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ABSTRACT
Complex problems are frequently tackled using techniques from the
realm of computational intelligence and metaheuristic algorithms.
Selection of a metaheuristic from the wide range of algorithms
possessing various properties to address specific problem types
efficiently is a difficult and crucial task to avoid unnecessary blind
alleys and computational expenses. Approximation of continuous
problem landscapes by a limited number of scattered discrete sam-
ples is a widespread problem characterization applied in exploratory
landscape analysis (ELA). ELA is a set of methods analyzing the
objective and solution spaces of a problem to construct features
estimated from the random samples. This paper describes a sim-
ple method for fitness landscape analysis based on the normalized
histograms of sample fitnesses. Generation of a small number of
representative discrete samples is crucial for efficient problem char-
acterization, and therefore, amount of sampling strategies including
random generators and low-discrepancy sequences was developed
to evenly cover the problem landscapes. The main contribution
of this paper is a study examining the impact of different sam-
pling strategies on the distribution of fitness values based on the
normalized histogram analysis. The results reveal a strong effect.
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1 INTRODUCTION
The metaheuristic algorithms such as Differential Evolution [5, 34],
Particle Swarm Optimization [6], or Genetic Algorithm [10, 22] are
methods efficiently dealing with complex problems solution and
optimization. However, they are also known to perform differently
on various types of problems [19]. A selection of an efficient al-
gorithm for a specific type of problem can significantly improve
the optimization performance and save a lot of expensive fitness
function evaluations [15, 16, 35]. This issue is even more inten-
sified by multi-objective problems, high dimensions, and heavily
constrained problems [12, 14, 17].

A fitness landscape (FL) [27] is defined as a continuous problem
function that represents a search space where the ‘elevation’ over
the specific location in the search space is the fitness (objective)
value. In other words, a FL is a mountainous region with peaks,
plateaus, valleys, and ridges describing the topological features
that are crucial for understanding the dynamics of evolutionary
algorithms. The fitness landscape analysis investigates the features
of FLs (e.g. ruggedness, deceptiveness, multi-modality) to describe
and distinguish different types of FLs (problems). This investigation
helps to solve the algorithm selection problem [16]. A source of
FLs can be some set of artificial benchmark problems [8] and also
many real-world problems including quadratic assignment problem
[20], dynamic optimization problem [26], knapsack problem [33],
traveling salesman problem [23], vehicle routing problem [21] etc.

The exploratory landscape analysis (ELA) [19] is a popular problem-
independent method for the characterization of continuous FLs of
optimized problems. It encompasses a series of procedures that
describe the hypersurfaces created by the fitness and other distinc-
tive attributes of the problem solutions, all based on a finite set of
samples. An example of a widely-used collection of features for
ELA is the FLACCO library [11] by Kerschke and Trautmann.

The selection of the set of samples and the analysis of the cor-
responding fitness values are particularly important for fitness
landscape characterization as these values represent the input base
for features estimation [19, 35]. The more representative is the sam-
pling, the more representative are the computed features. Various
strategies can be employed for sampling. In addition to pseudo-
random sampling, one can utilize quasi-random techniques like
Latin Hypercube Sampling (LHS) [11, 18], or low-discrepancy se-
quences such as Sobol [30] and Halton [7]. The properties of these
sampling strategies vary, but they generally aim at even coverage
of the search space, high regularity, and low discrepancy to better
capture different areas of FLs.

Empirical investigations conducted on single-objective problems
have revealed that the landscape feature values are significantly
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influenced by the choice of the sampling strategy, as reported by Re-
nau et al. [25]. Furthermore, the variance in feature values implies
that features obtained from various sampling strategies serve di-
verse roles in problem characterization. Recent studies [1, 12] have
extended these findings to the realm of bi-objective problems, illus-
trating that distinct sampling strategies result in varying degrees
of accuracy in problem classification. This encourages additional
investigation of the effect of various sampling strategies in the
context of problem types and the features relevant to landscape
analysis.

This paper proposes a fitness landscape analysis method based
on the distribution of fitness values computed for a selected set
of discrete samples. As the landscapes of different problems have
various shapes, smoothness, multi-modality, and local and global
optima, the distribution of fitness values is heavily affected by these
properties. In statistics, the set of fitness values is considered a
random variable and its discrete probability distribution can be
represented by a normalized histogram consisting of a user-defined
number of bins [29]. The features based on the histograms are of-
ten used in image retrieval [2, 28, 32] where similar frequencies of
different intensities or colors indicate similar images. We apply this
analogy to distributions of continuous variables in the manner of
statistical histograms of numerical data. The normalized histograms
are used here as feature vectors distinguishing different test func-
tions. The main goal of this paper is to investigate the impact of
different sampling strategies on the shape and representativeness of
histograms because the samples and their fitness values are crucial
for ELA features computation.

The study is performed on the set of 24 BBOB single-objective
test problems available on the COmparing Continuous Optimizers
(COCO) platform [8]. The experiments are computed for 4 sam-
pling strategies and 2 distance measures comparing fitness distribu-
tions represented by histograms. To assess the impact of sampling
strategies, a cluster analysis based on the normalized histograms is
accomplished and the histograms for different functions and sam-
plings are compared. The results show clear differences between
the tested sampling strategies.

Section 2 describes the pipeline and the methods utilized to
describe the test problems with different sampling strategies and
corresponding histograms. Section 3 provides the performed exper-
iments comparing sampling strategies and discusses the achieved
results.

2 UTILIZED METHODOLOGY
This paper investigates the impact of different sampling strategies
on the fitness values distribution obtained by the evaluation of the
generated discrete samples. Each test function is represented by a
normalized histogram of fitness values. The assumption is that the
functions with similar properties should have comparable fitness
histograms. The methodology proposed in this section aims to
reveal the relation between used sampling strategy and the ability
to distinguish different test functions using their fitness histograms.

Section 2.1 describes the used test framework and its basic param-
eters. Section 2.2 briefly summarizes the used sampling strategies
and their properties. Section 2.3 defines the proposed procedure of
histogram computation and fitness landscape analysis.

2.1 Test framework
The study is performed on the set of single-objective benchmark
problems available on the COmparing ContinuousOptimizers (COCO)
platform [8]. The set consists of 24 BBOB test problems with dif-
ferent fitness landscapes and properties that represent a simple
framework for sampling strategies and corresponding histograms
comparison. The COCO is a state-of-the-art publicly available plat-
form (also implemented in Python) often used for ELA, feature
extraction and selection, and problem classification upon single-
and multi-objective problems. Each problem is defined for various
dimensions 𝑑 that are also considered in experiments. To analyze
the continuous functions of test problems, a set of 𝑛 discrete sam-
ples is generated using some sampling strategy which is defined as
a power of two 𝑛 = 2𝑚 as it is convenient for some low-discrepancy
sequences. The implementation is based on the Python COCO li-
brary, the SciPy and Scikit-learn Python libraries that are all publicly
available. The libraries contain all the selected sampling strategies,
distance metrics, and analytic tools used in this paper.

2.2 Sampling strategies
In the ELA, the selection of discrete random samples scattered
over the continuous FL is crucial as it defines how the objective
function and its features are covered [24]. A heavily biased set of
samples leads to the systematic loss of information due to under-
or oversampling of some regions. Therefore, different sampling
strategies have been developed to allow efficient and accurate char-
acterization of the optimized problem focused on even coverage of
the search space, high regularity, and low discrepancy to capture
different areas of FLs.

The following sampling strategies were studied. Uniform ran-
dom sampling is the baseline method of generating samples using
a pseudorandom generator with a uniform probability distribution.
Latin Hypercube Sampling (LHS) generates near-random sam-
ples by dividing values of variables in multi-dimensional spaces
into equal intervals and makes sure that only one sample is drawn
from each column and row of such a grid [18]. A refined version of
LHS, denoted as LHSO, employs randomized coordinate permuta-
tions to enhance space-filling reliability and reduce centered dis-
crepancy. Sobol’s sequence-based sampling (Sobol) uses Sobol’s
low-discrepancy sequence which is a quasi-random sequence with
base 2 that binarily represents the position of each dimension [30]
and can be efficiently implemented by bit-vector operations. In or-
der to improve the sequence’s discrepancy, a linear matrix scramble
with digital random shifting is utilized. Halton’s sequence-based
sampling (G-Halton) is built upon the generalized Halton’s low-
discrepancy quasi-random sequence and uses the coprime integers
as its bases [7]. This technique serves as an extension of the one-
dimensional van der Corput sequence [4]. A permutation is applied
to the digits when computing the radical inverse that reduces the
problem with regular patterns in higher dimensions.

2.3 Histogram-based fitness landscape analysis
To analyze and classify the fitness landscapes of optimization prob-
lems, their features have to be computed and compared. This section
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describes a simple feature based on the statistic of fitness values ob-
tained by evaluating discrete samples scattered over the continuous
landscape.

2.3.1 Normalized histogram. Given a fitness function 𝑓 : R𝑑 → R
and a set of samples 𝑆 = {𝑠1, . . . , 𝑠𝑛}, the set of fitness values is
computed as 𝑉 = {𝑣 ;∀𝑠 ∈ 𝑆 : 𝑣 = 𝑓 (𝑠)}, where 𝑑 is the problem
dimension and𝑛 is the number of samples. The set𝑉 is used to build
a histogram of 𝑘 bins within the range of values ⟨min(𝑉 ),max(𝑉 )⟩
such that

𝑛 =

𝑘∑︁
𝑗=1

𝑐 𝑗 , (1)

where 𝑐 𝑗 is count of values within the 𝑗-th bin. The normalized
histogram is defined as

1 =
𝑘∑︁
𝑗=1

𝑐 𝑗

𝑛
. (2)

The normalized histogram represents a discrete probability distri-
bution of fitness values c = {𝑐1/𝑛, . . . , 𝑐𝑛/𝑛}. It is aggregated from
local fitness values and forms a simple global feature vector that
can be used for ELA. The histogram is affected by landscape prop-
erties such as ruggedness, multi-modality, or variance of fitness
values. Moreover, the number of histogram bins 𝑘 gives a fixed
length to feature vectors that can be easily compared with each
other. The 𝑘 also controls the level of precision of the captured dis-
tribution. Smaller 𝑘 leads to greater generalization of the contained
information.

2.3.2 Distance between histograms. To compare normalized his-
tograms of two test functions, some distance or similarity measures
have to be chosen. Generally in a metric space, some distance
measuring a spatial distance between points or a degree of differ-
ence is defined (e.g. Euclidean, Manhattan, Hamming). However,
the meaning of bins of normalized histograms cannot be directly
interchanged with point coordinates because histograms cannot
generally take on arbitrary values as the sum (2) equals to 1. As we
compare distributions of values, two statistical distance measures
based on histograms are tested.

The histogram intersection [2, 32] is simply defined by a sum of
minimum values of corresponding bins of two histograms a and b:

ℎ𝑖𝑠𝑡𝐼𝑛𝑡 (a, b) =
𝑘∑︁
𝑗=1

min(𝑎 𝑗 , 𝑏 𝑗 ). (3)

The intersection measures the degree of similarity between two his-
tograms. The equality a = bmeans ℎ𝑖𝑠𝑡𝐼𝑛𝑡 (a, b) = 1. The histogram
distance is defined as ℎ𝑖𝑠𝑡𝐷𝑖𝑠𝑡 (a, b) = 1 − ℎ𝑖𝑠𝑡𝐼𝑛𝑡 (a, b).

The second approach is the Kullback–Leibler(KL)-divergence [13]
which computes the relative entropy from one probability distribu-
tion to another. For two normalized histograms a and b it is defined
as:

𝐾𝐿(a ∥ b) =
𝑘∑︁
𝑗=1

𝑎 𝑗 log
(
𝑎 𝑗

𝑏 𝑗

)
. (4)

The statistical divergence measures how one probability distribu-
tion differs from another. The divergences can be understood as

generalizations of the squared Euclidean distance (SED), they gener-
ally do not satisfy symmetry and triangle inequality, and therefore,
they are not real distance metrics [3]. However, the SED is often
used as a cheaper variant of the Euclidean distance (ED) avoid-
ing the square root as these two distances are proportional [31].
Although the SED is symmetric and does not satisfy the triangle
inequality, it can be used instead of ED in applications when com-
paring distances. The KL-divergence is not symmetric, and thus, it
has to be symmetrized to be used similarly:

𝐾𝐿𝐷𝑖𝑣 (a, b) = 𝐾𝐿(a ∥ b) + 𝐾𝐿(b ∥ a)
2

. (5)

When mentioning the KL-divergence later in the text its sym-
metrized form is considered.

3 EXPERIMENTS AND RESULTS
The main aim of the experiments is to investigate the ability of the
normalized histograms of fitness values to represent the test func-
tions, the impact of the sampling strategies on histogram shapes,
and the comparison of distance measures.

The experimental setup consists of 24 BBOB COCO functions
that are tested for three dimensions 𝑑 ∈ {5, 10, 20}. Four sampling
strategies (Uniform, Sobol, G-Halton, LHSO) are used to generate
random samples. To contribute a robust statistical analysis, 30 sam-
ple sets are randomly generated for each strategy and dimension.
Three sample set sizes 𝑛 ∈ {210, 212, 214} are considered. All sam-
ple sets are evaluated by 24 test functions of the corresponding
dimension to produce sets of fitness values. One normalized his-
togram of fitness values consisting of 𝑘 = 50 bins is constructed
for each function and combination of parameters. Both, histogram
distance and KL-divergence are used to compute relevant statistics
and visualizations.

First, the cluster analysis is conducted in Section 3.1 to examine
how the histograms distinguish the test functions. Section 3.2 com-
pares different histograms to illustrate fitness values distribution.

3.1 Cluster analysis
For each combination of parameters, there are 30 sample sets eval-
uated and transformed into 30 normalized histograms of fitness
values of the same function. In other words, each function (class) is
represented by 30 feature vectors that should form a cluster. The
better the clusters of different functions are distinguished, the more
efficient are the histograms to describe the properties of functions.
To evaluate this, the silhouette score is computed for all 30 sample
sets for each of the 24 test classes as it validates the consistency of
points within clusters of data. The silhouette measure ranges from
-1 to +1, with a high value signifying strong cohesion within the
object’s cluster and a weak association with neighboring clusters.
The final score is the mean of all silhouette values. The silhouette
can be computed with an arbitrary distance measure. As it consid-
ers a pairwise distance comparison, we test it with both histogram
distance and KL-divergence.

Table 1 and Table 2 show silhouette scores using both measures.
The tables compare four sampling strategies. It is obvious that the
score systematically rises with the greater number of generated
samples (highest for 𝑛 = 214). Higher dimensions require a higher
number of samples to be thoroughly explored as the difference
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between sampling strategies is blurred. However, there is an obvious
trend that LHSO and Uniform overcome the results of Sobol and
G-Halton practically in all cases. Considering these statistics, Table
3 and Table 4 represent the Olympic medal ranking of strategies for
histogram distance and KL-divergence respectively. The tables show
that the 1st place belongs to LHSO, the 2nd to Uniform, the 3rd to
G-Halton, and Sobol clearly comes out as the worst one. Comparing
the distance measures, the KL-divergence strongly improves the
silhouette scores over the histogram distance but the difference
between rankings of strategies is minor.

In some cases, the differences between silhouette scores are
relatively small. To strengthen the message of the presented ex-
periments, the statistical significance was computed. Figure 1 and
Figure 2 represent the critical distance (CD) plots [9] ranking strate-
gies with the application of histogram distance and KL-divergence
respectively. The plots consider the four sampling strategies for
all combinations of problem dimensions and sample sizes. The
non-parametric Friedman test and the post hoc Nemenyi test at
significance level 𝛼 = 0.05 were applied [9]. The horizontal line
connecting the ranks means that the difference between them is
not statistically significant. The CD plots mostly show the supe-
riority of LHSO and Uniform samplings that reach significantly
better silhouette scores than G-Halton and Sobol. The plots look
very similar for both distance measures and they mostly distinguish
significantly LHSO and Uniform from G-Halton and Sobol.

Figure 3 illustrates the t-SNE visualizations of clusters computed
for both distance measures. The points are the normalized his-
tograms representing the 30 sample sets for each test function (i.e.
24 · 30 points). Each color represents one of the 24 test functions.
There are 8 plots visualizing the effect of 4 sampling strategies and
2 distance measures. The assumption is that the points of the same
class (function) are grouped into well-separated clusters. According
to the computed silhouette scores, the parameters are set to 𝑑 = 5
and 𝑛 = 214 as this configuration best distinguishes the sampling
strategies. The plots show the dominance of the LHSO and the
Uniform samplings that form well-separated clusters while the G-
Halton and the Sobol samplings produce a mixture of points with
huge overlaps that lower the efficiency of normalized histogram to
represent the underlying problems.

3.2 Distribution comparison
The previous section described the histograms as feature vectors. In
this section, the specific normalized histograms are shown to illus-
trate their difference in various cases. All histograms are computed
for 𝑘 = 50 bins.

Figure 4 compares histograms of three selected test functions
in dimension 𝑑 = 5 for 𝑛 = 214 uniform samples. It clearly demon-
strates that the histograms differ in their shapes and skewness
which indicates that these functions can be well-distinguished on
the basis of normalized histograms.

The next experiment displays the effect of sampling strategies on
two selected COCO test functions f002 (Figure 5) and f008 (Figure
5). The experiments were performed for two dimensions 𝑑 ∈ {5, 20}
and sample size 𝑛 = 214. The figures show that there are obvious
differences between histograms produced by different sampling
strategies, especially in 5-dimensional space. The higher dimension

smooths the distribution of fitness values but the impact is also
visible e.g. in the case of the f008 function. The Uniform and LHSO
samplings lead to very similar smooth distributions in both dimen-
sions, while the Sobol and G-Halton lead to disrupted histograms
that strongly vary from the others. These plots correspond to the
results obtained from the silhouette score analysis that pointed
out the LHSO as the best sampling strategy for fitness landscape
representation by normalized histograms.

4 CONCLUSION
The paper proposed a straightforward method for fitness landscape
analysis based on the normalized histograms computed from fitness
values gained by the evaluation of random samples scattered over
the test functions. The test framework was based on the BBOB
single-objective problems from the COCO library. The experiments
tested the impact of different sampling strategies on the shape and
representativeness of histograms. The results computed for differ-
ent dimensions, sample sizes, and distances (histogram distance,
KL-divergence) showed significant differences between histograms
produced by different sampling strategies generating random sam-
ples. In this perspective, the best-performing strategy is the LHSO
and the Uniform sampling significantly overcoming the G-Halton
and Sobol samplings. This was verified by cluster analysis based on
the silhouette score and distribution comparison using the visual-
ization of selected histograms. To reveal the reason for this requires
further research. However, we offer one hypothetical explanation.
The G-Halton and Sobol low-discrepancy sequences were devel-
oped to maximally evenly sample the space which may lead to
patterns that systematically miss out on some areas. This can be a
strong effect, especially in the case of heavily rugged landscapes.

The presented results indicate that the usage of histograms as
feature vectors representing the underlying continuous problems
is efficient and it can distinguish different functions and types of
problems with properly chosen sampling. It can also be used as
an evaluation method for comparing discrete samplings. A bad
sampling leads to a vague representation of landscapes that lowers
the ability of a normalized histogram to serve as a feature vector
for classification.

The future work will focus on a more comprehensive study of
test problems, sampling strategies, other distance metrics, multi-
objective functions, and the extension of this approach to other
features from the ELA family. As the number of histogram bins is a
user-defined parameter that controls the precision of the captured
distribution, its effect should be studied as well.
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Table 1: Silhouette score computed for the histogram distance

𝑑 = 5 𝑑 = 10 𝑑 = 20

𝑛 210 212 214 210 212 214 210 212 214

Uniform 0.0710 0.1755 0.3349 0.0447 0.1114 0.2068 0.0269 0.0764 0.1729
Sobol 0.0335 0.0699 0.0872 0.0224 0.0641 0.1247 0.0231 0.0497 0.1009
G-Halton 0.0387 0.0742 0.1447 0.0419 0.1030 0.1844 0.0271 0.0781 0.1586
LHSO 0.0842 0.1897 0.3446 0.0493 0.1169 0.2115 0.0308 0.0774 0.1773

Table 2: Silhouette score computed for the KL-divergence

𝑑 = 5 𝑑 = 10 𝑑 = 20

𝑛 210 212 214 210 212 214 210 212 214

Uniform 0.0736 0.2718 0.4792 0.0393 0.1707 0.2912 0.0152 0.1223 0.2648
Sobol 0.0194 0.0981 0.0806 0.0117 0.0730 0.1299 0.0011 0.0606 0.1160
G-Halton 0.0012 0.0963 0.1831 -0.0077 0.1582 0.2569 0.0154 0.1238 0.2323
LHSO 0.0963 0.2907 0.4933 0.0011 0.1790 0.2992 0.0252 0.1240 0.2683

Table 3: Olympic medal ranking of the sampling
strategies based on the histogram distance

Ranking
1st 2nd 3rd 4th

Uniform 0 7 2 0
Sobol 0 0 0 9
G-Halton 1 1 7 0
LHSO 8 1 0 0

Table 4: Olympic medal ranking of the sampling
strategies based on the KL-divergence

Ranking
1st 2nd 3rd 4th

Uniform 1 6 2 0
Sobol 0 1 2 6
G-Halton 0 2 4 3
LHSO 8 0 1 0



IAIT 2023, December 06–09, 2023, Bangkok, Thailand Uher et al.

(a) 𝑑 = 5, 𝑛 = 210 (b) 𝑑 = 5, 𝑛 = 212 (c) 𝑑 = 5, 𝑛 = 214

(d) 𝑑 = 10, 𝑛 = 210 (e) 𝑑 = 10, 𝑛 = 212 (f) 𝑑 = 10, 𝑛 = 214

(g) 𝑑 = 20, 𝑛 = 210 (h) 𝑑 = 20, 𝑛 = 212 (i) 𝑑 = 20, 𝑛 = 214

Figure 1: Critical distance plot for histogram distance. Average ranks of sampling strategies computed for different sample sizes
and dimensions based on the silhouette score. The difference between ranks connected by a horizontal line is not statistically
significant at 𝛼 = 0.05.

(a) 𝑑 = 5, 𝑛 = 210 (b) 𝑑 = 5, 𝑛 = 212 (c) 𝑑 = 5, 𝑛 = 214

(d) 𝑑 = 10, 𝑛 = 210 (e) 𝑑 = 10, 𝑛 = 212 (f) 𝑑 = 10, 𝑛 = 214

(g) 𝑑 = 20, 𝑛 = 210 (h) 𝑑 = 20, 𝑛 = 212 (i) 𝑑 = 20, 𝑛 = 214

Figure 2: Critical distance plot for KL-divergence. Average ranks of sampling strategies computed for different sample sizes
and dimensions based on the silhouette score. The difference between ranks connected by a horizontal line is not statistically
significant at 𝛼 = 0.05.
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(a) Uniform, hist. distance (b) Sobol, hist. distance (c) G-Halton, hist. distance (d) LHSO, hist. distance

(e) Uniform, KL-divergence (f) Sobol, KL-divergence (g) G-Halton, KL-divergence (h) LHSO, KL-divergence

Figure 3: t-SNE visualization using histogram distance and KL-divergence measures of normalized fitness histograms computed
from samples generated by 4 different samplings. The test functions have dimension 𝑑 = 5 and the number of samples is 𝑛 = 214.
The colors represent the 24 COCO functions.

(a) f001 (b) f002 (c) f021

Figure 4: Comparison of fitness distribution of three COCO functions (normalized histograms with 50 bins, uniform sampling,
𝑑 = 5, 𝑛 = 214).
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(a) Uniform, 𝑑 = 5 (b) Sobol, 𝑑 = 5 (c) G-Halton, 𝑑 = 5 (d) LHSO, 𝑑 = 5

(e) Uniform, 𝑑 = 20 (f) Sobol, 𝑑 = 20 (g) G-Halton, 𝑑 = 20 (h) LHSO, 𝑑 = 20

Figure 5: Comparison of fitness distributions of f002 COCO function (normalized histograms with 50 bins, 4 samplings,
𝑑 ∈ {5, 20}, 𝑛 = 214).

(a) Uniform, 𝑑 = 5 (b) Sobol, 𝑑 = 5 (c) G-Halton, 𝑑 = 5 (d) LHSO, 𝑑 = 5

(e) Uniform, 𝑑 = 20 (f) Sobol, 𝑑 = 20 (g) G-Halton, 𝑑 = 20 (h) LHSO, 𝑑 = 20

Figure 6: Comparison of fitness distributions of f008 COCO function (normalized histograms with 50 bins, 4 samplings,
𝑑 ∈ {5, 20}, 𝑛 = 214).
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