
Totally-ordered Sequential Rules for Utility Maximization

CHUNKAI ZHANG, Harbin Institute of Technology (Shenzhen), China

MAOHUA LYU, Harbin Institute of Technology (Shenzhen), China

WENSHENG GAN∗, Jinan University, China

PHILIP S. YU, University of Illinois at Chicago, USA

High utility sequential pattern mining (HUSPM) is a significant and valuable activity in knowledge discovery

and data analytics with many real-world applications. In some cases, HUSPM can not provide an excellent

measure to predict what will happen. High utility sequential rule mining (HUSRM) discovers high utility and

high confidence sequential rules, allowing it to solve the problem in HUSPM. All existing HUSRM algorithms

aim to find high-utility partially-ordered sequential rules (HUSRs), which are not consistent with reality and

may generate fake HUSRs. Therefore, in this paper, we formulate the problem of high utility totally-ordered

sequential rule mining and propose two novel algorithms, called TotalSR and TotalSR
+
, which aim to identify

all high utility totally-ordered sequential rules (HTSRs). TotalSR creates a utility table that can efficiently

calculate antecedent support and a utility prefix sum list that can compute the remaining utility in 𝑂 (1) time

for a sequence. We also introduce a left-first expansion strategy that can utilize the anti-monotonic property

to use a confidence pruning strategy. TotalSR can also drastically reduce the search space with the help of

utility upper bounds pruning strategies, avoiding much more meaningless computation. In addition, TotalSR
+

uses an auxiliary antecedent record table to more efficiently discover HTSRs. Finally, there are numerous

experimental results on both real and synthetic datasets demonstrating that TotalSR is significantly more

efficient than algorithms with fewer pruning strategies, and TotalSR
+
is significantly more efficient than

TotalSR in terms of running time and scalability.

CCS Concepts: • Information Systems→ Data mining.

Additional Key Words and Phrases: data mining, utility mining, knowledge discovery, sequence rule, totally-

ordered.

ACM Reference Format:
Chunkai Zhang, Maohua Lyu, Wensheng Gan, and Philip S. Yu. 2022. Totally-ordered Sequential Rules for

Utility Maximization. J. ACM 1, 1 (September 2022), 28 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
In the age of rapid data generation, how we effectively and efficiently organize and analyze the

underlying relationships and knowledge of data to lead amore productive life is a useful, meaningful,

and challenging task. Knowledge discovery, e.g., pattern mining, which is one of the subareas of

∗
This is the corresponding author

Authors’ addresses: Chunkai Zhang, Harbin Institute of Technology (Shenzhen), Shenzhen, China, ckzhang@hit.edu.cn;

Maohua Lyu, Harbin Institute of Technology (Shenzhen), Shenzhen, China, 21s151083@stu.hit.edu.cn; Wensheng Gan,

Jinan University, Guangzhou, China, wsgan001@gmail.com; Philip S. Yu, University of Illinois at Chicago, Chicago, USA,

psyu@uic.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0004-5411/2022/9-ART $15.00

https://doi.org/0000001.0000001

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

ar
X

iv
:2

20
9.

13
50

1v
1

 [
cs

.A
I]

 2
7

Se
p

20
22

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

2 C. Zhang et al.

data mining and can be applied to many applications in the real world, is just such a method that

helps people discover and analyze hidden relationships and knowledge in data.

Frequent pattern mining (FPM) [2] aims to find all frequent items that appear together, and these

items are interesting and useful knowledge, or so-called frequent patterns with the occurrence

times no less than the minimum support (minsup) value defined by the user in the transaction

database. Moreover, FPM can play a significant role in market-decision [25], biological medicine

diagnosis [26], weblog mining [3], and so on. In general, FPM can only find patterns that occur

at the same time. Therefore, FPM makes it difficult to find patterns for the more complicated

situations where items occur in chronological order. Consequently, sequential pattern mining

(SPM) [1, 9, 15, 27] was proposed to address the need for mining sequential patterns in sequential

databases. We can view SPM as a generalization of FPM since SPM can process more complex data

than FPM. Correspondingly, there are more applications in real life that SPM can be involved in

due to the fact that there is much more information that can be encoded as sequential symbols.

As reviewed in [9], the real world applications that SPM can be involved in not only include the

sequential symbol data such as text analysis [29], market basket analysis [32], bio-informatics [35],

web-page click-stream analysis [6], and e-learn [47], but also include the time series data such as

stock data when there is a discretization process before mining [21].

However, FPM and SPM regard the frequency or occurrence times in a database as constant,

and all items in the database have the same weight, which is not committed to reality. In fact, for

instance, in the selling data of a supermarket, we should not only consider the quantity of the

commodities (items) but also the price of each commodity, for both the commodity’s quantity and

price matter, which can bring high profit to people. For example, in the electrical appliance store,

the profit of <television, refrigerator> is undoubtedly greater than the profit of <socket, wire>.
In FPM and SPM, because the demand for <socket, wire> is certainly greater than the demand

for <television, refrigerator>, the pattern <socket, wire> with the larger support count will be

considered more valuable than <television, refrigerator>. Moreover, if we set a too high minimum

support threshold, the pattern <television, refrigerator> will be missed in the mining process, which

is not the result that we want. To solve the limitation mentioned above, utility-oriented pattern

mining has been proposed. High-utility pattern mining (HUPM) was proposed by Ahmed et al. [3],
who introduced an economic concept, utility. HUPM aims to find all high-utility patterns, which

means the utility of a pattern must satisfy the minimum utility threshold (minutil). In other words,

HUPM takes both the quantity (internal utility) and unit utility (external utility) of each item into

account. For example, the internal utility of the item <television> is the purchased quantity, and

the external utility of that item is its price. Furthermore, the utility of one specific item equals its

internal utility times its external utility. Unfortunately, utility-oriented pattern mining is much

more challenging than FPM and SPM. Since anti-monotonicity is useless in utility-oriented mining,

this property in frequent mining can easily identify candidate patterns. In the previous example, the

price of the pattern <television, refrigerator> is higher than the price of the pattern <socket, wire>.
However, the quantity of the pattern <television, refrigerator> is lower than that of the pattern

<socket, wire>. As a result, comparing the exact utility of the pattern <television, refrigerator> and

<socket, wire> is difficult. Like FPM, it is hard to handle the items that form in chronological order

for HUPM. The idea of high-utility sequential pattern mining (HUSPM) [39] was consequently put

forth.

Plentiful algorithms for SPM and HUSPM have been proposed to improve the efficiency regarding

time and memory consumption and to apply to some distinct scenarios in the real world. Neverthe-

less, all these algorithms face trouble in that all of them just extract the set of items, which can not

provide an excellent measure to predict what will happen and what the probability of the items is

if they appear after a specific sequence. Therefore, Fournier-Viger et al. [11] proposed sequential

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 3

rule mining (SRM) that uses the concept of confidence so that rules found by SRM can provide

confidence. In other words, the goal of SRM is to identify all sequential rules (SRs) that satisfy

the minsup and minimum confidence threshold (minconf). Generally speaking, SR is represented

as <𝑋>→ <𝑌>, where 𝑋 represents the antecedent of SR and 𝑌 stands for its consequent. For

example, a SR <{television, refrigerator}>→ <air-conditioning> with a confidence equals 0.6 means

that there is a probability of 60% that customer will buy air-conditioning after purchasing television

and refrigerator. SRM, like SPM, does not account for the utility because it considers all items of

equal importance. Correspondingly, high-utility sequential rule mining (HUSRM) [46], which aims

to identify high-utility sequential rules (HUSRs), was proposed. However, HUSRM discovers the

partially-ordered HUSR, which only requires that items in the antecedent of a HUSR occur earlier

than the consequent. HUSRM does not consider the inner ordering of the antecedent or consequent

of a HUSR. Unfortunately, in reality, the sequential relationship between each item does matter.

Thinking about two sequences <heart attack, emergency measure, go to hospital, survival> and

<heart attack, go to hospital, emergency measure, death>, HUSRM may output a rule: <{heart attack,
emergency measure, go to hospital}>→ <survival>, but the second sequence can also form the

left part of the rule, which produces a totally different result from the original sequences, that is

death to survival. Moreover, in news recommendations, for instance, breaking news will occur in a

particular order. If we omit the order in which events appear, it may cause some trouble. Thus, if

we only simplify the sequence into two parts such that in each part we do not care about the inner

order, we may get an ambiguous HUSR. In addition, the partially-ordered sequential rule mining

may generate fake HUSR. For example, there are two totally-ordered rules <a, b>→ <c, d> and

<a, b>→ <d, c> with the utility is equivalent to half minutil, respectively. Note that we assume

all two totally-ordered rules are high confidence. Thus, we can obtain a partially-ordered rule <a,
b>→ <c, d> that is high-utility. However, it is not consistent with the actual result. The more

complex the relationship that the sequence can form, the more severe the phenomenon of fake

SR can become. Therefore, it is necessary to formulate an algorithm for discovering high-utility

totally-ordered sequential rules.

To the best of our knowledge, there is no work that discovers high-utility totally-ordered

sequential rules. For the sake of the limitations of partially-ordered sequential rule mining, in this

paper, we formulate the problem of totally-ordered sequential rule mining (ToSRM) and propose

an algorithm called TotalSR and its optimized version TotalSR
+
, which aims to find all high-utility

totally-ordered sequential rules (HTSRs) in a given sequential database. However, in ToSRM, the

support of the antecedent of a rule is naturally difficult to measure, since we usually only know

the support of this rule. In TotalSR we designed a special data structure, the utility table, which

records the sequences that the antecedent of totally-ordered sequential rules appears in to efficiently

calculate the support of the antecedent and reduce the memory consumption. Besides, in TotalSR
+

we redesign the utility table and propose an auxiliary antecedent record table to reduce execution

time compared to TotalSR. Moreover, we use a left-first expansion strategy to utilize the confidence

pruning strategy, which can make great use of the anti-monotonic property to avoid the invalid

expansion of low confidence HTSR. Inspired by the remaining utility [16, 17, 36], in this paper, we

proposed two novel utility-based upper bounds, named the left expansion reduced sequence prefix

extension utility (LERSPEU) and the right expansion reduced sequence prefix extension utility

(RERSPEU). In addition, to fast compute the remaining utility for a given sequence, we designed a

data structure called utility prefix sum list (UPSL), which can calculate the remaining utility value

of the given sequence in O(1) time. Based on the strategies and the data structures mentioned

above, our algorithm can efficiently identify all HTSRs. The main contributions of this work can be

outlined as follows:

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

4 C. Zhang et al.

• We formulated the problem of totally-ordered sequential rule mining and proposed two

algorithms, TotalSR and its optimized version TotalSR
+
, which can find the complete set of

HTSRs in a given sequential database.

• A left-first expansion strategy was introduced, which can utilize the anti-monotonic property

of confidence to prune the search space. Besides, with the help of the utility table and UPSL,
we can avoid scanning the database repeatedly and quickly compute the remaining utility of

each sequence and calculate the upper bounds. Therefore, TotalSR can avoid unnecessary

expansions and tremendously reduce the search space.

• In order to extract HTSRsmore effectively and efficiently, we proposed an optimized algorithm

called TotalSR
+
, which redesigns the utility table and introduces an auxiliary antecedent

record table. TotalSR
+
can significantly reduce execution time and is thus more efficient than

TotalSR.

• Experiments on both real and synthetic datasets show that TotalSR with all optimizations

is much more efficient compared to those algorithms that use only a few optimizations.

Furthermore, experimental findings demonstrate that TotalSR
+
is far more effective than

TotalSR.

The rest of this paper is organized as follows. In Section 2, we briefly review the related work

on HUSPM, SRM, and HUSRM. The basic definitions and the formal high-utility totally-ordered

sequential rule mining problem are introduced in Section 3. The proposed algorithm, TotalSR, and

its optimized version, TotalSR
+
, as well as the corresponding pruning strategies are provided in

Section 4. In Section 5, we show and discuss the experimental results and evaluation of both real

and synthetic datasets. Finally, the conclusions of this paper and future work are discussed in

Section 6.

2 RELATEDWORK
There is a lot of work on high-utility sequential pattern mining (HUSPM) and sequential rule

mining (SRM), but there is little work on high-utility sequential rule mining (HUSRM). In this

section, we separately review the prior literature on HUSPM, HUSRM, and HUSRM.

2.1 High-utility sequential pattern mining
To make the found sequential patterns meet the different levels of attention of users, utility-oriented

sequential pattern mining, which is to mine the patterns that satisfy a minimum utility threshold

defined by users, has been widely developed in recent years. However, since utility is neither

monotonic nor anti-monotonic, the utility-based pattern mining method does not possess the

Apriori property, which makes it difficult to discover patterns in the utility-oriented framework

compared to the frequency-based framework. Ahmed et al. [3] developed the sequence weighted

utilization (SWU) to prune the search space. They also designed two tree structures, UWAS-tree and

IUWAS-tree to discover high-utility sequential patterns (HUSPs) in web log sequences. With the

help of SWU, which has a downward closure property based on the utility-based upper bound SWU,
the search space can be pruned like the Apriori property. After that UitilityLevel and UtilitySpan

[4] were proposed based on the SWU, in which they first generated all candidate patterns and

then selected the HUSPs. Therefore, they are time-consuming and memory-costing algorithms.

UMSP [31] applied HUSPM to analyze mobile sequences. However, all these algorithms [3, 4, 31]

assume that each itemset in a sequence only contains one item. Therefore, the applicability of these

algorithms is hard to expand. After that, USpan [39] introduced a data structure called utility-matrix,

which can discover HUSPs from the sequences consisting of multiple items in each itemset to

help extract HUSPs. In addition, USpan utilized the upper bound SWU to efficiently find HUSPs.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 5

However, there is a big gap between the SWU and the exact utility of a HUSP, which means

the SWU upper bound will produce too many unpromising candidates. To solve the problem of

SWU, HUS-Span [36], which can discover all HUSPs by generating fewer candidates, introduced

two other utility-based upper bounds, prefix extension utility (PEU) and reduced sequence utility

(RSU). However, the efficiency of Hus-span is still not good enough. To more efficiently discover

all HUSPs, Gan et al. [16] proposed a novel algorithm ProUM that introduces a projection-based

strategy and a new data structure called the utility array. ProUM can extend a pattern faster and

take up less memory based on the projection-based strategy. HUSP-ULL [17] introduced a data

structure called UL-list, which can quickly create the projected database according to the prefix

sequence. Besides, HUSP-ULL also proposed the irrelevant item pruning strategy that can remove

the unpromising items in the remaining sequences to reduce the remaining utility, i.e., to generate

a tighter utility-based upper bound.

In addition to improving the efficiency of the HUSPM algorithms, there are also many algorithms

that apply HUSPM to some specific scenarios. OSUMS [44] integrated the concept of on-shelf

availability into utility mining for discovering high-utility sequences from multiple sequences.

To get the fixed numbers of HUSPs and avoid setting the minimum utility threshold, which is

difficult to determine for different datasets, TKUS [43] was the algorithm that only mined top-𝑘

numbers of HUSPs. CSPM [41] was the algorithm that required the itemset in the pattern to be

contiguous, which means that the itemsets in the pattern found in CSPM occur consecutively. In

order to acquire HUSPs consisting of some desired items, Zhang et al. [42] proposed an algorithm

called TUSQ for targeted utility mining. By integrating the fuzzy theory, PGFUM [13] was proposed

to enhance the explainability of the mined HUSPs.

2.2 Sequential rule mining
In order to be able to predict the probability of the occurrence of the next sequence well while

mining the pattern, sequential rule mining (SRM) was proposed as a complement to sequential

pattern mining (SPM) [9, 15, 37, 38]. Differing from SPM, a sequential rule (SR) counts the additional

condition of confidence, which means a SR should not be less than both the conditions of minsup
andminconf. A SR is defined as <𝑋>→ <𝑌> and𝑋 ∩𝑌 =∅, where𝑋 and𝑌 are subsequences from

the same sequence. In general, according to the SR forming as partially-ordered or totally-ordered,

there are two types of SRM: partially-ordered SRM and totally-ordered SRM. The first type of rule

indicates that both antecedent and consequent in a SR are unordered sets of items [7, 10, 11]. But

the items that appear in the consequent must be after the items in the antecedent, which means a

partially-ordered SR consists of only two itemsets formed by disorganizing the original itemsets

in the given sequence. The second type of rule states that both antecedent and consequent are

sequential patterns [24, 28]. In other words, both the antecedent and consequent follow the original

ordering in the given sequence. There are lots of algorithms for sequential rule mining. Sequential

rule mining was first proposed by Zaki et al. [40]. They first mined all sequential patterns (SPs) and

then generated SRs based on SPs, which is inefficient. Since it mines all SP as the first step, the SR

they obtained belonged to the totally-ordered SR. To improve the efficiency of the SRM, CMRules

[5] introduced the left and right expansion strategies. After that, RuleGrowth [10] and TRuleGrowth

[11] that discovered partially-ordered sequential rules were proposed, in which they used the left

and right expansions to help the partially-ordered SR growth just like PrefixSpan [18]. The authors

only extracted partially-ordered sequential rules because they explained too many similar rules in

the results of SRs. Therefore, the partially-ordered SR can simultaneously represent the correct

result and reduce the number of rules. Since the partially-ordered SRM does not care about the

ordering in the inner antecedent or consequent, it can simplify the mining process. Therefore,

ERMiner [7], which makes great use of the property of partially-ordered, proposed a data structure,

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

6 C. Zhang et al.

Sparse Count Matrix, to prune some invalid rules generation and improve efficiency. Lo et al. [24]
proposed a non-redundant sequential rule mining algorithm that discovers the non-redundant SR,

in which each rule cannot be a sub-rule of the other rule. Pham et al. [28] enhanced the efficiency

of non-redundant SRM based on the idea of prefix-tree. Gan et al. [14] proposed an SRM algorithm

that can discover target SRs.

2.3 High-utility sequential rule mining
Although SRM [5, 7, 10, 11] can provide the probability of the next sequence to users, it just finds the

rules that satisfy the frequency requirement, which may omit some valuable but infrequent rules.

Therefore, Zida et al. [46] introduced the utility concept into SRM and proposed a utility-oriented

sequential rule mining algorithm called HUSRM. Similarly to [5, 7, 10, 11], HUSRM also used the

partially-ordered sequential rule mining method and introduced a data structure called the utility

table to maintain the essential information about candidate rules for expansion. Besides, HUSRM

designed a bit map to calculate the support value of the antecedent and made some optimizations

to improve the efficiency. Afterward, Huang et al. [19] proposed an algorithm called US-Rule to

enhance the efficiency of the algorithm. Inspired by PEU and RSU from HUSPM in US-Rule, to

remove useless rules, they proposed four utility-based upper bounds: left and right expansion

estimated utility (LEEU and REEU), left and right expansion reduced sequence utility (LERSU and

RERSU). There are also some extensions to high-utility sequential rule mining. DUOS [12] extracted

unusual high-utility sequential rules, i.e., to detect the anomaly in sequential rules. DOUS is the

first work that links anomaly detection and high-utility sequential rule mining. Zhang et al. [45]
addressed HUSRM with negative sequences and proposed the e-HUNSR algorithm. HAUS-rules

[30] introduced the high average-utility concept into sequential rule mining and found all high

average-utility sequential rules in the gene sequences. However, all of these approaches address

partially-ordered high-utility sequential rules.

3 DEFINITIONS AND PROBLEM DESCRIPTION
In this section, we first introduce some significant definitions and notations used in this paper.

Then, the problem of high-utility totally-ordered sequential rule mining is formulated.

3.1 Preliminaries
Definition 3.1 (Sequence database). Let 𝐼 = {𝑖1, 𝑖2, · · · , 𝑖𝑞} be a set of distinct items. An itemset

(also called element) 𝐼𝑘 is a nonempty subset of 𝐼 , that is 𝐼𝑘 ⊆ 𝐼 . Note that each item in an itemset

is unordered. Without loss of generality, we assume that every item in the same itemset follows

the lexicographical order ≻𝑙𝑒𝑥 , that means 𝑎 < 𝑏 < · · · < 𝑧. Besides, we will omit the brackets if

an itemset only contains one item. A sequence 𝑠 = <𝑒1, 𝑒2, · · · , 𝑒𝑚>, where 𝑒𝑖 ⊆ 𝐼 (1 ≤ 𝑖 ≤𝑚), is

consisted of a set of ordered itemsets. A sequential databaseD is consisted of a list of sequences,D
= <𝑠1, 𝑠2, · · · , 𝑠𝑝>, where 𝑠𝑖 (1 ≤ 𝑖 ≤ 𝑝) is a sequence and each sequence has a unique identifier (SID).
Each distinct item 𝑖 ∈ 𝐼 has a positive number that represents its external utility and designated

as 𝑖𝑢 (𝑖). In addition, each item 𝑖 in a sequence 𝑠𝑘 has an internal utility that is represented by a

positive value and is designated as 𝑞(𝑖 , 𝑠𝑘). Similar to HUSRM [46] and US-Rule [19], in this paper,

we also assume that each sequence can only contain the same item at most once.

Definition 3.2 (Position and index of item). Given a sequence 𝑠𝑘 = <𝑒1, 𝑒2, · · · , 𝑒𝑚>, the position

of an item 𝑖 is defined as the index of the itemset that item 𝑖 occurs, and the index of the item 𝑖 is

the item index itself.

As the sequence database illustrated in Table 1, which will be the running example used in this

paper, there are four sequences with 𝑠1, 𝑠2, 𝑠3, and 𝑠4 as their SID, respectively. In Table 2, we can

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 7

Table 1. Sequence database

SID Sequence
𝑠1 <{(𝑎, 2) (𝑏, 1)} (𝑐 , 2) {(𝑑 , 4) (𝑓 , 2)}>

𝑠2 <{(𝑎, 1) (𝑏, 3)} {(𝑒 , 1) (𝑓 , 1)} (𝑑 , 2) (𝑐 , 1) (ℎ, 1)>

𝑠3 <{(𝑒 , 2) (𝑓 , 1)} (𝑔, 1) (𝑐 , 3) (𝑏, 1)>

𝑠4 <{(𝑒 , 2) (𝑓 , 1)} {(𝑐 , 1) (𝑑 ,3)} (𝑔, 3) (𝑏, 1)>

Table 2. External utility table

Item 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

Unit utility 2 1 3 1 2 3 2 1

see that the external utility of 𝑎, 𝑏, 𝑐 , 𝑑 , 𝑒 , 𝑓 , 𝑔, and ℎ is 2, 1, 3, 1, 2, 3, 2, and 1, respectively. For

example, in 𝑠2, there is an item (𝑎, 1) and we can know that 𝑖𝑢 (𝑎) = 2 and 𝑞(𝑎, 𝑠2) = 1. Similarly, the

positions of items 𝑎, 𝑏, 𝑒 , 𝑓 , 𝑑 , 𝑐 , ℎ in sequence 𝑠2 are 1, 1, 2, 2, 3, 4, 5, respectively, and the indices

of items 𝑎, 𝑏, 𝑒 , 𝑓 , 𝑑 , 𝑐 , ℎ in sequence 𝑠2 are 1, 2, 3, 4, 5, 6, 7, respectively.

Definition 3.3 (Totally-ordered sequential rule). A totally-ordered sequential rule (ToSR) 𝑟 = 𝑋 →
𝑌 , is defined as a relationship between two nonempty sequences𝑋 and𝑌 , where𝑋 is the antecedent

of ToSR 𝑟 and 𝑌 is the consequent of ToSR 𝑟 and 𝑋 ∩ 𝑌 = ∅, that means any item appears in 𝑋 will

not occur in 𝑌 . For totally-ordered SRM, a ToSR 𝑟 means that items occur in 𝑌 will after the items

in 𝑋 for a given sequence.

Definition 3.4 (The size of totally-ordered sequential rule). The size of a ToSR 𝑟 =𝑋 →𝑌 is denoted

as 𝑘 ∗𝑚, where 𝑘 denotes the number of items that show in the antecedent of 𝑟 and𝑚 denotes

the number of items that appear in 𝑟 ’s consequent. Note that 𝑘 ∗𝑚 only reveals the length of the

antecedent and consequent of 𝑟 . Moreover, a rule 𝑟1 with size 𝑔 ∗ ℎ is smaller than rule 𝑟2 with size

𝑓 ∗ 𝑙 if and only if 𝑔 ≤ 𝑓 and ℎ < 𝑙 , or 𝑔 < 𝑓 and ℎ ≤ 𝑙 .
Take the rule 𝑟3 = <{𝑒 , 𝑓 }>→ <𝑐> and 𝑟4 = <{𝑒 , 𝑓 }>→ <𝑐 , 𝑏>, we can get them from Table 1, as

the example, in which the size of 𝑟3 is 2 ∗ 1 and 𝑟4 is 2 ∗ 2. Thus, it is said that 𝑟3 is smaller than 𝑟4.

Definition 3.5 (Sequence/rule occurrence). Given two sequences 𝑠1 = <𝑒1, 𝑒2, · · · , 𝑒𝑝> and 𝑠2 =

<𝐸1, 𝐸2, · · · , 𝐸𝑛>, it is said that 𝑠1 occurs in 𝑠2 (denoted as 𝑠1 ⊑ 𝑠2) if and only if ∃ 1 ≤ 𝑗1 < 𝑗2 <

. . . < 𝑗𝑝 ≤ 𝑛 such that 𝑒1 ⊆ 𝐸 𝑗1 , 𝑒2 ⊆ 𝐸 𝑗2 , . . ., 𝑒𝑝 ⊆ 𝐸 𝑗𝑝 . A rule 𝑟 = 𝑋 → 𝑌 is said to occur in 𝑠2 if

and only if there exists an integer 𝑘 such that 1 ≤ 𝑘 < 𝑛, 𝑋 ⊑ <𝐸1, 𝐸2, · · · , 𝐸𝑘> and 𝑌 ⊑ <𝐸𝑘+1, · · · ,
𝐸𝑛>. In addition, we denote the set of sequences that contain 𝑟 as 𝑠𝑒𝑞(𝑟) and the set of sequences

that contain the antecedent as 𝑎𝑛𝑡 (𝑟).
For example, a ToSR 𝑟4 = <{𝑒 , 𝑓 }>→ <𝑐 , 𝑏> occurs in 𝑠3 and 𝑠4 and its antecedent occurs in 𝑠2,

𝑠3, and 𝑠4. Therefore, 𝑠𝑒𝑞(𝑟) and 𝑎𝑛𝑡 (𝑟) are {𝑠3, 𝑠4} and {𝑠2, 𝑠3, 𝑠4}, respectively.

Definition 3.6 (Support and confidence). Let 𝑟 be a ToSR and D be a sequence database. We use

the value of |𝑠𝑒𝑞(𝑟) | / |D| to represent the support value of ToSR 𝑟 , i.e., sup(𝑟). It implies that the

number of sequences containing ToSR 𝑟 divided by the total number of sequences in D gives 𝑟 ’s

support value. The confidence of ToSR 𝑟 is defined as conf (𝑟) = |𝑠𝑒𝑞(𝑟) |/|𝑎𝑛𝑡 (𝑟) |, which means that

the confidence value of ToSR 𝑟 equals the number of sequences that 𝑟 appear divides by the number

of sequences in which antecedent 𝑋 appears.

Definition 3.7 (Utility of an item/itemset in a sequence). Given an item 𝑖 , an itemset 𝐼 , and a

sequence 𝑠𝑘 , the utility of an item is equal to its internal utility multiplies its external utility. Let

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

8 C. Zhang et al.

𝑢(𝑖 , 𝑠𝑘) denotes the the utility of item 𝑖 in sequence 𝑠𝑘 and is defined as 𝑞(𝑖 , 𝑠𝑘) × 𝑖𝑢 (𝑖). The utility
of the itemset 𝐼 in the sequence 𝑠𝑘 is designated as 𝑢 (𝐼 , 𝑠𝑘) and defined as 𝑢 (𝐼 , 𝑠𝑘) =

∑
𝑖∈𝐼 𝑞(𝑖, 𝑠𝑘) ×

𝑖𝑢 (𝑖).

Definition 3.8 (Utility of a totally-ordered sequential rule in a sequence). Let 𝑟 be a ToSR and 𝑠𝑘 be

a sequence. We use 𝑢(𝑟 , 𝑠𝑘) to represent the utility of ToSR 𝑟 in sequence 𝑠𝑘 . Then 𝑢(𝑟 , 𝑠𝑘) is defined
as 𝑢(𝑟 , 𝑠𝑘) =

∑
𝑖∈𝑟∧𝑠𝑘 ⊆seq(𝑟) 𝑞(𝑖, 𝑠𝑘) × 𝑖𝑢 (𝑖).

Definition 3.9 (Utility of a totally-ordered sequential rule in a database). Given a ToSR 𝑟 and a

sequence databaseD, we use 𝑢 (𝑟) to denote the utility of ToSR 𝑟 in the sequence databaseD. Then

𝑢 (𝑟) is defined as 𝑢 (𝑟) = ∑
𝑠𝑘 ∈seq(𝑟)∧seq(𝑟) ⊆D 𝑢(𝑟 , 𝑠𝑘).

For example, a ToSR 𝑟4 = <{𝑒 , 𝑓 }>→ <𝑐 , 𝑏> occurs in 𝑠3 and 𝑠4, and its 𝑠𝑒𝑞(𝑟4) = {𝑠3, 𝑠4} and

𝑎𝑛𝑡 (𝑟4) = {𝑠2, 𝑠3, 𝑠4}. Thus, the support value of rule 𝑟4 is 𝑠𝑢𝑝 (𝑟4) = |𝑠𝑒𝑞(𝑟4) | / |D| = 2 / 4 = 0.5,

and the confidence value of rule 𝑟4 is 𝑐𝑜𝑛𝑓 (𝑟4) = |𝑠𝑒𝑞(𝑟4) |/|𝑎𝑛𝑡 (𝑟4) | = 2 / 3 = 0.67. The utility of

item 𝑒 in sequence 𝑠3 is 𝑢 (𝑒, 𝑠3) = 𝑞(𝑒, 𝑠3) × 𝑖𝑢 (𝑒) = 2 × 2 = 4 and the utility of rule 𝑟4 in sequence

𝑠3 is 𝑢 (𝑟4, 𝑠3) =
∑

𝑖∈𝑟∧𝑠𝑘 ⊆seq(𝑟) 𝑞(𝑖, 𝑠𝑘) × 𝑖𝑢 (𝑖) = 2 × 2 + 1 × 3 + 3 × 3 + 1 × 1 = 4 + 3 + 9 + 1 = 17.

Correspondingly, the utility of 𝑟4 in sequence 𝑠4 is 𝑢 (𝑟4, 𝑠4) = 11. Therefore, the utility of rule 𝑟4 is

𝑢 (𝑟4) =
∑

𝑠𝑘 ∈seq(𝑟4)∧seq(𝑟4) ⊆D 𝑢(𝑟4, 𝑠𝑘) = 𝑢(𝑟4, 𝑠3) + 𝑢(𝑟4, 𝑠4) = 17 + 11 = 28.

3.2 Problem description
Definition 3.10 (High-utility totally-ordered sequential rule mining). Given a sequence database

D, a positive minimum utility threshold minutil and a minimum confidence threshold minconf
between 0 and 1, a ToSR is called high-utility totally-ordered sequential rule (HTSR) if and only if

it satisfies both the minimum utility and confidence thresholds simultaneously, i.e., 𝑢 (𝑟) ≥ minutil
and conf (𝑟) ≥ minconf. Thus, the problem of high-utility totally-ordered sequential rule mining is

to identify and output all ToSRs that satisfy both the conditions of minutil and minconf. Note that
in this paper we use ToSR to represent the candidate HTSR.

Table 3. HTSRs in Table 1 when minutil = 25 and minconf = 0.5

ID HTSR Support Confidence Utility
𝑟1 <{𝑒 , 𝑓 }, 𝑐>→ <𝑏> 0.5 0.67 28

𝑟2 <𝑒>→ <𝑐> 0.75 1.0 25

𝑟3 <{𝑒 , 𝑓 }>→ <𝑐> 0.75 1 34

𝑟4 <{𝑒 , 𝑓 }>→ <𝑐 , 𝑏> 0.5 0.67 28

For example, if we specify that minutil = 25 and minconf = 0.5, we will discover four HTSRs

shown in Table 3. From the result, we can find that two ToSRs <{𝑎, 𝑏}>→ <𝑐 , 𝑑> and <{𝑎, 𝑏}>→
<𝑑 , 𝑐> with utility 15 and 10, respectively. Both are low-utility and will not be output. Using a

partially-ordered SRM algorithm, the two ToSRs will be merged as high-utility SR {𝑎, 𝑏}→ {𝑐 , 𝑑}

with a utility of 25. However, it is not committed to reality.

Definition 3.11 (I-expansion and S-expansion). Let 𝑠 = <𝑒1, 𝑒2, · · · , 𝑒𝑘> be a sequence and 𝑖 ∈
𝐼 be an item. The I-expansion is defined as <𝑒1, 𝑒2, · · · , 𝑒𝑘 ∪ {𝑖}>, where 𝑖 should be occurring

simultaneously with items in itemset 𝑒𝑘 and greater than the items in 𝑒𝑘 according to the ≻𝑙𝑒𝑥 .
Given a sequence 𝑠 = <𝑒1, 𝑒2, · · · , 𝑒𝑘> and an item 𝑖 ∈ 𝐼 , the S-expansion is defined as <𝑒1, 𝑒2, · · · ,
𝑒𝑘 , {𝑖}>, where 𝑖 should be occurring after the items in itemset 𝑒𝑘 of a sequence.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 9

Definition 3.12 (The expansion of a totally-ordered sequential rule). Similar to RuleGrowth [11],

in this paper, TotalSR implements left and right expansion to grow a ToSR. Given a rule 𝑟 = 𝑋

→ 𝑌 , where 𝑋 = <𝑒1, 𝑒2, · · · , 𝑒𝑘> and 𝑌 = <𝑒𝑚 , 𝑒𝑚+1, · · · , 𝑒𝑛> (𝑘 < m ≤ 𝑛), the left expansion is

defined as <𝑒1, 𝑒2, · · · , 𝑒𝑘> ♦ 𝑖 → <𝑒𝑚 , 𝑒𝑚+1, · · · , 𝑒𝑛>, where ♦ represents the expansion can be

both I-expansion and S-expansion and item 𝑖 should not be in 𝑌 , i.e., 𝑖 ∉ 𝑌 . Correspondingly, the

right expansion is defined as <𝑒1, 𝑒2, · · · , 𝑒𝑘>→ <𝑒𝑚 , 𝑒𝑚+1, · · · , 𝑒𝑛> ♦𝑖 , where ♦ represents the
expansion can be both I-expansion and S-expansion and item 𝑖 ∉ 𝑋 .

A ToSR can be formed by first performing a left expansion and then a right expansion or

performing a right expansion and then a left expansion. To avoid the repetition generating of the

same rule, in TotalSR, unlike [19, 46] we stipulate that a ToSR cannot implement the left expansion

after it performs a right expansion, which means a left-first expansion.

4 THE PROPOSED ALGORITHM
Two novel algorithms, TotalSR and TotalSR

+
, will be presented in this section. The corresponding

data structures, pruning strategies, and main procedures of TotalSR and TotalSR
+
will be described

in this section, respectively.

4.1 Upper bounds and pruning strategies
In this paper, we also use some extraordinary techniques that are utilized in the utility-oriented

pattern mining field. Sequence estimated utility (SEU) can help us to only keep useful items in the

database, which can be referred to [46] to get the detailed description. Left and right expansion

prefix extension utilities are inspired by prefix extension utilities (PEU). The left and right reduced

sequence utilities are motivated by the reduced sequence utility (RSU). Also, the left and right

reduced sequence prefix extension utilities are designed by the combination of PEU and RSU. All
the specific definitions of PEU and RSU can refer to the former studies [16, 33, 36, 39].

Definition 4.1 (Sequence estimated utility of item/ToSR). Let 𝑎 be an item and D be a sequence

database. The sequence estimated utility (SEU) of item 𝑎 is designated as SEU (𝑎) and defined

as SEU (𝑎) =
∑

𝑎∈𝑠𝑘∧𝑖∈𝑠𝑘∧𝑠𝑘 ∈D u(𝑖 , 𝑠𝑘), where 𝑠𝑘 is the sequence that contains item 𝑎 and 𝑖 is the

item that appear in sequence 𝑠𝑘 . Note that 𝑖 can be any item in the sequence 𝑠𝑘 . Correspondingly,

given a ToSR 𝑟 , the sequence estimated utility of 𝑟 is denoted as SEU (𝑟) and defined as SEU (𝑟) =∑
𝑖∈𝑠𝑘∧𝑠𝑘 ∈𝑠𝑒𝑞 (𝑟) u(𝑖 , 𝑠𝑘), where 𝑖 is the item that occurs in the sequence 𝑠𝑘 .

Definition 4.2 (Promising item and promising ToSR). A promising item is the one whose SEU is

no less than minutil. In other words, for each promising item 𝑖𝑘 , we have SEU (𝑖𝑘) ≥ minutil. If the
SEU of an item 𝑖 is less than minutil, it implies that item 𝑖 is unpromising. Also, a promising ToSR

is the one whose SEU is no less than minutil. In other words, for each promising ToSR 𝑟𝑘 , we have

SEU (𝑟𝑘) ≥ minutil. Contrarily, if the SEU of a ToSR 𝑟 is smaller than minutil, it means that 𝑟 is

unpromising.

In Table 1, for instance, if we set minutil = 20, the SEU of 𝑎 is SEU (𝑎) =
∑

𝑎∈𝑠𝑘∧𝑖∈𝑠𝑘∧𝑠𝑘 ∈D u(𝑖 ,
𝑠𝑘) =

∑
𝑎∈𝑠1∧𝑖∈𝑠1∧𝑠1∈D u(𝑖 , 𝑠1) +

∑
𝑎∈𝑠2∧𝑖∈𝑠2∧𝑠2∈D u(𝑖 , 𝑠2) = 21 + 16 = 37, then item 𝑎 is a promising

item. However, the SEU of item ℎ is SEU (ℎ) =
∑

ℎ∈𝑠𝑘∧𝑖∈𝑠𝑘∧𝑠𝑘 ∈D u(𝑖 , 𝑠𝑘) =
∑

ℎ∈𝑠2∧𝑖∈𝑠2∧𝑠2∈D u(𝑖 , 𝑠2)
= 16. Thus, there is an unpromising item ℎ. For a ToSR 𝑟 = <𝑎> → <ℎ>, its SEU is SEU (𝑟) =∑

𝑖∈𝑠𝑘∧𝑠𝑘 ∈𝑠𝑒𝑞 (𝑟) u(𝑖 , 𝑠𝑘) =
∑

𝑖∈𝑠2 u(𝑖 , 𝑠2) = 16, and it is an unpromising rule. Like the Reference [46],

we have the following two strategies.

Strategy 1 (Unpromising items pruning strategy). Given a sequence database D, TotalSR

will remove all unpromising items from D. For an unpromising item 𝑖 , the SEU of 𝑖 is smaller

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

10 C. Zhang et al.

than minutil. As a result, the utility of any ToSR that contains item 𝑖 will not exceed the minutil.
In other words, the unpromising item 𝑖 will not be contained in a HTSR, which means the item

𝑖 is useless for HTSRs. We can remove the item from D directly. Similar to US-Rule [19], after

removing some items from D, the other items’ SEU will be changed. Thus, TotalSR will not stop

using the unpromising item pruning (UIP) strategy until no items are removed.

Strategy 2 (Unpromising seqential rules pruning strategy). Let 𝑟 be an unpromising

ToSR. The unpromising sequential rules pruning strategy is that TotalSR will not extend 𝑟 further.

For an unpromising ToSR 𝑟 , the SEU of 𝑟 is less than minutil. As a result, it is not exceeded minutil
for any ToSR containing 𝑟 .

Inspired of the upper bound PEU commonly used in HUSPM [16, 17, 33, 36, 39], in this paper, we

design two analogous upper bounds called LEPEU and REPEU. They are originally proposed in [19].

Upper bound 1 (Left expansion prefix extension utility). We use LEPEU (𝑟 , 𝑠) to represent

the left expansion prefix extension utility (LEPEU) of a ToSR 𝑟 in sequence 𝑠 . LEPEU (𝑟 , 𝑠) is defined

as:

LEPEU(𝑟, 𝑠) =
{
𝑢 (𝑟, 𝑠) + ULeft(𝑟, 𝑠), ULeft(𝑟, 𝑠) > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Note that ULeft(𝑟 , 𝑠) denotes the sum of utility of the items in a sequence 𝑠 that can be extended

into the left part of a ToSR, i.e., extended into antecedent. Correspondingly, we use LEPEU (𝑟) to

denote the LEPEU of a ToSR in D. Then, LEPEU (𝑟) is defined as:

LEPEU (𝑟) =
∑

𝑠𝑘 ∈seq(𝑟)∧seq(𝑟) ⊆D LEPEU (𝑟 , 𝑠𝑘).

In Table 3, for instance, consider the HTSR 𝑟3 = <{𝑒 , 𝑓 }>→ <𝑐>. There are three sequences,

𝑠2, 𝑠3, and 𝑠4, that contain 𝑟3. In sequence 𝑠2, item 𝑑 can be extended into the antecedent of 𝑟3, so

LEPEU (𝑟3, 𝑠2) = 10. Also, we have LEPEU (𝑟3, 𝑠3) = 18. However, in 𝑠4, there is no item to be extended.

Therefore, LEPEU (𝑟3, 𝑠4) = 0. Finally, LEPEU (𝑟3) = LEPEU (𝑟3, 𝑠2) + LEPEU (𝑟3, 𝑠3) + LEPEU (𝑟3, 𝑠4) =

10 + 18 + 0 = 28.

Theorem 4.3. Given a ToSR 𝑟 = 𝑋 → 𝑌 and the other ToSR 𝑟 ′, where 𝑟 ′ is extended from 𝑟 by
performing a left I- or S-expansion, we have 𝑢(𝑟 ′) ≤ LEPEU(𝑟).

Proof. Given an item 𝑖 , a ToSR 𝑟 , and a sequence 𝑠 , where 𝑖 can be extended into the antecedent

of 𝑟 to form the other ToSR 𝑟 ′, according to the definition of ULeft(𝑟 , 𝑠) in upper bound LEPEU, we
have 𝑢(𝑖 , 𝑠) ≤ ULeft(𝑟 , 𝑠). Then, we have 𝑢(𝑟 ′, 𝑠) = 𝑢(𝑟 , 𝑠) + 𝑢(𝑖 , 𝑠) ≤ 𝑢(𝑟 , 𝑠) +ULeft(𝑟 , 𝑠) = LEPEU (𝑟 , 𝑠).

Therefore, 𝑢(𝑟 ′) ≤ LEPEU (𝑟). □

Upper bound 2 (Right expansion prefix extension utility). We use REPEU (𝑟 , 𝑠) to denote

the right expansion prefix extension utility (REPEU) of a ToSR 𝑟 in sequence 𝑠 . REPEU (𝑟 , 𝑠) is

defined as:

REPEU(𝑟, 𝑠) =
{
𝑢 (𝑟, 𝑠) + URight(𝑟, 𝑠), URight(𝑟, 𝑠) > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Note that URight(𝑟 , 𝑠) represents the sum of utility of the items in sequence 𝑠 that can be extended

into the right part of a ToSR, i.e., extended into the consequent. Correspondingly, we use REPEU (𝑟)

to denote the REPEU of 𝑟 in D. REPEU (𝑟) is defined as:

REPEU (𝑟) =
∑

𝑠𝑘 ∈seq(𝑟)∧seq(𝑟) ⊆D REPEU (𝑟 , 𝑠𝑘).

In Table 3, for instance, consider the HTSR 𝑟3 = <{𝑒 , 𝑓 }>→ <𝑐>. HTSR 𝑟3 occurs in sequences

𝑠2, 𝑠3, and 𝑠4. In sequence 𝑠2, there is no item to be extended into the consequent of 𝑟3 (note that

item ℎ is removed from D since it is an unpromising item). Thus REPEU (𝑟3, 𝑠2) = 0. In sequence 𝑠3,

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 11

there is an item 𝑏 can be extended into the consequent of rule 𝑟3. Thus, REPEU (𝑟3, 𝑠3) = 17. And in

𝑠4, REPEU (𝑟3, 𝑠4) = 20. Finally, REPEU (𝑟3) = REPEU (𝑟3, 𝑠2) + REPEU (𝑟3, 𝑠2) + REPEU (𝑟3, 𝑠4) = 0 + 17
+ 20 = 37.

Theorem 4.4. Given a ToSR 𝑟 = 𝑋 → 𝑌 and the other ToSR 𝑟 ′, where 𝑟 ′ is extended from 𝑟 by
performing a right I- or S-expansion, we have 𝑢(𝑟 ′) ≤ REPEU(𝑟).

Proof. Given a sequence 𝑠 , a ToSR 𝑟 , and an item 𝑖 that can be extended into the consequent

of 𝑟 to form rule 𝑟 ′, according to the definition of URight(𝑟 , 𝑠) in upper bound REPEU, we have
𝑢(𝑖 , 𝑠) ≤ URight(𝑟 , 𝑠). Then, we have 𝑢(𝑟 ′, 𝑠) = 𝑢(𝑟 , 𝑠) + 𝑢(𝑖 , 𝑠) ≤ 𝑢(𝑟 , 𝑠) +URight(𝑟 , 𝑠) = REPEU (𝑟 , 𝑠).

Therefore, 𝑢(𝑟 ′) ≤ REPEU (𝑟). □

Inspired of the upper bound RSU used in HUSPM [16, 17, 33, 36], in this paper, we use two

homologous upper bounds proposed in [19], called LERSU and RERSU.

Upper bound 3 (Left expansion reduced seqence utility). Let 𝜉 be a ToSR that can perform

a left expansion with an item𝑤 to form the other ToSR 𝑟 . In a sequence 𝑠 , we use LERSU (𝑟 , 𝑠) to

represent the left expansion reduced sequence utility (LERSU) of 𝑟 . Thus, LERSU (𝑟 , 𝑠) is defined as:

LERSU(𝑟, 𝑠) =
{LEPEU(𝜉, 𝑠), 𝑠 ∈ seq(𝑟)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Correspondingly, we use LERSU (𝑟) to present the LERSU of 𝑟 inD. Then, LERSU (𝑟) is defined as:

LERSU (𝑟) =
∑
∀𝑠∈D LERSU (𝑟, 𝑠).

For example, in Table 3, consider the HTSR 𝑟2 = <𝑒>→ <𝑐> and 𝑟3 = <{𝑒 , 𝑓 }>→ <𝑐>. HTSR

𝑟3 can be formed with the item 𝑓 by performing a left I-expansion from 𝑟2. Moreover, seq(𝑟3) = {𝑠2,

𝑠3, 𝑠4}. Thus, LERSU (𝑟3) = LEPEU (𝑟2, 𝑠2) + LEPEU (𝑟2, 𝑠3) + LEPEU (𝑟2, 𝑠4) = 10 + 18 + 10 = 38.

Theorem 4.5. Given a ToSR 𝑟 = 𝑋 → 𝑌 and the other ToSR 𝑟 ′, where 𝑟 ′ is extended with item 𝑖

from 𝑟 by performing a left I- or S-expansion, we have 𝑢(𝑟 ′) ≤ LERSU(𝑟).

Proof. Let 𝑠 be a sequence, 𝑟 be a ToSR, and 𝑖 be an item that can be extended into the antecedent

of 𝑟 to form rule 𝑟 ′. According to the definition of upper bound LERSU and theorem 4.3, each

sequence 𝑠 ∈ 𝑠𝑒𝑞(𝑟 ′), we have 𝑢(𝑟 ′, 𝑠) ≤ LEPEU (𝑟 ′, 𝑠) and LEPEU (𝑟 ′, 𝑠) ≤ LERSU (𝑟 , 𝑠). Thus 𝑢(𝑟 ′, 𝑠)
≤ LERSU (𝑟 , 𝑠). Finally,

∑
∀𝑠∈D 𝑢 (𝑟 ′, 𝑠) ≤ ∑

∀𝑠∈DLERSU (𝑟 , 𝑠), i.e., 𝑢(𝑟 ′) ≤ LERSU (𝑟). □

Upper bound 4 (Right expansion reduced seqence utility). Let 𝜉 be a ToSR that can

implement a right expansion to form the other ToSR 𝑟 . In a sequence 𝑠 , we use RERSU (𝑟 , 𝑠) to

designate the right expansion reduced sequence utility (RERSU) of 𝑟 . Then, RERSU (𝑟 , 𝑠) is defined

as:

RERSU(𝑟, 𝑠) =
{REPEU(𝜉, 𝑠), 𝑠 ∈ seq(𝑟)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Correspondingly, we use RERSU (𝑟) to denote the RERSU of 𝑟 in a sequence databaseD. RERSU (𝑟)

is defined as:

RERSU (𝑟) =
∑
∀𝑠∈DRERSU (𝑟 , 𝑠).

For example, consider the HTSR 𝑟3 = <{𝑒 , 𝑓 }>→ <𝑐> and 𝑟4 = <{𝑒 , 𝑓 }>→ <𝑐 , 𝑏>. HTSR 𝑟4 can

be formed with the item 𝑏 by performing a right S-expansion from 𝑟3. Besides, seq(𝑟4) = {𝑠3, 𝑠4}.

According to upper bound RERSU, RERSU (𝑟4) = REPEU (𝑟3, 𝑠3) + REPEU (𝑟3, 𝑠4) = 17 + 20 = 37.

Theorem 4.6. Given a ToSR 𝑟 = 𝑋 → 𝑌 and the other ToSR 𝑟 ′, where 𝑟 ′ is extended with an item 𝑖

from 𝑟 by performing a right I- or S-expansion, we have 𝑢(𝑟 ′) ≤ RERSU(𝑟).

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

12 C. Zhang et al.

Proof. Let 𝑠 be a sequence, 𝑟 be a ToSR, and 𝑖 be an item that can be extended into the consequent

of 𝑟 to form rule 𝑟 ′. According to the definition of upper bound RERSU and theorem 4.4, each

sequence 𝑠 ∈ seq(𝑟 ′), we can know that 𝑢(𝑟 ′, 𝑠) ≤ REPEU (𝑟 ′, 𝑠) and REPEU (𝑟 ′, 𝑠) ≤ RERSU (𝑟 , 𝑠). Thus

𝑢(𝑟 ′, 𝑠) ≤ RERSU (𝑟 , 𝑠). Finally,
∑
∀𝑠∈D𝑢(𝑟

′
, 𝑠) ≤ ∑

∀𝑠∈DRERSU (𝑟 , 𝑠), i.e., 𝑢(𝑟 ′) ≤ RERSU (𝑟). □

Since when we use LERSU (RERSU), it just utilizes the corresponding LEPEU (REPEU) of the

sequences that can extend with a specific item 𝑖 . However, there is a little useless utility in the

remaining utility. Thus, we design two tighter upper bounds that can be viewed as a combination

of RSU and PEU. The reasons why we combine RSUand PEU to design these two upper bounds are

from two aspects. One (RSU aspect) is from reduced sequence since it satisfies the anti-monotonic

property when we extend a ToSR 𝑟 with an item 𝑖 , i.e., seq(𝑟 ′) ⊆ seq(𝑟), where 𝑟 ′ is extended from 𝑟

with an item 𝑖 . The other (PEU aspect) is that the remaining utility that can be useful for a ToSR

generation is usually less than the total remaining utility. Because the utility from item 𝑖 to the last

extendable item is the useful utility for rule growth.

Upper bound 5 (Left expansion reduced seqence prefix extension utility). For a ToSR 𝑟

that can implement a left expansion with an item 𝑖 to generate the other ToSR 𝑟 ′, LERSPEU (𝑟 ′, 𝑠)
denotes the left expansion reduced sequence prefix extension utility (LERSPEU) of 𝑟 ′ in sequence 𝑠 .

Thus, LERSPEU (𝑟 ′, 𝑠) is defined as:

LERSPEU(𝑟 ′, 𝑠) =
{
𝑢 (𝑟, 𝑠) + UILeft(𝑟, 𝑖, 𝑠), 𝑠 ∈ 𝑠𝑒𝑞(𝑟 ′)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Where UILeft(𝑟 , 𝑖 , 𝑠) implies the total utility from item 𝑖 to the last item in sequence 𝑠 that

can be extended into the left part of a ToSR, i.e., extended into antecedent. Note that the last

item in sequence 𝑠 that can be extended into the antecedent is not the end item of sequence 𝑠 .

Correspondingly, we use LERSPEU (𝑟 ′) to signify the LERSPEU of a ToSR 𝑟 ′ in D. Accordingly,

LERSPEU (𝑟 ′) is defined as:

LERSPEU (𝑟 ′) =
∑

𝑠𝑘 ∈𝑠𝑒𝑞 (𝑟 ′)∧𝑠𝑒𝑞 (𝑟 ′) ⊆D LERSPEU (𝑟 ′, 𝑠𝑘).

For example, consider the HTSR 𝑟1 = <{𝑒 , 𝑓 }, 𝑐>→ <𝑏> in Table 3 and a ToSR 𝑟 = <{𝑒 , 𝑓 }>→
<𝑏>. HTSR 𝑟1 can be generated from 𝑟 by extending an item 𝑐 to its antecedent and seq(𝑟1) = {𝑠3,

𝑠4}. In 𝑠3 there exists a useless item 𝑔. Thus LERSPEU (𝑟1, 𝑠3) = 8 + 9 = 17. In 𝑠4, there is no useless

item, so LERSPEU (𝑟1, 𝑠4) = 8 + 12 = 20. In total, LERSPEU (𝑟1) = LERSPEU (𝑟1, 𝑠3) + LERSPEU (𝑟1, 𝑠4)

= 17 + 20 = 37.

Theorem 4.7. Given a ToSR 𝑟 = 𝑋 → 𝑌 and the other ToSR 𝑟 ′, where 𝑟 ′ is extended with an item 𝑖

from 𝑟 by performing a left I- or S-expansion, we have 𝑢(𝑟 ′) ≤ LERSPEU(𝑟 ′).

Proof. Let 𝑠 be a sequence, 𝑟 be a ToSR, and 𝑖 be an item that can be extended into the antecedent

of 𝑟 to form rule 𝑟 ′. According to the definition of UILeft(𝑟 , 𝑖 , 𝑠) in upper bound LERSPEU, we have
𝑢(𝑖 , 𝑠) ≤ UILeft(𝑟 , 𝑖 , 𝑠). Then, we have 𝑢(𝑟 ′, 𝑠) = 𝑢(𝑟 , 𝑠) + 𝑢(𝑖 , 𝑠) ≤ 𝑢(𝑟 , 𝑠) + UILeft(𝑟 , 𝑖 , 𝑠) = LERSPEU (𝑟 ′,
𝑠). Therefore, 𝑢(𝑟 ′) ≤ LERSPEU (𝑟 ′). □

Upper bound 6 (Right expansion reduced seqence prefix extension utility). For a ToSR

𝑟 that can implement a right expansion with an item 𝑖 to produce the other ToSR 𝑟 ′, RERSPEU (𝑟 ′, 𝑠)
denotes the right expansion reduced sequence prefix extension utility (RERSPEU) of 𝑟 ′ in sequence

𝑠 . RERSPEU (𝑟 ′, 𝑠) is defined as:

RERSPEU(𝑟 ′, 𝑠) =
{
𝑢 (𝑟, 𝑠) + UIRight(𝑟, 𝑖, 𝑠), 𝑠 ∈ 𝑠𝑒𝑞(𝑟 ′)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 13

Where UIRight(𝑟 , 𝑖 , 𝑠) denotes the total utility from item 𝑖 to the last item in sequence 𝑠 because

all item after item 𝑖 can be extended into the ToSR. Thus, the RERSPEU of a ToSR 𝑟 ′ inD is denoted

as RERSPEU (𝑟 ′) and defined as:

RERSPEU (𝑟 ′) =
∑

𝑠𝑘 ∈seq(𝑟 ′)∧seq(𝑟 ′) ⊆D RERSPEU (𝑟 ′, 𝑠𝑘).

For example, consider the HTSR 𝑟3 = <{𝑒 , 𝑓 }>→ <𝑐> and 𝑟4 = <{𝑒 , 𝑓 }>→ <𝑐 , 𝑏> in Table 3.

HTSR 𝑟4 can be generated from 𝑟3 by extending an item 𝑏 to its consequent and seq(𝑟4) = {𝑠3, 𝑠4}.

In 𝑠3 there is no useless item. Thus RERSPEU (𝑟4, 𝑠3) = 16 + 1 = 17. However, in 𝑠4, there are two

items, 𝑑 and 𝑔, before item 𝑏, i.e., they are useless. Therefore, RERSPEU (𝑟4, 𝑠4) = 10 + 1 = 11. In

total, RERSPEU (𝑟4) = RERSPEU (𝑟4, 𝑠3) + RERSPEU (𝑟4, 𝑠4) = 17 + 11 = 28.

Theorem 4.8. Given a ToSR 𝑟 = 𝑋 → 𝑌 and the other ToSR 𝑟 ′, where 𝑟 ′ is extended with an item 𝑖

from 𝑟 by performing a right I- or S-expansion, we have 𝑢(𝑟 ′) ≤ RERSPEU(𝑟 ′).

Proof. Let 𝑠 be a sequence, 𝑟 be a ToSR, and 𝑖 be an item that can be extended into the consequent

of 𝑟 to form rule 𝑟 ′. According to the definition of UIRight(𝑟 , 𝑖 , 𝑠) in upper bound RERSPEU, we
have 𝑢(𝑖 , 𝑠) ≤ UIRight(𝑟 , 𝑖 , 𝑠). Then, we have 𝑢(𝑟 ′, 𝑠) = 𝑢(𝑟 , 𝑠) + 𝑢(𝑖 , 𝑠) ≤ 𝑢(𝑟 , 𝑠) + UIRight(𝑟 , 𝑖 , 𝑠) =
RERSPEU (𝑟 ′, 𝑠). Therefore, 𝑢(𝑟 ′) ≤ RERSPEU (𝑟 ′). □

Since in the utility-oriented mining area, there is no ideally anti-monotonic property. To avoid

the severe combinatorial explosion problem of the search space when we set a lower minutil, we
propose several utility upper bound pruning strategies to cope with the combinatorial explosion

problem. In addition, since confidence value is not related to utility, it is only generated from support

value. In other words, the confidence value of a ToSR has an anti-monotonic property. Thus, we can

design a pruning strategy based on confidence. However, it is required that a left-first expansion be

made to ensure the anti-monotonic property can work correctly. The pruning strategies are given

below. Note that the pruning strategies 3 to 6 are originated from [19].

Strategy 3 (Left expansion prefix extension utility pruning strategy). Given a ToSR 𝑟 ,

according to the Theorem 4.3, when 𝑟 implements a left expansion, the utility of 𝑟 will not exceed

the upper bound LEPEU, i.e., 𝑢(𝑟) ≤ LEPEU (𝑟). If LEPEU (𝑟) < minutil, we can know that any ToSR

extending from 𝑟 by implementing a left expansion will not be a HTSR, i.e., 𝑢(𝑟 ′) < minutil. Thus,
we can stop to extend further.

Strategy 4 (Right expansion prefix extension utility pruning strategy). Given a ToSR 𝑟 ,

according to the Theorem 4.4, when 𝑟 implements a right expansion, the utility of 𝑟 will not exceed

the upper bound REPEU, i.e., 𝑢(𝑟) ≤ REPEU (𝑟). If REPEU (𝑟) < minutil, we can know that any ToSR

extending from 𝑟 by implementing a right expansion will not be a HTSR, i.e., 𝑢(𝑟 ′) < minutil. Thus,
we can stop to extend further.

Strategy 5 (Left expansion reduced seqence utility pruning strategy). Given a ToSR 𝑟 ,

according to the Theorem 4.5, when 𝑟 implements a left expansion with a specific item 𝑖 to generate

a ToSR 𝑟 ′, the utility of 𝑟 ′ will not exceed the upper bound LERSU, i.e., 𝑢(𝑟 ′) ≤ LERSU (𝑟). If LERSU (𝑟)

< minutil, we can know that any ToSR extending from 𝑟 by implementing a left expansion will not

be a HTSR. Thus, we can stop extending further.

Strategy 6 (Right expansion reduced seqence utility pruning strategy). Given a ToSR

𝑟 , according to the Theorem 4.6, when 𝑟 implements a right expansion with a specific item 𝑖 to

generate a ToSR 𝑟 ′, the utility of 𝑟 ′ will not exceed the upper bound RERSU, i.e., 𝑢(𝑟 ′) ≤ RERSU (𝑟). If

RERSU (𝑟 ′) < minutil, we can know that any ToSR extending from 𝑟 by performing a right expansion

will not be a HTSR. Thus, we can stop extending further.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

14 C. Zhang et al.

Strategy 7 (Left expansion reduced seqence prefix extension utility pruning strategy).

Given a ToSR 𝑟 , according to Theorem 4.7, when 𝑟 implements a left expansion with a specific

item 𝑖 to generate a ToSR 𝑟 ′, the utility of 𝑟 ′ will not exceed the upper bound LERSPEU, i.e., 𝑢(𝑟 ′) ≤
LERSPEU (𝑟 ′). If LERSPEU (𝑟 ′) <minutil, we can know that any ToSR extending from 𝑟 by performing

a left expansion will not be a HTSR. Thus, we can stop extending further.

Strategy 8 (Right expansion reduced seqence prefix extension utility pruning strat-

egy). Given a ToSR 𝑟 , according to Theorem 4.8, when 𝑟 implements a right expansion with a

specific item 𝑖 to generate a ToSR 𝑟 ′, the utility of 𝑟 ′ will not exceed the upper bound RERSPEU, i.e.,
𝑢(𝑟 ′) ≤ RERSPEU (𝑟 ′). If RERSPEU (𝑟 ′) < minutil, we can know that any ToSR extending from 𝑟 by

performing a right expansion will not be a HTSR. Thus, we can stop to extend further.

Given a ToSR 𝑟 and the other ToSR 𝑟 ′ generated from 𝑟 with an item 𝑖 by performing a left

expansion, then we can know that the relationship of the upper bounds LEPEU, LERSU, and LERSPEU
is that LEPEU (𝑟 ′) = LERSPEU (𝑟) ≤ LERSU (𝑟) ≤ LEPEU (𝑟). Correspondingly, if 𝑟 ′ generates from
𝑟 by performing a right expansion, then we can know that the relationship of the upper bounds

REPEU, RERSU, and RERSPEU is that REPEU (𝑟 ′) = RERSPEU (𝑟) ≤ RERSU (𝑟) ≤ REPEU (𝑟).

Since we stipulate that a left expansion will not follow a right expansion to avoid generating the

same ToSR more times, this extension mode satisfies the anti-monotonic property. Note that this

expansion style is different from HUSRM [46], US-Rule [19], and the other SRM algorithms like

TRuleGrowth [11] where they use a right-first expansion to avoid the repeated generation of a rule.

Here we give a corresponding proof, shown below:

Proof. Let 𝑟 = 𝑋 → 𝑌 be a ToSR. Since we stipulate that a left expansion will not follow a right

expansion, the support value of the sequence 𝑋 is fixed when we perform a right expansion. In this

case, the support of the entire ToSR 𝑟 still satisfies the anti-monotonic property, i.e., the support

value of 𝑟 will remain constant or decrease. Thus, we can utilize this property to prune. However, if

we use a right-first expansion, the support value of sequence 𝑋 varies, as does the support value

of rule 𝑟 . Therefore, the confidence value can get smaller, the same, or greater, i.e., it is unknown.

That is why we begin with a left-first expansion. Besides, when we perform a left expansion, the

confidence value of a ToSR is unknown. Therefore, we can only use the anti-monotonic property

to prune when we perform the right expansion. □

Strategy 9 (Confidence pruning strategy). Given a ToSR 𝑟 , when 𝑟 implements a right

expansion with a specific item 𝑖 to generate the other ToSR 𝑟 ′, the the confidence value of 𝑟 ′ will be
less or equal to 𝑟 ’s confidence value, i.e., conf (𝑟 ′) ≤ conf (𝑟). If conf (𝑟) < minconf, we have conf (𝑟 ′)
< minconf too. Thus, we can stop extending further.

4.2 Data structures
For mining rules effectively and efficiently, in HUSRM [46] and US-Rule [19], they proposed a data

structure called a utility table, which can maintain the necessary information about the candidate

rules. In this paper, for the same purpose, we also proposed two homologous data structures called

LE-utility table and RE-utility table. They can store the necessary information about the antecedent

and consequent of a ToSR to compute the utility and confidence value effectively and efficiently.

Besides, we also proposed a data structure called utility prefix sum list (UPSL) for faster calculating
LEPEU, REPEU, LERSPEU, and RERSPEU of a ToSR.

Definition 4.9 (LE-element of a ToSR in a sequence and LE-utility table in D). Given a ToSR 𝑟 and

a sequence 𝑠 where sequence 𝑠 is the sequence that contains the antecedent of 𝑟 , we use LEE(𝑟 , 𝑠) to
represent the LE-element of rule 𝑟 in sequence 𝑠 . LEE(𝑟 , 𝑠) is defined as LEE(𝑟 , 𝑠) = <SID, Uiltiy, LEPEU,

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 15

REPEU, Positions, Indices>. SID is the sequence identifier of 𝑠 and 𝑠 should contain the antecedent of

ToSR 𝑟 . Utility is the utility of 𝑟 in sequence 𝑠 . LEPEU means the left expansion prefix extension

utility of 𝑟 in sequence 𝑠 . REPEU is the right expansion prefix extension utility of 𝑟 in sequence 𝑠 .

Positions is a 3-tuple (𝛼 , 𝛽 , 𝛾), in which 𝛼 is the last item’s position of antecedent of 𝑟 , 𝛽 is the first

item’s position of consequent of 𝑟 , and 𝛾 is the last item’s position of consequent of 𝑟 . And Indices
is a 2-tuple (𝛼 ′, 𝛾 ′), where 𝛼 ′ is the index of first item that can be extended into antecedent and 𝛾 ′ is
the index of last item in sequence 𝑠 . If the sequence only contains the antecedent of rule 𝑟 , then we

set Utility = 0, LEPEU = 0, REPEU = 0, Positions = (𝛼 , −1, −1), Indices = (−1, −1) to represent that

this sequence only for the support counting of antecedent of rule 𝑟 . Given a ToSR 𝑟 and a sequence

database D, the LE-utility table of rule 𝑟 in the database D is denoted as LEE(𝑟) and defined as a

table that consists of a set of LE-elements of rule 𝑟 .

Table 4. LE-utility table of HTSR 𝑟1 in Table 1

SID Utility LEPEU REPEU Positions Indices
𝑠2 0 0 0 (4, −1, −1) (−1, −1)
𝑠3 17 0 0 (3, 4, 4) (5, 5)
𝑠4 11 20 0 (2, 4, 4) (4, 6)

Note that we stipulate a left-first expansion, i.e., the right expansion will follow the left expan-

sion. Thus, we should record the right expansion prefix extension utility for the right expansion.

Furthermore, note that TotalSR is unlike HUSRM [46] and US-Rule [19] which can use a bit vector

to compute efficiently the support of the antecedent of a rule as they do not care about the ordering

of items in the antecedent. In TotalSR, we stipulate LE-element records the sequence that contains
the antecedent of rule 𝑟 to facilitate the calculation of the support of the antecedent of rule 𝑟 . And

the support of rule 𝑟 is equal to the number of LE-element that Utility ≠ 0.

For example, consider the HTSR 𝑟1 = <{𝑒 , 𝑓 }, 𝑐>→ <𝑏> and sequence 𝑠4. We have 𝑢(𝑟1, 𝑠4) =

11, LEPEU (𝑟1, 𝑠4) = 20, REPEU (𝑟1, 𝑠4) = 0, Positions = (2, 4, 4), and Indices = (4, 6). Thus, LEE(𝑟1, 𝑠4)
= <𝑠4, 11, 20, 0, (2, 4, 4), (4, 6)>. Table 4 shows the LE-utility table of rule 𝑟1 as an example. Note

that in sequence 𝑠2, only antecedent occurs in this sequence. Thus LEE(𝑟1, 𝑠2) = <𝑠2, 0, 0, 0, (4, -1,

-1), (-1, -1)>.

Definition 4.10 (RE-element of a ToSR in a sequence and RE-utility table in D). Given a ToSR

𝑟 and a sequence s where sequence 𝑠 is the sequence that contains the antecedent of 𝑟 , we use

REE(𝑟 , 𝑠) to denote the RE-element of ToSR 𝑟 in sequence 𝑠 . And REE(𝑟 , 𝑠) is defined as REE(𝑟 , 𝑠) =
<SID, Uiltiy, REPEU, Position, Index>. SID is the sequence identifier of 𝑠 . Uiltiy is the utility of 𝑟 in

sequence 𝑠 . REPEU is the right expansion prefix extension utility of 𝑟 in sequence 𝑠 . Position is the

last item’s position of consequent of ToSR 𝑟 . And last Index is the index of last item in sequence 𝑠 .

If the sequence only contains the antecedent of rule 𝑟 , then we set Uiltiy = 0, REPEU = 0, Position =

−1, Index = −1 to represent that this sequence only for the support counting of antecedent of rule

𝑟 . Given a ToSR 𝑟 and a sequence database D, the RE-utility table of ToSR 𝑟 in the database D is

denoted as REE(𝑟) and defined as a table that consists of a set of RE-elements of ToSR 𝑟 .

Note that we stipulate a left-first expansion, i.e., the left expansion will not be conducted after the

right expansion. Thus, we only record the REPEU for the right expansion. Also, we stipulate that

RE-element records the sequence that contains the antecedent of ToSR 𝑟 to facilitate the calculation

of the support of the antecedent of ToSR 𝑟 . And the support of ToSR 𝑟 is equal to the number of

RE-element that Uiltiy ≠ 0.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

16 C. Zhang et al.

Table 5. RE-utility table of HTSR 𝑟3 in Table 1

SID Utility REPEU Position Index
𝑠3 16 17 3 5

𝑠4 10 20 2 6

For example, consider the HTSR 𝑟3 = <{𝑒 , 𝑓 }>→ <𝑐> and sequence 𝑠4. We have 𝑢(𝑟3, 𝑠4) = 10,

REPEU (𝑟3, 𝑠4) = 20, Position = 2, and Index = 6. Thus, REE(𝑟3, 𝑠4) = <𝑠4, 10, 20, 2, 2, 6>. Table 5

shows the RE-utility table of HTSR 𝑟3 as an example.

Definition 4.11 (Utility prefix sum list in a sequence). Given a sequence s with largest index equals

to 𝑘 , the utility prefix sum list of sequence 𝑠 is denoted as UPSL(𝑠) and defined as UPSL(𝑠) = <𝑢𝑠1,

𝑢𝑠2, · · · , 𝑢𝑠𝑘>, where 𝑢𝑠𝑖 (1 ≤ 𝑖 ≤ 𝑘) is utility prefix sum of first 𝑖 items in sequence 𝑠 .

As an example, Table 6 shows the UPSL of sequence 𝑠4. We can calculate the LEPEU (𝑟1, 𝑠4) =

𝑢(𝑟1, 𝑠4) + 𝑢𝑠5 − 𝑢𝑠3 = 11 + 19 − 10 = 20. In general, we will scan D once after we remove all

unpromising items from D to get the UPSL of each sequence. With the help of UPSL of a sequence,

we can compute the LEPEU and REPEU in O(1) time, which in the past will cost O(𝑘) and O(𝑙) time,

respectively, where 𝑘 and 𝑙 are the average number of the items that can extend to antecedent and

consequent, respectively. Similarly, LERSPEU and RERSPEU can be computed in O(1) time, too.

Table 6. The UPSL of sequence 𝑠4 in Table 1

item 𝑒 𝑓 𝑐 𝑑 𝑔 𝑏

index 1 2 3 4 5 6

usindex 4 7 10 13 19 20

4.3 TotalSR algorithm
Based on the data structure and the pruning strategies mentioned above, the totally-ordered

sequential rule mining algorithm, TotalSR, is proposed in this subsection. To avoid generating a

rule twice and applying the confidence pruning strategy, we design a left-first expansion procedure.

The main pseudocode of the TotalSR algorithm is shown in Algorithms 1, 2, and 3.

TotalSR takes a sequence databaseD, a minimum confidence threshold (minconf), and aminimum

utility threshold (minutil) as its inputs and then outputs all high-utility totally-ordered sequential

rules. TotalSR first scansD to compute the SEU of all items and get the distinct items set 𝐼 (Lines 1-2).

Afterward, all unpromising items will be deleted from D till all items are promising according to

the UIP strategy (Lines 3-5). After that, TotalSR scans D again to calculate UPSL for each sequence,

generates all 1 ∗ 1 ToSRs, creates the responding LE-utility table, and computes the SEU of all rules.

And then TotalSR will delete all unpromising ToSRs (Lines 6-7). Next, for each 1 ∗ 1 candidate rule
𝑟 , TotalSR scans LEE(𝑟) to compute 𝑢(𝑟) and conf (𝑟) (Line 9). If ToSR 𝑟 satisfies minutil and minconf,
TotalSR will update the HTSRs set with 𝑟 (Lines 10-12). If LEPEU (𝑟) + REPEU (𝑟) − u(𝑟) greater than
or equal to minutil, TotalSR will implement leftExpansion. Note that TotalSR will perform right

expansion after left expansion. Thus, it is necessary to add REPEU (𝑟). And because both LEPEU (𝑟)

and REPEU (𝑟) include 𝑢(𝑟) we should subtract 𝑢(𝑟) one time to get the correct utility upper bound

(Lines 13-15). Subsequently, according to confidence pruning strategy if conf (𝑟) ≥ minconf and

REPEU (𝑟) ≥ minutil, TotalSR will call rightExpansion (Lines 16-18).

In Algorithm 2, the TotalSR will perform leftExpansion. It takes a ToSR 𝑟 and a LE-utility table
LEE(𝑟) of ToSR 𝑟 as the inputs. Firstly, Algorithm 2 initializes LERSPEU, LE-utility tables, and the

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 17

ALGORITHM 1: TotalSR algorithm

Input: D: a sequence database, minconf : the minimum confidence threshold, minutil: the minimum

utility threshold.

Output: HTSRs: all high-utility totally-ordered sequential rules.

1 initialize 𝐼 ← ∅;
2 scan D to compute SEU (𝑖) and 𝐼 ∪ {𝑖};

3 while ∃ 𝑖 ∈ 𝐼 and SEU (𝑖) < minutil do
4 delete all unpromising items in 𝐼 and update SEU ;

5 end
6 scan D to calculate UPSL, generate 𝑅 (a set of ToSRs with size = 1 ∗ 1), create LE-utility tables, and

compute the SEU of rule 𝑟 ∈ 𝑅;
7 delete all unpromising ToSRs in 𝑅;

8 for 𝑟 ∈ 𝑅 do
9 scan LEE(𝑟) ∈ LE-utility tables to compute 𝑢(𝑟) and conf (𝑟);

10 if 𝑢(𝑟) ≥ minutil and conf (𝑟) ≥ minconf then
11 update HTSRs← HTSRs ∪ 𝑟 ;
12 end
13 if LEPEU (𝑟) + REPEU (𝑟) − 𝑢(𝑟) ≥ minutil then
14 call leftExpansion(𝑟 , LEE(𝑟));
15 end
16 if conf (𝑟) ≥ minconf and REPEU (𝑟) ≥ minutil then
17 call rightExpansion(𝑟 , LEE(𝑟), LEE(𝑟).𝑙𝑒𝑛𝑔𝑡ℎ);
18 end
19 end

ToSRs set ToSRSet to the empty set (Line 1). Then for each sequence 𝑠𝑘 in LEE(𝑟) and each item

𝑖 in 𝑠𝑘 where 𝑖 can be extended into the antecedent of 𝑟 , the item 𝑖 will be extended into the

antecedent of 𝑟 to form a temporary rule 𝑡 (Lines 2-4). If 𝑡 is an illegal ToSR the leftExpansion will

only update LE-utility tables of 𝑡 , otherwise it will update LERSPEU of 𝑖 . And then if the REPEU (𝑟) +
LERSPEU (𝑖) < minutil and t ∈ ToSRSet, leftExpansion will delete t from ToSRSet and continue. After

that leftExpansion will update ToSRSet and LE-utility tables of t (Lines 5-16). Note that leftExpansion
will still perform right expansions after left expansions. Thus it should plus the value of REPEU (𝑟)

to determine whether a ToSR should be pruned. If t cannot form a legal ToSR, it only updates

LE-utility tables of 𝑖 to count the support value of a ToSR with the antecedent being extended an

item 𝑖 . Lastly, for each ToSR t ∈ ToSRSet, leftExpansion will scan LEE(𝑡) to compute 𝑢(𝑡) and conf (𝑡)
(Line 21). If both 𝑢(𝑡) and conf (𝑡) exceed the thresholds, it will update HTSRs set with 𝑡 (Lines

22-24). Then if LEPEU (𝑡) + REPEU (𝑡) − u(𝑡) ≥ minutil leftExpansion will call leftExpansion once

to further expand the antecedent (Lines 25-27). According to the confidence pruning strategy if

conf (𝑡) ≥ minconf and REPEU (𝑡) ≥ minutil, leftExpansion will call a rightExpansion (Lines 28-30).

In Algorithm 3, TotalSR will perform rightExpansion. It is very similar to Algorithm 2. There-

fore, we will not describe the details of rightExpansion. However, there are still two differences

compared to Algorithm 2. One is that when TotalSR implements rightExpansion the antecedent

of the input ToSR is fixed, i.e., the support value of the antecedent is determined. Moreover, the

rightExpansion will definitely form a legal rule. Therefore, rightExpansion takes the support value

of the antecedent of a ToSR as the input to fast compute the confidence (Lines 3-13). The other is

that the rightExpansion will not perform a leftExpansion since it stipulates a left-first expansion

(Lines 15-23).

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

18 C. Zhang et al.

ALGORITHM 2: The leftExpansion procedure

Input: 𝑟 : a ToSR, LEE(𝑟): LE-utility table of 𝑟 .
1 initialize LERSPEU ← ∅, LE-utility tables← ∅, ToSRSet← ∅;
2 for 𝑠𝑘 ∈ LEE(𝑟) do
3 for 𝑖 ∈ 𝑠𝑘 and 𝑖 can be extended into the antecedent of 𝑟 do
4 𝑡 ← 𝑖 extended into the antecedent of 𝑟 ; //both I- and S-expansion can be implemented

5 if 𝑡 is an illegal ToSR then
6 update LE-utility tables of 𝑡 ;
7 end
8 else
9 update LERSPEU (𝑖);

10 if REPEU(𝑟) + LERSPEU(𝑖) < minutil then
11 if 𝑡 ∈ ToSRSet then
12 delete 𝑡 from ToSRSet;
13 continue;

14 end
15 end
16 update ToSRSet and LE-utility tables of 𝑡 ;
17 end
18 end
19 end
20 for 𝑡 ∈ ToSRSet do
21 scan LEE(𝑡) ∈ LE-utility tables to calculate 𝑢(𝑡) and conf (𝑡);
22 if 𝑢(𝑡) ≥ minutil and conf (𝑡) ≥ minconf then
23 update HTSRs← HTSRs ∪ 𝑡 ;
24 end
25 if LEPEU(𝑡) + REPEU(𝑡) − 𝑢 (𝑡) ≥ minutil then
26 call leftExpansion(𝑡 , LEE(𝑡));
27 end
28 if conf (𝑡) ≥ minconf and REPEU (𝑡) ≥ minutil then
29 call rightExpansion(𝑡 , LEE(𝑡), LEE(𝑟).𝑙𝑒𝑛𝑔𝑡ℎ);
30 end
31 end

4.4 TotalSR+ algorithm
In TotalSR, the data structures LE-utility table and RE-utility table will record the sequences that

the antecedent of a ToSR occurs for the convenience of computation of the support value of the

antecedent. Thus, there will be a lot of entries in the utility table that record sequences that do not

make a contribution to utility computation. That will cost a lot of time when we update the utility

table. Therefore, we propose a novel algorithm, TotalSR
+
, which is more efficient than TotalSR

in terms of execution time and scalability. To achieve that, we redesign the LE-utility table and
RE-utility table and introduce an auxiliary antecedent record table (ART) to count the sequences

that cannot form a legal ToSR.

Definition 4.12 (LE-element+ of a ToSR in a sequence and LE-utility+ table in D). Given a ToSR 𝑟

and a sequence 𝑠 where 𝑠 is the sequence that contains 𝑟 , the LE-element+ of rule 𝑟 in sequence 𝑠 is

denoted as LEE+(𝑟 , 𝑠) and defined as LEE+(𝑟 , 𝑠) = <SID, Utility, LEPEU, LEPEU, Positions, Indices>.
SID, Utility LEPEU, REPEU, Positions, and Indices are the same as definition 4.9, while LE-element+

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 19

ALGORITHM 3: The rightExpansion procedure

Input: 𝑟 : a ToSR, REE(𝑟): RE-utility table of 𝑟 , length: the support value of antecedent of 𝑟 .
1 initialize RERSPEU ← ∅, RE-utility tables← ∅, ToSRSet← ∅;
2 for 𝑠𝑘 ∈ REE(𝑟) do
3 for 𝑖 ∈ 𝑠𝑘 and 𝑖 can be extended into the consequent of 𝑟 do
4 𝑡 ← 𝑖 extended into the consequent of 𝑟 ; //both I- and S-expansion can be implemented

5 update RERSPEU (𝑖);

6 if RERSPEU (𝑖) < minutil then
7 if 𝑡 ∈ ToSRSet then
8 delete 𝑡 from ToSRSet;
9 continue;

10 end
11 end
12 update ToSRSet and RE-utility tables of 𝑡 ;
13 end
14 end
15 for 𝑡 ∈ ToSRSet do
16 scan REE(𝑡) ∈ RE-utility tables to calculate 𝑢(𝑡) and conf (𝑡);
17 if 𝑢(𝑡) ≥ minutil and conf (𝑡) ≥ minconf then
18 update HTSRs← HTSRs ∪ 𝑡 ;
19 end
20 if conf (𝑡) ≥ minconf and REPEU (𝑡) ≥ minutil then
21 call rightExpansion(𝑡 , REE(𝑡), length);
22 end
23 end

only records the sequences that contain a legal ToSR. Given a ToSR 𝑟 and a sequence database D,

the LE-utility+ table of rule 𝑟 in the database D is denoted as LEE+(𝑟) and defined as a table that

consists of a set of LE-element+ of rule 𝑟 .

Definition 4.13 (RE-element+ of a ToSR in a sequence and RE-utility+ table in D). Given a ToSR 𝑟

and a sequence 𝑠 where 𝑠 is the sequence that contains 𝑟 , the RE-element+ of rule 𝑟 in sequence 𝑠

is denoted as REE+(𝑟 , 𝑠) and defined as REE+(𝑟 , 𝑠) = <SID, Uiltiy, REPEU, Position, Index>. Uiltiy,
REPEU, Position, Index are the same as definition 4.10, while RE-element+ only records the sequences
that contain a legal ToSR. Given a ToSR 𝑟 and a sequence database D, the RE-utility+ table of rule 𝑟
in the database D is denoted as REE+(𝑟) and defined as a table that consists of a set of RE-element+

of rule 𝑟 .

Definition 4.14 (Auxiliary antecedent record table). Given a ToSR 𝑟 = 𝑋 → 𝑌 and a sequence

database D, the auxiliary antecedent record table of 𝑟 is defined as a ART (𝑟) = {key: value}, where
key is the antecedent of 𝑟 , i.e., 𝑋 , and value is the set of sequences that contain the antecedent of 𝑟

in D but cannot form the legal ToSR. Note that the auxiliary antecedent record table only records

the sequences that cannot form a legal ToSR.

For example, consider the HTSR 𝑟1 = <{𝑒 , 𝑓 }, 𝑐>→ <𝑏> and sequence 𝑠4, in Table 3. Its LE-utility
table contains three sequences shown in table 4. However, in TotalSR

+
its LE-utility+ table only

contains two sequences shown in Table 7, the sequence 𝑠2 that cannot form a legal ToSR is recorded

in ART (𝑟1) = {{𝑒 , 𝑓 }: {𝑠2}}.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

20 C. Zhang et al.

Table 7. LE-utility+ table of 𝑟1 in Table 1

SID Utility LEPEU REPEU Positions Indices
𝑠3 17 0 0 (3, 4, 4) (5, 5)
𝑠4 11 20 0 (2, 4, 4) (4, 6)

Compared to TotalSR, with the help of the auxiliary antecedent record table, TotalSR
+
can easily

calculate the support value of the antecedent of a ToSR 𝑟 . It is equal to the size of LE-utility+ table
plus the size of the value of ART (𝑟). Based on this optimization, TotalSR

+
can tremendously reduce

the execution time.

ALGORITHM 4: TotalSR+ algorithm
Input: D: a sequence database, minutil: the utility threshold, minconf : the confidence threshold.
Output: HTSRs: all high-utility totally-ordered sequential rules.

1 initialize 𝐼 ← ∅;
2 scan D to compute SEU (𝑖) and 𝐼 ∪ {𝑖};

3 while ∃ 𝑖 ∈ 𝐼 and SEU(𝑖) < minutil do
4 delete all unpromising items in 𝐼 and update the SEU ;

5 end
6 scan D to calculate UPSL, generate 𝑅 (a set of ToSRs with size = 1 ∗ 1), create LE-utility+ tables and the

corresponding ARTs, and compute the SEU of rule 𝑟 ∈ 𝑅;
7 delete all unpromising ToSRs in 𝑅;

8 for 𝑟 ∈ 𝑅 do
9 scan LEE+(𝑟) ∈ LE-utility+ tables and ART (𝑟) ∈ ARTs to compute 𝑢(𝑟) and conf (𝑟);

10 if 𝑢(𝑟) ≥ minutil and conf (𝑟) ≥ minconf then
11 update HTSRs← HTSRs ∪ 𝑡 ;
12 end
13 if LEPEU (𝑟) + REPEU (𝑟) − 𝑢(𝑟) ≥ minutil then
14 call leftExpansion+(𝑟 , LEE+(𝑟), ART (𝑟));
15 end
16 if conf (𝑟) ≥ minconf and REPEU (𝑟) ≥ minutil then
17 call rightExpansion(𝑟 , LEE+(𝑟), ART (𝑡).𝑙𝑒𝑛𝑔𝑡ℎ + LEE+(𝑡).𝑙𝑒𝑛𝑔𝑡ℎ);
18 end
19 end

In TotalSR
+
, the Algorithms 4 and 5 are very similar to Algorithms 1 and 2, respectively. Therefore,

we will not describe the details again in Algorithms 4 and 5. On the contrary, we just mention the

different parts. As for the right expansion in TotalSR
+
, we use the same procedure of rightExpansion

in TotalSR. Because when TotalSR
+
implements a right expansion, the only difference is that

TotalSR
+
will use REE+(𝑡) rather than REE(𝑡).

Compared to Algorithm 1, in Algorithm 4 TotalSR
+
needs to create the auxiliary antecedent

record tables of each 1 ∗ 1 rule for the convenience of computation of antecedent’s support value

(Line 6). To compute the confidence value of the ToSR 𝑟 , TotalSR+ needs to combine the LEE+(𝑟)
and ART (𝑟) (Line 9). Note that the utility value can be computed using only LEE+(𝑟). When the

leftExpansion
+
is called, TotalSR

+
will pass ART (𝑟) to guarantee the correctness of the antecedent’s

support value of the next extended ToSR (Line 14). When TotalSR
+
calls rightExpansion, the support

of the antecedent is fixed. Thus, TotalSR
+
just needs to pass the length of the value in the auxiliary

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 21

ALGORITHM 5: The leftExpansion+ procedure
Input: 𝑟 : a ToSR, LEE+(𝑟): LE-utility+ table of 𝑟 , ART (𝑟): the auxiliary antecedent record table of 𝑟 .

1 initialize LERSPEU ← ∅, LE-utility+ tables← ∅, ToSRSet← ∅;
2 for 𝑠𝑘 ∈ LEE+(𝑟) do
3 for 𝑖 ∈ 𝑠𝑘 and 𝑖 can be extended into the antecedent of 𝑟 do
4 𝑡 ← 𝑖 extended into the antecedent of 𝑟 ; //both I- and S-expansion can be implemented

5 if 𝑡 is an illegal ToSR then
6 update ART (𝑡);
7 end
8 else
9 update LERSPEU (𝑖);

10 if REPEU (𝑟) + LERSPEU (𝑖) < minutil then
11 if 𝑡 ∈ ToSRSet then
12 delete 𝑡 from ToSRSet;
13 continue;

14 end
15 end
16 update ToSRSet and LE-utility tables of 𝑡 ;
17 end
18 end
19 end
20 for 𝑡 ∈ ToSRSet do
21 update ART (𝑡);
22 scan LEE+(𝑡) ∈ LE-utility+ tables and ART (𝑡) to calculate 𝑢(𝑡) and conf (𝑡);
23 if 𝑢(𝑡) ≥ minutil and conf (𝑡) ≥ minconf then
24 update HTSRs← HTSRs ∪ 𝑡 ;
25 end
26 if LEPEU(𝑡) + REPEU(𝑡) − 𝑢(𝑡) ≥ minutil then
27 call leftExpansion+(𝑡 , LEE+(𝑡), ART (𝑡));
28 end
29 if conf (𝑡) ≥ minconf and REPEU (𝑡) ≥ minutil then
30 call rightExpansion(𝑡 , LEE+(𝑡), ART (𝑡).𝑙𝑒𝑛𝑔𝑡ℎ + LEE+(𝑡).𝑙𝑒𝑛𝑔𝑡ℎ);
31 end
32 end

antecedent record table of 𝑟 to ensure the correctness of the antecedent’s support value calculation

of the next extended ToSR (Line 17).

In Algorithm 5, TotalSR
+
takes an extra auxiliary antecedent record table of 𝑟 to ensure the

correctness of the support of antecedent as its input compared to Algorithm 2.When TotalSR
+
forms

an illegal ToSR, TotalSR
+
will update ART (𝑡) instead of LE-utility+ tables of 𝑡 , since in TotalSR

+

LE-utility+ tables only records the legal ToSR (Line 6). Besides, for those antecedents that cannot

form legal ToSR in ART (𝑟), TotalSR+ also needs to update them to ensure the correctness of the

support of antecedents (Lines 21). Then TotalSR
+
scans LEE+(𝑡) and ART (𝑡) to calculate 𝑢(𝑡) and

conf (𝑡) (Line 22). Similar to Algorithm 4, when TotalSR
+
performs leftExpansion

+
it will also pass

ART (𝑟) to guarantee the correctness of the antecedent’s support value of the next extended ToSR

(Line 27). When TotalSR
+
implements rightExpansion, it will only pass the length of the value in

the auxiliary antecedent record table of 𝑡 (Line 30).

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

22 C. Zhang et al.

5 EXPERIMENTS
In this section, we designed experiments to verify the performance of the two proposed algorithms,

TotalSR and TotalSR
+
. Since there is no existing work about mining totally-ordered sequential rules,

we used TotalSR to conduct ablation studies to demonstrate the effect of the pruning strategies and

to prove the effectiveness of each pruning strategy simultaneously. To do this, we designed six algo-

rithms for TotalSR with different optimization and pruning strategies. These algorithms are denoted

as TotalSRBald, TotalSRSEU, TotalSRSEU− , TotalSRRSU, TotalSRRSPEU, and TotalSR, respectively.

TotalSRBald does not use any pruning strategy except the UPSL optimization. TotalSRSEU uses

SEU and UPSL, while TotalSRSEU− only uses SEU to verify the efficiency of UPSL. Furthermore,

LEPEU, REPEU, LERSU, and RERSU are used in TotalSRRSU. To validate the validity of the two

novel pruning strategies proposed in this paper, TotalSRRSPEU uses pruning strategies LEPEU,
REPEU, LERSPEU, and RERSPEU. Naturally, the sixth variant, TotalSR, uses all the pruning strategies,

including the confidence pruning strategy. In addition, TotalSR
+
adopts all pruning strategies and

utilizes ART to further improve the performance. Except for TotalSRSEU− , which is designed to

evaluate the effectiveness of UPSL, all the other algorithms utilize UPSL to perform optimization.

All algorithms are implemented in Javawith JDK 11.0.15, and themachine used for all experiments

has a 3.8 GHz Intel Core i7-10700K processor, 32 GB of RAM, and a 64-bit version of Windows 10.

All experimental results are listed below. Note that if the corresponding algorithm takes more than

10,000 seconds to execute, the mining process will be stopped.

5.1 Data description
The performance of the two proposed algorithms is assessed using six datasets, comprising four real-

life datasets and two synthetic datasets. The four real-life datasets, including Leviathan, Bible, Sign,

and Kosarak10k are generated from a book, a book, sign language, and click-stream, respectively.

All real-life datasets can be downloaded from the open-source website SPMF [8]. SynDataset-10k

and SynDataset-20k are two synthetic datasets that are generated from the IBM data generator

[1]. Moreover, we use the same simulation model that was universally used in [16, 22, 23, 34] to

generate the internal utility and the external utility for each dataset. The descriptions of these

datasets are listed in Table 8. |D| represents the number of sequences in each dataset. The distinct

quantity of items in each dataset is denoted as |I|. The average number and the maximum number

of itemsets in each dataset are denoted as avg(S) and max(S), respectively. The average length of

the sequence in each dataset is expressed as avg(Seq). And avg(Ele) means the average items in

each itemset of the sequence in every dataset.

Table 8. Description of the six datasets

Dataset |D| |I| avg(S) max(S) avg(Seq) avg(Ele)
Bible 36,369 13,905 21.64 100 21.64 1.00

Kosarak10k 10,000 10,094 8.14 608 8.14 1.00

Leviathan 5,834 9,025 33.81 100 33.81 1.00

SIGN 730 267 52.00 94 52.00 1.00

SynDataset10k 10,000 7312 6.22 18 26.99 4.35

SynDataset20k 20,000 7442 6.20 18 26.97 4.35

5.2 Efficiency analysis
In this subsection, we will analyze the efficiency of the proposed two algorithms, TotalSR and

TotalSR
+
, in terms of run time. To keep track of the results that we want to compare with the

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 23

different version algorithms in the last subsection we designed, we set the minimum confidence

threshold to 0.6, but the minimum utility threshold will be varied according to the characteristics

of the different datasets. All experimental results are illustrated in Fig. 1.

12000 15000 18000 21000 24000 27000 30000

500

1000

1500

2000

2500

3000
(a) BIBLE (minconf: 0.6)

Ru
nt

im
e

(s
ec

)

minutil
17500 19000 20500 22000 23500 25000 26500

10-1

100

101

102

103

(b) Kosarak10k (minconf: 0.6)

Ru
nt

im
e

(s
ec

)

minutil
2000 2500 3000 3500 4000 4500 5000

50

100

150

200

250

300

350
(c) Leviathan (minconf: 0.6)

Ru
nt

im
e

(s
ec

)

minutil

18000 20000 22000 24000 26000 28000 30000
20

40

60

80

100

120

140

160

180

200
(d) SIGN (minconf: 0.6)

Ru
nt

im
e

(s
ec

)

minutil
2100 2200 2300 2400 2500 2600 2700

50

100

150

200

250

300

350

400

 TotalSRBald TotalSRSEU TotalSRSEU- TotalSRRSU TotalSRRSPEU TotalSR TotalSR+

(e) SynDataset10K (minconf: 0.6)

Ru
nt

im
e

(s
ec

)

minutil
2100 2200 2300 2400 2500 2600 2700

50

100

150

200

250

300

350

400

(f) SynDataset20K (minconf: 0.6)

Ru
nt

im
e

(s
ec

)

minutil

Fig. 1. Execution time results under various minimum utility thresholds

From Fig. 1, we can find that on all datasets and under any minimum utility threshold, TotalSR
+

can achieve the best performance compared to all the other algorithms, demonstrating that TotalSR
+

is the best method in terms of execution time. Also, the results of TotalSRBald show that the

algorithm without any pruning strategy will take an extremely and unacceptable long time to get

the results that other methods can easily get. TotalBald cannot produce results in 1000 seconds

on Kosarak10k, whereas the other algorithms can produce results in a few seconds. Note that

the curve of TotalBald when minutil less than or equal to 23500 is not drawn in Fig. 1(b) since

it can not finish the mining process within 10,000 seconds. On datasets that consist of longer

sequences, the data structure of UPSL can realize great efficiency promotion, such as on the

Leviathan, SIGN, SynDataset10k, and SynDataset20k. However, the performance of TotalSRSEU

on BIBLE and Kosarak10k show that UPSL-based variant is relatively weaker than TotalSRSEU− ,

especially on BIBLE. This is because UPSL must be initialized first in TotalSRSEU, which takes

𝑂 (𝑛𝑚) more time, where 𝑛 is the number of sequences in the dataset and𝑚 is the average length

of the sequences. While in TotalSRSEU− , we do not waste time initializing UPSL. From the curves

of the execution time of TotalSRRSU and TotalSRRSPEU shown in Fig. 1, we can figure out that

TotalSRRSU, which uses the traditional upper bounds, is obviously slower than TotalSRRSPEU on

all datasets and under any minimum utility threshold, which proves that the two novel upper

bounds are effective and can contribute to better performance. Moreover, the results of TotalSR

on each dataset show that the confidence pruning strategy can realize extraordinary effects. In

summary, the abundant results demonstrate that TotalSR using the two novel pruning strategies

can discover all HTSRs in an acceptable time. Furthermore, TotalSR
+
, which uses the auxiliary

optimization, can realize better performance and be suitable for all datasets and any conditions.

5.3 Effectiveness of the pruning strategies
In this subsection, to validate the effectiveness of the two novel pruning strategies, we compare five

algorithms, including TotalSRBald, TotalSRSEU, TotalSRRSU, TotalSRRSPEU, and TotalSR. They can

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

24 C. Zhang et al.

demonstrate that LERSPEU, RERSPEU, and the confidence pruning strategy are more effective by

comparing the generated number of candidates and the number of HTSRs with different minimum

utility thresholds and different datasets. The results are shown in Fig. 2. Note that the left Y axis is

the number of candidate HTSRs using the histogram to display and the right Y axis is the number

of real HTSRs using a red curve to represent them.

As Fig. 2 shown with the minutil increases, the number of corresponding candidates decreases,

while the extent of the decrease of different methods is distinct. TotalSRBald has the highest number

of candidates across all datasets since it does not use any pruning strategy. With the help of the

SEU pruning strategy, the number of candidates for TotalSRSEU decreases sharply on four real-life

datasets. The effect is not very obvious but still works on two synthetic datasets. Compared to

the SEU pruning strategy, the pruning strategies of LERSU and RERSU further sharply reduce

the number of candidates on all datasets, even the two synthetic datasets. Thus, they are able

to reduce the number of candidates. Moreover, the number of candidates generated by the two

novel pruning strategies of LERSPEU and RERSPEU on all datasets is smaller than the traditional

pruning strategies based on LERSU and RERSU. Even if the reduction in the number of candidates

is not particularly noticeable, it still has an effect. As shown in Fig. 1, TotalSRRSPEU takes less

time than TotalSRRSU to get the same results. The other important point is that the quantity of

candidates produced by the confidence pruning strategy drops further on each dataset. The results

shown in Fig. 2 demonstrate that the LERSPEU, RERSPEU, and the confidence pruning strategy are

extraordinarily effective.

12000 15000 18000 21000 24000 27000 30000

×108

0

1

2

3

4

5

minutil

#c
an
di
da
te

×101

5

10

15

20

25

30

35

(a) BIBLE

#H
TS

R

17500 19000 20500 22000 23500 25000 26500

102

103

104

105

106

107

108

109

1010

minutil

#c
an
di
da
te

11

12

13

14

15

16

17

(b) Kosarak10k

#H
TS

R

2000 2500 3000 3500 4000 4500 5000

×107

5

10

15

20

25

minutil

#c
an
di
da
te

8

10

12

14

16

18
(c) Leviathan

#H
TS

R

18000 20000 22000 24000 26000 28000 30000

×107

2
4
6
8

10
12
14
16
18
20

minutil

#c
an
di
da
te

×102

-2
0
2
4
6
8
10
12
14
16
18

(d) SIGN

#H
TS

R

1200 1250 1300 1350 1400 1450 1500

×108

1

2

3

4

5

6

7

8

 TotalSRBald TotalSRSEU TotalSRRSU TotalSRRSPEU TotalSR ToSR

minutil

#c
an
di
da
te

×103

5

10

15

20

25

30

(e) SynDataset10k

#H
TS

R

2100 2200 2300 2400 2500 2600 2700

×108

2

4

6

8

10

12

14

minutil

#c
an
di
da
te

×103

0

2

4

6

8

10
(f) SynDataset20k

#H
TS

R

Fig. 2. The generated candidates and HTSRs under different pruning strategies and various minimum utility
thresholds

5.4 Memory evaluation
In addition to analyzing the running time, memory consumption is also a crucial measure of

the effectiveness of the algorithm. In this subsection, we access the memory consumption of the

different versions of the algorithms. The details are presented in Fig. 3.

On the BIBLE dataset, TotalSRBald costs the most memory, while the memory consumption of

other algorithms is different. Under the small minutil, TotalSRRSU and TotalSRRSPEU cost less

memory relatively, but in large minutil TotalSRSEU and TotalSRSEU− consumed less memory. On

Kosarak10k dataset, the memory cost of TotalSRBald was severely high. On the contrary, the

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 25

12000 15000 18000 21000 24000 27000 30000

500

1000

1500

2000

2500

3000

3500

4000
(a) BIBLE

M
em

or
y

(M
B)

minutil
17500 19000 20500 22000 23500 25000 26500

500

1000

1500

2000

(b) Kosarak10k

M
em

or
y

(M
B)

minutil
2000 2500 3000 3500 4000 4500 5000

200

400

600

800

1000

1200

1400

1600
(c) Leviathan

M
em

or
y

(M
B)

minutil

18000 20000 22000 24000 26000 28000 30000

50

100

150

200

250

300

350

400

450
(d) SIGN

M
em

or
y

(M
B)

minutil
1200 1250 1300 1350 1400 1450 1500

500

1000

1500

2000

2500

3000

3500

4000

 TotalSRBald TotalSRSEU TotalSRSEU- TotalSRRSU TotalSRRSPEU TotalSR TotalSR+

(e) SynDataset10k

M
em

or
y

(M
B)

minutil
2100 2200 2300 2400 2500 2600 2700

1000

2000

3000

4000

5000

(f) SynDataset20k

M
em

or
y

(M
B)

minutil

Fig. 3. The memory usage of the proposed methods under various minimum utility thresholds

15k 16k 17k 18k 19k 20k

50

100

150

200

250

300

350

400

450
 TotalSRBald

 TotalSRSEU

 TotalSRRSU

 TotalSRRSPEU

 TotalSR
 TotalSR+

(a)

Ru
nt

im
e

(s
ec

)

datasize
15k 16k 17k 18k 19k 20k

1000

2000

3000

4000

5000

6000

7000
 TotalSRBald

 TotalSRSEU

 TotalSRRSU

 TotalSRRSPEU

 TotalSR
 TotalSR+

(b)

M
em

or
y

(M
B)

datasize
15k 16k 17k 18k 19k 20k

0

2000

4000

6000

8000

10000

12000

14000

(c)

#H
TS

R

datasize

Fig. 4. The scalability test of the proposed algorithms

other algorithms took up much less memory. TotalSRSEU− used less memory than the remaining

algorithms, because the other algorithms needed to keep the UPSL in memory. On Leviathan,

TotalSRBald cost most memory as usual, and TotalSRSEU consumed a little less than TotalSRBald,

while other algorithms used relatively less memory, which is similar to BIBLE. On the dataset

SIGN, TotalSRBald and TotalSRSEU consumed high memory, while TotalSRSEU− , TotalSRRSU,

TotalSRRSPEU, TotalSR, and TotalSR
+
used small amount of memory and almost to be the same.

On SynDataset10k and SynDataset20k, TotalSRBald still costs the most memory, but the other

methods occupied almost the same memory. With the help of the pruning strategies, the memory

consumption of the algorithm will be greatly reduced compared to the method that do not use

all the pruning strategies since they can remove the unpromising items to save a lot of memory.

Meanwhile, although the UPSL will occupy some memory, it is just a small part, and the advantage

of UPSL is much better.

5.5 Scalability test
To verify the robustness of the proposed algorithms, we conducted several experiments on the

dataset [1] with sizes ranging from 15k to 20k, and the minimum utility threshold was fixed at 2000.

Moreover, TotalSRSEU− will not be tested since TotalSRSEU− is the same as TotalSRSEU. All results

are presented in Fig. 4. As the dataset size increases, the execution time of each algorithm will

increase simultaneously. TotalSR
+
still takes the shortest time, followed by TotalSR, TotalSRRSPEU,

TotalSRRSU, TotalSRSEU, and TotalSRBald. This is similar to the results in Fig. 1. When it comes to

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

26 C. Zhang et al.

memory consumption, Fig. 4(b) shows that TotalSRBald costs the most memory, and the memory

used by other algorithms is similar to Fig. 3(e) and Fig. 3(f). As the results shown in Fig. 4(c),

the number of HTSRs will gradually increase with the size of dataset. And it is in line with our

expectation. The scalability test results show that the proposed algorithms have excellent scalability,

and TotalSR
+
performs unquestionably best under all conditions.

6 CONCLUSION
In this work, we formulated the problem of totally-ordered sequential rule mining and proposed the

basic algorithmTotalSR to discover the completeHTSRs in a given dataset. To verify the effectiveness

of the pruning strategies proposed in this paper, we designed several ablation experiments. The

results showed that the pruning strategies can make a great contribution to the reduction of the

search space, which can improve the efficiency of the algorithm. Besides, to further improve the

efficiency, we designed the other algorithm TotalSR
+
using an auxiliary antecedent record table

(ART) to maintain the antecedent of the sequences that cannot generate a legal ToSR. With the

help of ART, TotalSR+ can significantly reduce execution time. Finally, extensive experiments

conducted on different datasets showed that the proposed two algorithms can not only effectively

and efficiently discover all HTSRs but also have outstanding scalability.

In the future, we are looking forward to developing several algorithms based on TotalSR
+
that

can discover target rules [14] or process more complicated data like interval-based events [20]. All

these fields would be interesting to be exploited.

ACKNOWLEDGMENT
This research was supported in part by the National Natural Science Foundation of China (Grant

Nos. 62002136 and 62272196), Natural Science Foundation of Guangdong Province of China (Grant

No. 2020A1515010970), Shenzhen Research Council (Grant No. GJHZ20180928155209705), and

Guangzhou Basic and Applied Basic Research Foundation (Grant No. 202102020277).

REFERENCES
[1] RakeshAgrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns. In Proceedings of the Eleventh International

Conference on Data Engineering. IEEE, 3–14.
[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining association rules. In Proceedings of the

20th International Conference Very Large Data Bases. 487–499.
[3] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, and Byeong-Soo Jeong. 2010. Mining high utility web access

sequences in dynamic web log data. In 11th ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing. IEEE, 76–81.

[4] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, and Byeong-Soo Jeong. 2010. A novel approach for mining

high-utility sequential Patterns in Sequence Databases. ETRI Journal 32, 5 (2010), 676–686.
[5] Philippe Fournier-Viger, Usef Faghihi, Roger Nkambou, and Engelbert Mephu Nguifo. 2012. CMRules: mining sequential

rules common to several sequences. Knowledge-Based Systems 25, 1 (2012), 63–76.
[6] Philippe Fournier-Viger, Ted Gueniche, and Vincent S Tseng. 2012. Using partially-ordered sequential rules to generate

more accurate sequence prediction. In International Conference on Advanced Data Mining and Applications. Springer,
431–442.

[7] Philippe Fournier-Viger, Ted Gueniche, Souleymane Zida, and Vincent S Tseng. 2014. ERMiner: sequential rule mining

using equivalence classes. In International Symposium on Intelligent Data Analysis. Springer, 108–119.
[8] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Antonio Gomariz, Ted Gueniche, Azadeh Soltani, Zhihong Deng, and

Hoang Thanh Lam. 2016. The SPMF open-source data mining library version 2. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, 36–40.

[9] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, Yun Sing Koh, and Rincy Thomas. 2017. A survey of

sequential pattern mining. Data Science and Pattern Recognition 1, 1 (2017), 54–77.

[10] Philippe Fournier-Viger, Roger Nkambou, and Vincent Shin-Mu Tseng. 2011. RuleGrowth: mining sequential rules

common to several sequences by pattern-growth. In Proceedings of the ACM Symposium on Applied Computing. 956–961.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

Totally-ordered Sequential Rules for Utility Maximization 27

[11] Philippe Fournier-Viger, Cheng-Wei Wu, Vincent S Tseng, Longbing Cao, and Roger Nkambou. 2015. Mining partially-

ordered sequential rules common to multiple sequences. IEEE Transactions on Knowledge and Data Engineering 27, 8

(2015), 2203–2216.

[12] Wensheng Gan, Lili Chen, Shicheng Wan, Jiahui Chen, and Chien-Ming Chen. 2021. Anomaly rule detection in

sequence data. IEEE Transactions on Knowledge and Data Engineering (2021).

[13] Wensheng Gan, Zilin Du, Weiping Ding, Chunkai Zhang, and Han-Chieh Chao. 2021. Explainable fuzzy utility mining

on sequences. IEEE Transactions on Fuzzy Systems 29, 12 (2021), 3620–3634.
[14] Wensheng Gan, Gengsen Huang, Jian Weng, Tianlong Gu, and Philip S Yu. 2022. Towards target sequential rules.

arXiv preprint arXiv:2206.04728 (2022).
[15] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, and Philip S Yu. 2019. A survey of

parallel sequential pattern mining. ACM Transactions on Knowledge Discovery from Data 13, 3 (2019), 1–34.
[16] Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Han-Chieh Chao, Hamido Fujita, and Philip S Yu. 2020. ProUM:

Projection-based utility mining on sequence data. Information Sciences 513 (2020), 222–240.
[17] Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Philippe Fournier-Viger, Han-Chieh Chao, and Philip S Yu. 2020.

Fast utility mining on sequence data. IEEE Transactions on Cybernetics 51, 2 (2020), 487–500.
[18] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal, and Meichun Hsu. 2001.

Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceedings of the 17th
International Conference on Data Engineering. Citeseer, 215–224.

[19] Gengsen Huang, Wensheng Gan, Jian Weng, and Philip S Yu. 2022. US-Rule: Discovering utility-driven sequential

rules. ACM Transactions on Knowledge Discovery from Data XX, XX (2022), 1–26.

[20] Yong Joon Lee, Jun Wook Lee, Duck Jin Chai, Bu Hyun Hwang, and Keun Ho Ryu. 2009. Mining temporal interval

relational rules from temporal data. Journal of Systems and Software 82, 1 (2009), 155–167.
[21] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. 2007. Experiencing SAX: a novel symbolic representation of

time series. Data Mining and Knowledge Discovery 15, 2 (2007), 107–144.

[22] Jerry Chun-Wei Lin, Wensheng Gan, Philippe Fournier-Viger, Tzung-Pei Hong, and Han-Chieh Chao. 2017. FDHUP:

Fast algorithm for mining discriminative high utility patterns. Knowledge and Information Systems 51, 3 (2017), 873–909.
[23] Mengchi Liu and Junfeng Qu. 2012. Mining high utility itemsets without candidate generation. In Proceedings of the

21st ACM International Conference on Information and Knowledge Management. 55–64.
[24] David Lo, Siau-Cheng Khoo, and Limsoon Wong. 2009. Non-redundant sequential rules-Theory and algorithm.

Information Systems 34, 4-5 (2009), 438–453.
[25] Anisha Maske and Bela Joglekar. 2018. Survey on frequent item-set mining approaches in market basket analysis. In

The Fourth International Conference on Computing Communication Control and Automation. IEEE, 1–5.
[26] Sinkon Nayak, Mahendra Kumar Gourisaria, Manjusha Pandey, and Siddharth Swarup Rautaray. 2019. Heart disease

prediction using frequent item set mining and classification technique. International Journal of Information Engineering
& Electronic Business 11, 6 (2019).

[27] Jian Pei, Jiawei Han, B. Mortazavi-Asl, Jianyong Wang, H. Pinto, Qiming Chen, U. Dayal, and M. C. Hsu. 2004. Mining

sequential patterns by pattern-growth: the PrefixSpan approach. IEEE Transactions on Knowledge and Data Engineering
16, 11 (2004), 1424–1440.

[28] Thi-Thiet Pham, Jiawei Luo, Tzung-Pei Hong, and Bay Vo. 2014. An efficient method for mining non-redundant

sequential rules using attributed prefix-trees. Engineering Applications of Artificial Intelligence 32 (2014), 88–99.
[29] Yao Jean Marc Pokou, Philippe Fournier-Viger, and Chadia Moghrabi. 2016. Authorship attribution using small sets of

frequent part-of-speech skip-grams. In The Twenty-Ninth International Flairs Conference.
[30] Alberto Segura-Delgado, Augusto Anguita-Ruiz, Rafael Alcalá, and Jesús Alcalá-Fdez. 2022. Mining high average-utility

sequential rules to identify high-utility gene expression sequences in longitudinal human studies. Expert Systems with
Applications 193 (2022), 116411.

[31] Bai-En Shie, Hui-Fang Hsiao, Vincent S Tseng, and Philip S Yu. 2011. Mining high utility mobile sequential patterns in

mobile commerce environments. In International Conference on Database Systems for Advanced Applications. Springer,
224–238.

[32] Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining sequential patterns: Generalizations and performance

improvements. In International Conference on Extending Database Technology. Springer, 1–17.
[33] Tin Truong-Chi and Philippe Fournier-Viger. 2019. A survey of high utility sequential pattern mining. In High-Utility

Pattern Mining. Springer, 97–129.
[34] Vincent S Tseng, Bai-En Shie, Cheng-Wei Wu, and Philip S Yu. 2012. Efficient algorithms for mining high utility

itemsets from transactional databases. IEEE Transactions on Knowledge and Data Engineering 25, 8 (2012), 1772–1786.

[35] Jianyong Wang, Jiawei Han, and Chun Li. 2007. Frequent closed sequence mining without candidate maintenance.

IEEE Transactions on Knowledge and Data Engineering 19, 8 (2007), 1042–1056.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

28 C. Zhang et al.

[36] Jun-Zhe Wang, Jiun-Long Huang, and Yi-Cheng Chen. 2016. On efficiently mining high utility sequential patterns.

Knowledge and Information Systems 49, 2 (2016), 597–627.
[37] Youxi Wu, Lanfang Luo, Yan Li, Lei Guo, Philippe Fournier-Viger, Xingquan Zhu, and Xindong Wu. 2021. NTP-Miner:

Nonoverlapping three-way sequential pattern mining. ACM Transactions on Knowledge Discovery from Data 16, 3

(2021), 1–21.

[38] Youxi Wu, Yuehua Wang, Yan Li, Xingquan Zhu, and Xindong Wu. 2022. Top-𝑘 self-adaptive contrast sequential

pattern mining. IEEE Transactions on Cybernetics. DOI: 10.1109/TCYB.2021.3082114 (2022), 1–15.
[39] Junfu Yin, Zhigang Zheng, and Longbing Cao. 2012. USpan: an efficient algorithm for mining high utility sequential

patterns. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
660–668.

[40] Mohammed J Zaki. 2001. SPADE: An efficient algorithm for mining frequent sequences. Machine Learning 42, 1 (2001),

31–60.

[41] Chunkai Zhang, Quanjian Dai, Zilin Du, Wensheng Gan, Jian Weng, and Philip S Yu. 2021. Utility-driven mining of

contiguous sequences. arXiv preprint arXiv:2111.00247 (2021).

[42] Chunkai Zhang, Quanjian Dai, Zilin Du, Wensheng Gan, Jian Weng, and Philip S Yu. 2022. TUSQ: Targeted high-utility

sequence querying. IEEE Transactions on Big Data (2022).
[43] Chunkai Zhang, Zilin Du, Wensheng Gan, and Philip S Yu. 2021. TKUS: Mining top-k high utility sequential patterns.

Information Sciences 570 (2021), 342–359.
[44] Chunkai Zhang, Zilin Du, Yuting Yang, Wensheng Gan, and Philip S Yu. 2021. On-shelf utility mining of sequence

data. ACM Transactions on Knowledge Discovery from Data 16, 2 (2021), 1–31.
[45] Mengjiao Zhang, Tiantian Xu, Zhao Li, Xiqing Han, and Xiangjun Dong. 2020. e-HUNSR: an efficient algorithm for

mining high utility negative sequential rules. Symmetry 12, 8 (2020), 1211.

[46] Souleymane Zida, Philippe Fournier-Viger, Cheng-Wei Wu, Jerry Chun-Wei Lin, and Vincent S Tseng. 2015. Efficient

mining of high-utility sequential rules. In International Workshop on Machine Learning and Data Mining in Pattern
Recognition. Springer, 157–171.

[47] Sabrina Ziebarth, Irene-Angelica Chounta, and H Ulrich Hoppe. 2015. Resource access patterns in exam preparation

activities. In European Conference on Technology Enhanced Learning. Springer, 497–502.

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2022.

	Abstract
	1 Introduction
	2 Related Work
	2.1 High-utility sequential pattern mining
	2.2 Sequential rule mining
	2.3 High-utility sequential rule mining

	3 Definitions and Problem Description
	3.1 Preliminaries
	3.2 Problem description

	4 The Proposed Algorithm
	4.1 Upper bounds and pruning strategies
	4.2 Data structures
	4.3 TotalSR algorithm
	4.4 TotalSR+ algorithm

	5 Experiments
	5.1 Data description
	5.2 Efficiency analysis
	5.3 Effectiveness of the pruning strategies
	5.4 Memory evaluation
	5.5 Scalability test

	6 Conclusion
	References

