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1. Introduction 

This paper presents an analysis of the well-known 
polyphase sort procedure. The polyphase sorting tech- 
nique is discussed at some length in Flores' book [2] 
and elsewhere [1,3] in the literature. It is widely used 
in generalized sort programs provided to users by vari- 
ous computer manufacturers. 

These various implementations utilize a variety of 
dispersion schemes; that is, methods of distributing 
unit strings onto various tapes prior to the actual 
polyphase merge procedure. Although these techniques 
are efficient, thus far there has been no known optimum 
procedure. In this paper we present the optimum scheme 
resulting from the minimization of the number of unit 
strings read and written during the polyphase pro- 
cedure. The polyphase procedure is assumed to use a 
set of dummy strings and real strings in a manner 
analogous to that described by Malcolm [5], This is 
consistent with the above minimization criterion. 

This data is presented for orders R from 2-7 inclu- 
sive, where the polyphase merge of order R requires 
R q- 1 tape drives. 

The preparation of unit strings for the polyphase 
merge procedure is not discussed in this presentation. 
Instead, it is assumed that the unit strings are of equal 
length for purposes of the analysis. Gilstad [4] has 
discussed a procedure for polyphase merging where the 
tapes may be read in both the forward and backward 
direction. In the following analysis the assumption is 
made that all tapes are read in the forward direction 
only. 

As is well known, there are certain numbers of unit 
strings which should be placed on various tape drives 
initially in order to achieve a precise polyphase merge 
with i levels or passes. These polyphase numbers 
Ni,k(R) for order  R and i levels are related to the 
Fibonacci numbers of order R in the manner described 
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Table I. Polyphase Numbers Ni,k(R) 
R = 2  R = 7  

1 2 3 4 5 6 7 1 

1 2 1 
2 3 2 
3 5 3 
4 8 5 
5 13 8 
6 21 13 
7 34 21 
8 55 34 
9 89 55 

!10 144 89 
I1 233 144 
12 377 233 
13 610 377 
14 987 610 
15 1597 987 

0 I 

1 3 
2 5 
3 9 
4 17 
5 31 
6 57 
7 105 
8 193 
9 355 

'10 653 
11 1201 
12 2209 
13 4063 
I~ 7473 

13745 

0 1 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

.2 0 

1 7 
1 13 
2 25 
3 49 
5 97 
8 193 

13 385 
21 769 
3 4  1531 
55 3049 
89 I 6073 

1 4 4 1 2 0 9 7  
233 24097 
377148001 
610 95617 

I 

13 11 7 
24 20 13 
44 37 24 
81 68 44 

149 125 81 
274 230 149 
504 423 274 
927 778 504 

1705 1431 927 
3136 2632 1705 
5768 4841 3136 

1 I 1 1 I 1 1 
2 2 2 2 2 2 1 
4 4 4 4 4 3 2 
8 8 8 8 7 6 4 

16 16 16 15 14 12 8 
32 32 31 30 28 24 16 
64 63 62 60 56 48 32 

127 126 124 120 112 96 64 
253 251 247 239 223 191 127 
504 500 492 476 444 380 253 

1004 996 980 948 884 757 504 
2000 1984 1952 1888 1761 1508 1004 
3984 3952 3888 3761 3508 3004 2000 
7936 7872 7745 7492 6988 5984 3984 

15808 15681 15428 14924 13920 11920 7936 

R ~ 3  R = 6  

2 3 0 1 2 3 4 5 6 

1 1 1 6 1 
2 2 1 11 2 
4 3 2 21 4 
7 6 4 41 8 

81 16 
I 161 32 

321 63 
636 125 123 

1261 248 244 
2501 492 484 
4961 976 960 

I 9841 1936 1904 
19521 3840 3777 
38721 7617 7492 
76806 15109 14861 

I 1 1 1 1 
2 2 2 2 1 
4 4 4 3 2 
8 8 7 6 4 

16 15 14 12 8 
31 30 28 24 16 
62 60 56 48 32 

119 111 95 63 
236 220 188 125 
468 436 373 248 
928 865 740 492 

1841 1716 1468 976 
3652 3404 2912 1936 
7244 6752 5776 3840 

14369 13393 11457 7617 

4 1 1 I 
7 2 2 2 

13 4 4 3 
25 8 7 6 
49 15 14 12 
94 29 27 23 

181 56 52 44 
349 108 100 85 
673 208 193 164 

1297 401 372 316 
2500 773 717 609 
4819 1490 1382 1174 
9289 2872 2664 2263 

17905 5536 5135 4362 
34513 10671 9898 8408 

R = 4  R = 5  

2 3 4 t 0 1 2 3 4 5 

1 5 
1 9 
2 17 
4 33 
8 65 

15 129 
29 253 
56 [ 497 

108 977 
208 1921 
401 3777 4{ 
773 7425 1793 1732 1612 1376 91 

1490 14597 17~ 
2872 28697 6930 6694 6230 5318 357, 
5536 56417 10455 697 

1 
2 
4 
8 

16 
31 
61 

120 
236 
464 
912 

3525 

13624 

1 1 1 1 
2 2 2 1 
4 4 3 2 
8 7 6 4 

15 14 12 8 
30 28 24 16 
59 55 47 31 

116 108 92 61 
228 212 181 120 
448 417 356 236 
881 820 700 464 

912 
3405 3169 2705 1793 

3525 
13160 12248 104S5 6930 

in Flores' book. For  the purpose of this analysis Ni,0 is 
the total number of unit strings which can be handled by 
i levels, and Ni,~ is the number of strings which must 
initially be on tape unit k. The equation for computing 
N is presented in Section 4 below. The polyphase 
numbers for orders 2-7 and levels 1-15 are presented in 
Table 1. 

2. Dispersion Procedures 

Figure 1 illustrates the dispersion procedures which 
are discussed in the literature. This illustration is for 
order R = 3. In Figure 1, one should imagine that the 
vertical strips represent the various tapes which ini- 
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tially contain unit strings. On these tapes are string 
positions beginning with number 1 at the top down to 
however many positions are used on the tape. String 
position 1 is always assumed to be at the beginning of 
the tape when one is ready to start the merge procedure. 
Of course, as unit strings are added to a tape in the 
initial dispersion, they are added to the end of the tape. 
For  purposes of analysis, however, one can think of 
these logically as being placed in string positions at the 
beginning of the tape. That  is the way the illustrations 
are presented. 

Figure 1 represents a level 5 situation. The × -  
marks in the various unit string positions show the 
locations of strings which are on the tapes as a result of 
completing dispersion for level 4. Then the numbers 
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Fig. 1. Dispersion Sequence for Unit Strings. 

String 
Position 

1 23 1 28 32~ 2 22 27 
3 21 26 
4 20 25 
5 19 24 
6 18 X I X [  
7 X X 
8 X X 
9 X X 

10 X X 
11 X X 
12 X 
13 .X 

Vertical 
Order 3, Level 5. 

29 28 23 26 27 28 128 29 X 
27 25 20 23 24 25 26[27 X 
24 22 21 22 24 25 X 
21 19 19 20 23 X 
18 X 18 X 201 21 X 
X X "~  X 118 19 X 

i 
X X X I X , X  
X X X X X 
X X X X X 
X X X X I ._X 

x Ix 
Diagonal Horizontal Rectangular 

Strings 18 through 31. 

indicate, in order of occupation, the various string 
positions to disperse to a total of 31 strings, the maxi- 
mum that can be handled by level 5. 

The vertical dispersion procedure fills the longest 
tape first, then the next longest, etc., until all tapes have 
been filled for the level under consideration. This is the 
method presented by Reynolds [8]. The diagonal pro- 
cedure places the strings on each tape in succession 
until the shortest one is filled, then on the remaining 
tapes in succession, etc., until dispersion is complete. 
This is the scheme suggested by Flores [2, p. 152]. The 
horizontal procedure fills in the various string positions 
on the longest tape first till the same number remain on 
the second longest, then on those two tapes in succes- 
sion, etc. In this case, one can think of the strings flow- 
ing into the picture and filling it like water in a jar until 
string position 1 on each tape is filled. So far as the 
writer can determine, this procedure is not mentioned in 
the literature. The rectangular procedure assumes that 
the longest tape from the previous level is the shortest 
tape on the current level. This means that the same 
number of strings must be added to each of the other 
tapes. They are added one at a time to the various tapes 
in succession. This is the method discussed by Mendoza 
[7]. 

A "special" vertical procedure is discussed by 
Malcolm [5]. He adds strings vertically in an order dic- 
tated by the requirement that a specific tape must be the 
final collection tape. This special factor is ignored in all 
the other discussions. A "multiphase procedure" is 
discussed by Manker [6] for order 3 only. This assumes 
that the unit strings are dispersed evenly on two tapes. 
A special set of multiphase passes including some pre- 
liminary merging is then used to get an initial polyphase 
distribution on three tapes. 

Heretofore, in the literature, it has been tacitly as- 
sumed that the Optimum Dispersion Procedure should 
minimize the number of levels. This means that one 

completes a picture similar to that in Figure 1 before 
considering the dispersion of  strings in such a way as 
to require an additional level. Surprisingly it turns out 
that to achieve the absolute minimum amount  of  read- 
ing and writing of  unit strings this assumption is errone- 
ous. It is sometimes advantageous to utilize additional 
levels of  the polyphase procedure in order to reduce the 
reading and writing volume. This result will be demon- 
strated below. 

3. Polyphase Times 

The time required to perform the polyphase merge is 
obviously a function of the number of levels and the 
number of unit strings read. This analysis concentrates 
on the number of unit strings read. The assumption is 
made that the time required is proportional to the unit 
strings which are read and written. In those situations 
where minimizing this time requires more than the 
minimum number of levels, a tradeoff is required. This 
tradeoffis left to the user to work out for his own specific 
environment. 

In order to arrive at an understanding of the time 
calculation, one should refer to Figure 2. This illustra- 
tion represents the string positions occupied by a sort of 
order 3 at each level. As one can see a sort requiring 
one pass has one string on each of three tape units, and 
so on through levels 2, 3, etc. The illustration also indi- 
cates how many times the string located in a given posi- 
tion on the tape unit must still be read in order to com- 
plete the sort. For  example, with one pass to go, each 
string must be read once. If, however, two passes are 
required one can see that the first string on each tape 
must be read twice and the second string on each of  
two tapes must be read once. In general, the number of 
reads and writes required are determined iteratively 
by working backward from level 0 to 1, 2, 3, etc. 

It may be noted that starting with any level the 
string in the nth-position from the beginning of the tape 
on all tapes will be read the same number of times. It is 
also apparent that in order to minimize time one should 
disperse the strings in such a way as to leave vacant, 
where possible, those positions which must be read the 
largest number of times. This means, for example, 
that with 6 levels and with 12 positions to be left un- 
occupied one should leave positions 1, 2, 3, and 5 
vacant, but fill position 4 on each tape. Thus one can 
see that the optimum dispersion in general will be quite 
complicated. 

4. Time Calculation Procedure 

In this section a procedure for computing the time 
to perform the polyphase merge is presented. The unit 
of time is that required to read, process, and write one 
unit string. 

The matrix of polyphase numbers for order R is 
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Fig. 2. Times To Read Each String To Complete Sort. 

String 
Position 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

P ~evel --~ 6 
0 6 6 6  
1 5 5 5 
1 5 5 5 
2 4 4 4  

T 5 5 5 
2 4 4 4  
2 4 4 4  
1 5 5 5 
2 4 4 4  
2 4 4 4  
3 3 3 3 
2 4 4 4  
3 3 3 3 
1 5 5  
2 4 4  
2 4 4  
3 3 3  
2 4 4  
3 3 3  
3 3 3 
2 4 
3 3 
3 3 
4 2 

5 5  
4 4  
4 4 
3 3  
4 4  
3 3 
3 3  
4 4  
3 3 
3 3 
2 2  

~ 4 
15! 1 4 4  4 

,~ 133 3 3 
• 3 3 

3 1  12 2 2 
4 3 3  

2 2  
121 

3 2 1 
313 3 ~ I 1 1 1 1 1 1  [_9_J 

2 

c o m p u t e d  in the usual way as follows: ~ 

N~,k(R): No,o = Noa = 1; 
R + I  

r (No,k = 0); 
k = 2  

I 

I' (N,,o = N~-l,o + (R -- 1)N,_i,i ; i=1 
R 
r (Ni,~ = Ni_x,x + Ni_l,k+l); Ni,R+i 0 =) .  

(1) 

I is the number  of  levels for which N is being computed .  
N~,o is the max imum number  of  unit  strings which may  
be sorted by the polyphase merge procedure  o f  order  R, 
using (R + 1) tapes and i levels. The initial dispersion 
scheme must  place Ni.k unit  strings on tape unit  k. 

We now define a polyphase parameter  vector for 
order  R as follows: 

I - -1  

P j (R) :  P1 = 0; I ~ (k = N~a ;  

Ni,2 
r (Ps+~ = 1 + Ps)). (2) 

j=l 

A n  example of  Ps appears  in Figure 2. 
N o w  the total number  ot records read during the 

polyphase sort of N~,o unit strings with i levels is: 

Ni.k I 

This result is obtained immediately by inspection o f  
Figure 2. 

This same result can be obta ined by the fol lowing 
slightly different procedure.  Define matrix Ai,s(R) as 
the number  of  unit  strings read (i -- j )  times in the 
polyphase procedure  using i levels. 

A~,~(R): I ~ (A~,s = 0); r 
i = 0  j = 0  k = 0  

~m=l+Ni,R--k+l 
N o w  T, -- ~-'~=0 (i -- j ) A i , s .  

In  order  to compute  the time to sort  n unit  strings 
with i levels we define the dispersion (or dummy)  
matr ix D as follows: 

I 1 if the j th-pos i t ion  on tape unit  k 
is occupied by a unit string, 

D~;~,k(R): D~,j,~ = ] 0  if the posit ion is a d u m m y  (i.e. 
not  occupied).  

Clearly, n = ~ = 1  ( ~ = ' ?  D,;j,k). 
The t ime required to sort the n-unit  strings with 

dispersion D is: 

Ni,k 1 (4 )  
k = l  \5=1 

This is the key expression for comput ing  the relative 
sorting times cor responding  to various dispersion 
schemes. 

A capital gamma is used as a repeat operator in a manner analo- 
gous to the use of capital sigma for a summation operator. 
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5. New Dispersion Algorithms 

The optimum dispersion algorithm for a given 
number of  unit strings and a given number of levels is 
achieved by filling in those string positions which corre- 
spond to the largest values of Pi  • In principle one can 
evaluate eq. (4) for various levels and the best dispersion 
for each level to find the optimum procedure for a given 
number of unit strings. Computer programs have been 
used to do the equivalent of this and to determine for 
what range of numbers of unit strings a given number of 
levels is optimum. This data is presented in Table II. 

The values in Table II show the maximum number 
of strings that can be optimally dispersed at each level 
for a given order. For  example, suppose I00 unit 
strings must be merged using order 3. From Table I, 
it is clear that these strings can be handled with 7 levels. 
However, from Table II we see that 8 levels should be 
used since 95 strings is the maximum for which the 
7-level dispersion is optimum. For  large orders, the 
increase in level for optimum dispersion of large num- 
bers of strings is rather dramatic. 

It is easy to see that the problem associated with the 
bookkeeping of the dummies on the various tapes for 
the optimum procedure can become a very complicated 
one. It is necessary to know the extent to which all this 
work achieves advantage before undertaking it. An 
evaluation of this result is presented in Section 6. Even 
though this advantage can be as high as 10 to 15 percent 
in certain cases, it is probably still not worth the diffi- 
culty in the procedure. Nevertheless, a technique for 
achieving the optimum distribution is presented here. 

To achieve the optimum one must know in advance 
how many unit strings are going to be sorted. It would 
be best to know this precisely, but in any case a close 
estimate would be necessary. Knowing this number, one 
can proceed with the following algorithms. 

Optimum Dispersion Algorithm 
Assume given: 

R = order of polyphase merge, 

n = number of unit strings, 

Ni,i(R) = polyphase numbers. 

Step 1. Select the number of levels I to be used by 
reference to Table II. The optimum I is defined by R 
and n. 

Step 2. Form the polyphase parameter vector Pj  
using eq. (2). There will be (J = Nm)-elements in the 
vector Py.  

Step 3. Form the vector Qj .  Each Q~. is a triple thus: 
J Fs=l (Qj = {P~" ; j ;  o}). 

Step 4. Sort the elements of Qj into ascending order. 
Now Qs = [P'J ; j ' ;  0]. 

Step 5. Set all P'~ = 0 in Q j .  
Step 6. Distribute unit strings to the various tapes 

filling position J '  (from Qj) first ( J  - 1)' (from Q~-I) 

Table II. Maximum Number of Strings for Optimum Disper- 
sion for Given Orders and Levels 

Order R-+ 2 3 4 5 6 7 
Level 1 

l 2 3 4 5 6 7 
2 3 5 7 9 11 13 
3 5 9 13 13 16 19 
4 8 17 22 28 19 23 
5 13 31 34 42 52 26 
6 21 54 75 60 72 87 
7 34 95 108 153 97 114 
8 55 172 243 215 282 147 
9 89 279 358 268 385 167 

10 144 534 455 778 480 639 
11 233 819 1196 1033 554 791 
12 377 1634 1562 1248 1995 921 
13 610 2400 4033 3909 2485 1016 
14 987 4958 5378 4969 
15 1597 7028 

next, etc., until the n unit strings are exhausted. At the 
same time enter n~-, in the triple Qj where ny is the 
number of tapes with a unit string placed in position j ' .  
One now has the unit strings distributed. The vector 
Qs now consists of triples Qi = {0;j'; n~, }. See example 
in Figures 3 and 4. 

Step 7. Sort the elements of Q~. into ascending order 
us ingj '  as the key. Now Qj = {0;j; hi}. 

At this point the optimum dispersion is complete 
and polyphase sorting can proceed. The information 
concerning the dispersion is contained in the vector 
Qi • This is equivalent to having the dispersion matrix 
D used in eq. (4). An example of this dispersion is shown 
in Figure 3 for R = 5 and n --- 16. Figure 4 shows the 
corresponding P vector and the Q vector following 
Steps 3-7. 

This optimum procedure requires an excessively 
large vector P and complicated merging logic for large 
n. A simple modification greatly simplifies the logic. 
This modification requires that all empty string positions 
occur in the first Nt,R (R) locations on the tapes. Thus 
after the first merge pass of the polyphase procedure 
only one tape will have vacant string positions. It also 
turns out that this approach never requires more than 
one level in excess of the minimum possible number of 
levels. The maximum number of strings for each order 
and level under these circumstances is presented in Table 
III. The procedure that should be used for the Modified 
Optimum Dispersion Algorithm is given below. 

Modified Optimum Dispersion Algorithm 
Assume given: 

R = order of polyphase merge, 

n = number of unit strings, 

Ni,i(R) = polyphase numbers. 
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Table III. Maximum Number of Strings for Modified Opti- 
mum Dispersion for Given Orders and Levels 

Order R---~ 2 3 4 5 6 7 
Level 1 

1 2 3 4 5 6 7 
2 3 5 7 9 11 13 
3 5 9 13 17 21 25 
4 8 17 25 32 39 47 
5 13 31 48 62 78 93 
6 21 56 92 122 153 185 
7 34 105 172 242 304 363 
8 55 189 333 467 604 732 
9 89 346 631 920 1181 1450 

10 144 630 1215 1792 2355 2879 
11 233 1134 2320 3524 4645 5747 
12 377 2090 4453 6884 9199 11352 
13 610 3733 8514 13502 18240 22701 
14 987 6932 16401 
15 1597 12459 

Fig. 3. Example of Optimum Dispersion. 

Tape No. --~ 1 2 3 4 5 
String 

Level Position 

4 132 I [ ] 

4 10 11 12 13 14 
5 15 16 
6 6 7 8 [_..9] 

_8 7 3 4 
8 1 2 

2 X X X 
3 X X 
4 X X X 

1 X X I Xlx x 
1 I × l × l  I× × ×1 
1 i x [  

Table IV. Average Relative Speeds 
Percentage Variation from Horizontal 

Algo- Opti- Mod. Nom- Mod. Hori- Diag- Vert- Rectan- Worst 
rithm mum Opt. inal Nora. zontal onal ical gular 
R 

'( B E T T E R  ) ( P O O R E R  ) 

1.53 1.34 0.55 0.27 0 0.09 0.20 0.87 2.00 
4.40 2.40 1 . 2 5  0.34 0 0.19 0.43 1.22 3.74 
7.93 2.72 1 . 5 4  0.45 0 0.14 0 . 8 1  1.16 4.87 

10.92 2.98 1 . 8 5  0.34 0 0.26 1 . 1 4  1.14 5.71 
14.06 2 .88 1.92 0.45 0 0.26 1 . 5 5  0.87 6.62 
16.27 3.12 2.20 0.36 0 0.24 1 . 7 8  0.85 7.59 

Step 1. Select the number of levels I to be used by 
reference to Table III.  The optimum I is defined by R 
and n. 

Step 2. Using I -- 1 for /, form the polyphase 
parameter vector Pj using eq. (2). There will be 
J = Nz_l,1 = N~,R elements in the vector Pi • 

Step 3. Perform steps 3, 4, and 5 from the Optimum 
Dispersion Algorithm. 

Step 4. Distribute (Nz,k -- Nz,R)-unit strings on tape 
k for k = 1 to R -- 1, inclusive. 

Step 5. Perform steps 6 and 7 from the Optimum 
Dispersion Procedure. 

At this point the Modified Optimum Dispersion 
Algorithm is complete and polyphase merging can pro- 
ceed. The data equivalent to the dispersion matrix D is 
contained in the vector Q~. 

If  the number n of unit strings is not even approxi- 
mately known in advance, one may use some variant of  
the above dispersion algorithms. If  the choice is to fill 
the tapes for a given level before proceeding to the next 
level, one should use the Horizontal Algorithm or some 
variant of it. Under this circumstance the best one can 
do is to construct N i , i  - -  N i - l , 1  elements of the param- 
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eter vector Pj for level i. Then following a procedure 
analogous to the Optimum Dispersion Algorithm one 
can determine where to place the unit strings until the 
supply is exhausted or until the tapes are filled for level 
i. Then the process is repeated for the next level. Let us 
call this the Nominal Dispersion Algorithm. 

A modification will simplify the logic of this process. 
In this Modified Nominal Dispersion Algorithm, dis- 
tribute all unit strings as in the Horizontal Algorithm. 
Now after the dispersion is complete, one may deter- 
mine the merging logic by the algorithm below. 

Modified Nominal  Dispersion Algorithm 
Given: 

R = the order of the merge, 

n = the number of unit strings dispersed, 

I = the level in which dispersion is completed 

Ni,k(R) = the polyphase numbers. 

Step 1. Let L = Nx.R -- N~-X,R and T = N ~ , o  - -  R L  

Step 2. If  n < T, dispersion is complete. Proceed 
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Fig. 4. Example of Optimum Dispersion--P and Q vectors. 

j P Q following 

Step 3 Step 4 Step 5 Step 6 Step 7 

1 0 0,1,0 0,1,0 0,1,0 0,1,0 0,1,0 
2 1 1,1,0 1,2,0 0,2,0 0,2,0 0,2,0 
3 1 1,3,0 1,3,0 0,3,0 0,3,0 0,3,0 
4 2 2,4,0 1,5,0 0,5,0 0,5,2 0,4,5 
5 1 1,5,0 2,4,0 0,4,0 0,4,5 0,5,2 
6 2 2,6,0 2,6,0 0,6,0 0,6,4 0,6,4 
7 2 2,7,0 2,7,0 0,7,0 0,7,3 0,7,3 
8 3 3,8,0 3,8,0 0,8,0 0,8,2 0,8,2 

with the polyphase merge exactly as in the Horizontal 
Algorithm case. Otherwise go to step 3. 

Step 3. Prepare the first L elements of  P~ as in eq. 
(2). 

Step 4. 
Dispersion 

Step 5. 
and 0 < r 

Perform steps 3, 4, and 5 of the Optimum 
Algorithm for J = L. 
Compute t and r such that n - T = R t  + r 
< R .  

Step 6. Construct Qj = {0;j'; r} f o r j  = L -- t and 
Q i =  { 0 ; j ' ; R } f o r j =  L -  t +  l t o L .  

Step 7. Perform step 7 of  the Optimum Dispersion 
Algorithm. 

The polyphase merge may now proceed as in the 
Modified Optimum Dispersion Algorithm case. 

6. Evaluation of  Dispersion Algorithms 

In order to evaluate the various algorithms computer 
programs were prepared to calculate the number of  unit 
strings which must be read and written to perform the 
polyphase merge. These calculations were performed 
for the number of unit strings n = 1-10000, order R = 
2-7, and the nine dispersion algorithms: (1) Optimum, 
(2) Modified Optimum, (3) Nominal, (4) Modified 
Nominal, (5) Horizontal, (6) Diagonal, (7) Vertical, (8) 
Rectangular, and (9) Worst. 

The first eight algorithms are described above. Num- 
ber 9, the "Wors t ,"  was evaluated assuming the worst 
possible dispersion under the constraint of  completing 
the tapes for level i before proceeding to level i + 1. 

Of the simple algorithms (numbers 5-8) the Hori- 
zontal is best. Hence, it is used as a basis for compari- 
son. To illustrate the calculation of relative speed let 
ta(n) equal the number of unit strings read using al- 
gorithm a for n strings, th(n) equal the number of unit 
strings read using the Horizontal Algorithm for n strings. 

Now 

1 x0o00 / t,(n)~ 
% Relative speed - 100 ~ (1 th(n)]" 

The results of this calculation are tabulated in Table IV. 
Examination of these results indicates that current 

users of Diagonal, Vertical, or Rectangular Algorithms 
are doing from ~ to 1½ percent more work than neces- 
sary. It also shows that an additional 2½ to 3 percent 
improvement can be made by using the Modified Op- 
timum Algorithm for orders 3-7. The penalty for this 
gain is the use of  the parameter vector P~ or some 
equivalent. 

Referee 's  Comment .  The horizontal distribution, the 
fact that additional levels can be advantageous even 
over "perfect" distributions and the essential idea of 
Figure 2 and the optimal procedure were all presented 
by B. Sackman and T. Singer of the ACr~ Sort Sym- 
posium in 1962. Curiously their paper was never pub- 
lished. I think it exists as a Mitre Corporation report, 
which can probably be obtained from Sackman or the 
Clearinghouse. 

I don' t  believe Sackman and Singer noticed that the 
P vector simplifies the analysis. But one thing Sackman 
did discover, which is not in the present paper, is the 
idea of starting with non-Fibonacci distributions. For  
example, placing seven strings on tape 1 and four 
strings on tape 2 yields 

Place dummy strings at the 5s; sorting nine ele- 
ments with a score of 31 beats the optimum polyphase 
method, which has a score of 32! The question of  opti- 
mum distribution is therefore not completely resolved. 
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