially the same
solution). For this step, we did nothing regarding the aliases or
purposes unrelated to the objective of this work.

The second step was to filter the patterns we would analyze in
more detail. For that, we defined objective inclusion criteria, based
solely on the text of the documentation of each pattern. The patterns
selected were those that, somewhere in the text, contained at least
one of the keywords related to our goals: ADAPTABILITY, ADAPT-
ABLE, ADAPT, ADAPTATION, FLEXIBILITY, FLEXIBLE, EXTEN-
SIBILITY, EXTENSIBLE, EXTEND, EXTENSION, COUPLING, COU-
PLE, COUPLED, LOOSE COUPLING, LOOSELY COUPLED, TIGHT
COUPLING, TIGHTLY COUPLED, DECOUPLING, DECOUPLED,
DEPENDENCY, DEPENDENT, DEPEND, MODIFIABILITY, MODI-
FIABLE, MODIFY, VARIABILITY, VARIABLE, PLUGIN, PLUG IN,
PLUGGED IN, PLUGGING IN, PLUG-IN, OPEN SYSTEM, OPENED
SYSTEM, OPENING SYSTEM. For this step, we wrote a JavaScript
crawler application that would fetch the HTML code for the page
of each pattern, and cross-reference it with the set of keywords,
indicating which page contained each of the terms. Those patterns
that had not hit with any of the keywords were ruled out of the
process. From this point on, we worked with 43 patterns.

Aware of the fact that a simple word matching could bring po-
tential false positives into the analysis, we ran the first round of
applying the pre-analysis exclusion criteria. For each selected pat-
tern, we manually found the occurrences of the keyword hit to
understand their contexts and semantics. In those cases in which
the term was found, but all the contexts were unrelated to the goal
of the work, we also ruled them out. We were left with 24 patterns.

We then read all the patterns and highlighted fragments of the
text that were evidence of a feature in the architecture of interest
to our work. We analyzed each fragment and encoded it in regard
to the feature.

Now, it was time to map the effects of the patterns to our SRQs,
more specifically to each dimension an SRQ represents. For that,
we created the Dimension Effect Criteria (DEC) for each relating
the patterns with their effect on each dimension. We navigate in
DEC’s details in Subsec. 2.2.

To assess the DEC, and check if they were suitable for our pur-
pose, we conducted a pilot examination. From the 24 patterns left,

1https://learn.microsoft.com/en-us/azure/architecture/patterns/
2https://microservices.io/patterns/index.html

we got 8 at random and analyzed each according to those crite-
ria. We discussed our results and felt they were adequate. Next,
we followed through with all the 24 patterns. For each pattern,
we highlighted relevant excerpts of the documentation text and
mapped them with the features we were analyzing. This we called a
"strike", to keep the count. A strike can have a positive or a negative
impact on a feature. With that, we summarized how each pattern
affected each dimension.

Finally, we went for a second round of exclusion, according to
this post-analysis exclusion criteria: we would remove any pattern
that was either an alias to another pattern or resulted in being
neutral to all dimensions. After that, we ended with 18 patterns in
the list.

2.2 Effects on the Dimensions
In this subsection, we detail the DEC. Table 1 presents the criteria
for the effects on each dimension.

As an illustration of how these criteria were used, consider the
"Shared Database" pattern. It says to use a single database shared
among different microservices. Because of that, the adoption of this
pattern increases coupling on data structures. As the criteria state, for
instance, coupling (data structure) has an inverted relation to Sys-
tem Extensibility, in this example, the pattern would be considered
to negatively impact this dimension. This individual fact would be
registered as a single negative strike on System Extensibility. It is
worth mentioning this analysis can lead to four types of effects on a
dimension: "negative" is when all the strikes have a negative impact,
"positive" is analogous but with a positive impact, "balanced" when
there are mixed strikes, for both sides, and "neutral" is when there
were no strikes in either direction

3 PATTERNS ANALYZED
In this section, we describe the 18 patterns that were analyzed. Also,
we present a taxonomy where we group the patterns across 6 differ-
ent categories: Communication, Data, Decomposition, Deployment,
Interface, and Query. Fig. 2 illustrate this taxonomy.

Ambassador Provides helper services that send network re-
quests on behalf of a consumer service or application. https://learn.
microsoft.com/en-us/azure/architecture/patterns/ambassador

Asynchronous Request-Reply This pattern allows a system
to operate and process data in the background, freeing up user
interfaces and systems from waiting for the completion of the task.
It involves making a request that is processed asynchronously, often
queued for processing and the reply is delivered once the processing
is completed. https://learn.microsoft.com/en-us/azure/architecture/
patterns/async-request-reply

Backends for Frontends Creates separate backend services to
be consumed by specific frontend applications or interfaces https://
learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-
frontends

Choreography In this pattern, each service involved in a busi-
ness operation is designed to act independently and interact with
other services through events. There’s no central orchestrator dic-
tating how each step of the business operation is carried out, in-
stead, each service knows what step in the operation to execute

https://learn.microsoft.com/en-us/azure/architecture/patterns/
https://microservices.io/patterns/index.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/ambassador
https://learn.microsoft.com/en-us/azure/architecture/patterns/ambassador
https://learn.microsoft.com/en-us/azure/architecture/patterns/async-request-reply
https://learn.microsoft.com/en-us/azure/architecture/patterns/async-request-reply
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends

How to design Future-Ready Microservices? Analyzing microservice patterns for Adaptability EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Figure 1: The DEC - Dimension Effect Criteria

Figure 2: The patterns grouped into a taxonomy of categories

based on events it receives https://learn.microsoft.com/en-us/azure/
architecture/patterns/choreography

ClaimCheck Splits a largemessage into a claim check and a pay-
load to prevent the message bus and client from being overwhelmed
https://learn.microsoft.com/en-us/azure/architecture/patterns/claim-
check

Command-Side Replica This pattern involves separating the
read and update operations for a data store. It maintains a replica
of the data store on the command side (where updates are handled)
which can be used to validate commands without needing to query
the primary, read-side data store https://microservices.io/patterns/
data/command-side-replica.html

Command-Query Responsibility Segregation Separates read
and write into different models, using commands to update data,
and queries to read data https://learn.microsoft.com/en-us/azure/
architecture/patterns/cqrs

Database per Service Eachmicroservice has its own database to
ensure loose coupling and data consistency. https://microservices.
io/patterns/data/database-per-service.html

Decompose by Business Capability Decomposes an applica-
tion into services organized around business capabilities https://
microservices.io/patterns/decomposition/decompose-by-business-
capability.html

Decompose by Subdomain Decomposes an application into
services based on subdomains within the business domain https://

https://learn.microsoft.com/en-us/azure/architecture/patterns/choreography
https://learn.microsoft.com/en-us/azure/architecture/patterns/choreography
https://learn.microsoft.com/en-us/azure/architecture/patterns/claim-check
https://learn.microsoft.com/en-us/azure/architecture/patterns/claim-check
https://microservices.io/patterns/data/command-side-replica.html
https://microservices.io/patterns/data/command-side-replica.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html
https://microservices.io/patterns/decomposition/decompose-by-subdomain.html
https://microservices.io/patterns/decomposition/decompose-by-subdomain.html

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Daniel, Wang & Guerra

microservices.io/patterns/decomposition/decompose-by-subdomain.
html

Event Sourcing Preserves the history of aggregates by storing
all state changes as a sequence of events. https://microservices.io/
patterns/data/event-sourcing.html

Gatekeeper This pattern protects applications and shared re-
sources from issues such as system overloads and malicious usage.
It uses a gatekeeper component that validates and sanitizes re-
quests before they reach a shared resource or service https://learn.
microsoft.com/en-us/azure/architecture/patterns/gatekeeper

Gateway Routing Routes requests from clients to services
using a gateway service https://learn.microsoft.com/en-us/azure/
architecture/patterns/gateway-routing

Messaging Instead of services directly invoking each other,
they communicate via messages. These messages are self-contained
pieces of information that are sent over a message channel. A ser-
vice sends a message into the channel, and that message is pro-
cessed by another service that has subscribed to that channel. This
decouples the services from each other, allowing them to evolve
independently. https://microservices.io/patterns/communication-
style/messaging.html

Pipes and Filters Breaks down a task that performs complex
processing into a series of separate elements that can be reused
https://learn.microsoft.com/en-us/azure/architecture/patterns/pipes-
and-filters

Queue-based Load Levelling Uses a queue to level the load on
a service andminimize the impact of peak load periods. https://learn.
microsoft.com/en-us/azure/architecture/patterns/queue-based-load-
leveling

Shared Database Multiple microservices use a shared data-
base, each service can use data accessible to other services https:
//microservices.io/patterns/data/shared-database.html

Sidecar Deploys helper components of an application into a sep-
arate process or container to provide isolation and encapsulation.
https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar

4 RESULTS OF THE ANALYSIS
To help summarize our results, and be useful for practitioners, we
present two visual aids. Fig 3 has the purpose of giving the complete
results for a particular pattern. It alphabetically places each pattern
with its perceived impact, for each one of the dimensions analyzed.

4.1 How does each pattern affect the ability of a
single service to evolve internally without
changing its interface?

This dimension of Microservice Internal Flexibility represents how
easy (or hard) it is to make internal changes to a microservice
without impacting its interface. To make this kind of scenario more
tangible, we exemplify. Suppose a change in the legislation requires
additional recording of financial operations. In order to comply with
this new regulation, the developers of the CurrencyOperations
microservice will have to add a new layer of logging into their
operations. Another: a team detected a bottleneck in the generation
of a report, so they are considering improving the algorithm or
changing the data model, to be more performant. The degree to

which they can make this kind of change is what the Microservice
Internal Flexibility dimension represents.

One criterion for analysing this dimension was how the patterns
related to cohesion. There are benefits from the set comprising
"Ambassador", "Backends for Frontends", "Command-Side Replica",
"Decompose by Business Capability", "Decompose by Subdomain",
"Gatekeeper", and "Pipes and Filters". The improves proposed by
these patterns range from offloading peripheral concerns, to defin-
ing strong, business-driven boundaries between microservices, and
specializing microservices by features. Also, there were no patterns
negatively influencing cohesion.

Some patterns benefitted this dimension by its relation to func-
tional coupling. On the positive side, there are "Backends for Fron-
tends", "Choreography", "Command-Side Replica", "Gateway Rout-
ing", "Pipes and Filters", and "Sidecar". They did so, in broad terms,
by reducing the direct dependency to other parts of the system. On
the negative side, "Database per Service" and "Shared Database". In
both cases, different microservices depend on each other to per-
form their data-related operations – in the first, it requires a direct
interaction between the microservices; in the second, the data gets
blocked to one when the other is accessing.

"Ambassador", "Command-Side Replica", and "Sidecar" reduce
the internal implementation complexity. On all of these cases, this is
achieved by separation of concerns into different parts of the code.
Whereas, "Claim Check" and "Event Sourcing" add more processing
to the microservice, either for querying data or for communicating
with others.

Finally, a few patterns have a balanced effect on Microservice
Internal Flexibility. They are "Command-Query Responsibility Seg-
regation" and "Queue-based Load Levelling", which both favor co-
hesion and reduce functional coupling, at the cost of additional
internal implementation complexity.

We found "Asynchronous Request-Reply" and "Messaging" to be
neutral in this dimension, i.e., we found no text fragments evidenc-
ing impacts in this dimension.

4.2 How does each pattern affect the ability of
the system to incorporate new
microservices?

System Extensibility focuses on the system (instead of individual
microservices), and on how easy it is to add new microservices
to it. We give two examples to illustrate these scenarios. When
a company expands its domain, this requires new features to be
developed and delivered. One way to deliver the feature is to deploy
it into a new microservice. Another scenario is when the current
architecture of the system is assessed, and it is decided to have a
finer granularity of deployments, i.e., microservices need to get
smaller without losing features. One approach to that is to split
one microservice into two (or even more) new microservices. We
represent the ability to do these kinds of changes with the System
Extensibility dimension.

This dimension is affected by two groups of patterns: the first,
positively by reducing coupling; and the second, negatively by in-
creasing external implementation complexity. One the positive side,
"Choreography", "Event Sourcing", "Gateway Routing", and "Side-
car" work on different ways of decoupling, from data structures, to

https://microservices.io/patterns/decomposition/decompose-by-subdomain.html
https://microservices.io/patterns/decomposition/decompose-by-subdomain.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/event-sourcing.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/gatekeeper
https://learn.microsoft.com/en-us/azure/architecture/patterns/gatekeeper
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-routing
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-routing
https://microservices.io/patterns/communication-style/messaging.html
https://microservices.io/patterns/communication-style/messaging.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://learn.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://microservices.io/patterns/data/shared-database.html
https://microservices.io/patterns/data/shared-database.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar

How to design Future-Ready Microservices? Analyzing microservice patterns for Adaptability EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Figure 3: The effect of the patterns on the dimensions

functional, and communication. Whereas, "Asynchronous Request-
Reply" and "Claim Check" propose solutions that add complexity
to the implementation related to the infrastructure required for
communication and data management.

On the balanced strikes, "Database per Service" offers challenges
to external implementation complexity and to functional coupling,
but favors decoupling of data structures. "Shared Database" com-
promises functional and data structure coupling, while reducing
external implementation complexity. Then, "Backends for Fron-
tends", "Command-Side Replica", "Command-Query Responsibility
Segregation", "Messaging", "Pipes and Filters", and "Queue-based
Load Levelling" favor decoupling – either communication, data
structure, or functional –, at the expense of increasing external
implementation complexity.

We found "Ambassador", "Decompose by Business Capability",
"Decompose by Subdomain" and "Gatekeeper" to be neutral in this
dimension, i.e., we found no text fragments evidencing impacts in
this dimension.

4.3 How does each pattern affect the ability to
add new features to an existing
microservice?

The third dimension sets the focus back into a single microservice.
Microservice Extensibility represents the ability to add new features
to an existing microservice. An example scenario that illustrates
this: the product owners of a company designed a new feature that
needs to be developed and shipped to the customers. This feature,
in spite of being new, will have a high entropy with an existing one.

So, one possibility to ship the new feature is to place it along with
the existing one, in the same microservice. How much the existing
microservice’s code is prepared for this kind of injection of new
code is what Microservice Extensibility represents.

In regards to cohesion, as a factor to affect the System Extensibil-
ity, therewere patterns only in the benefit: "Ambassador", "Backends
for Frontends", "Command-Side Replica", "Decompose by Business
Capability", "Decompose by Subdomain", "Gatekeeper", and "Pipes
and Filters". The reason for that is similar to before: strongly defini-
tion of boundaries, and offloading concerns.

Similarly, the only side of communication coupling affected was
in the direction of reducing it. "Choreography" removes of a cen-
tralized orchestrator, while "Messaging" adds an indirection layer
in the middle of the communication.

The last feature is the implementation complexity of the internal
of a microservice. In here, "Ambassador", "Command-Side Replica",
and "Sidecar" are beneficial, by favoring code reuse of peripheral
tasks, or by removing the need of application code to handle the
communication between parts. But, there is also "Claim Check"
striking negatively, because the increase in the complexity for han-
dling the payload of messages.

"Command-Query Responsibility Segregation", "Event Sourcing",
and "Queue-based Load Levelling" have a balanced distribution of
the strikes. They all have a negative impact because the increase
of internal implementation complexity, but "Event Sourcing" fa-
vors communication decoupling, while the rest propose gains in
cohesion.

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany Daniel, Wang & Guerra

Figure 4: The aggregated effect of the categories on the di-
mensions

We found "Asynchronous Request-Reply" and "Gateway Rout-
ing" to be neutral in this dimension, i.e., we found no text fragments
evidencing impacts in this dimension.

5 OUTCOMES AND LESSONS
We analyzed the 18 patterns regarding, specifically, the dimensions
we called Microservice Internal Flexibility, Microservice Extensibil-
ity, and System Extensibility. These patterns were classified into
6 different categories. Going a step further into the analysis of an
individual pattern, we aggregated the strikes of the categories, to
see how they affect the dimensions. Fig. 4 presents this information.

Although it is not possible to make any sense from comparing
one category’s results with another’s, we can analyze them individ-
ually. For the purposes of this work, we can see that the patterns
in the categories Decomposition, Deployment, and Interface are
more generally beneficial to all the dimensions of Adaptability. This
makes sense since they respectively favor the overall cohesion of
the microservices, the maintenance of the microservices by offload-
ing responsibilities, and the decoupling of the parts by abstracting
the division.

The Communication, Data, and Query categories require atten-
tion when adopting their patterns. From our analysis, we see that,
despite the high benefits, the patterns in the Query category also
might compromise the Adaptability in some cases, in particular for
the increases in the implementation complexity. A similar situation

happens with Communication patterns and the implementation
complexity, but in this case, the negative strikes were more numer-
ous – which does not imply being worse in the impact; in reality, it
only means there are more mentions of these types of effects.

The Data category is a separate one. Along with Communication,
it is the biggest category in the number of patterns – both with 6 –,
but it is the most complex one due to the intersections with other
categories – namely, Communication and Query. Also, the strikes
of Data were numerous for both sides on all dimensions. This all
means we ought to treat the patterns in this category more carefully.
The most frequent trade-off this category offers is favoring the de-
coupling of data structures, at the expense of adding complexity to
the implementation. But Microservices is an architectural style that
brings complex challenges to the process [8, 9], thus the solutions
adopted can be inherently complex too.

To summarize the lessons learned in this work, we could high-
light the following ideas:

• Decomposition, Deployment, and Interface patterns are im-
portant enablers of Adaptability in Microservices;

• the patterns of Query are solutions to be picked in a case-
by-case manner – they favor Adaptability, but not for free;

• Communication and Data management are key aspects of
the Adaptability in a Microservice system, so these patterns
require a careful evaluation because they are valuable solu-
tions but also impose some limitations.

6 LIMITATIONS
We understand this work is limited to our experiments, which
might affect its broader applicability. In this section, we address
these points and the strategies we followed to mitigate them.

The initial inclusion criteria of work matching against the docu-
mentation available can be considered weak. To mitigate this issue,
we composed an extensive list of terms related to the goals of this
work, that comprised "root" terms and a wide range of their deriva-
tions. For instance, "Adaptability" is a root term we included, but we
also included its derivations "Adaptable", "Adapt", and "Adaptation".

Another possible issue would be regarding the quality of the
documentation of the patterns. As our primary sources of pattern
documentation were community-driven, it raises some questions,
such as how well the patterns are described in the documents, or
how representative of the patterns the texts are. For that reason,
we selected two well-known collections, broadly used by the com-
munity, that are often updated. We used two different sources to
avoid biases related to the aforementioned issues.

Finally, such a qualitative analysis is subject to personal biases.
In this work, two of the authors independently analyzed the pat-
terns according to the criteria, and then combined results. When
there were divergences, we got together to discuss them, seeking
convergence.

7 CONCLUSION
Microservices Architecture is a trending choice for complex sys-
tems, due to its emphasis on extensibility and other features it en-
ables, such as independent evolution of its parts. From its patterns,
in previous works, we identified some issues regarding increases in
coupling level, as a means to achieve other qualities.

How to design Future-Ready Microservices? Analyzing microservice patterns for Adaptability EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

In this work, we addressed the RQ “How does each pattern affect
adaptability in a Microservices-based Architecture?”, an approach
focusing on Extensibility as a quality attribute. We collected sources
of patterns and analyzed 18 regarding Microservice Internal Flex-
ibility, Microservice Extensibility, and System Extensibility. We
identified most patterns positively influence Extensibility, as well
as there are patterns that trade-off this attribute in favor of other
aspects, or to solve more specific problems.

Furthermore, in this work, we present two main contributions.
First, from the wide range of patterns, we compiled a set of 18
into a taxonomy that eases the understanding of the set. Second,
we present the results of the analysis on the trade-offs involving
Extensibility, highlighted by a diagram.

As future works, we understand there is value in adding patterns
from other domains to help improve Individual Adaptability. Pattern
languages such as from the Object-Oriented context can be used to
drive internal implementations of a single service.

ACKNOWLEDGMENTS
We thank the contributions of Frank Frey, which were valuable
for maturing and improving this work during the process of shep-
herding EUROPLoP-23. Also, we thank the members of our writ-
ers’ workshop, in alphabetical order, Apostolos Zarras, Dionysis
Athanasopoulos, Joseph Yoder, Marden Neubert, and Marwa Zer-
oual, whose comments and suggestions helped us understand how
the paper was being perceived, and guided into this improved final
version.

REFERENCES
[1] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian A. Tamburri, and

Theo Lynn. 2018. Microservices migration patterns. Software - Practice and
Experience 48, 11 (11 2018), 2019–2042. https://doi.org/10.1002/spe.2608

[2] L Bass, P C Clements, and R Kazman. 1997. Software Architecture in Practice (third
edit ed.). Addison-Wesley.

[3] Kyle Brown and Bobby Woolf. 2016. Implementation patterns for microservices
architectures. Vol. 22. 1–35 pages. https://dl.acm.org/doi/abs/10.5555/3158161.
3158170

[4] Joao Francisco Lino Daniel, Alfredo Goldman, and Eduardo Guerra Martins. 2022.
Are knowledge and usage of microservices patterns aligned? An exploratory
study with professionals. In 2022 IEEE 46th Annual Computers, Software, and
Applications Conference (COMPSAC). IEEE, 878–883. https://doi.org/10.1109/
COMPSAC54236.2022.00139

[5] Thatiane de Oliveira Rosa, João Francisco Lino Daniel, Eduardo Martins Guerra,
and Alfredo Goldman. 2020. A Method for Architectural Trade-off Analysis
Based on Patterns: Evaluating Microservices Structural Attributes. In Proceedings
of the European Conference on Pattern Languages of Programs 2020. ACM, New
York, NY, USA, 1–8. https://doi.org/10.1145/3424771.3424809

[6] João Francisco Lino Daniel, Eduardo Guerra, Thatiane Rosa, and Alfredo Goldman.
2023. Towards the Detection of Microservice Patterns Based on Metrics. (2023).
https://doi.org/10.1109/SEAA60479.2023.00029

[7] Microsoft. [n.d.]. Cloud Design Patterns. https://learn.microsoft.com/en-
us/azure/architecture/patterns/

[8] Sam Newman. 2015. Building Microservices - Design Fine-Grained Systems. http:
//safaribooksonline.com

[9] Sam Newman. 2020. Monolith to Microservices Evolutionary Patterns to Transform
Your Monolith. http://oreilly.com/catalog/errata.csp?isbn=9781492047841

[10] Chris Richardson. 2018. Microservices Patterns (1st editio ed.). Manning.
[11] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2018. Architectural patterns

for microservices: A systematic mapping study. CLOSER 2018 - Proceedings of the
8th International Conference on Cloud Computing and Services Science 2018-Janua,
Closer 2018 (2018), 221–232. https://doi.org/10.5220/0006798302210232

https://doi.org/10.1002/spe.2608
https://dl.acm.org/doi/abs/10.5555/3158161.3158170
https://dl.acm.org/doi/abs/10.5555/3158161.3158170
https://doi.org/10.1109/COMPSAC54236.2022.00139
https://doi.org/10.1109/COMPSAC54236.2022.00139
https://doi.org/10.1145/3424771.3424809
https://doi.org/10.1109/SEAA60479.2023.00029
https://learn.microsoft.com/en-us/azure/architecture/patterns/
https://learn.microsoft.com/en-us/azure/architecture/patterns/
http://safaribooksonline.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781492047841
https://doi.org/10.5220/0006798302210232

	Abstract
	1 Introduction
	2 Methods
	2.1 Study Design
	2.2 Effects on the Dimensions

	3 Patterns Analyzed
	4 Results of the Analysis
	4.1 How does each pattern affect the ability of a single service to evolve internally without changing its interface?
	4.2 How does each pattern affect the ability of the system to incorporate new microservices?
	4.3 How does each pattern affect the ability to add new features to an existing microservice?

	5 Outcomes and Lessons
	6 Limitations
	7 Conclusion
	Acknowledgments
	References

