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ABSTRACT
In the realm of digital agriculture, the ability to make timely, prof-
itable, and actionable decisions depends on agronomists using agri-
cultural data and related cultivated data, including text sources
such as news articles, farm notes, and agricultural scientific reports.
Named entity recognition (NER) and agricultural entity recogni-
tion (AGER) facilitate semantic understanding, enabling precise
identification, categorization of farming components, and knowl-
edge discovery. However, current approaches to agricultural entity
recognition encounter limitations due to limited resources. More-
over, the necessity to identify nested named entities emerges from
the complexities inherent in the agricultural domain. Relevant in-
formation often traverses multiple interconnected elements rather
than residing as isolated entities. For instance, comprehending a
target farming practice might necessitate pinpointing the crop, the
associated nutrients, or diseases—each constituting a nested entity
within a broader context. Consequently, agricultural entity recogni-
tion from unstructured text gives high importance to information
retrieval and knowledge construction within this domain. This
study constructs the SAGRI dataset, incorporating a novel tagset
for AGER that encompasses prevalent agricultural and scientific
concepts, methodically established through annotation. This tagset
enables the extraction of domain-independent concepts from scien-
tific article abstracts. This study also introduces a cutting-edge deep
learning baseline with an advanced Triaffine attention mechanism
for robust entity extraction. Additionally, it presents a pioneering
few-shot learning strategy that optimizes cross-domain categoriza-
tion, mainly when dealing with scarce training data. Notably, this
strategy achieves high F1 scores compared to the baseline, under-
scoring its potential to curtail required training data considerably.
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1 INTRODUCTION
Named Entity Recognition (NER) is a crucial Natural Language
Processing (NLP) task that involves identifying and categorizing
various entities such as individuals, organizations, locations, etc.,
within unstructured text. Nested Named Entity Recognition (Nested
NER) takes this a step further by recognizing and classifying entities
that are hierarchically nested within one another, presenting a
more complex and nuanced understanding of textual information
(Yuan et al., 2020 [29] and Alex et al., 2007 [1]). In recent years,
Nested NER has garnered substantial interest, especially within
specialized domains like agriculture ([2] and [14]), where the precise
identification of hierarchical entities can provide valuable insights
for information extraction and knowledge representation.

NER tasks classify entities into three distinctive types (Figure
1), each shedding light on the varying structural intricacies within
different domains. The first type (𝑆1), flat entities, stands as the most
prevalent and straightforward category [15] [8]. These entities, fre-
quently encountered in the agricultural realm, are characterized
by their uninterrupted textual spans that directly correspond to
entity names. On the other hand, disjointed entities (𝑆2), prevalent
in scientific domains, present a more complex challenge [24]. These
entities are characterized by non-continuous word sequences that
collectively form a complete entity, necessitating advanced recog-
nition techniques to decipher their significance accurately. Lastly,
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Figure 1: Examples of three types of NER subtasks.

nested entities (𝑆3) introduce an added layer of complexity, often
found in the crossroads of agriculture and scientific literature [30].
(𝑆3) structure is used to extract knowledge to build knowledge maps
as proposed in the OAK model [9, 13]. In this configuration, one
entity encapsulates another, generating a hierarchical structure that
requires nuanced processing. This triad of entity types encapsulates
the multifaceted nature of NER, providing insights into the diverse
linguistic patterns and contextual nuances across domains.

In addition, the scope of NER has expanded beyond traditional
categories to encompass scientific entities, which refer to entities in
the scientific domain, such as genes, proteins, and diseases within
the scientific literature. Nested NER with scientific entities is a
challenging task, as scientific entities can be nested within each
other in complex ways. However, it is a valuable task, as it can be
used to extract information from scientific literature and to build
knowledge graphs of the scientific domain [13].

There are several approaches, which have been proposed to
tackle the task of Nested NER and handle the challenges posed by
nested structures in last few years. These approaches are mainly
based on the deep learning approach, including layered-based,
hypergraph-based, span-based (or region-based) and other approaches.
Layered-based approaches incorporate multiple layers to capture
nested entities of different levels. By utilizing hierarchical struc-
tures, these models effectively identify and classify nested NER.
The Pyramid model has shown remarkable performance on NNE,
ACE, and GENIA datasets [22], [23]. Hypergraph-based approaches
leverage hypergraph structures to represent dependencies between
tokens and entities. By modeling relationships between nested
entities and tokens using graph-based techniques, these methods
effectively recognize nested named entities on ACE-2004, ACE-2005
and GENIA dataset [21]. In addition, span-based approaches focus
on identifying and classifying spans that contain nested named
entities [27], [17]. These methods define specific spans of interest
within the text and employ techniques such as rule-based match-
ing or machine learning to detect and classify nested entities. [30]
proposed a method that combines various factors and the triaffine

mechanism for improved Nested NER. Their approach achieved su-
perior performance by integrating lexical, syntactic, and semantic
information with BERT embeddings and multi-head self-attention.

A pioneering few-shot learning strategy was also utilized to
improve domain classification. The strategy was shown to be ef-
fective in improving domain classification accuracy, particularly
in scenarios with limited training data [4]. The few-shot learning
strategy works by first creating a small set of labelled instances
from each domain. These labelled instances are then used to train
a classifier model that can be used to classify unlabeled instances.
The few-shot learning strategy was evaluated on the SAGRI dataset,
which contains an imbalanced number of labelled instances. The
few-shot learning strategy was shown to be effective in improv-
ing domain classification accuracy, even with a small number of
labelled instances. This suggests that the few-shot learning strategy
has the potential to significantly reduce the amount of training data
required for Nested NER in the agriculture domain.

This paper firstly presents a novel dataset tailored specifically
for Nested NER in the agriculture domain, serving as a valuable
resource for researchers and practitioners. Secondly, it proposes a
model that achieves competitive performance on this dataset. These
contributions aim to advance the development of more effective
Nested NER models customized for domain-specific applications
within the agriculture community. Thirdly, this work presents an
innovative few-shot learning approach that improves classification
between domains by optimizing the categorization of instances
between domains, particularly in situations with scarce training
data. This approach exhibits considerable consensus between non-
expert annotators after discussions with field experts. It also attains
high F1 results with the baseline model and highlights the potential
of training large NLP models effectively with limited resources.

Section 2 describes the dataset and the preprocessing steps ap-
plied to the data. Next, Section 3 presents the proposed model
architecture and training procedure. Section 4 reports the experi-
mental results and compares the approach with several baselines.
Finally, Section 5 discusses some limitations and future directions
and then concludes the paper.

2 DOMAIN SCIENTIFIC ENTITY CORPUS
This section introduces the Domain Scientific Entity Corpus, which
is central to our study of Nested NER in the agriculture domain.

2.1 Entity Tagset
The CoNLL-2003 Shared Task is one of the fundamental NER tasks.
This task includes training, development, and testing data fre-
quently used to compare different NER systems. The dataset consists
of six general named entity tags, including location (LOC), organiza-
tions (ORG), person (PER), number (NUM), money (MON), and time
(TIM) [20]. Various shared datasets, such as GermEval 2014 NER
Shared dataset, have been used to study NER in different domains 1.
Specific domains, like biomedical research, utilize tagsets tailored
to their needs, such as BioNER or GenneNER [7].

In the AGER study [13], a tagset with 18 fine-grained entity
tags has been defined to identify entities in agricultural documents.
These tags span an array of categories including person, location,
1https://sites.google.com/site/germeval2014ner/home
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organization, chemicals, crops, organisms, policies, climate, food,
diseases, natural disasters, events, nutrients, counts, distances, quan-
tities, money, temperature, and dates [11].

In the scientific domain, project SciNER [26] introduces an inno-
vative and intricate approach to scientific named entity recognition
that incorporates a multi-dimensional tagset. This tagset goes be-
yond the conventional boundaries of NER, encompassing six key
dimensions: Task, Method, Target, Dataset, Material, and Metric.
However, SciNER only focuses on six scientific entity types.

Inspired by the landscape of scientific entity recognition, this
study presents a novel two-layered tagset customized for the field
of agricultural sciences (as illustrated in Table 1). The first layer
amalgamates general entity tags with agricultural-specific ones,
while the second layer delves deeper into the scientific domain by
employing six distinct entity tags.

However, this study introduces a refined perspective by narrow-
ing its gaze to entities exclusively rooted in the agricultural domain.
The tagset is structured around a pragmatic set of 18 distinct tags,
artfully outlined in Table 1. This endeavor, inspired by the amalga-
mation of AGER’s rich tagset and the intricacies of scientific named
entity recognition, paves the way for an evolved understanding of
agricultural entities within the scientific context.

Table 1: Details of SAGRI Entity Tagset and Corpus

Tag Name - Description Entities
LOC Location names or addresses 4,603
ORG Organization names, such as Microsoft 6,918
PER Person names, such as Micheal, Peter 2,834
AMT Amount of some things 21,578
TIME Date, time, season 4,802
ANI Animal - Name of animals 1,150
CRP Crop - Fruits, vegetables, cereals, grains 11,455
FAM Farm - Area of land, for growing crops 10,197
DIS Disease - Affecting crop/livestock 5,113
MIO Microorganism - Name of micro-organism 1,234
FOD Food - Plant/animal products 3,099
NUT Nutrients - Fats, minerals, vitamins 2,673
TEM Temperature 1,154
CLI Climate - Denotes the climatic conditions 743
CHE Chemical - An agrochemical or chemical 3,196
FER Fertiliser - Bio/chemical fertiliser 384
DST Disasters affecting crop production 927
AGRI Other concerned agriculture entities 5,537
TASK Data mining task 6,769
METHOD Algorithms using in knowledge 8,671
TARGET Predicted labels of knowledge 1,953
DATASET Dataset for training models 4,158
MATERIAL Conditions of knowledge 813
METRIC Evaluation metrics 4,084
Total 114,045

2.2 Corpus Characteristics
The resource of mined knowledge in digital agriculture is scientific
papers published on relevant studies in agriculture. Raw resources
are extracted from scientific papers published in two journals in the
digital agriculture domain, including Computers and Electronics in

Agriculture2 (Elsevier) and Precision Agriculture3 (Springer). The
total number of articles is 3,381 articles and is filtered to select about
1,000 papers, which present computing results related to crops [12].
In this study, an annotated corpus called SAGRI was constructed
from these scientific articles for the Nested NER task. From crawled
articles, 4,200 abstracts were selected for annotation to build an
annotated SAGRI dataset, incorporating scientific and agricultural
entities.

Table 1 shows characteristics of the resulting corpus. The cor-
pus has a total of 114,045 scientific entities, ranging across various
domains critical to agriculture and science. Domain-specific en-
tities are well-represented, including Crop (11,455 entities), Farm
(10,197 entities), Disease (5,113 entities), and Chemical (3,196 en-
tities). From the results of data mining tasks, the corpus contains
substantial annotations for key elements like Task (6,769 entities),
Method (8,671 entities), Target (1,953 entities), Dataset (4,158 en-
tities), Material (813 entities), and Metric (4,084 entities). To sum
up, the SAGRI corpus demonstrates that the corpus provides broad
coverage of agriculture-related entities, with ample annotations to
support common text mining objectives. The diversity and volume
of entity types will facilitate training machine learning models on
this dataset across a variety of agricultural domains and applica-
tions.

3 TRIAFFINE ATTENTION MODEL FOR
NESTED NAMED ENTITY RECOGNITION

In this paper, Nested NER is decomposed into two subtasks: span
representation and span classification. The "span representation" sub-
task focuses on precisely identifying and delineating the boundaries
of nested entity spans, which is crucial for capturing their complex
nesting structures accurately. On the other hand, the "span classifi-
cation" subtask assigns specific entity labels to the extracted spans,
considering potential overlaps and nested relationships between
entities. By separating these subtasks, the model can systemati-
cally process and understand the intricate nature of nested entities,
leading to improved accuracy and robustness in NER tasks.

3.1 Deep Triaffine Attention
The deep triaffine transformation is defined by employing vectors
u, v, w ∈ R, along with a tensor𝑊 ∈ R𝑑 ×R𝑑+1 ×R𝑑 . This transfor-
mation yields a scalar by applying distinct Multi-Layer Perceptron
(MLP) operations to the input vectors and performing tensor-vector
multiplications. To maintain the biaffine transformation’s charac-
teristics, a constant value of 1 is appended to the input elements.

𝑢′ =
[
𝑀𝐿𝑃𝑎 (𝑢)

1

]
(1)

𝑤 ′ = 𝑀𝐿𝑃𝑏 (𝑤) (2)

𝑇𝑟𝑖𝐴𝑓 𝑓 (𝑢, 𝑣,𝑤,𝑊 ) =𝑊 ×1 𝑢
′ ×2 𝑤

′ ×3 𝑣
′ (3)

where ×𝑛 is the mode-n tensor vector multiplication and𝑀𝐿𝑃𝑡 is
a t-layer MLP (0-layer MLP is equal to identify function). The tensor
W is initialized using 𝑁 (0, 𝜎2). In our approach, we use boundary
2https://www.journals.elsevier.com/computers-and-electronics-in-agriculture
3https://www.springer.com/journal/11119
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Figure 2: Span Representation Subtask.

Figure 3: Span Classification Subtask.

representations as u and v. Inside tokens or span representations
are used as w. We denote the tensors in the triaffine attention as
𝑊𝑟 and triaffine scoring as 𝑉𝑟 , which decouples attention weights
and scores for different labels.

3.2 Text Encoding
To encode the text, this study uses BERT [3] and represents input
text by concatenating its word embedding, contextualized word
embedding, and part-of-speech (POS) embedding based on Ju et
al. [6]; Shen et al. [16], and Tan et al. [19]. Using the pre-trained
language model, this model first creates the contextual embedding

𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁 ] for text 𝑥𝑐
𝑖
with N tokens.

𝑥𝑐1, 𝑥
𝑐
2, ..., 𝑥

𝑐
𝑁 = 𝑃𝐿𝑀 (𝑥1, 𝑥2, ..., 𝑥𝑁 ) (4)

To obtain the token representations ℎ𝑖 they are concatenated 𝑥𝑐
𝑖

with word embedding 𝑥𝑤
𝑖
, part-of-speech embedding 𝑥𝑝

𝑖
, charac-

ter embedding 𝑥𝑐ℎ
𝑖
. The concatenated embedding X is fed into a

BiLSTM.

3.3 Triaffine Attention for Span
Representations

Figure 4: Triaffine Attention.

This study uses the Triaffine mechanism [30], which is depicted
in Figure 4, to fuse heterogeneous elements for a better representa-
tion of the span. It learns the label-wise span representation 𝐻𝑖, 𝑗,𝑟

with the Triaffine attention 𝛼𝑖, 𝑗,𝑘,𝑟 for the span to interact tokens
with labels and boundaries (𝑖, 𝑗).

𝑠𝑖, 𝑗,𝑘,𝑟 = TriAff(ℎ𝑖 , ℎ 𝑗 , ℎ𝑘 ,𝑊𝑟 ) (5)

𝛼𝑖, 𝑗,𝑘,𝑟 =
exp(𝑠𝑖, 𝑗,𝑘,𝑟 )∑𝑗

𝑘 ′=𝑖
exp(𝑠𝑖, 𝑗,𝑘 ′,𝑟 )

(6)

h𝑖, 𝑗,𝑟 =

𝑗∑︁
𝑘=𝑖

𝛼𝑖, 𝑗,𝑘,𝑟MLP(h𝑘 ) (7)

Boundary representations (h𝑖 ,h𝑗 ) and the labelwise parameters
(𝑊𝑟 ) can be viewed as attention queries, and tokens (ℎ𝑘 ) can be
viewed as keys and values. Compared with the general attention
framework (additive or multiplicative attention), this Triaffine at-
tention permits all high-order interactions between heterogeneous
queries and keys.

3.4 Triaffine Attention for Cross-span
Representations

Informed by how interactions between spans manifest in a nested
context, the proposed approach integrates information from related
spans to establish cross-span representations. Specifically, attention
queries are formulated based on the boundaries of a span and its
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corresponding label, while attention keys and values encompass
related spans, including the original span. By applying a tri-affine
attention mechanism, it is able to obtain label-specific cross-span
representations 𝛽𝑖, 𝑗,𝑔,𝑟 , denoted as ℎ𝑐

𝑖, 𝑗,𝑟
, for a given span (𝑖, 𝑗), as

outlined in Equation 7

𝑞𝑖, 𝑗,𝑔,𝑟 = TriAff(h𝑖 ,h𝑗 ,h𝑖𝑔,𝑖𝑔,𝑟 ,𝑊𝑟 ) (8)

𝛽𝑖, 𝑗,𝑔,𝑟 =
exp(𝑞𝑖, 𝑗,𝑔,𝑟 )∑
𝑔′ exp(𝑞𝑖, 𝑗,𝑔′,𝑟 )

(9)

h𝑐𝑖, 𝑗,𝑟 =
∑︁
𝑔

𝛽𝑖, 𝑗,𝑔,𝑟𝑀𝐿𝑃 (h𝑖𝑔,𝑖𝑔,𝑟 ) (10)

where (𝑖𝑔, 𝑖𝑔) are the related spans.

3.5 Triaffine Scoring for Span Classification

Figure 5: Triaffine Scoring.

In order to determine the entity type of a given span, the model
utilizes label-wise scores based on cross-span representations. This
approach incorporates boundary information, which is effective in
previous studies [5], [28]. Triaffine scoring is employed to classify
spans using both boundary information and cross-span represen-
tations. This involves estimating the log probabilities 𝑝𝑐

𝑖, 𝑗,𝑟
of a

given span (𝑖, 𝑗) for label r using boundaries h𝑖 , h𝑗 and cross-span
representations ℎ𝑐

𝑖, 𝑗,𝑟
.

𝑝𝑐𝑖, 𝑗,𝑟 = 𝑇𝑟𝑖𝐴𝑓 𝑓 (h𝑖 ,h𝑗 ,h𝑐𝑖, 𝑗,𝑟 ,𝑉𝑟 ) (11)

Since ℎ𝑐
𝑖, 𝑗,𝑟

are composed by h𝑖𝑔,𝑖𝑔,𝑟 , it can decompose Equation
11 into following if and only if the layer of MLP transformation on
ℎ𝑐
𝑖, 𝑗,𝑟

is 0:
𝑡𝑖, 𝑗,𝑔,𝑟 = 𝑇𝑟𝑖𝐴𝑓 𝑓 (h𝑖 ,h𝑗 ,h𝑖𝑔,𝑖𝑔,𝑟 ,𝑉𝑟 ) (12)

h𝑐𝑖, 𝑗,𝑟 =
∑︁
𝑔

𝛽𝑖, 𝑗,𝑔,𝑟 𝑡𝑖, 𝑗,𝑔,𝑟 (13)

Figure 5 shows the mechanism of triaffine scoring. The model
also applies similar decomposition functions in the auxiliary span
classification task, which applies the triaffine scoring on boundary
representations and intermediate span representations h𝑖, 𝑗,𝑟 to
estimate log probabilities 𝑝𝑖, 𝑗,𝑟 as intermediate predictions.

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

4.1 Training Strategy

Figure 6: Training strategy.

The Triaffine attentionmodel has a consistent performance in the
evaluated datasets, and it can be observed from Table 4. However,
several challenges emerged due to factors such as limited data,
dataset imbalance, and inconsistent annotations within the SAGRI
dataset, resulting in suboptimal outcomes when employing the
Triaffine attention model. In addition, the scarcity of resources
posed a significant issue in NER, Nested NER, and NLP tasks.

To overcome these challenges, the study incorporated few-shot
learning as a technique to address the imbalanced data in the SAGRI
dataset. Few-shot learning involves training a model with a limited
number of examples to enhance its generalization capability to
unseen instances. By leveraging this approach, the aim was to
improve the model’s performance in recognizing and classifying
entities with limited instances, thereby mitigating the impact of
data imbalance on overall performance.

It is essential to clarify the specifics of the few-shot learning
within your method. In this context, few-shot learning refers to
training the model with a limited number of labeled examples in
the context of Nested NER. This technique is designed to enable
the model to generalize effectively when dealing with entities that
have only a few instances in the dataset. By incorporating few-shot
learning, the model becomes more adept at recognizing and classi-
fying such entities, ultimately improving its overall performance
and reducing the sensitivity to data imbalance.

In addition, it is noteworthy to emphasize the resource require-
ments of the Triaffine attention model, as it necessitates a mini-
mum of 16GB VRAM GPU for inference. This poses a challenge,
particularly for smaller research groups. The utilization of few-shot
learning was deemed essential to address the issues associated with
data imbalance in the SAGRI dataset and the resource constraints
posed by the Triaffine attention model.

As a result, the study employed few-shot learning as a technique
to address the imbalanced data within the SAGRI dataset, as illus-
trated in Fig 6. This approach involved training the model with a
limited number of samples to facilitate generalization to new in-
stances. By incorporating few-shot learning, the model’s capability
to recognize and classify entities with only a few instances in the
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dataset was substantially enhanced, thus mitigating the impact of
data imbalance on model performance. Moreover, this technique
optimized the training process and reduced the computational re-
sources required. In essence, the use of few-shot learning proved to
be a valuable strategy for addressing data imbalance in the SAGRI
dataset.

During the training procedure, a two-stage training process was
employed utilizing the SAGRI dataset, which consisted of both inter-
domain and intra-domain components, as proposed previously.
Initially, entities with a count exceeding 5,000 were selected as base
classes in the first stage. Subsequently, 16-way 5-shot subtasks were
randomly sampled from the SAGRI dataset for training. Among the
sampled subtasks, 25,301 were assigned to the training set, while
8,479 were assigned to the validation set. The validation set was
used to assess the performance of the framework and fine-tune it
during the training process.

4.2 Results
The evaluation of the trained model revealed significant improve-
ments in its ability to recognize and classify new classes. The eval-
uation results of the Triaffine model, as shown in Table 2, highlight
promising improvements in its ability to recognize and classify
labels within the SAGRI dataset. While addressing data imbalance
with few-shot learning, the model’s performance on new classes
exceeded expectations. The incorporation of few-shot learning
has notably enhanced the model’s performance on new classes, as
demonstrated by the higher F1 scores in the "Triaffine + Fewshot"
column compared to "Triaffine" across various labels. For Layer 1 la-
bels, we observed that the "Triaffine + Fewshot" variant consistently
achieved competitive or slightly improved F1 scores compared to
the base "Triaffine" model. For instance, in new classes like MIO,
NUT, FER and DST, the few-shot enhanced model outperformed
its counterpart. In Layer 2, while there was a slight decrease in
performance for METHOD the "Triaffine + Fewshot" model main-
tained or slightly improved F1 scores for other labels like TARGET,
MATERIAL and METRIC. It demonstrated enhanced accuracy in
identifying and classifying instances from the new classes, marking
a notable advancement.

Table 3 provides a comprehensive evaluation of the Triaffine
model on two distinct datasets, SAGRI and GENIA. In the SAGRI
dataset, the performance of the model is segmented by layers (Layer
1 and Layer 2) and the combination of both (Layer 1 & 2). This seg-
mentation allows for a detailed analysis of the capabilities of the
model across different aspects of the data. The F1 scores, which
balance precision and recall, indicate the model’s effectiveness in
identifying specific labels within each dataset and layer. Further-
more, the inclusion of the GENIA dataset allows for a cross-dataset
comparison, showcasing the model’s versatility in handling diverse
text data.

A comparative analysis of various models on the SAGRI dataset
is shown in Table 4. The results show that the performance of
the Triaffine model and its enhanced variant, Triaffine + Fewshot,
underscoring their effectiveness in comparison to other state-of-
the-art models. The precision-recall trade-off is evident here, as the
Triaffine + Fewshotmodel achieves a higher F1 score for recognizing

Table 2: Evaluation (F1 score) of Triaffine on each label of
SAGRI

Layer Label Triaffine Triaffine + Fewshot

Layer 1

LOC 77.15 76.47
ORG 64.97 63.23
PER 63.76 64.41
AMT 90.72 90.82
TIME 89.85 90.13
ANI 84.31 84.62
CRP 87.76 88.76
FAM 94.16 93.88
DIS 87.05 87.29
MIO 83.77 86.17
FOD 86.18 86.97
NUT 82.25 83.96
TEM 84.87 84.42
CLI 93.72 94.46
CHE 82.1 82.74
FER 82.71 84.06
DST 82.18 85.29
AGRI 89.50 89.59

Layer 2

METHOD 83.53 82.48
TARGET 52.2 55.47
DATASET 93.38 92.99
MATERIAL 74.46 75.52

TASK 89.86 89.50
METRIC 90.87 92.59

Table 3: Evaluation of Triaffine on SAGRI and GENIA

Dataset Precision Recall F1 score

SAGRI
Layer 1 84.66 81.66 82.91
Layer 2 82.83 81.75 81.03

Layer 1 & 2 83.89 81.33 82.08
GENIA 80.42 82.06 81.23

new classes, but with a slight trade-off in performance on existing
classes, a crucial aspect to consider in model evaluation.

4.3 Error Analytics
The evaluation of the trained model unveiled significant strides
in its capacity to identify and categorize novel classes (Table 2).
However, this notable progress came at the expense of a noticeable
decline in the model’s proficiency in recognizing the pre-existing
classes. One potential contributing factor to this issue is the two-
stage training strategy, where the model undergoes stage two train-
ing, primarily utilizing new-class samples. The diminished perfor-
mance observed in certain base classes can be elucidated by the
inherent trade-off when striving to excel in recognizing new classes.

To tackle this challenge, a reevaluation of the training strategy
is recommended. This involves incorporating a broader range of
examples from the new classes during the initial training stages to
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Table 4: Comparison of different models on SAGRI dataset

Model + Encoder SAGRI dataset
Precision Recall F1 score

Other methods
TreeCRF [5] 78.45 77.56 78.00
Pyramid [22] 75.91 73.33 74.60

Pyramid [22] + ALBERT 81.16 75.72 78.35
BiFlag [10] + LSTM 71.92 70.24 71.07

Seq2seq [18] 79.48 75.62 77.50
BartNER [25] + BART 76.30 79.49 77.86
Sequence to Set [19] 83.47 79.76 81.57
Locate and Label [16] 80.05 77.28 78.64

Triaffine methods
Triaffine 82.62 81.66 81.53

Triaffine + Fewshot 83.89 81.33 82.08

enhance generalization. Additionally, refining the sampling strategy
to ensure a more equitable representation of both base and new
classes would mitigate bias and improve recognition accuracy.

The lower performance observed in layer 2 as shown in Table 3
can be explained by the inherent difficulty in recognizing abstract
concepts associated with the corresponding labels. Layer 2 labels en-
compass tasks in data mining, algorithms, predicted labels, datasets,
conditions, and evaluation metrics, often involving complex and
abstract ideas. The higher level of abstraction presents challenges
for the model in accurately recognizing and distinguishing between
different layer 2 labels.

Table 5: Comparison of top 10 incorrectly predicted labels

True label Count Triaffine Triaffine + Fewshot
To label Rate(%) To label Rate(%)

I-PER 49 I-LOC 16.33 I-ORG 10.2
B-PER 291 B-LOC 8.94 I-DIS 8.65
I-AGRI 544 B-AGRI 4.04 B-AGRI 3.51
B-TASK 723 I-METHOD 3.73 B-TASK 3.6
I-CHE 192 B-CHE 3.65 I-AMT 4.64
B-DATASET 816 I-DATASET 3.31 I-DATASET 3.43
B-FER 62 B-FER 3.23 B-FER 1.61
B-LOC 937 B-FER 3.09 B-ORG 3.93
I-NUT 429 B-NUT 3.03 B-NUT 2.33
I-DST 206 B-DST 2.91 B-DST 2.90

Table 5 provides a comparison of the top 10 labels incorrectly pre-
dicted by Triaffine and Triaffine + Fewshot models. Common errors
are observed in predicting the "I-PER" and "B-PER" labels, which
pertain to personal names or entities associated with individuals.

The challenges associated with personal names’ ambiguity and
variability often pose difficulties in NLP tasks. The models tend
to confuse "I-PER" labels with "I-LOC"/"I-ORG" labels, where "I-
LOC"/"I-ORG" represents locational/ organizational entities. This
confusion can be attributed to similarities in context and syntactic
patterns between personal and locational/organizational names,
resulting in higher misclassification rates for these label categories
in both models.

Another observed error involves the misclassification of "B-PER"
labels as "I-DIS" labels by the Triaffine + Fewshot model. The "I-DIS"

label represents disease entities. This misclassification can occur
due to the presence of disease-related terms or mentions in the
context, leading to incorrect predictions.

It is important to acknowledge that these errors highlight the
challenges in disambiguating and correctly classifying certain label
categories, particularly those involving personal names. Further im-
provements in the models’ training data, contextual understanding,
and entity disambiguation techniques could potentially enhance
the accuracy of predictions for these categories.

5 CONCLUSION AND FUTUREWORK
In conclusion, the study sheds light on both the achievements and
the limitations inherent in the current model and the training strat-
egy. While significant progress has been made in the model’s ability
to identify new classes, it comes at a noticeable cost: a reduction in
its effectiveness in recognizing pre-existing classes. This trade-off
can, in part, be ascribed to the two-stage training strategy, which
heavily prioritizes new-class samples. Moreover, acknowledging
the presence of abstract concepts within Layer 2 only adds to the
intricacy, underscoring the imperative for targeted approaches to
enhance recognition in this layer.

To overcome these limitations, future research endeavours should
concentrate on incorporating a more diverse range of classes dur-
ing training and fine-tuning the sampling strategy. Expanding the
validation set and exploring advanced techniques such as transfer
learning and cutting-edge neural network architectures can fur-
ther bolster the model’s ability to handle imbalanced data while
maintaining high performance on existing classes.

Looking ahead, it is imperative for future work to address the
identified limitations comprehensively. This can be accomplished
through the acquisition of larger and more diverse datasets. Further-
more, the exploration of advanced techniques, including transfer
learning and sophisticated neural network architectures, can aug-
ment the model’s capacity to generalize effectively to new classes.
A detailed examination of misclassifications and error patterns
offers valuable insights for model refinement. Finally, consider-
ing ensemble learning, active learning, and other state-of-the-art
methodologies can further elevate the model’s proficiency in man-
aging imbalanced data and accurately recognizing both existing
and new classes.
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