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Stockham [6] and Gentleman and Sande [3] have shown the prac-
tical advantages of computing the circular convolution

n—1

Ck = Z AjB(j+k)mod ny

=0

E=0,1,--+,n—1,

of two real vectors A and B of period n by the fast Fourier trans-
form {2, 3, 4]. The Fourier transforms

n—l1

a; = ) A, exp(i2xpj/n)
=0

and

n—1

B; = 2 By exp(i2rgj/n)

=0
are first computed, then the convolution

n—1

G =15 aip* expliznib/n)
=D

=0

where 8;* is the complex conjugate of 8; . By this method the num-
ber of arithmetic operations increases by a factor slightly more
than 2 when n is doubled, as compared with a factor of 4 for the
direct method. Tests show a 16 to 1 time advantage for the trans-
form method at n = 256. .

The operation of convolution is used in computing autocorrela-
tion and cross-correlation functions, in digital filtering of time
series, and many other applications.

Procedure CONVOLUTION computes the convolution of two
real vectors of dimension n = 27. The special features of this pro-
cedure are: (1) the usual reordering of the fast Fourier transform
results is avoided, and (2) the return from frequency to time is
made with a transform of dimension n/2 instead of n. The two
vectors A and B are first transformed with a single complex
Fourier transform of dimension n. The complex product o8* is
then formed, leaving the result in reverse binary order. Since the

Yolume 12 / Number 3 / March, 1969

S

J. G. HERRIOT, Editor

convolution is real-valued, the real part x of the complex product
is an even function and the imaginary part y is an odd function;
thus the Fourier transform of z is real and that of y is imaginary.
These properties lead to the identity

T + iy) = Re(Tx) — Im(Ty)
= Re(T(x — ) + Im(T'(x — ¥))

where T represents the Fourier transform and T'(z + 7y) is the
desired convolution. We subtract y from z, yielding a real vector
of dimension n, then transform using a complex transform of di-
mension n/2 and add the resulting cosine and sine coefficients to
give the convolution. Thus with procedure CONVOLUTION we
make maximum use of the complex Fourier transform in each di-
rection and avoid any reverse binary to binary permutation. The
Fourier transform

T(A + iB) = « + 18

of the two original vectors is available in reverse binary order on
exit from the procedure. We can permute this transform to normal
order with procedure REVERSEBINARY and readily compute
the power spectra and cross spectrum of the two data vectors.

Procedure CONVOLUTION uses procedure REALTRAN, given
in Algorithm 338 [5], but repeated here with revisions to improve
accuracy on computers using truncated floating-point arithmetic.
Procedures FFT4 and REVFFT4 are also used and perform the
same computation as procedures FFT2 and REVFFT2 given in
Algorithm 338 for use on a system with virtual memory. The trans-
form procedures given here are organized without regard to the
problem of memory overlay. This change yields a 10 percent reduc-
tion in computing time on the Burroughs B5500 for transforms of
dimension n = 512 or smaller. Procedure FFT4 is based on an
organization of the fast Fourier transform due to Sande [3], and
procedure REVFFT4 is similar to the method proposed by Cooley
and Tukey [2], except that the data is in reverse binary order. In
both cases, trigonometric functions are used in normal sequence,
rather than reverse binary sequence, thus eliminating the need
for a reverse binary counter. Another gain in efficiency comes from
reducing the time for computing trigonometric function values.
The following difference-equation method is used:

cos((k + 1)8) = cos(ks) — (C X cos(k8) + S X sin(k8))

and

sin((k + 1)8) sin(k9) + (S X cos(k8) — C X sin(kg)),

where the constant multipliers are C = 2 sin%(§/2) and S = sin(9),
and the initial values are cos(0) = 1 and sin(0) = 0.

These initial values should be computed to full machine preci-
sion; if necessary, a stored table of sin(d) for § = »/2, »/4, /8,
«++ , w/n can be added to procedures FFT4 and REVFFT4. Using
the standard sine function to compute initial values, the ratio of
rms error to rms data is about 2 X 10~ for the transform-inverse
pair at n = 512 on the Burroughs B5500 computer; this error is
about the same as that obtained when the sine and cosine functions
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are used for all trigonometric function values. On a computer
using truncated, rather than rounded, arithmetic operations, the
sequence of values for cos(k9) 4 ¢ sin(ks) tends to spiral inward
from the unit circle. Since the error is primarily one of magnitude,
rather than angle, rescaling to the unit circle at each step gives a
satisfactory correction. This correction is included in procedures
FFT4 and REVFFT4 but may be removed to improve running
speed if rounded arithmetic is used.

Procedures FFT8 and REVFFTS8 are included as possible sub-
stitutes for FFT4 and REVFFT4. These procedures use radix 8
arithmetic [1], rather than radix 4, and run about 20 percent faster
on the Burroughs B5500 computer; however, the compiled code is
twice as long. The code could be shortened by use of subseripted
variables and FOR statements, but this change would probably
eliminate most of the time-saving.

The permutation procedure REVERSEBIN ARY is based on a
modified dual counter, one in normal sequence and the other in
reverse binary sequence. In permuting a vector of dimension n,
the normal sequence counter goes from 1 to n/2 — 1, and the ele-
ments indexed 1, 3, --- ,n/2 — 1 are exchanged with their reverse-
binary counterparts (indexed greater than or equal to n/2) with-
out need of a test. The reverse binary counter is incremented
only n/4 times, and exchanges of pairs of elements below n/2
are done jointly with pair exchanges in the upper half of the
array; i.e. if z; and z: are exchanged, where j, ¥ < n/2, then
Zn-1-; and Z,-1-x are also exchanged. This procedure is twice as
fast on the Burroughs B5500 as REORDER given in Algorithm
338 [5] and is the better choice when the additional features of
REORDER are not needed. For a single-variate, complex Fourier
transform of dimension n = 2m,

REVERSEBINARY (A, B, m);
REVFFTS(A, B, n, m, 1)

was found to be the best combination for n < 512 on the B5500
computer, giving a time of 0.79 sec. for n = 512.
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procedure CONVOLUTION (A, B, C, D, m, scale);
value m, scale; integer m; real scale; array A, B, C, D;

comment This procedure computes the circular convolution:
—1

Ck=scaleZA,-B(,-+k)mod,., k=0,1,---,n—1,
=0

where n = 2™ and p mod n represents the remainder after divi-
sion of p by n. (It is assumed that m=1.) Arrays A, B[0 : n—1]
originally contain the two data vectors to be convoluted, and
on exit, contain the Fourier transform of A + B arranged in
reverse binary order. A and B must not be the same array.
On exit, array C[0 : n—1] contains the convolution multiplied
by the factor scale. Array D is a scratch storage array with lower
bound zero and upper bound at least n + 2. If the Fourier
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transform of the data is not needed, the procedure can be called
with arrays 4 and B used for C and D in either order, for ex-
ample, CONVOLUTION (A, B, A, B, m, scale). If the Fourier
transform is used, it should first be permuted to normal order
by the call REVERSEBINARY (A, B, m). After doing this, the
Fourier cosine coefficients of the A vector are

(AxtAnd/n, k=1,2---,0/2,
(240)/n, k=0,

and the sine coefficients are
(Bi—Bn_t)/n, k=1,2,+,n/2— 1.

The Fourier cosine coefficients of the B vector are

(BetBa-t)/n, k=1,2,---,n/2
(2Bq)/n, k=0,

and the sine coefficients are
(Ank— Ax)/n, k=1,2,---,n/2 — 1.

The procedures FFT4, REVFFT4, and REALTRAN are used
by this procedure and must also be declared. If convolutions of
large dimension are to be computed on a system with virtual
memory, procedures FFT2 and REVFFT2 (Algorithm 338)
[5] should be substituted for procedures FFT4 and REVFFT4;
begin integer j, kk, ks, n; real aa, ab, ba, bb, im;
n:=2Tm; j:=1;
FFT4(A, B, n, m, n);
C[0] := 4 X (A[0]XBI0]);
L: kk:=j; ks:=j5:=74+7;
L2: ks :=ks — 1;
ag := Alkk] + Alksl; ab := A[kk] — Afks];
ba := Blkk] + Blks]; bb := Blkk] — Blks]; ]
wm := ba X bb 4 aa X ab; aa := aa X ba — ab X bb;
Clkk] := aa — im; Clks] := aa + im;
kk := kk 4 1; if kk < ks then go to L2;
if j < n then go to L;
kk :=n + 2; ks :=kk — 1; scale := scale/(8Xn);
for j := 0 step 1 until ks do D[j] := C[j-+kk];
REVFFT4(C, D, kk, m—1, 1);
REALTRAN (C, D, kk, false);
C[0] := scale X C[0]; Clkk] := scale X C[kk];
for j := 1 step 1 until ks do
begin Cln—j] := scale X (C[j]—D[]);
end
C[j] = scale X (Clj1+DI[;])
end CONVOLUTION;
procedure FFT4(A, B, n, m, ks);
integer n, m, ks; array A, B;
comment This procedure computes the fast Fourier transform
for one variable of dimension 2" in a multivariate transform.
n is the number of data points, i.e.n =n1 X 0 X -+ X np
for a p-variate transform, and ks = nz X ngpr X --+ X 1y,
where n;, = 2m is the dimension of the current variable. Arrays
A0 : n—1] and B[0 : n—1] originally contain the real and
imaginary components of the data in normal order. Multivari-
ate data is stored according to the usual convention, e.g. a;u
is in AUanxna+an3+l] fOl_' _7 = 0, 1, ter, My — 1, k= O,
1,---,n2—1,and 1 = 0,1, ---, ng — 1. On exit, the Fourier
coefficients for the current variable are in reverse binary order.
Continuing the above example, if the ‘“column’ variable n.
is the current one, column

value n, m, ks;

ko= kmoa2%! o K272 4 oen 4+ k2 + Ko

is permuted to position

ko2l 4 Ei 2072 b cos o+ Ens2 + K -
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A separate procedure may be used to permute the results to if £ # 0 then
normal order between transform steps or all at once at the end. begin
If n = ks = 2m, the single-variate transform span := span + 2; kO := 0;

Lb: k2 := kO + span; A0 := A[k2]; B0 := Bl[k2];
Alk2) := A[K0] — A0; A[kO] := A[k0] + AO;
B[k2] := B[k0] — BO; B[k0] := B[k0] + BO;
kO := k2 + span; if k0 < n then go to Lb;

n—1

(zi4-1y;) = ; (ar-ibi) exp (i2wjk/n)
=0

forj=0,1,:--,n — 1 is computed, where (a+1ib) represent k0 := k0 — n; if k0 £ span then go to Lb
the initial values and (z+7y) represent the transformed values; end
begin integer k0, k1, k2, k3, k, span; end FFT4;

real A0, A1, A2, A3, BO, Bl, B2, B3, re, im; procedure REVFFT4A(A, B, n, m, ks); value n, m, ks;

real rad, de, ds, cl, ¢2, ¢3, sl, s2, s3;
span = ks; ks := 2Tm; rad := 4.0 X arctan(1.0)/ks;
ks :=span + ks; n:i=n—1; k:=m;

for m := m — 2 while m 2 0 do
begin
¢l :=1.0; sl:=0; kO :=0; k:=ks;

dc 1= 2.0 X sin(rad) 12; rad := rad + rad;

ds := sin(rad); rad := rad + rad;

span := span + 4;

La: k1 := k0 + span; k2 := k1 4 span; k3 := k2 + span;

AQ := A[k0]; BO := Bl[k0];
Al := A[kl]; Bl := Bikl};
A2 = A[k2]; B2 := B[k2];

A3 = A[k3]; B3 := B[k3];
A[KO] := AO + A2 + Al + A3;
BIk0] := BO + B2 + Bl + B3;

if s1 = 0 then

begin
Alkl] := A0 4+ A2 — Al — A3;
Blkl] := B0 4+ B2 — Bl — B3;
Alk2] := A0 — A2 — Bl + B3;
B[k2] := B0 — B2 + Al — A3;
A(k3] := A0 — A2 + Bl — B3;
B[k3] := B0 — B2 — Al + A3

end

else

begin

re 1= A0 4+ A2 — Al — A3; im := B0+ B2 — Bl — B3;
Akl] := re X ¢2 — tm X §2;
Blkl] := re X s2 + im X ¢2;
re := A0 — A2 —~ Bl + B3; im :
Alk2] := re X ¢l — 1m X sl;
Bik2] := re X sl + im X ¢l;
re := A0 — A2 4 Bl — B3; im := B0 — B2 — Al + A3;
Alk3] := re X €3 — im X §3;
B[k3] :=re X 83 + mm X ¢3

end;

kO := k3 + span; if k0 < n then go to La;

kO := k0 — n; if k0 £ k then go to La;

comment If computing for the current factor of 4 is not
finished then increment the sine and cosine values;

if k0 > span then

begin )
¢2 1= ¢l — (deXcl+4dsXsl);
sl 1= (dsXcl—deXsl) + sl;
comment The following three statements compensate

for truncation error. If rounded arithmetic is used, sub-
stitute ¢l := ¢2;

]

BO — B2 + Al — A3;

el := 1505 X (c272+4s112);

sl :=¢cl X sl; ¢l :=cl X ¢2;

2 :=¢172—5112; s2:=20Xcl X sl;
3:=c2Xcl —s2Xsl; §3:=¢2Xsl+s2Xecl;

k:=k4ks; gotolLa
end;
k:=m
end;
comment If m is odd then compute for one factor of 2;
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integer n, m, ks; array A, B;

comment This procedure computes the fast Fourier transform

for one variable of dimension 27 in a multivariate transform.
n is the number of data points, i.e. n = m X 02 X ++- X n,p
for a p-variate transform, and ks = nz1 X %y X -+« X mp ,
where ny = 2= is the dimension of the current variable. Arrays
Al0:n—1] and B[0:n—1] originally contain the real and imagi-
nary components of the data with the indiees of each variable
in reverse binary order, e.g. ajx i85 in A[j'XnaXns+k'Xnz+1']
for j=0,1,---, my—1, k=0,1,--na—1, and I = 0,
1, --- n3 — 1, where j°, k/, and I’ are the bit-reversed values of
J, k, and I. On completion of the multivariate transform, the
real and imaginary components of the resulting Fourier coeffi-
cients are in A and B in normal order. If n = 2m and ks = 1
a single-variate transform is computed;

’

begin integer k0, k1, k2, k3, k, span;

real AO0, A1, A2, A3, B0, Bl, B2, B3;

real rad, de, ds, cl, ¢2, ¢3, sl, s2, s3;

rad := 4.0 X arctan(1.0); n :=n — 1;

k0 := 0; span := ks;

comment If m is odd then compute for one factor of 2;
if (m+2) X 2 ¢ m then

begin

La: k2 := k0 + span; A0 := A[k2]; B0 := B[k2];

Alk2] := A[kO0] ~ AO0; A[k0] := Alk0] + AO;
B[k2] := B[k0] — B0; BI[k0] := B[k0] + BO0;

k0 := k2 + span; if k0 < n then go to Lg;

k0 := k0 — n; if k0 = span then go to La;

span = span + span; rad := 0.5 X rad

end;

for m := m — 2 while m = 0 do

begin
cl :=1.0; sl:=0; k0 :=0; rad := 0.25 X rad;
de := 2.0 X sin(rad) 12;
ds := sin(rad+rad); k := ks;

Lb: k1 := k0 + span; k2 := k1l 4 span; k3 := k2 + span;

AQ := A[k0]; BO := BI[k0];

if s1 = 0 then

begin
A2 :
Al :
A3 :

end

else

begin
A2 = Alkl] X ¢2 — Bjkl] X s2;

It

Alkl]; B2 :
Alk2]; Bl:
Alk3]; B3 :

Blk1];
Blk21;
B[k3]

I

B2 := A[kl] X s2 4 Blkl] X ¢2;
Al = Afk2] X ¢l — B[k2] X s1;
Bl := A[k2] X sl + B[k2] X cl;
A3 := A[k3] X ¢3 — B[k3] X s3;

B3 := Alk3] X s3 + B[k3] X ¢3
end;
AfkO] := A0 + A2 4 Al 4 A3;
B(k0] := B0 + B2 4+ Bl + B3;
Afkl) := A0 — A2 — Bl + B3;
Blkl] := B0 — B2 + A1 — A3;
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Alk2) := A0 4+ A2 — Al — A3;
B[k2) := BO + B2 — Bl — B3;
Alk3] := A0 — A2 4 Bl — B3;
Bik3] := B0 — B2 — Al 4 A3;
kO := k3 + span; if k0 < n then go to Lb;
kO := k0 — n; if k0 = k then go to Lb;
comment If computing for the current factor of 4 is not
finished then increment the sine and cosine values;
if k0 ¢ span then
begin
¢2 := cl — (deXcl+dsXsl);
sl := (dsXcl—deXsl) + sl;
comment The following three statements compensate
for truncation error. If rounded arithmetic is used, sub-
stitute ¢l := ¢2;
cl := 1505 X (c212+4s112);

sl :=¢1 X sl; ¢l :=cl X ¢2;
2:=¢clT 2—5112; s2:=20Xcl X sl;
3 :=c2X el —s2Xsl; s3:=¢2X sl -+ s2Xecl;
k:=k+ ks; gotolb
end;
span 1= 4 X span
end

end REVFFT4;
procedure REALTRAN (A, B, n, evaluale);
value n, evaluate; integer n;
Boolean evaluate; array A, B;
comment If evaluate is false, this procedure unscrambles the
single-variate complex transform of the n even-numbered and
n odd-numbered elements of a real sequence of length 2n, where
the even-numbered elements were originally in A and the odd-
numbered elements in B. Then it combines the two real trans-
forms to give the Fourier cosine coefficients A[0], A[1], ---,
A[n] and sine coefficients B[0], B[1], --- , B[n] for the full
sequence of 2n elements. If evaluate is true, the process is
reversed, and a set of Fourier cosine and sine coefficients is
made ready for evaluation of the corresponding Fourier series
by means of the inverse complex transform. Going in either
direction, REALTRAN scales by a factor of two, which should
be taken into account in determining the appropriate overall
scaling;
begin integer k, nk, nh;
real aa, ab, ba, bb, re, tm, ck, sk, dc, ds;
nh :=n + 2; ds := 2.0 X arctan(1.0)/n;
dc := 2.0 X sin(ds) 12; ds := sin(ds+ds);
sk := 0;
if evaluate then

begin ck := —1.0; ds := —ds end _
else begin ck := 1.0; Aln] := A[0]; Binr] := B[0] end;
for k := 0 step 1 until nh do

begin
nk:=n —Fk; .
aa := A[k] + Ankl; ab := Alk] — Alnkl;

ba := B[k] + Bink}; bb := B[k] — Blnk];

re 1= ck X ba + sk X ab; im := sk X ba — ck X ab;

Blnk] := im — bb; B[k] := tm + bb;

Alnk] := aa — re; A[k] := aa - re;

aa = ck — (deXck+dsXsk);

sk := (dsXck—dcXsk) + sk;

comment The following three statements compensate for
truncation error. If rounded arithmetic is used, substitute

ck := aa;
ck := 1.5-0.5 X (aa12+skT2);
sk := ck X sk; ck :=ck X aa
end
end REALTRAN;

procedure REVERSEBINARY (A, B, m);

integer m; array A, B;

value m;
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commentZ’This procedure permutes the elements A{j] and B[j]

L:

of arrays A and B, forj =0,1,---, 2Tm — 1, according to
the reverse binary transformation. Element

b= ka2l +kn o272 4 oo + k2 + ko
is moved to location
ko2m 1 4 £i2772 4 oo - kn2 + bt .

Two successive calls of this precedure give an identity trans-

formation;

begin integer j, jj, k, lim, jk, n2, n4, n8, nn;
real ¢;

integer array C[0:m];

Cl0] :=nn :=1; jj:=0;

for j := 1 step 1 until m do C[j] := nn := nn + nn;
if m > 1 then n4 := C[m—2]; if m > 2 then n8 := C{m—3];
n2 := Clm—1}; lim:=n2—1; an:=nn—1; m:=m—4;
for j := 1 step 1 until lim do
begin
gk 1= jj + n2;
t:= Aljl; AL} := ALk];
t := Bl[jl; Bl := BljkI;
=i+
if jj = n4 then
begin
Ji = Jj — n4;
if jj = n8 then
begin
Jj=3ji—n8 k:=m;
if Ck] = jj then
begin jj := jj — Clkl; k:
§i = Clkl + Jjj
end
else jj := jj + n8
end
else jj := jj + n4;
if jj > j then
begin
k:=nn —j; jk:=nn —jj,;

Aljkl :=t;
B[jk] = ;

]
>
|
-

go to L end;

t:= Aljl; Al := Al Aljl = ¢
t := B[j]; BIljl := Bljjl; Blijl :=¢;
t:= Alkl; Alk] := A[jk); A[jk] := ¢;
t := Blkl; Bik) := B[jk]; B[jk] :=t¢
end
end

end REVERSEBINARY ;
procedure FFT8(A, B, n, m, ks); value n, m, ks;

integer n, m, ks; array 4, B;

comment This procedure computes the fast Fourier transform

for one variable of dimension 2= in a multivariate transform.
n is the number of data points, i.e. n = ng X 02 X --- X np
for a p-variate transform, ks = ng X nea X =o+ X 7, where
nx = 2m is the dimension of the current variable. Arrays A{0:n—
1] and B[0:n—1] originally contain the real and imaginary com-
ponents of the data in normal order. Multivariate data is stored
according to the usual convention, e.g. aju is in A[jXn,Xns+
EXns+lforj=0,1,.-- ,mu—1, k=0,1,--- ,n2— 1, and
1=0,1,---,ns — 1. On exit, the Fourier coefficients for the
current variable are in reverse binary order. Continuing the
above example, if the “column’’ variable n; is the current one,
column

ko= kna2%t + ko272 4+ oo0 + 52 + Ko
is permuted to position

k2m1l 4+ £y272 4 oo+ kma2 + bt .

A separate procedure may be used to permute the results to
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normal order between transform steps or all at once at the end.

If n = ks = 2m, the single variate transform

n—l

(zst+iy;) = I; (axtibi) exp (i2xjk/n)

for j=0,1,---,n — 1 is computed, where (a}ib) represent
the initial values and (z+7y) represent the transformed values;

begin integer k0, k1, k2, k3, k4, k5, k6, k7, k, span;

real AO, A1, A2, A3, A4, A5, A6, A7, BO, Bl, B2, B3, B4, B5,
B6, B7, z0, 1, 22, 23, 24, 5, 26, 27, 40, y1, y2, 43, ¥4, ¥5, ¥6, 7,
cl, ¢2, 3, ¢4, ¢5, ¢b, c7, sl, s2, s3, s4, $5, s6, s7, c45, de, ds, rad;

span := ks; ks := 2tm; rad := 4.0 X arctan(1.0)/ks;

ks := span + ks; n:=n —1; c45 := sqgrt(0.5); k= m;

comment Radix 8 transform;

for m := m — 3 while m = 0 do

begin

¢l :=1.0; sl:=0; k0 :=0; k:=ks;

de 1= 2.0 X sin(rad) 12; rad := rad + rad;
ds := sin(rad); rad := 4 X rad;
span = span <+ 8;

La: k1 := k0 + span; k2 := k1 4 span; k3 := k2 + span;
k4 1= k3 + span; k5 := k4 4 span; k6 := k5 - span;
k7 := k6 + span; A0 := A[kO]; BO := B[k0];

Al := A[kl]; Bl := B[kl];

A2 := A[K2]; B2 := B[k2];

A3 := A[k3]; B3 := B[k3];

A4 = A[k4]; B4 := B[k4];

A5 := A[k8]; B5 := Blk5];

A6 := A[k6]; B6 := Blk6];

A7 = A[K7l; BT := B[k7];

20 := A0 + A4; y0 := B0 + B4;
24 1= A0 — A4; y4 ;= B0 — B4;
2zl := Al 4 A5; yl := Bl - B5;
z5 1= (A1 — A5 — B1 4 B5) X c45;
¥5 := (Al — A5 -+ Bl — B5) X c45;
22 := A2 + A6; y2 := B2 + B6;
26 := B6 — B2; y6 := A2 — A6;
z3 := A3 + A7; y3 := B3 + B7;
27 := (A7T—~A3~B3+B7) X c45;

y7 := (A3—AT—B3+B7) X c45;

]

Al :=20 4+ 22 — 21 — 23; Bl :
A2 ;=0 — 22 — yl + y3; B2:
A3 ;=20 — 22 + yl — y3; B3 :
A4 := x4 + 26 4+ 25 + 27; B4 :
A5 =24 + 26 — 25 — z7; B5 y4 4 y6 — y5 — y7;
A6 := 24 — 26 — y5 -+ y7; B6 y4 — y6 + 25 — 27;
A7 = x4 — 26 + y5 — y7; BT := y4 — y6 — 25 + 27;

y0 + y2 — yl — y3;
Y0 ~ y2 + 21 — 23;
Y0 — y2 — z1 4 23;
y4 + y6 + ¥5 + y7;

I I
(]

I

A[k0] := 20 + 22 + 21 + 23; B[k0] := 0 + 32 + y1 + ¥3;

if s1 = 0 then

begin
A[kl} := Al; BIlkl] := Bl;
A[k2] := A2; BIk2] := B2;
A[k3] := A3; B[k3] := B3;
Alk4] := A4; Blk4] := B4;
A[k5] := A5; BI[k5] := B5;
A[k6] := A6; B[k6] := B6;
Afk7) := A7; BI[k7] := B7

end

else

begin
Afkl] := ¢4 X A1 — s4 X Bl;
Bikl] := s4 X Al 4+ ¢4 X BI;
Alk2] := ¢2 X A2 — s2 X B2;
Blk2] := s2 X A2 + ¢2 X B2;
Alk3] := ¢6 X A3 — s6 X B3;
B[k3] := s6 X A3 + c6 X B3;
Alk4] := ¢l X A4 — s1 X B4;
Bk4] := s1 X A4 + cl X B4;
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A[k5] := ¢b X A5 — s5 X B5;

B[k5] := sb X 45 + ¢5 X B5; .

A[kB] := ¢3 X A6 — s3 X B6;

Blk6] := s3 X A6 + c3 X B6;

Ak7] := ¢7 X A7 — s7 X B7;

Bik7) := s7 X AT 4 ¢7 X B7
end;

%0 := k7 + span; if k0 < n then go to La;
k0 := k0 — n; if k0 == k then go to La;
comment Increment sine and cosine values;
if k0 == span then

begin
¢2 := ¢l — (deXcl+dsXsl);
sl := (dsXcl—deXsl) + sl;

comment The following three statements compensate
for truncation error. If rounded arithmetic is used,
substitute ¢l := ¢2;
¢l := 1.5-0.5 X (c2124s112);
sl = ¢l X sl; ¢l :=¢l X2
¢2:=¢112—3s172; s2:=20Xcl X sl;
¢3 =2 X cl—s2 X sl; 83 :=¢2 X sl + s2 X cl;
cd =272 —s212; s4:= 20X ¢2 X s2;
¢b:=cl X cd— 81 X s4; §5:= 351 X cd + cl X s4;
6 :=¢37T2—s312; s6:= 20X c3 X §3;
¢7 := ¢l X b — sl X s6; s7:= 351X cb+ cl X s6;
k:=k-+ks; gotola
end;
k3 :=m
end;
comment If m is not a multiple of 3, then complete the trans-
form with radix 2 steps;
for k3 := k3 — 1 while k3 = 0 do
begin
kO := 0; span := span =+ 2;
Lb: k2 := k0 + span;
A2 := A[k2); B2 := B[k2];
Alk2] := A[kO] — A2; BIk2] := B[k0] — B2;
A[K0] := A[k0] 4+ A2; BI[k0] := B[k0] 4+ B2;
k0 := k2 + span; if k0 < n then go to Lb;
k0 := k0 — n; if k0 < ks then go to Lb;
if ks = span then go to Ld;
Le: k2 := k0 + span;
A2 := A[k0] — Al[k2]; B2 := B[k0] — Bk2];
Al[kO] := A[KO] + A[k2]; B[k0] := B[k0] 4 Blk2];
Alk2) := —B2; Blk2] := A2,
kO := k2 + span; if k0 < n then go to Lc;
k0 := k0 — n; if k0 < span then go to Lc;
ILd: end
end FFTS;
procedure REVFFT8(A, B, n, m, ks); value n, m, ks;
integer n, m, ks; array 4, B;
comment This procedure computes the fast Fourier transform
for one variable of dimension 2™ in a multivariate transform.
n is the number of data points, i.e., n = 1 X 12 X «-+ X np
for a p-variate transform, and ks = ngpy X ey X <+- X np,
where n = 27 is the dimension of the current variable. Arrays
A[0:n—1] and B[0:n—1] originally contain the real and imagi-
nary components of the data with the indices of each variable
in reverse binary order, e.g. a;u is in A[j"XnXns+k"Xns+1']
for j=0,1,---, ma—1, k=0,1,---, np—1, and [ =
0,1, -+ ,ns — 1, where j’, k', and I’ are the bit-reversed values
of 7, k, and . On completion of the multivariate transform, the
real and imaginary components of the resulting Fourier coeffi-
cients are in A and B in normal order. If n = 27 and ks = 1,
a single-variate transform is computed;
begin integer k0, k1, k2, k3, k4, k5, k6, k7, k, span;
real A0, A1, A2, A3, A4, A5, A6, A7, BO, Bl, B2, B3, B4, B5,
B6, B7, 20, x1, 22, 3, 24, 25, 26, =7, 40, y1, y2, y3, y4, y5, y6, y7,

]
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cl, c2, 3, c4, c5, cb, c7, sl, s2, s3, s4, s5, $6, s7, c45, dc, ds, rad;

rad := 4.0 X arctan(1.0); n :=n — 1;
c4b := 3qrt(0.5); span := ks;

comment Compute radix 2 steps if m is not a multiple of 3;

= (m+3) X 3;

for k3
begin
kO :=

:= k3 + 1 while k3 £ m do

0;

La: k2 := k0 4 span;

A2 =
Alk2] =

Al[k2]; B2 := Bk2];
A[k0] — A2; BI[k2] := B[k0

] —

A[kO] := A[KkO] + A2; B[k0] := B[k0] 4+ B2;

kO :=
kO :=

Afk2] :=

A[k0]

k0 :=

kO :=

Le: span
end;

k2 + span; if k0 < n then go

to La;

k0 — n; if k0 < ks then go to La;
if ks = span then go to Lc;

Lb: k2 := kO + span;
= A[k2]; B2 := B[k2];

Al[k0] + B2; BI[k2] := Blk0] —

:= A[K0] — B2; Bk0] := B[K0] + A2;

k2 - span; if k0 < n then go
k0 — n; if k0 < span then go
1= span + span; rad := 0.5 X

comment Radix 8 transform;
for m := m — 3 while m = 0 do

begin

rad := 0.125 X rad; dc := 2.0

ds :=

to Lb;
to Lb;
rad

1.0; s1:=0; kO := 0; k := ks;

stn(rad+rad);

Ld: k1 := kO + span; k2 := kl + span;

k4 := k3 + span; kb5 := k4 + span;
k7 := k6 + span; A0 := A[kO]; B0 :=
if s1 = 0 then
begin
Al := A[Kl]; Bl := B[kl];
A2 := A[k2]; B2 := B[k2];
A3 := A[k3]; B3 := BIk3];
A4 := Alk4]; B4 := Blk4];
A5 := A[k5]; BS5 := B[k5];
A6 := A[k6]; B6 := B[k6];
A7 := A[k7); BT7 := B[k7]
end
else
begin
Al := Alkl] X ¢4 — B[k1] X s
Bl := A[kl] X s4 + B[kl] X c4;
A2 = A[k2] X ¢2 — B[k2] X s
B2 := A[k2] X s2 + B[k2] X c2;
A3 := A[k3] X ¢6 — B[k3] X s6;
B3 := A[k3] X s6 + B[k3] X c6;
A4 := A[k4] X cl — B[k4] X sl;
B4 := Alk4] X sl + Blk4] X cl;
A5 := Alk5] X ¢b — Blk5] X s5;
B5 := Alk5] X s5 4+ Blk5] X ¢5;
A6 := A[k6} X ¢3 — B[k6] X s3;
B6 := Alk6] X s3 + B[k6] X c3;
A7 = A[kT] X ¢7 — Blk7} X s7;
B7 := Alk7] X s7 + B[k7] X ¢7
end
20 := A0 + Al + A2 + A3; 40 :=
zl := A0 — A1 — B2 + B3; yl :=
22 = A0 4 Al — A2 — A3; y2 :=
23 := A0 — A1 4+ B2 — B3; y3 :=
z4 1= A4 + A5 + A6 4+ A7; y4 .=
25 1= (A4— A5—B6+B7) X c45;
y5 := (B4—B5+A6— A7) X c45;
26 ;= A4 + A5 — A6 — AT; y6 :=
27 := (A4— A54+B6—B7) X c¢45;
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X sin(rad) 12;

k3 := k2 4 span;
k6 := kb5 -+ span;
B[k0];

BO + Bl + B2 + B3;
B0 — Bl + A2 — A3;
BO + Bl — B2 — B3;
BO — Bl — A2 + A3;
B4 + B5 + B6 + BT;

B4 + B5 — B6 — BT7;

y7 := (B4—B5— A6+ A7) X c45;

AfkO] := 20 + z4; Bk0] := y0 + y4;
Alkl] := z1 + 25 — y5; Blkl] := yl + 25 + y5;
Alk2] := 22 — y6; Bk2] := y2 + 26;
A[k3] := 23 — 27 — y7; BIk3] := y3 + a7 — y7;
A[k4] := 20 — z4; Blk4] := y0 — y4;
A[k5] := z1 — x5 + ¥5; B[Ic5] 1=yl — z5 — ¥5;
AfkB] := 22 + y6; B[k6] : — 26;
Alk7] := 23 + 27 + y7; B[k7] =y3 — z7 4 y7;

k0 := k7 + span; if k0 < n then go to Ld;
kO := k0 — n; if kK0 < k then go to Ld;
comment Increment the sine and cosine values;
if k0 # span then
begin
02 := ¢l — (deXcl4dsXsl);
= (dsXcl—dcXsl) + sl;
comment The following three statements compensate
for truncation error. If rounded arithmetic is used,
substitute ¢l := ¢2;

¢l := 1.50.5 X (c272+s5112);
sl :=c¢l X 815 cl := ¢l X ¢2;
2:=¢1T2—s172; s2:=20X cl X sl;
3 :=cl X c2—3s1Xs2; s3:=351X¢2+cl X s2;
¢4 :=¢2T2—s212; s4:=2.0 X ¢2 X s2;
¢b:=cl X cd — sl X s4; s85:=3s1l X cd+ cl X s4;
6 :=¢372—372; 6 :=2.0X c3 X s3;
7 :=¢l X B —~ sl X s6; §7 := sl X ¢6 + ¢l X s6;
k:=k+ks; gotolLd

end;

span := 8 X span

end

end REVFFT8

ALGORITHM 346

F-TEST PROBABILITIES [S14]

Joun Morris (Recd. 10 Apr. 1968, 12 Sept. 1968, and
6 Nov. 1968)

Computer Institute for Social Science Research, Michigan
State University, East Lansing, MI 48823

KEY WORDS AND PHRASES: F-test, Snedecor F-statistic,
Fisher test, distribution function

CR CATEGORIES: 5.5

procedure Fiest (f, dfl, df2, mazn, prob, gauss, error);
value f, dfl, df2, mazn; real f, prob; integer df1, df2, mazn:
real procedure gauss; label error;

comment This procedure gives the probability that F- will be
greater than the value of f where

f = a/a:t,

o12is the variance of the sample with size N1, o2?is the variance
of the sample with size Ni, dfl = N1 — 1,df2 = Ny — 1,
and F is the Snedecor-Fisher statistic as defined and tabled by
Snedecor [4].

The present algorithm computes a value which is directly
related to that of Algorithm 322, such that prob = 1 — Fisher.
A number of test runs on various computers suggest that Ftest
may be considerably faster than Fisher.

An approximation is included to limit execution time when
sample size is large. It should be used when register overflow
would otherwise result, and the appropriate value for mazn
will therefore depend upon the specific implementation. When
mazn = 500 the approximation appears to give three-digit
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accuracy. The real procedure gauss computes the area under

the left-hand portion of the normal curve. Algorithm 209 [3]

may be used for this purpose. If f < Oorifdfl < lorifdf2 <1

then exit to the label error occurs.

National Bureau of Standards formulas 26.6.4, 26.6.5, and
26.6.8 are used for computation of the statistic, and 26.6.15 is
used for the approximation [2].

Thanks to Mary E. Rafter for extensive testing of this proce-
dure and to the referee for a number of suggestions.

REFERENCES:

1. Dorrer, Econ. Algorithm 322, F-Distribution. Comm.
ACM 11 (Feb. 1968), 116-117.

2. Handbook of Mathematical Functions. National Bureau of
Standards, Appl. Math. Ser. Vol., 55, Washington,
D.C., 1965, pp. 946-947.

3. IeBETsoN, D. Algorithm 209, Gauss. Comm. ACM 6
(Oct. 1963), 616.

4. SNEDECOR, GEORGE W. Statisiical Methods. Iowa State U.
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begin

if dfl <1V df2 <1V f <0.0then go to error;

if f = 0.0 then prob := 1.0

else

begin

real f1, f2, z, ft, vp;

f1 :=dfy; f2 :=df2; ft:=0.0;

z = f2/(f2+f1Xf); vp = fl + f2 ~ 2.0;

if 2 X (df1+2) = dfl A\ dfl < mazn then

begin
real zz; 2z := 1.0 — z;
for f1 := f1 — 2.0 step — 2.0 until 1.0 do
begin

vp 1= vp — 2.0;
ft := zz X vp/fl X (1.04+f1)
end;
ft ;= z10.5Xf2) X (1.04f1)
end
else if 2 X (df2 + 2) = df2 A df2 £ mazn then
begin
for f2 := f2 — 2.0 step — 2.0 until 1.0 do
begin
vp = vp — 2.0;
ft =z X vp/f2 X (1.04+f1)
end;
ft := 1.0 — (1.0—=z) T (0.5Xf1) X (1.04f1)
end
else if dfl + df2 < mazn then
begin
real theta, sth, cth, sts, cts, a, b, 2, gamma;
thela := arctan(sqri(f1Xf/12));
sth := sin(thela); cth := cos(thela);
sts 1= sth12; ects: = cth12;

a:=b := 0.0;
if df2 > 1 then
begin

for f2 := f2 — 2.0 step — 2.0 until 2.0 do
a = cts X (f2—1.0)/f2 X (1.0+a);
a := sth X cth X (1.0+a)
end;
a := thela 4+ a;
if dfl1 > 1 then
begin
for f1 := f1 — 2.0 step — 2.0 until 2.0 do
begin
vp = vp — 2.0;
b := sts X vp/fl X (1.0+b)
end;
gamma := 1.0; f2 := 0.5 X df2;
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for z¢ := 1.0 step 1.0 until f2 do
gamma := zt X gamma/{xt—0.5);
b := gamma X sth X cth1df2 X (1.0+b)
end;
ft := 1.0 + 0.636619772368 X (b—a);
comment 0.6366197723675813430755351 -+ - = 2.0/x;
end
else
begin
real cbrf;
f1:=20/09.0 X f1); f2:=2.0/(9.0Xs2);
cbrf := f10.333333333333;
ft := gauss(— (1.0—f2)Xcbrf+f1-1.0)/
sqri(f2X cbrf T 24+71))
end;
prob := if ft < 0.0 then 0.0 else ft
end
end Flest

ALGORITHM 347

AN EFFICIENT ALGORITHM FOR SORTING WITH
MINIMAL STORAGE [M1]

Ricuarp C. SiNgLETON* (Reced. 17 Sept. 1968)

Mathematical Statistics and Operations Research De-
partment, Stanford Research Institute, Menlo Park,
CA 94025

* This work was supported by Stanford Research Institute with
Research and Development funds.

KEY WORDS AND PHRASES: sorting, minimal storage sort-
ing, digital computer sorting
CR CATEGORIES: 5.31

procedure SORT(A, ¢, j7);
value 7, j; integer 7, j;
array A;

comment This procedure sorts the elements of array A into
ascending order, so that

Ak] < Ak+1)l, k=4,74+1,---,5— L

The method used is similar to QUICKERSORT by R. S. Scowen
[5], which in turn is similar to an algorithm given by Hibbard
[2, 3] and to Hoare’s QUICKSORT [4]. QUICKERSORT is used
as a standard, as it was shown in a recent comparison to be the
fastest among four ACM algorithms tested [1]. On the Bur-
roughs B5500 computer, the present algorithm is about 25
percent faster than QUICKERSORT when tested on ran-
dom uniform numbers (see Table I) and about 40 percent
faster on numbers in natural order (1, 2, --., n), in reverse
order (n, =n—1,---, 1), and sorted by halves
2,4,---,n,1,8,--- ,n—1). QUICKERSORT is slow in sorting
data with numerous “tied’’ observations, a problem that can be
corrected by changing the code to exchange elements alk] > ¢
in the lower segment with elements afq] < ¢ in the upper seg-
ment. This change gives a better split of the original segment,
which more than compensates for the additional interchanges.
In the earlier algorithms, an element with value ¢ was selected
from the array. Then the array was split into a lower segment
with all values less than or equal to t and an upper segment with
all values greater than or equal to ¢, separated by a third seg-
ment of length one and value {. The method was then applied
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TABLE I. SortiNg TIMES IN SECONDS FOR SORT aND
QUICKERSORT, oN THE Burrouvaas B5500
CoMPUTER—AVERAGE OF FiveE TRIALS
Algorithm
QUICKERSORT

Original order and number of items SORT

Random uniform:

500 0.48 0.63
1000 1.02 1.40
Natural order:
500 0.29 0.48
1000 0.62 1.00
Reverse order:
500 0.30 0.51
1000 0.63 1.08
Sorted by halves:
500 0.73 1.15
1000 1.72 2.89
Constant value:
500 0.43 10.60
1000 0.97 41.65

recursively to the lower and upper segments, continuing until
all segments were of length one and the data were sorted. The
present method differs slightly—the middle segment is usually
missing—since the comparison element with value ¢ is not re-
moved from the array while splitting. A more important differ-
ence is that the median of the values of A[¢], A[(z+7)=2], and
Alj]is used for ¢, yielding a better estimate of the median value
for the segment than the single element used in the earlier
algorithms., Then while searching for a pair of elements to
exchange, the previously sorted data (initially, A{Z]<t<Alj])
are used to bound the search, and the index values are compared
only when an exchange is about to be made. This leads to a small
amount of overshoot in the search, adding to the fixed cost of
splitting a segment but lowering the variable cost. The longest
segment remaining after splitting a segment o~ n has length
less than or equal to » — 2, rather than » — 1 as in
QUICKERSORT.

For efficiency, the upper and lower segments after splitting
should be of nearly equal length. Thus ¢ should be close to the
median of the data in the segment to be split. For good statis-
tical properties, the median estimate should be based on an odd
number of observations. Three gives an improvement over one
and the extra effort involved in using five or more observations
may be worthwhile on long segments, particularly in the early
stages of a sort.

Hibbard [3] suggests using an alternative method, such as
Shell’s [6], to complete the sort on short sequences. An experi-
mental investigation of this idea using the splitting algorithm
adopted here showed no improvement in going beyond the final
stage of Shell’s algorithm, i.e. the familiar “sinking’’ method of
sorting by interchange of adjacent pairs., The minimum time
was obtained by sorting sequences of 11 or fewer items by this
method. Again the number of comparisons is reduced by using
the data themselves to bound the downward search. This
requires

Ali~-1] < A[k], ¢<k<.

Thus the initial segment cannot be sorted in this way. The
initial segment is treated as a special case and sorted by the
splitting algorithm. Because of this feature, the present al-
gorithm lacks the pure recursive structure of the earlier al-
gorithms.

For n elements to be sorted, where 28 < n < 21, 3 maximum
of k elements each are needed in arrays IL and IU. On the B5500
computer, single-dimensional arrays have a maximum length
of 1023. Thus the array bounds [0:8] suffice.
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This algorithm was developed as a FORTRAN subroutine, then
translated to ALcoL. The original FOrRTRAN version follows:

SUBROUTINE SORTUA,IT,JJ)
SORTS ARRAY 4 INTD INCREASING ORDER, FROM A(II) TN A(JJ)
ORDERING IS BY INTEGER SUBTRACTION, THUS FLOATING POINT

NUMBERS MUST BE IN NORMALIZED FDRM.

ARRAYS TU(K) AND TL(K) PERMIT SORTING UP TO 2##(K#l)-1 ELEMENTS

DIMENSION A(1),IUT16),IL(16)

INTEGER A,T,TT

M=1

I=11

J=Jg
5 IF{I .GE. J) GG TO 70O
10 K=1

TJ=(J+T}72

T=A(10)

IF{ALT) .LE. T) 6D TO 20

AT =ALT}

ALT)=T

T=A(14}
20 L=J

IF(A(J) «GE. T} GO TO 40

AlLTUY=ACD)

ALJ)=T

T=A{(1J)

IF(A{I) .LE. T) GO TO 40

AlTJ)=ALT)

AlT)=T

T=A(1J)

GO TD 40
20 A({L)=A(K)

ALK)=TT
40 L=L-1

IF(ALL) .GT. T) GO TO 40

TT=A(L)
S0 K=K+l

TIF{A(K) .LT. T) GO YO 50

IF(K +.LE. L) GO TO 30

IF{L-T .LE. J-K) GO TO 60

ILim)=1

TuiMm)=L

1=K

M=M+1

G0 TO 80
60 TLIM)I=K

1UiMI=J

J=L

M=M4]

GO Tn 80
70 M=M-1

IF{M (EQ. 0) RETURN

I=TL{M)

J=1utm)
80 IF(J-1 .GE. 11) GO TO 10

IF{I .EQ. II) GO YO 5

I=1-1
90 I=T+1
IFt1 .EQ. J) GO YO 70
T=A(1+1)
IF(A(I) .LE.
K=1
A(K+1}=AL1K)
K=K~1
TFLT LLT.
ATK+1)=T
GO TO 90
END

T) GO YD 90
100

A{K)) GO TO 100

This ForTRAN subroutine was tested on a CDC 6400 computer.
For random uniform numbers, sorting times divided by n log: n
were nearly constant at 20.2 X 107¢ for 100 < n < 10,000, with
a time of 0.202 seconds for 1000 items. This subroutine was also
hand-compiled for the same computer to produce a more efficient
machine code. In this version the constant of proportionality
was 5.2 X 107, with a time of 0.052 seconds for 1000 items. In
both cases, integer comparisons were used to order normalized
floating-point numbers.
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begin
real 1, i;
integer 2, ij, k, L, m;
integer array IL, IU[0:8];
m:=0; 17 :=14; go toL4;
L1: 4 := (+4) + 2; t:= Aljl; k:=14; L:=j;
if A[{] > { then
begin A[ij] :=
if Alj] < ¢ then
begin
Alig) == Al7]; Aljl :=¢; t:=
if A[¢] > t then
begin A[ij] :=
end;
L2: L:=L —1;
if A[L] > (¢ then go to L2;
= A[L];
L3: k:=k+1;
if Alk] < t then go to L3;
if £t < L then
begin A[L] := Alk]; Alk] := t{; go to L2 end;
1fL—-’L>_7—-kthen
begin IL[m] := i; IU[m] := L 1 :=k end
else
begin IL[m] := k; IU[m] := j; j := L end;
m :=m+1; .
L4: if j — 7 > 10 then go to Ll;
if 7 = 71 then
begin if ¢ < j then go to Ll end;
for 7 := 7 4- 1 step 1 until j do
begin
t:= A[t]; k:=1—1;
if Afk] > { then

Ali]; AlG] := = A[%j] end;

Algl;

A[Z]; Al :=t; ¢ := Alij] end

begin
L5: Alk+1) := Alk]; k:=k —1;

if A[k] >t then go to L5;
Alk+11 :=
end

end;

m:=m—1; ifm > 0 then

. begin 7 := IL[m]; j:= IU[m]; go to L4 end -

end SORT

REMARK ON ALGORITHM 329 [G6]
DISTRIBUTION OF INDISTINGUISHABLE OB-
JECTS INTO DISTINGUISHABLE SLOTS [Robert
R. Fenichel, Comm. ACM 11 (June 1968), 430]
M. Gray (Recd. 20 Sept. 1968)
Computing Science Department, University of Adelaide,
South Australia
As the procedure stands it is incorrect. Preceding
end skip 99,189,198, etc.
the following statement should be inserted:
if glk] = O then LeftmostZero := k + 1
Thus the compound statement becomes:
begin
LeftmostZero := LeftmostZero —1;
glk] := glLeftmostZero] — 1;
g{LeftmostZero] := 0;
glLeftmostZero—1] := g{LeftmostZero—1] + 1;
if glk] = O then LeftmostZero := k 4 1
end skip 99, 189, 198, etc.
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REMARK ON ALGORITH 339 [C6]

AN ALGOL PROCEDURE FOR THE FAST FOURIER

TRANSFORM WITH ARBITRARY FACTORS
[Richard C. Singleton, Comm. ACM 11 (Nov. 1968),
776]

Ricuarp C. SingLETON (Reed. 27 Nov. 1968)

Stanford Research Institute, Menlo Park, CA 94025

KEY WORDS AND PHRASES: fast Fourier transform, complex
Fourier transform, multivariate Fourier transform, Fourier
series, harmonic analysis, spectral analysis, orthogonal poly-
nomials, orthogonal transformation, virtual core memory,

permutation
CR CATEGORIES. 3.15, 3.83, 5.12, 5.14

On page 778, column 2, the 7th and 6th lines from the bottom
should be corrected to read

LJ: jj := Cli—21+ jj; if jj = Cli—1] then

begin ¢ := % — 1; jj := jj — C[f]; go to LJ end;
On page 779, column 1, the 9th and 8th lines from the bottom
should be corrected to read:

(LX: jj:= Dlk+1] + jj; if jj 2 D[k] then

begin ]] =jj— Dlkl; k:=k-+1; goto LX end;
In both cases jj was originally used as the controlled variable of
a for clause and thus was undefined after exit; the corrections
preserve the value of jj for later use.

If the user prefers to compute constants with library functions,
line 5 in column 2 on page 777 may be replaced by:

rad := 8.0 X arctan(1.0); ¢30 := sqri(0.75);

Algorithms 338 [Comm. ACM 11 (Nov. 1968), 773] and 339 were
punched from the printed page and tested on the CDC 6400
ArgoL compiler. After changing a colon to a semicolon at the end
of line 37 in column 2 on page 775, the test results agreed with
those obtained earlier with this compiler.

When computing a single-variate Fourier transform of real
data, procedure REALTRAN may be used with procedure FFT
(Algorithm 339) to reduce computing time. Two versions of
REALTRAN have been given (Algorithms 338 and 345 [Comm.
ACM 12 (Mar. 1969), 179-184]); the first version is the faster of
the two, but the second should be used if arithmetic results for
real quantities are truncated rather than rounded.

In describing the evaluation of a real Fourier series, in the
middle of column 2 on page 776, the necessary steps of reversing
the signs of the B array values both before and after calling FFT
were omitted. The correct steps, including scaling, are as follows:

REALTRAN (A B, n, true);

forj :=n — 1 step —1 until 0 do B[j] := —B[j];

FFT(A, B, n, n, n);

forj := n — 1 step —1 until 0 do

begin Afj] := 0.5 X A[j]; B[j] := —0.5 X B[j] end;

The policy concerning the contributions of algorithms to
Communications of the ACM appears, most recently, in the
January 1969 issue, page 39. A contribution should be in the
form of an algorithm, a certification, or a remark. An al-
gorithm must normally be written in the ALGOL 60 Refer-
ence Language or in USASI Standard FORTRAN or Basic
FORTRAN.
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