
Learning Algorithm for LesserDNN, a DNN withQuantized
Weights

Masashi Takemoto

lesser@beatcraft.com

BeatCraft, Inc.

Tokyo, Japan

Yasutake Masuda

masuda@beatcraft.com

BeatCraft, Inc.

Tokyo, Japan

Jingyong Cai

kkkluoruo@hotmail.com

Tokyo University of Agriculture and Technology

Tokyo, Japan

Hironori Nakajo

nakajo@cc.tuat.ac.jp

Tokyo University of Agriculture and Technology

Tokyo, Japan

ABSTRACT
This paper presents LesserDNN, a model that uses a set of floating-

point values {-1.0, -0.5, -0.25, -0.125, -0.0625, 0.0625, 0.125, 0.25, 0.5,

1.0} as quantized weights, and a new learning algorithm for the pro-

posed model. In previous studies on deep neural networks (DNNs)

with quantized weights, because DNNs employ the gradient de-

scent method as their learning algorithm, quantized weights were

applied only during the inference stage. Due to differentiability

properties, quantized weights cannot be used when the gradient

descent method is applied during training. To address this issue, we

devised an algorithm based on simulated annealing. Since simulated

annealing has no differentiability requirements, LesserDNN can

utilize quantized weights during training. With the use of quantized

weights and this simulated annealing-based algorithm, the learning

process becomes a combinatorial problem. The proposed algorithm

was applied to train networks on MNIST handwriting datasets. The

testedmodels were trainedwith the simulated annealing-based algo-

rithm and quantized weights, achieving the same level of accuracy

as gradient descent-based comparison methods. Thus, LesserDNN

has a simple design and small implementation scale because back-

propagation is not applied. Moreover, this model achieves a high

accuracy.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Deep Neural Network, Machine Learning, Simulated Annealing,

Weight Quantization

ACM Reference Format:
Masashi Takemoto, Yasutake Masuda, Jingyong Cai, and Hironori Nakajo.

2023. Learning Algorithm for LesserDNN, a DNN with Quantized Weights.

In The 12th International Symposium on Information and Communication

This work is licensed under a Creative Commons Attribution International

4.0 License.

SOICT 2023, December 07–08, 2023, Ho Chi Minh, Vietnam
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0891-6/23/12.

https://doi.org/10.1145/3628797.3628935

Technology (SOICT 2023), December 07–08, 2023, Ho Chi Minh, Vietnam.ACM,

New York, NY, USA, 7 pages. https://doi.org/10.1145/3628797.3628935

1 INTRODUCTION
Deep neural networks (DNNs) have contributed substantially to the

development of machine learning and various machine learning-

based applications. To improve accuracy, deeper networks, more

complex structures, and more neurons have been introduced in

various models. However, these large models are not suitable for

deployment in small devices. To address this issue, weight quantiza-

tion approaches have been introduced. To reduce model size while

maintaining accuracy, less precise weights are used only for infer-

ence, while training still requires full-precision weights. Weight

quantization successfully reduces the memory requirements and

computational costs of DNNs while maintaining the same accuracy

as full-precision weight DNNs. Lower precision weights are not

applied during the DNN training process because of the learning

algorithm, namely, the gradient descent method. To fully utilize

less precise weights, a new learning algorithm must be developed.

Therefore, we devised LesserDNN, a novel approach that uses

a set of floating-point values {- 1.0, -0.5, -0.25, -0.125, -0.0625, -

0.0625, 0.125, 0.25, 0.5, 1.0} as quantized weights instead of arbitrary

values such as continuous floating-point numbers, where 𝑤 ≦
1.0 and 𝑤 ≧ −1.0. (𝑤 : a weight). Moreover, we developed a new

learning algorithm.We implemented a framework that utilizes these

quantized weights during both the training and inference stages;

thus, LesserDNN can build arbitrary networks of freely stacked

layers containing neurons with quantized weights.

In conventional DNNs, the weights are set as arbitrary real num-

bers between -1.0 and 1.0, and infinite combinations of theseweights

are possible during training. On the other hand, in contrast to tra-

ditional DNNs, the learning process of LesserDNN is formulated as

a combinatorial problem because the number of combinations of

quantized weights is finite. Although the number of combinations

is mathematically finite, it is intractable for typical computer sys-

tems; thus, it is impossible to search for the optimal solution in a

round-robin fashion within a practical time frame. Therefore, we

devised a learning algorithm using simulated annealing (SA). SA

imitates the most settled arrangement of heated molecules as they

cool, with the weights representing the molecules and the num-

ber of selections representing the temperature. Randomly selected

1

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3628797.3628935
https://doi.org/10.1145/3628797.3628935
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3628797.3628935&domain=pdf&date_stamp=2023-12-07

SOICT 2023, December 07–08, 2023, Ho Chi Minh, Vietnam Masashi Takemoto, Yasutake Masuda, Jingyong Cai, and Hironori Nakajo

weights are changed and updated only when these changes im-

prove the results. The combinations are evaluated according to the

difference between the current result and the correct answer. The

optimization proceeds by iterating; thus, this difference decreases,

and the global optimum is eventually reached.

The background of this study is described in Section 2. LesserDNN

is explained in Section 3, and the details of the algorithm are pre-

sented in Section 4. The experiments conducted on the MNIST

handwriting dataset are explaind in Section 5. The results are re-

ported in Section 6, and are discussed in Section 7.

The code of LesserDNN is available online at https://github.com/

BeatCraft/LDNN, and the code for experiments also is available

online at https://github.com/BeatCraft/LDNN-mnist.

2 BACKGROUND
Weight quantization has been proposed as a method of increas-

ing the inference speed while reducing memory footprint. Weight

quantization involves statistically analyzing trained DNNs and re-

placing values. In previous studies, Vanhoucke et al. [10] initially

applied weight quantization to reduce the computational burden

of DNNs. In each layer, the weights were normalized to a signed

integer in the range of -127 to 127, and the activations were quan-

tized as 8-bit integers. As a result, the total memory footprint of

the improved network was approximately 3 or 4 times smaller than

that of the original network. Compared with DNNs, networks that

applied quantization exhibited recognizable improvements in terms

of speed while maintaining accuracy.

Similar to the initial study, many weight quantization studies

have applied dynamic range quantization; however, there are some

notable studies on fixed-point weight quantization. Courbariaux et

al. [2] introduced BinaryConnect, in which the weights are aggres-

sively reduced to a single bit (-1 or 1). Because of these binarized

weights, approximately two-thirds of the multiplication operations

can be replaced by addition and substitution operations. As the

calculations are greatly simplified, the training speed is 3 times

faster, yet the accuracy is reduced by only 19%. To improve the

accuracy of BinaryConnect, Li et al. [5] developed ternary weight

networks. These networks added zero as a binarized weight and

introduced a threshold-based ternary function to transform full-

precision weights to ternary weights. The threshold value for the

ternary weights was determined by optimizing the threshold-based

ternary function. This function minimizes the Euclidian distance

between full-precision weights and ternary weights with a scaling

factor. Since ternary weight networks require 2-bit storage for each

weight unit, their model compression rates are higher than those of

full-precision weight models. The experimental results showed that

when compared with full-precision weight models, the accuracies

of ternary weight networks were reduced by 0.4% or less.

The results of weight quantization experiments have been re-

markable thus far; however, previous studies have had difficulty test-

ingweight quantizationmodels with quantizedweights only. In gen-

eral, these studies statistically analyze trained DNNs and replace val-

ues; thus, training is initially performed with full-precision weights.

The full-precision weights are replaced by quantized weights af-

ter training, and these quantized weights applied only during the

inference stage to retain high accuracy.

Vanhoucke et al. [10] applied quantization in pretrained net-

works. Courbariaux et al. [2] and Li et al. [5] employed binary and

ternary weights (lower precision weights) in forward and back prop-

agation and applied full-precision weights in the gradient method.

In these weight quantization studies, quantized weights were not

fully used during training.

Weight quantization approaches require full-precision weights

because the gradient descent method is used the optimization

method in the training process. Because of differentiability proper-

ties, DNNs are not differentiable with respect to quantized weights.

As the changes in theweights are large, the gradient descent method

cannot accurately determine the gradient and thus cannot differ-

entiate changes in the weights. Thus, quantized weights cannot

be used in the gradient descent method. To address this issue, this

paper applies a non-gradient-based approach, namely, an SA-based

method.

SA is known as a combinatorial optimization method. In 2017,

Mousavi et al. [6] applied SA to an artificial neural network (ANN).

In their empirical analysis, the ANN/SA model outperformed the

ANNmodel. However, as discussed in the paper, the ANN/SAmodel

had large time costs. As the weights are expressed as floating-point

numbers, the number of combinations in the model is enormous

and practically infinite, and the computations cannot be completed

within a practical time range.

The combinatorial optimization method also faces this issue. For

instance, as an implementation limitation, the number of combina-

tions is varied between -1.0 and 1.0 in increments of 0.01, which

is considered the precision level of the weights. The number of

combinations is 200
𝑛
, where 𝑛 is the number of weights in the

model. For example, a small DNN with 10000 weights contains

200
10000

combinations. Considering the large number of combina-

tions, small DNNs with medium-precision weights have reduced

time costs while retaining the large computational power required

to complete the training process. In typical experiments, small DNN

models have more than 1000 weights, and the number of combina-

tions easily surpasses this example.

To address this issue, quantized weights are introduced. The

quantized weights are designed as a set of sequential numbers,

where the current number is divided by 2 to determine the subse-

quent number, such as {-1.0, -0.5, -0.25, -0.125, -0.0625, 0.0625, 0.125,

0.25, 0.5, 1.0}, because we found that logarithmic quantization of

the weights achieved better classification results than linear quanti-

zation of the weights in a previous study [1]. This approach reduces

the level of precision of each weight from 200 to 10.

Thus, when quantized weights are used, the total number of

combinations in the DNN is 10
10000

. While this is still a large num-

ber, it is 20
10000

times smaller than 200
10000

, and current computer

systems can likely handle this number of combinations. When an

SA-based algorithm is applied to a DNN, a set of quantized weights

can be used for training because the gradient method is not used

as the optimizer.

3 LESSERDNN
LesserDNN includes layers, neurons, and weights and has basic

mechanisms such as inference, activation functions, loss functions,

and batches. LesserDNN is similar to existing DNNs, except that

2

https://github.com/BeatCraft/LDNN
https://github.com/BeatCraft/LDNN
https://github.com/BeatCraft/LDNN-mnist

Learning Algorithm for LesserDNN, a DNN withQuantized Weights SOICT 2023, December 07–08, 2023, Ho Chi Minh, Vietnam

LesserDNNhas no backpropagation. These characteristics and other

differences, such as the lack of bias, and how batches are handled,

are explained in this chapter.

The output of a neuron in a DNN is calculated by adding a 𝑏𝑖𝑎𝑠

to the summation of the product, as shown in (1), where 𝑥 is the

input value and𝑤 are the weights; then, the output value is passed

to an activation function such as ReLU (2). ReLU and leaky ReLU

(3) can be selected as activation functions in each layer. In (1), 𝑦 is

the output of the neuron, and 𝑎 in (3) is a coefficient that depends

on the actual network applied in a given problem.

𝑦 =

𝑛∑︁
𝑖=1

(𝑥𝑖 ·𝑤𝑖) + 𝑏𝑖𝑎𝑠 (1)

𝑓 (𝑥) =
{
𝑥 (𝑥 ≧ 0)
0 (𝑥 < 0)

(2)

𝑓 (𝑥) =
{
𝑥 (𝑥 ≧ 0)
𝑎 · 𝑥 (𝑥 < 0)

(3)

The bias has two functions: adjusting the output range of the

neuron and ensuring that the output value is differentiable. Ensur-

ing that a value is differentiable means guaranteeing that that value

is not set to zero. LesserDNN has no bias since there is no need to

consider whether the output of the neuron is differentiable since

the gradient descent method is not used for training and layer nor-

malization is applied. Layers containing neurons use a function to

normalize the output. Inference is executed by performing calcula-

tions sequentially starting with the input layer. A layer receives the

output of the previous layer, executes calculations and passes the

results to the next layer. This basic propagation process is repeated

until the output layer is reached. In the output layer, the softmax

function may be applied. For classification problems, the output of

the final layer is the probability. The softmax function adjusts the

individual values in the output layer to ensure that the sum of the

outputs is equal to 1.0.

The loss function is a function that is used to determine the

magnitude of the discrepancy between the correct and predicted

values. LesserDNN selects either the mean squared error (MSE) or

the cross entropy (CE) to evaluate the model. The MSE is defined

in (4), where 𝑛 is the number of data points, 𝑦 is the correct value,

and 𝑦 is the predicted value. In classification problems, 𝑛 is the

number of classes. The CE is defined in (5), where 𝑝 (𝑥) is the

correct probability and 𝑞(𝑥) is the predicted probability.

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (4)

𝐻 (𝑝, 𝑞) = −
∑︁
𝑥

𝑝 (𝑥) · log𝑞(𝑥) (5)

The calculations are performed in each layer, and basic functions

are implemented to take advantage of hardware systems such as

GPUs or multicore CPUs. LesserDNN adapts CUDA [3] and OpenCL

[9] to support GPUs. CUDA is an advanced computation library

for NVIDIA [7] GPUs. OpenCL is an open standard for parallel

programming on systems with different types of hardware, such as

multicore CPUs, FPGAs, and GPUs.

The input data for training and testing are grouped in two-

dimensional arrays and treated as batches. The inference results on

the batched input data are evaluated in bulk, and the average of the

results is considered the optimization improvement for that batch.

A batch can be assigned to multiple processes by adapting a

message passing library (MPI). An MPI is a standard for distributed-

memory parallel processing, and Open MPI [8] is available as an

implementation. Open MPI supports data transfer and synchro-

nization between processes not only on single computers but also

on multiple computers connected in a network. Thus, very large

batches that consume considerable working memory can be han-

dled.

4 LEARNING ALGORITHM
The learning algorithm of LesserDNN includes triple nested loops,

challenge loops, cooling loops, and a main loop, as shown in Fig.

1. The challenge loops determine which weights to update, and

the cooling loop is crucial for applying the SA function in the

learning algorithm. The cooling loop controls the temperature,

which represents the number of weights to update during each

iteration. Then, the main loop iterates to the next cooling loop.

More iterations are required for more difficult problems.

Figure 1: The triple nested loops

4.1 Challenge Loop
The challenge loop is the innermost loop and the core of the algo-

rithm as shown in Fig. 2, and the pseudocode is shown in Algorithm

1. It includes four basic functions: selecting the weights, updating

the network, evaluating the network, and reversing changes.

Before the loop, all weights in the LesserDNN network are ini-

tialized by randomly selecting a value in the set {-1.0, -0.5, -0.25,

-0.125, -0.0625, -0.0625, 0.125, 0.25, 0.5, 1.0}. Inference is performed

on the training data, and the difference between the current result

and the correct answer is calculated as the loss function, Λ using

either the MSE or CE. The loop takes a positive integer as a variable,

and the number of weights to handle during each iteration is 𝑁 .

Then, N weights are randomly selected and changed, and the loss

function, 𝜆, is obtained. Since the training data include batches with

multiple data points, multiple values are obtained. The average of

these values is determined as the evaluation result for that batch. If

𝜆 is smaller than Λ„ the changed weights are maintained; otherwise,

the changes are discarded. The loop stores 𝜌 , which is the ratio of

the number of successful updates to the total number of trials. The

3

SOICT 2023, December 07–08, 2023, Ho Chi Minh, Vietnam Masashi Takemoto, Yasutake Masuda, Jingyong Cai, and Hironori Nakajo

minimum number of iterations is set to 50 by default, and the loop

is terminated when the hit rate falls below 1%.

Figure 2: Flowchart of the challenge loop

Algorithm 1 Challenge Loop

1: function challenge(Λ, 𝑁)

2: 𝑐𝑛𝑡 ← 0

3: ℎ𝑖𝑡 ← 0

4: 𝜌 ← 1.0

5: while 𝜌 > 0.01 do
6: select(𝑁) ⊲ select N weights randomly

7: update()

8: 𝜆 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 ()
9: if 𝜆 < Λ then
10: ℎ𝑖𝑡 ← ℎ𝑖𝑡 + 1
11: Λ← 𝜆

12: keep the changes

13: else
14: discard the changes

15: end if
16: 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1
17: 𝜌 ← ℎ𝑖𝑡/𝑐𝑛𝑡
18: end while
19: return Λ
20: end function

4.2 Cooling Loop
The cooling loop controls 𝑁 in the iterations of the challenge loop,

as shown in Fig. 3, and the pseudocode is shown in Algorithm 2.

𝑁 is the number of weights to be updated at once in the challenge

loop. 𝑁 is calculated according to the total number of weights M

and the temperature in the cooling loop 𝐾 .

The maximum value of temperature, 𝜃 is also calculated accord-

ing to M. In the cooling loop, 𝐾 decreases from 𝜃 to 0 as the tem-

perature of the heated material decreases over time. In the cooling

loop, 𝐾 decreases as 𝑁 decreases. We set the maximum number of

weights to be changed during each iteration to 1%, and the maxi-

mum temperature, 𝜃 , was calculated as 𝜃 = log𝜖 (0.01 ·𝑀), where 𝜖
is set to 2 as a default value.

Therefore, the number of weights to be changed at once at tem-

perature 𝑘 is 𝑁 = 𝜖𝑘 . 𝜖 is a hyperparameter that controls the

convergence speed. The larger the value of 𝜖 is, the more rapidly

the optimization process proceeds; thus, the possibility of falling

into a local optimum increases. The appropriate range for 𝜖 is 1.1 to

2.0. The cooling loop starts at 𝜃 and is repeated until 𝐾 reaches 1.

Figure 3: Flowchart of the coolong loop

Algorithm 2 Cooling Loop

1: function Cooling

2: 𝑀 ← 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

3: 𝜖 ← 2

4: 𝜃 ← log𝜖 (0.01 ·𝑀)
5: Λ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 ()
6: 𝐾 ← 𝜃

7: while 𝐾 >= 1 do
8: 𝑁 ← 𝑖𝑛𝑡 (𝐾)
9: Λ← 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 (Λ, 𝑁)
10: 𝐾 ← 𝐾/𝜖
11: end while
12: end function

4.3 Main Loop
The main loop is a loop that simply iterates the cooling loop, as

shown in Algorithm 3. The number of iterations varies depending

on the complexity of the problem. The number of iterations also

depends on the number of training samples (batch size). Because

LesserDNN is an SA-based method, the number of iterations is a

hyperparameter.

4

Learning Algorithm for LesserDNN, a DNN withQuantized Weights SOICT 2023, December 07–08, 2023, Ho Chi Minh, Vietnam

In LesserDNN, the cycle of select(), update(), and evaluate() in the

challenge loop must be performed sequentially. The computational

costs of the main loop and cooling loop are low and may not change

with the complexity of the problem or the batch size. The evalu-

ation function, which includes the inference and loss functions,

has the largest computational cost. The evaluation function can

be parallelized by assigning divided batches to multiple processes,

thus allowing LesserDNN to maintain the cycle in a single sequence

and distribute the computational costs to as many processes as the

hardware allows.

Algorithm 3Main Loop

1: functionMain(𝑛) ⊲ 𝑛 : number of iterations

2: for 𝑖 < 𝑛 do
3: cooling()

4: end for
5: end function

5 EXPERIMENTS
To validate the learning algorithm and examine the characteristics

of LesserDNN, we conducted experiments using an MNIST dataset.

Additionally, we constructed a network with the same layer and

neuron configuration in TensorFlow and performed the same ex-

periments for comparison. The performance was evaluated with

stochastic gradient descent (SGD) and adaptive moment estima-

tion (Adam) as backpropagation algorithms. The SGD algorithm is

a first-order iterative optimization algorithm for determining the

local minimum of a differentiable function. The strategy involves

determining the steepest descent in a large or infinite space. By

repeatedly applying the strategy, the algorithm eventually finds a

local minimum. Adam was developed by Kingma et al. [4]. Adam is

a stochastic gradient-based optimization method that calculates the

exponential average of the gradient and the squared gradient and

adapts the learning rate for each weight in the neural network. The

hyperparameters control the decay rates of these moving averages.

The moving averages are estimated according to the mean of the

uncertain variance of the gradient.

The MNIST dataset is a well-known classification example in

machine learning that contains 60000 training images and 10000

test images. These images are 28×28 pixel 8-bit grayscale images.

All the images contain handwritten figures, namely, the digits 0 to

9, shown as Fig. 4. DNNs are trained with the training images and

evaluated with the test images. A very basic structure, namely, a

fully connected network with 2 hidden layers, was used. The input

layer had 784 neurons to transform the 28×28 8-bit grayscale image

to 784 floating-point values in the range of 0.0 to 1.0. The output

layer had 10 neurons corresponding to the 10 classes.

5.1 Network Size
The number of neurons in the two hidden layers was initially set

to 256 and then changed to 128, 64, and 32.

Figure 4: Examples of MNIST Dataset

5.2 Number of Iterations
The number of iterations was set to 100. The accuracy and CE of

the network, which has two hidden layers with 256 neurons, were

determined with a learning algorithm that was iterated 100 times.

5.3 Training Batch Size
The networks with two 256-neuron hidden layers were trained on

MNIST datasets with different numbers of images: 250, 500, 750,

1000, 2000, 3000, 4000, 5000, 10000, 20000, 40000, and 60000. The

number of iterations was set to 100 for all configurations.

5.4 Base of Temperature, 𝜖
𝜖 is a hyperparameter of LesserDNN that controls the speed of the

temperature descent during each iteration of the SA-based learning

algorithm. The networks with two 256-neuron hidden layers were

trained with different 𝜖 values, including 2.00, 1.50, 1.25, and 1.10,

to assess how this value influences training.

The number of iterations was set to 100 for all networks.

6 RESULTS
6.1 Network Size
Table 1 shows the results of training LesserDNN models with dif-

ferent network sizes and the results of equivalent networks in

TensorFlow for comparison.

Table 1: Different network sizes for MNIST.

256 128 64 32

LesserDNN 0.9776 0.9731 0.9675 0.9537

TensorFlow/SGD 0.9753 0.9734 0.9699 0.9618

TensorFlow/Adam 0.9848 0.9830 0.9789 0.9721

6.2 Number of Iterations
Fig. 5 shows the changes in the accuracy and CE as the learning

algorithm is iterated 100 times in the 256 network.

6.3 Training Batch Size
Table 2 shows the accuracies of networks trained with 250, 500,

750, and 1000 training images and the results of TensorFlow for

comparison.

6.4 Base of Temperature, 𝜖
Fig. 7 shows how the accuracy changes with the parameter, 𝜖 . The

range of the Y axis varies from 0.90 to 1.00 because differences were

observed only in this range.

5

SOICT 2023, December 07–08, 2023, Ho Chi Minh, Vietnam Masashi Takemoto, Yasutake Masuda, Jingyong Cai, and Hironori Nakajo

Figure 5: Changes in the accuracy and CE versus the number
of iteration on the MNIST dataset.

Figure 6: Changes in accuracy versus batch size for MNIST.

Table 2: Different batch size for MNIST.

250 500 750 1000

LesserDNN 0.7832 0.8463 0.8766 0.8870

TensorFlow/SGD 0.6552 0.7689 0.8216 0.8347

TensorFlow/Adam 0.8082 0.8614 0.8850 0.8985

Figure 7: Accuracy versus 𝜖.

7 DISCUSSION
The experimental results showed that the SA-based learning algo-

rithm can be applied to train LesserDNN, a DNN with quantized

weights. Moreover, the fully connected model achieved an accuracy

comparable to that of existing DNNs on a classification task with

the MNIST dataset.

The MNIST experimental results showed that LesserDNN has

almost equivalent performance to TensorFlow, and we confirmed a

decrease in accuracy of less than 1%. Furthermore, we confirmed

that the accuracy decreased because the network size and batch size

were reduced; however, even in such cases, considerable accuracy

was maintained, indicating that a tradeoff between computational

complexity and accuracy can be established.

When the batch size and number of iterations were fixed, the

accuracy decreased slightly depending on the size of the network,

as shown in Table 1. TensorFlow/SDG and TensorFlow/Adam both

showed similar results. Thus, LesserDNN exhibits similar charac-

teristics to DNNs.

Fig. 5 shows that no overfitting occurred in the experiments.

After a certain number of iterations, the accuracy changed only

slightly, although the loss function kept decreasing. The algorithm

appears to switch between semi-optimal solutions of weights. The

iterations should be terminated when the accuracy no longer in-

creases. It is important that the method for determining the ap-

propriate batch size be clear since the number of iterations is the

hyperparameter of the LesserDNN model.

In Fig. 6, as the batch size varied from 60000 to 1000, the accuracy

of LesserDNN decreased gradually from 97% to 88%. Then, when

the batch size was 500, the accuracy decreased sharply to 84% and

decreased further to 78% when the batch size was 250. The accuracy

of TensorFlow decreased in the same trend with the both SDG and

Adam. LesserDNN showed considerably equimbarent performance

with TensorFlow.

𝜖 moderates the learning rate. This parameter controls the num-

bers of neurons that are modified during each iteration in the cool-

ing loop and is a major factor in determining the learning rate. A

higher learning rate narrows the search direction, while a lower

learning rate allows the search to proceed without narrowing the

range of possibilities. Fig. 7 shows that the maximum accuracy does

not change significantly as 𝜖 varies, although the accuracy in the

1st iteration of the main loop is higher when 𝜖 is smaller.

The process of training LesserDNN iterates between inference

and evaluation; thus, training is possible even in systems with

limited resources, such as embedded systems and IoT devices. Ad-

ditionally, training can be distributed among GPUs in the same

system or among different systems over IP networks. Therefore,

various systems can be constructed. For example, in one system,

only inferences may be performed on edge devices, while training

can be performed on GPUs in a cloud service.

8 FUTUREWORK
We conducted performance comparisons with TensorFlow, for al-

gorithm validation, and as a result, we did not precisely measure

the computation times. However, there was a substantial differ-

ence, even in relatively simple problems like MNIST. This issue

is expected to become more significant when dealing with more

complex problems in the future. Therefore, it will be necessary

to explore methods for efficient batch switching during training,

similar to SGD.

In future work, we intend to address how to apply convolutional

neural networks (CNNs) to LesserDNN as well as attempt to apply

LesserDNN tomore difficult problems, such as CIFAR-10 and CIFAR-

100. In this paper, we assure that the small fully connected networks

in LesserDNN are sufficient for small problems such as MNIST.

6

Learning Algorithm for LesserDNN, a DNN withQuantized Weights SOICT 2023, December 07–08, 2023, Ho Chi Minh, Vietnam

However, CNNs are important for applying LesserDNN to practical

problems.

Another issue we intend to address is accelerating the hardware

with the algorithm. Multiplications of the weight and input values

of the neurons can be replaced by SHIFT operations since quantized

weights are representable by a factor of 2. This is advantageous

for creating efficient logics in FPGA and converting networks to

ASICs.

One important concept of LesserDNN is that the training process

solves a combinatorial problem; thus, LesserDNN should have a

high affinity with emerging quantum computers. Quantum comput-

ers are known to be great for solving combinatorial optimization

problems. Therefore, we will attempt to apply our algorithm in

quantum computers in future work.

ACKNOWLEDGMENTS
To Tadasuke Furuya Ph.D. of the Faculty of Marine Technology at

Tokyo University of Marine Science and Technology, and Takehiko

Kashiwagi from Parallel Networks LLC, we would like to express

our sincere gratitude for the support.

REFERENCES
[1] Jingyong Cai, Masashi Takemoto, and Hironori Nakajo. 2018. A Deep Look into

Logarithmic Quantization of Model Parameters in Neural Networks. In Proceed-
ings of the 10th International Conference on Advances in Information Technology
(Bangkok, Thailand) (IAIT 2018). Association for Computing Machinery, New

York, NY, USA, Article 6, 8 pages. https://doi.org/10.1145/3291280.3291800

[2] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2016. BinaryCon-

nect: Training Deep Neural Networks with binary weights during propagations.

arXiv:1511.00363 [cs.LG]

[3] CUDA Toolkit [n. d.]. https://developer.nvidia.com/cuda-toolkit/.

[4] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-

mization. arXiv:1412.6980 [cs.LG]

[5] Fengfu Li, Bin Liu, Xiaoxing Wang, Bo Zhang, and Junchi Yan. 2022. Ternary

Weight Networks. arXiv:1605.04711 [cs.CV]

[6] SeyyedMohammadMousavi, Elham S. Mostafavi, and Pengcheng Jiao. 2017. Next

generation prediction model for daily solar radiation on horizontal surface using

a hybrid neural network and simulated annealing method. Energy Conversion
and Management 153 (2017), 671–682. https://doi.org/10.1016/j.enconman.2017.

09.040

[7] NVIDIA Corporation [n. d.]. https://www.nvidia.com/.

[8] Open MPI [n. d.]. https://www.open-mpi.org/.

[9] OpenCL [n. d.]. https://www.khronos.org/opencl/.

[10] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. 2011. Improving the

speed of neural networks on CPUs. In Deep Learning and Unsupervised Feature
Learning Workshop, NIPS 2011.

7

https://doi.org/10.1145/3291280.3291800
https://arxiv.org/abs/1511.00363
https://developer.nvidia.com/cuda-toolkit/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1605.04711
https://doi.org/10.1016/j.enconman.2017.09.040
https://doi.org/10.1016/j.enconman.2017.09.040
https://www.nvidia.com/
https://www.open-mpi.org/
https://www.khronos.org/opencl/

	Abstract
	1 Introduction
	2 Background
	3 LesserDNN
	4 Learning Algorithm
	4.1 Challenge Loop
	4.2 Cooling Loop
	4.3 Main Loop

	5 Experiments
	5.1 Network Size
	5.2 Number of Iterations
	5.3 Training Batch Size
	5.4 Base of Temperature,

	6 Results
	6.1 Network Size
	6.2 Number of Iterations
	6.3 Training Batch Size
	6.4 Base of Temperature,

	7 Discussion
	8 Future Work
	Acknowledgments
	References

