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ABSTRACT
This paper introduces a data augmentation technique for alaryn-
geal speech using voice conversion within the MaskCycleGAN-VC
framework [6]. Our method leverages two masking techniques: Ar-
ticulatory Dimension Masking (ADM) and the combination of ADM
with Consecutive Time Masking (CTM), called SpecAugment[11].
The initial technique used for masking within the MaskCycleGAN-
VC framework is CTM, and our proposed additional masking tech-
niques enhance the quality and performance of voice conversion
for alaryngeal speech. We can also expand the variability of voice
characteristics within the converted alaryngeal speech dataset. One
notable enhancement in our approach is incorporating a timbre
similarity score into the generator loss, known as the Timbre En-
hanced Loss. This score dynamically guides the conversion process
to prioritize preserving timbral characteristics during voice trans-
formation. From our experiments using different objective metrics,
the proposed method can provide synthesized alaryngeal speeches
having characteristics close to the actual ones.
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1 INTRODUCTION
Alaryngeal speech refers to speech produced by individuals who
have had their larynx removed, typically due to medical conditions
like laryngeal cancer. In general, alaryngeal speech data is relatively
rare, primarily due to the unique nature of alaryngeal speech and
the challenges it presents. Data from such individuals is limited,
and collecting a diverse dataset of alaryngeal speech can be difficult.
Moreover, working with individuals who have undergone a laryn-
gectomy requires ethical considerations and obtaining informed
consent. As a result, the research on augmenting alaryngeal speech
data that solves the limitations and ethics of human subjects should
be prioritized.

Many studies have been related to the characteristics and per-
ceptual evaluation of alaryngeal[13] . Marinela et al.[13] assessed
and compared the self-reported vocal limitations experienced by
laryngectomees who underwent three distinct communication ap-
proaches: tracheoesophageal speech, esophageal speech, and elec-
trolarynx. Recently, Cao et al.[3] has demonstrated a practical ap-
proach for data augmentation in End-to-End Speech Recognition for
laryngectomees. However, prior works have not yet to explore data
augmentation through voice conversion. Their primary focus, as
highlighted in their work[3], centered exclusively on silent speech
recognition without placing significant emphasis on the quality or
effectiveness of the augmented data used in their research. In voice
conversion, models like CycleGAN-VC2[4] and CycleGAN-VC3[5]
have emerged.While CycleGAN-VC2 struggles with capturing time-
frequency structures, CycleGAN-VC3 improves by introducing a
time-frequency adaptive normalization (TFAN) module. However,
this approach increases the number of parameters to be learned. To
address the problem in CycleGAN-VC3, MaskCycleGAN-VC intro-
duces FIF(Filling in Frame), in which we utilize a temporal mask on
the input mel-spectrogram, promoting the converter to complete
absent frames by considering information from neighboring frames.
For object evaluation, two metrics were used in CycleGAN-VC2.
Firstly, they utilized the Mel-cepstral distortion (MCD) to gauge
the disparity between the converted and target MCEP sequences.
Secondly, to assess local structural distinctions, they employed
the modulation spectra distance (MSD), which quantifies the root
mean square error between the logarithmic modulation spectra of
MCEPs for both the target and converted data, averaged across all
MCEP dimensions and modulation frequencies. In MaskCycleGAN-
VC[6], they replaced MSD with the Kernel DeepSpeech Distance
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(KDSD)[2], a method that calculates the highest average divergence
within the feature space of DeepSpeech2[1]. This metric has been
demonstrated to have a strong correlation with human judgement.

In this paper, we utilize voice conversion to generate alaryn-
geal speech, as there has yet to be prior research for alaryngeal
speech generation using VC. We used MaskCycleGAN-VC frame-
work [3]as our baseline model as it is the latest voice conversion
method that outperforms CycleGAN-VC2 and CycleGAN-VC3. Our
method leverages two innovative masking techniques: Articulatory
Dimension Masking (ADM) and the combination of ADM with
Consecutive Time Masking (CTM), called SpecAugment. The initial
approach for incorporating masking within the MaskCycleGAN-VC
framework involved using a technique known as CTM. However,
our innovative masking techniques go beyond CTM and offer a
broader range of options. These novel masking techniques signif-
icantly diversify the dataset, enhancing the variability of voice
characteristics in the converted alaryngeal speech dataset. This ex-
panded variability is crucial for achieving more comprehensive and
accurate results in some applications such as ASR(Automatic Speech
Recognition) or SSR(Silent Speech Recognition). One notable en-
hancement in our approach is incorporating a timbre similarity
score into the generator loss, known as the Timbre Enhanced Loss.
This score dynamically guides the conversion process to prioritize
preserving timbral characteristics during voice transformation. We
utilize MCD(Mel Cepstral Distortion), FAD(Frechet Audio Distance,
Timbre Similarity, and F0 comparison for objective evaluation.

This paper is organized as follows. Section 2 describes theMaskCycleGAN-
VC with different masking methods used to generate alaryngeal
speeches. Section 3 explains the timbre-enhanced loss that is in-
tegrated to the cost function of the MaskCycleGAN-VC. The ex-
perimental results are discussed in Section 4. Finally, conclusion
remarks are in Section 4.

2 ALARYNGEAL SPEECH CONVERSION WITH
MASKCYCLEGAN-VC

The MaskCycleGAN-VC is an extension of the CycleGAN-VC2 [4].
The CycleGAN-VC2 trains a voice converter𝐺 that converts source
acoustic features to target acoustic features. The training process
relies on an adversarial loss [4], cycle-consistency loss [4], second
adversarial loss [4], and identify mapping loss [4]. The total loss
function used to train the CycleGAN-VC can be expressed as

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑎𝑑𝑣 + 𝜆𝑐𝑦𝑐𝐿𝑐𝑦𝑐 + 𝜆𝑖𝑑𝐿𝑖𝑑 + 𝐿𝑎𝑑𝑣2, (1)

where 𝐿𝑎𝑑𝑣 , 𝐿𝑐𝑦𝑐 , 𝐿𝑖𝑑 , and 𝐿𝑎𝑑𝑣2 are an adversarial loss, cycle-
consistency loss, identify mapping loss, and second adversarial loss,
respectively.

We utilize theMaskCycleGAN[3] to generate alaryngeal speeches
from regular speeches. The MaskCycleGAN-VC is the latest speech
conversion method employing the filling-in-frames (FIF) technique.
It applies a mask to the input Mel-spectrogram. Then, the voice con-
verter will fill in themissing frames using knowledge from neighbor-
ing frames. As a result, the voice converter can learn time-frequency
structure in a self-supervised manner. During the training, let the
mel-spectrogram of the regular speech be 𝑥 . We introduce a mask to
the mel-spectrogram. Apart from the original consecutive temporal
masking (CTM) in [3], we add more alternative masks, including

articulatory dimension masking (ADM) and the combination of the
ADM with the CTM, referred to as SpecAugment [11] to increase
the variability of laryngeal speech characteristics.

The CTM is conducted by obscuring a sequence of consecutive
frames ranging from 𝑡0 to 𝑡0 + 𝑡 , where 𝑡 is randomly selected from
the uniform distribution between zero to the designated time mask
value 𝑇 . In the ADM, the mel-frequency channels between 𝑓0 to
𝑓0+ 𝑓 are concealed, where 𝑓 is randomly selected from the uniform
distribution between zero to the designated frequency mask value
𝐹 . Finally, the SpecAugment applies both previously described time
and frequency masks to regular speeches. Let𝑚𝑡 and𝑚𝑓 be the
CTM and ADM,respectively. We separately apply this mask to the
input regular speech as

𝑥𝑚 = 𝑥 ·𝑚, (2)

where 𝑚 can be either 𝑚𝑡 , 𝑚𝑓 , or 𝑚𝑠 and · is an element-wise
product.

We concatenate 𝑥𝑚 with 𝑚 in a channel-wise manner before
feeding it to the MaskCycleGAN-VC. The generator tries to fill in
the masking frame to obtain its first synthesized alaryngeal speech,
which is

𝑦𝑠 = 𝐺 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑥𝑚,𝑚)), (3)

where 𝑦𝑠 is the synthesized alaryngeal speech,𝐺 (·) is a voice con-
verter function of the MaskCycleGAN-VC. Next, the cyclic con-
version approach is activated by regenerating 𝑥 from 𝑦𝑠 , which
is

𝑥𝑟 = 𝐺 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑦𝑠 ,𝑚𝐼 )), (4)

where 𝑥𝑟 is the regenerated mel-spectrogram and𝑚𝐼 is the all-ones
mask meaning no masking effect applying at this stage. Then, we
compute

𝐿
𝑥−→𝑦𝑠−→𝑥
𝑐𝑦𝑐 = 𝐸𝑥,𝑚 ( |𝑥𝑟 − 𝑥 |), (5)

where 𝐿𝑥−→𝑦−→𝑥
𝑐𝑦𝑐 is a cycle-consistency loss for a cyclic conversion

from x to itself and 𝐸𝑥,𝑚 is the expectation over random mask
selection and different inputs.

We repeat the above process but the input for the conversion
will be the original alaryngeal speech 𝑦. This leads to another cycle-
consistency loss

𝐿
𝑦−→𝑥𝑠−→𝑦
𝑐𝑦𝑐 = 𝐸𝑦,𝑚 ( |𝑦𝑟 − 𝑦 |), (6)

where 𝐿𝑦−→𝑥𝑠−→𝑦
𝑐𝑦𝑐 is a cycle-consistency loss for a cyclic conver-

sion from y to itself,𝑥𝑠 is the synthesized normal speech, and 𝐸𝑦,𝑚
is the expectation over random mask selection and different inputs.
We use 𝐿𝑥−→𝑦𝑠−→𝑥

𝑐𝑦𝑐 and 𝐿
𝑦−→𝑥𝑠−→𝑦
𝑐𝑦𝑐 in Eq.(9). Figure 1, 2 and 3

show the MaskCycleGAN-VC with CTM, ADM, and SpecAugment,
respectively.

3 TIMBRE-ENHANCED LOSS
We introduce a timbre similarity metric to the MaskCycleGAN-
VC cost function to obtain more authentic synthesized alaryngeal
speeches. Timbre similarity refers to the perceived similarity in
the quality of sounds, even when they have different pitches or
durations. Timbre is one of the essential attributes of sound, and
it allows us to distinguish between different voices even when
they are playing the same note at the same volume. We first extract
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Figure 1: Pipeline of FIF using CTMmasking method.

Figure 2: Pipeline of FIF using ADMmasking method.

Figure 3: Pipeline of FIF using SpecAugment masking
method.

speaker embeddings from synthesized alaryngeal and actual alaryn-
geal speeches using Resemblyzer[12] to calculate timbre similarity.
It produces a summary vector of 256 values (embeddings) summa-
rizing the voice’s characteristics. Let 𝑣𝑠 and 𝑣𝑎 be the embedding
vectors of synthesized and actual alaryngeal speeches, respectively.
Next, we compute the cosine similarity between these two vectors
via

𝑇𝑠𝑖𝑚 (𝑣𝑠 , 𝑣𝑎) =
𝑣𝑠 · 𝑣𝑎
|𝑣𝑠 | |𝑣𝑎 |

, (7)

where 𝑇𝑠𝑖𝑚 (𝑣𝑠 , 𝑣𝑎) is the timbre similarity between 𝑣𝑠 and 𝑣𝑎 . Next
define the timbre-enhanced loss as

𝐿𝑡𝑒 = 1 −𝑇𝑠𝑖𝑚 (𝑣𝑠 , 𝑣𝑎) . (8)

We integrate this loss function and its weighting parameter 𝜆𝑡𝑒 to
the total loss function of the MaskCycleGAN-VC as

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑎𝑑𝑣 + 𝜆𝑐𝑦𝑐𝐿𝑐𝑦𝑐 + 𝜆𝑖𝑑𝐿𝑖𝑑 + 𝐿𝑎𝑑𝑣2 + 𝜆𝑡𝑒𝐿𝑡𝑒 , (9)

4 EXPERIMENTAL RESULTS
4.1 Dataset
We conducted voice conversion experiments using a dataset com-
prising our recordings of Thai alaryngeal and normal speeches. The
dataset comprises ten speakers with Thai alaryngeal speeches and
563 audio files of normal speeches. We utilized a subset of 1250
audio files from the alaryngeal speech speakers and 563 audio files
from the normal speech speakers for training the MaskCycleGAN-
VC. To evaluate the performance, we reserved 125 audio files from
the alaryngeal speech speakers and another set of 125 audio files
from the normal speakers. These evaluation sets were entirely dis-
tinct from the training data, ensuring our model’s performance was
assessed on unseen samples.

4.2 Training Settings
The architecture of MaskCycleGAN-VC used in this paper is the
same as that in [4]. To be concise,the architecture of the voice
converter is a 2-1-2D CNN [4] and the discriminator is PatchGAN
[9]. Most training settings follows those from [4], which will be
described as follows. Mel-spectrograms underwent normalization
using training dataset statistics. Employing a least-squares GAN
[10] as our GAN objective, the training process spanned 5000 itera-
tions, with an Adam optimizer employed. Specifically, the converter
and discriminator utilized learning rates of 0.0002 and 0.0001, re-
spectively. Momentum terms were established as 𝛽1 = 0.5 and 𝛽2 =
0.999. The batch size was defined as 1, where individual training in-
stances encompassed 64 randomly cropped frames, approximately
equating to a duration of 0.75 seconds. Hyperparameters, 𝜆cyc, 𝜆id,
and 𝜆te were configured at values of 10, 5, and 0.001,respectively.

Asmentioned in Section 3, this paper includes the timbre-enhanced
loss in the overall loss optimization during the training of Masked
CycleGAN-VC to increase the similarity of speech characteristics
between generated alaryngeal speeches and the actual ones. After
incorporating Timbre Similarity to the MaskCycleGAN-VC cost
function, the timbre similarity of all masking methods increased as
displayed in Table 1.

Table 1: Timbre Similarity Evaluation with and without Tim-
bre Enhanced Loss (𝐿𝑡𝑒 ) for Different Masking Methods

Masking Methods Timbre Similarity
Without 𝐿𝑡𝑒 With 𝐿𝑡𝑒

CTM 0.733 0.782
ADM 0.667 0.730

SpecAugment 0.729 0.750

4.3 Objective Evaluation
We evaluated the synthesized alaryngeal speeches using various
metrics including Mel Cepstral Distorition (MCD), Frechet Audio
Distance (FAD), Timbre Similarity and F0 comparison.

4.3.1 Mel Cepstral Distorition. The significance of MCD [8] as a
metric in voice conversion from normal to alaryngeal lies in its
role as a quantitative MCD measure for assessing the extent of
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Figure 4: MCD scores between the actual and synthesized
alaryngeal speeches under different masking methods.

Figure 5: FAD scores between the actual and synthesized
alaryngeal speeches under different masking methods.

Figure 6: Timbre Similarity Scores between the actual and
synthesized alaryngeal speeches under different masking
methods.

spectral and acoustic differences between the original and synthe-
sized alaryngeal speech. Suppose that 𝑦 and 𝑦𝑠 are the actual and
synthesized mel-spectorgram of alaryngeal speeches, respectively.
Then, the MCD can be defined as

MCD(𝑦,𝑦𝑠 ) =
10

𝑙𝑛(10)

√√√
2

𝑇∑︁
𝑡=1

| |𝑦 (𝑡) − 𝑦𝑠 (𝑡) | |, (10)

where 𝑇 is a number of frames in 𝑦, and 𝑦 (𝑡) and 𝑦𝑠 (𝑡) are the
mel-spectral of the actual and the synthesized alaryngeal speeches
at time 𝑡 .

Figure 4 depicts theMCD scores of three masking methods. Upon
our observation, the MCD values of the generated and the actual
ones are in the same ranges of 3-4. Furthermore, we calculate the
MCD scores between separate alaryngeal speakers to verify the
congruence of their dissimilarity scores with our computed value.
The acquired scores also range around three. The results indicate
that our synthesized alaryngeal speeches are similar to the actual
ones.

4.3.2 FAD. Frechet Audio Distance (FAD) [7] measures the dis-
similarity between the spectral characteristics of the actual and
synthesized alaryngeal speeches. Specifically, it deploys the mean
and covariance of the extracted features obtained from sets of actual
and synthesized alaryngeal speeches. The FAD can be defined as

𝐹 (𝑦,𝑦𝑠 ) = ∥𝜇 − 𝜇𝑠 ∥2 + 𝑡𝑟 (𝐶𝑜𝑣 +𝐶𝑜𝑣𝑠 − 2
√︁
𝐶𝑜𝑣𝐶𝑜𝑣𝑠 ), (11)

where 𝜇 and𝐶𝑜𝑣 are amean vector and a covariancematrix obtained
from extracted features of a set of the actual alaryngeal speeches. 𝜇𝑠
and 𝐶𝑜𝑣𝑠 are a mean vector and a covariance matrix obtained from
extracted features of a set of the synthesized alaryngeal speeches.
The obtained FAD values are illustrated in Fig. 5. We can observe
that the FAD values between actual and synthesized alaryngeal
speech sets are in the acceptable range. When we compare them
with the FAD values from different actual alaryngeal speakers, We
notice that the FAD values are below ten, which indicates that our
alaryngeal synthesizer can produce realistic alaryngeal speeches.

4.3.3 Timbre Similarity. Following the timbre enhanced loss’s in-
corporation into our loss function, we compared the timbre simi-
larity scores between the converted and real alaryngeal speech as
shown in Figure 6. Our method can give the similarity scores close
to the genuine alaryngeal speakers ones.

Figure 7: Distribution of F0 for Real and Converted Alaryn-
geal Speech.
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4.3.4 Fundamental Frequency Comparison. We carried out an anal-
ysis of the fundamental frequencies in a set of ten audio files, encom-
passing both the authentic reference speeches and the artificially
generated speeches. Figure 7 visually represents the fundamental
frequency (F0) across both the genuine reference speech and the
generated speech.

Specifically, we observed that the minimum frequency in both
generated and actual alaryngeal speech is around 40 while the
highest fundamental frequency in both speeches is around 200.

5 CONCLUSION
In conclusion, our paper has tackled the challenge of data aug-
mentation in alaryngeal speech processing. We achieved this by
employing innovative masking techniques like Articulatory Dimen-
sion Masking (ADM) and the novel SpecAugment method, leading
to significant improvements in voice conversion quality and perfor-
mance within the MaskCycleGAN-VC framework. Our approach
not only enhances voice characteristic variability within the con-
verted alaryngeal speech dataset but also introduces a groundbreak-
ing concept: the Timbre Enhanced Loss. This dynamic score guides
voice transformation to preserve crucial timbral characteristics.
Our results underscore the effectiveness of our data augmentation
technique, offering promising potential for boosting deep learning
models in alaryngeal speech recognition and synthesis
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