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ABSTRACT
With the continuous development of intelligent operating room
systems, the segmentation and automatic recognition of surgical
workflow have become challenging research fields. In recent years,
an increasing number of models have been proposed to address this
challenge, with deep learning becoming the mainstream approach.
In this paper, we propose a multi-stage network for surgical step
recognition by using surgical video and kinematic data. Firstly, a
convolutional neural network (ResNet34) is used to extract visual
features from video frames. Next, since surgical videos are a form
of sequential data, a Temporal Convolutional Network (TCN) is
employed as a temporal extractor to process temporal information
between video frames for classification. Finally, a multi-stage TCN
network, consisting of Encoder-Decoded TCN and Dilated TCN
architectures, is used to refine the result. The proposed network
is compared against a LSTM network from our prior work and
is evaluated on a surgical dataset named MISAW in two modes -
video data with and without kinematic data. Experimental results
indicate that kinematic data is crucial for robot motion control in
the operating rooms of the future. The technology will also find
application in robotic labs for the development and optimization of
chemical manufacturing processes.
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• Computing methodologies → Vision for robotics; Activity
recognition and understanding; Neural networks.
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1 INTRODUCTION
The operating room is an advanced-engineered environment that
is high-risk and dynamic. The concept of the Intelligent Operat-
ing Room is a highly complex and data-rich environment due to
the inclusion of numerous advanced technologies. These technolo-
gies allow surgeons to perform more complex surgical operations,
increase the amount of useful information, and improve patient
safety [10]. Intelligent Operating Room includes various directions
such as image-guided and robotic surgical systems, augmented re-
ality and visualization, sensing devices, and context-aware systems
in computer-assisted interventions (CA-CAI) [2]. Context-aware
systems are an essential component of the Intelligent Operating
Room. With the increasing usage of technology, it is necessary for
an Intelligent Operating Room to interact with various devices and
process a large amount of information provided by these devices
[22]. Context-aware computer-assisted surgical systems monitor
and automatically record the entire surgical process, provide au-
tomatic and accurate assistance to the surgical staff, detect the
physiological state of the patient, alert surgeons of possible surgical
complications, prevent medical errors, and optimize the arrange-
ment of the operating room and surgical staff [19].

The creation of a context-aware system requires a lot of clinical
data and information. All kinds of devices involved in surgery are
sources of useful information. Cameras not only capture a large
amount of information but are also naturally present in many min-
imally invasive procedures or can be installed without disrupting
the surgical workflow. Signals of other devices, such as surgical
robots or sensors, can be integrated into the operating room to cap-
ture a person’s position or tool usage. Due to the development of
minimally invasive surgery and surgical robotic systems, video data
and kinematic data have become the main sources of information.

Compared with traditional surgery, minimally invasive surgery
has many advantages, such as less trauma, less pain, and faster
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recovery. Minimally invasive surgery is different from traditional
surgery and is typically performed with the use of a camera called
an endoscope which is inserted into the body to display the surgical
field. Functioning not only to display the surgical procedure being
performed, recordings from the endoscope can be used as archive
data for many secondary benefits. For example, the videos can be
used for training junior surgeons to save the time and manpower
of senior medical experts, existing as a detailed medical record of
the procedure for further patient briefing and assessing the surgical
skills of a surgeon [15].

Recently, surgical robots have been employed to assist surgeons
in performing various complex surgical procedures in minimally
invasive surgery, simultaneously enhancing the precision of sur-
gical actions. The da Vinci surgical system stands out as a widely
utilized robotic system capable of capturing extensive video, visual,
and kinematic data [23].

Automatic recognition of surgical workflows represents another
crucial aspect in the development of context-aware systems. Such
recognition can significantly augment the cognitive understanding
of the surgical process. Real-time recognition facilitates the expla-
nation of ongoing specific activities, alerts surgeons to potential im-
pending complications, and provides support for decision-making
[5].

The surgical procedure is categorized into multiple granularity
levels, as depicted in Figure 1. At the highest level lies the procedure
itself, comprising a series of phases. Each phase represents primary
types of events occurring during surgery and is composed of one
or several steps. A step encompasses a sequence of activities aimed
at achieving a surgical objective [11]. An activity corresponds to
a physical action executed by the surgeon, involving an action
verb describing the gesture, a target affected by the action, and an
instrument employed to carry out the specific action [8].

Figure 1: Different granularity levels of a surgical procedure.

Several models have been proposed for segmenting and recog-
nizing the surgical workflow, while most of them rely on vision
data only. In recent years, researchers have started to notice the role
of kinematic data. An Endoscopic Vision Challenge called Micro-
Surgical Anastomose Workflow Recognition on Training Sessions
(MISAW) which focuses on recognizing surgical workflow from
surgical videos and kinematic data was held during the 23rd Inter-
national Conference on Medical Image Computing and Computer
Assisted Intervention. We participated in the MISAW challenge and
achieved 1st place in Multi Recognition and tied for 1st place in
Activity Recognition with Convolutional Neural Network (CNN) +
Long Short-Term Memory (LSTM) network [8].

In this paper, we propose a multi-stage network that uses sur-
gical video and kinematic data to solve the problem of surgical
step recognition. Specifically, a backbone network is utilized to
extract spatial features of each video frame, followed by Temporal
Convolutional Neural Networks (TCN) employed as a temporal ex-
tractor to process temporal information from the extracted spatial

features and kinematic data respectively. After that, a multi-stage
TCN network, consisting of Encoder-Decoded TCN (ED-TCN) and
Dilated TCN architectures is proposed to continuously refine the
step recognition result.

In conclusion, the main contributions of this work are summa-
rized as follows:

1. We propose a novel surgical step recognition model by using
surgical videos and kinematic data. We show that the kine-
matic data which is important for robot motion control in
an intelligent operating room can be fused with video data.

2. We propose a multi-stage TCN architecture to progressively
refine step predictions from previous stages.

3. We assess the performance of the models using the MISAW
dataset, evaluating the accuracy of the proposed architec-
tures with both video and kinematic data. We illustrate the
utility of a stage-stacking architecture in temporal refine-
ment.

2 RELATEDWORK
2.1 Surgical Workflow Recognition
Various kinds of information and signals can be obtained during the
operation, such as the kinematics data recorded by the remote ma-
nipulator, the motion of the surgical instruments, the information
contained in the surgeon’s eye movements, the surgeon’s position
displayed by the ultrasound [16], the accelerator information worn
by the surgeon, the RFID tag information [17] and so on. In early
studies, many methods using this information have been used to try
to identify surgical workflows, but these methods rely too much on
sensors and can only identify low granularity levels [17]. Moreover,
collecting these signals mostly requires additional installation or
modification of equipment, which will increase the workload of
surgery preparation.

Many methods were proposed based on the surgical video. Usu-
ally, the main strategy of these methods is first extracting visual
features using RGB and HSV histograms, optical flow, STIP points
[3], or CNN networks, then using machine learning algorithms
like support vector machine (SVM), bag-of-visual-words, K-nearest
neighbors, conditional random fields, or Bayesian networks [14]
to classify images based on these extracted features. Due to the
sequential nature of the surgical procedure, Hidden Markov Models
(HMM), Dynamic Time Warping (DTW) methods or RNN/TCN
networks can be used to process the temporal information [6].

There are some typical models designed using different methods.
Padoy et al. [18] proposed a hidden Markov model for online recog-
nition of surgical steps based on endoscopic video. Lalys et al. [12]
proposed to use SVM classifier to detect surgical phases based on
pituitary surgery videos. Twinanda et al. [21] constructed a CNN to
capture the visual information in the video and used a Hierarchical
Hidden Markov Model (HMM) to process the time information. Jin
et al. [9] proposed an end-to-end recurrent convolutional model
including a CNN network to capture frame-wise visual informa-
tion and a LSTM to model the clip-wise sequential dynamics. Lea
et al. [13] proposed Temporal Convolutional Network (TCN) that
hierarchically captures relationships at low-, intermediate-, and
high-level time scales using video or sensor data. Finally, Czempiel
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et al. [4] proposed a TeCNO network which is a Multi-Stage Tem-
poral Convolutional Network (MS-TCN) that performs hierarchical
prediction refinement for surgical phase recognition.

In the MISAW challenge, we employed the approach described
in [10] and extended it to include step and activity recognition. We
used EfficientNet [20] as our feature extractor to extract spatial
features from each video frame. Recognizing the importance of
temporal information in video data, we utilized long short-term
memory (LSTM) to model the sequential dependencies. The sequen-
tial features were then passed through a fully connected layer to
make predictions for surgical workflow. Since the dataset includes
kinematic data recorded at 30Hz from encoders mounted on the two
robotic arms of the master-slave robotic platform, we hypothesized
that these kinematic data are related to the verb and step. As a
result, we employed a new LSTM to model the sequential features
of the kinematic data. Subsequently, these two types of sequential
features were concatenated and sent to fully connected layers to
make predictions for the surgical verb and step.

2.2 Temporal Convolutional Network (TCN)
Recurrent Neural Network (RNN) models have demonstrated satis-
factory performance across various tasks, such as speech recogni-
tion, machine translation, text recognition, and sequence prediction.
Among the popular RNN architectures, the Long Short-Term Mem-
ory (LSTM) stands out, utilizing memory cells and gate functions
to model long-term dependencies. However, in practical applica-
tions, RNN networks lack extensive parallel processing capabilities
since they handle one time step at a time, with subsequent steps
dependent on the completion of the preceding step.

In response to these limitations, Temporal Convolutional Net-
works (TCNs) have been introduced for time series data processing
[13]. Just as Convolutional Neural Networks (CNNs) treat images as
two-dimensional matrices during image processing, TCNs extend
this concept to time series data, treating it as a one-dimensional
vector. When processed through a multilayer network structure,
TCNs achieve a large receptive field. This fundamental concept
forms the basis of TCNs. Unlike RNN models, TCNs lack recur-
rent connections, enabling parallel sequence processing. This at-
tribute enhances computational efficiency and reduces memory
usage. Moreover, TCNs exhibit consistent gradients across all time
steps due to their convolutional nature. This property empowers
TCNs to learn long-term dependencies without encountering gra-
dient explosions.

In this paper, diverging from previous methods that employ
LSTM for temporal feature extraction, we explore the utilization
of TCNs for surgical workflow recognition tasks. In comparison to
LSTM models, TCNs offer parallel execution and stable gradients.
Additionally, TCNs can flexibly adjust their receptive field size,
allowing better control over model memory and adaptability to
various tasks and domains. We present a multi-stage network that
employs a TCN network as a temporal extractor for processing
temporal information. Furthermore, we propose a multi-stage TCN
network composed of Encoder-Decoder TCN (ED-TCN) and Dilated
TCN architectures to refine the outcomes.

Figure 2: Multi-stage TCN.

3 METHODOLOGY
In this section, we present a novel methodology that adopts a multi-
stage framework to recognize surgical steps from the surgical video
and kinematic data. The various components of the proposed model
will be elaborated upon in the subsequent subsections.

3.1 Overall Structure
As illustrated in Figure 2, the proposed model consists of two
branches - a video branch and a kinematic branch. These two
branches have different inputs but share parts of the model. The
proposed model contains three main networks: 1) ResNet34 is used
as a feature extractor to extract spatial features of video frames; 2)
two kinds of Temporal Convolutional Networks: Dilated TCN or
ED-TCN is used to model the sequential dependencies; 3) a Multi-
stage TCN is used to improve and refine the results.

3.2 Backbone
ResNet34 is used as the backbone network to extract spatial fea-
tures of each video frame. As illustrated in Figure 3, except for the
convolutional layer and max pooling at the very beginning and
average pooling at the end of the network, the ResNet34 network
has many similar units called Residual Block. There are two paths
in the Residual Block, one learns the residual mapping function, and
the other comes to identity mapping through the shortcut. Finally,
the module generates outputs by summing the outputs on the two
paths. This approach employed by ResNet mitigates the issue of
gradient vanishing and simplifies the optimization process.

3.3 Dilated TCN
To capture long-term temporal information, TCN is utilized as a
temporal feature extractor. Two kinds of TCN, Dilated TCN and
Encoder-Decoder TCN are explored in this paper. Dilated TCN
allows the input to be sampled at intervals during the convolution
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Figure 3: ResNet34 architecture.

process so that large receptive fields can be obtained using fewer
convolutional layers.

The top layer of the Dilated TCN architecture is a 1 x 1 convo-
lutional layer, which is used to adjust the spatial feature output
from ResNet34 to fit the feature size in Dilated TCN. Next, a dilated
convolution layer is used. Dilated convolution has a dilation factor
(𝑑), where a larger dilation factor makes the receptive field of the
convolution layer larger without the problem of information loss
caused by the pooling layer in ordinary convolution. This means
that the convolution can handle more historical information. If the
dilation factor is equal to 1, the convolution is an ordinary convo-
lution. A zero padding of length (kernel size - 1) is used to keep
the input and output length the same for each hidden layer. The
receptive field can also be increased by increasing the convolution
kernel size. The following expression of the receptive field of dilated
convolution is used [1]:

Receptive Field = (kernel size − 1) ∗ 𝑑 + 1 (1)

In the proposed network, the kernel size is set as 3, with the
dilation factor set as 2𝑖 (where 𝑖 is the number of layers). Figure 4
below shows the variation of the receptive field of the three-layer
dilated convolution.

Figure 4: Receptive field of dilated convolution.

Dilated residual block is the key point that Dilated TCN can
handle longer time sequences. Increasing the depth of the network
can also increase the receptive field, but simply increasing the depth
of the network will lead to many model training problems such as
gradient explosion, gradient disappearance, or network degradation.
Residual blocks can be implemented in the form of a jump-tiered
connection, where the input of the cell is directly added to the
output of the cell [7]. The residual block can help the forward and

back propagation of information, so as to solve to some extent the
problems caused by deepening the network.

As illustrated in Figure 5, Dilated residual block architecture has
a dilated convolution, a ReLU activation function, a 1 x 1 convolu-
tional layer, and a dropout layer.

Figure 5: Dilated residual block.

Dilated residual block can be formulated as follows:

𝑦𝑙+1𝑖 = ReLU(𝑤𝑙+1
𝑖 ∗ 𝑥𝑙 + 𝑏𝑙+1𝑖 ) (2)

𝑧𝑙+1𝑖 = 𝑤𝑙+1
𝑖+1 ∗ 𝑦

𝑙+1
𝑖 + 𝑏𝑙+1𝑖+1 (3)

𝑟 𝑙+1𝑗 ∼ Bernoulli(𝑝) (4)

𝑧𝑙+1 = 𝑟 𝑙+1 ∗ 𝑧𝑙+1 (5)

𝑥𝑙+1𝑖 = 𝑥𝑙 + 𝑧𝑙+1 (6)

where 𝑥𝑙 is the input of residual block, 𝑦𝑙+1 is the output of dilated
convolutional layer activated by a ReLU activation, 𝑧𝑙+1 is the out-
put of 1 x 1 convolutional layer, 𝑟 𝑙+1 is the vector that Bernoulli’s
function randomly generates 0 and 1 with probability 𝑝 . 𝑧𝑙+1 is the
output of dropout, 𝑥𝑙+1 is the output of the residual block, 𝑤𝑙+1

𝑖
,

𝑏𝑙+1
𝑖

, 𝑤𝑙+1
𝑖+1 , 𝑏

𝑙+1
𝑖+1 are the weights and bias of dilated convolutional

layer and 1 x 1 convolutional layer respectively.
The overall Dilated TCN architecture is illustrated in Figure 6.

The final layer of the Dilated TCN uses a 1 x 1 convolutional layer
to predict class rather than a fully connected layer. This is to keep
the output dimension consistent with the input dimension. In such
a manner, end-to-end prediction is realized.

Figure 6: Dilated TCN architecture.
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Figure 7: ED-TCN architecture.

3.4 Encoder-Decoder TCN (ED-TCN)
In contrast to the Dilated TCN, which employs dilated convolutions
to capture longer temporal relationships, the ED-TCN utilizes max
pooling and upsampling functions.

The overall structure of ED-TCN is illustrated in Figure 7. The
Encoder of the ED-TCN consists of a 1x1 convolutional layer, a
ReLU activation function layer, and a max pooling layer. The 1x1
convolutional layer is used to capture how lower-level features
change over time. The max pooling layer reduces the tensor dimen-
sion across the time so as to enable the model to efficiently compute
activations over longer temporal windows.

The decoder of ED-TCN is similar to the encoder except that
upsampling is used first instead of max pooling to maintain the
same dimension of the input. Therefore, the order of operations
in the decoder of ED-TCN is upsampling, 1x1 convolution, and
ReLU activation function. Finally, the last layer of ED-TCN is a 1 x
1 convolutional layer used for classification.

3.5 Multi-stage TCN
The key concept of a multi-stage architecture is to stack several
stages on top of each other sequentially, with each stage taking
the output of the previous stage as an input. The effect of this
stage-stacking strategy is to progressively refine the predictions of
previous stages.

After ResNet34, a TCN network is used. The input of the first
TCN is the spatial feature extracted by ResNet34. This network
contains 5-dilated-residual-block or 2-layer-encoders/decoders to
extract temporal features of visual feature and kinematic data re-
spectively. The obtained spatial-temporal visional features and kine-
matic features are concatenated and fed to a multi-stage model for
further refinement and surgical step prediction. This enables the
network to process temporal information and gradually refine the
previous stage of the prediction. For each stage of the multi-TCN,
both the classification result and loss function are predicted and set
up separately. Finally, a different weight is set for each loss function
to form the total loss function.

The following two expressions represent the prediction of the
output of multi-TCN at each stage:

𝑃0 = 𝑥𝑡−𝑛, ..., 𝑥𝑡 (7)

𝑃𝑠 = TCNStage(𝑃𝑠−1) (8)
where 𝑃0 is the input of the first TCN stage, 𝑃𝑠 is the output of
stage 𝑠 , and TCNStage(·) is a single TCN stage. Except for the first
stage, the inputs of all other stages are the prediction results of the
previous stage. This enables the network to capture and learn the

relationships between the various classes and helps alleviate the
problem of over-segmentation.

4 EXPERIMENTAL SETUP
In this section, the following details used in the evaluation of the
proposed model are described – 1) the dataset; 2) the data prepro-
cessing used to train our model; 3) the evaluation metrics used to
verify the feasibility of the proposed model and 4) the parameters
set for training.

4.1 Dataset
The proposed model was applied to a unique dataset for online au-
tomatic recognition of surgical workflow on a micro-anastomosis
training task. The MIcro-Surgical Anastomose Workflow (MISAW)
data set is composed of 27 sequences of micro-surgical anastomosis
on artificial blood vessels performed by 3 surgeons and 3 engineer-
ing students. The dataset includes video data, kinematic data, and
workflow annotations [8]. The kinematics and video data were
acquired simultaneously at a frequency of 30 Hz. Kinematic data
(which consists of x, y, z, alpha, beta, gamma, and information about
the grip and the output grip voltage) is recorded at 30Hz from the
encoders mounted on the two robotic arms of the master-slave
robot platform. The dataset is randomly divided into 17 videos for
training, with 10 videos for test/evaluation. The resolution of the
video is 920x540 pixels. Workflow annotations contain labels for
each timestamp phase, step, and left-handed and right-handed ac-
tivities. The step labels are listed in Table 1 and an example video
frame is provided in Figure 8. As adjacent frames are very similar,
the dataset is subsampled to 5 fps. In this way, the training speed
can be accelerated, and computational resources can be saved.

Table 1: Step labels in MISAW dataset.

Step
Needle holding
Suture making
Suture handling

1st knot
2nd knot
3rd knot

Figure 8: Example video frame in MISAW Dataset [8].
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4.2 Data Preprocessing
Video frames are first extracted from the surgical videos in the
MISAW dataset. Since there is little change between several suc-
cessive frames, the sampling rate is set to 5 in order to accelerate
the training speed. For training, the images are resized to 256×256
and randomly cropped to 224×224. For validation and testing, the
images are resized to 224×224.

4.3 Evaluation Metrics
Accuracy which represents the percentage of correctly recognized
frames in the video was used to evaluate the effectiveness of the
proposed model.

4.4 Training Details
The network was implemented in Pytorch 1.5.1 and trained on an
NVIDIA GeForce GTX 1080 Ti 11GB GPU. Cross Entropy Loss and
Adam optimizer with an initial learning rate of 1e-4 for 100 epochs
was used. The batch size of both the training set and the validation
set was set at 128.

5 EXPERIMENTAL RESULTS
5.1 Experiments on Different Temporal Module
The result of CNN with Dilated TCN and ED-TCN was compared
against the CNN+LSTM architecture used in our entry for the MI-
SAW challenge 2020 [8]. In order to better compare the performance
of TCN and LSTM, all networks used Resnet34 as the spatial feature
extractor. The experimental results are shown in Table 2.

Table 2: Experiments on different temporal modules.

Model Accuracy (%)
ResNet34 + LSTM 77.39

ResNet34 + Dilated TCN 79.42
ResNet34 + ED-TCN 78.05

From Table 2, it can be seen that the performance of TCN is bet-
ter than that of LSTM. Dilated TCN performed best, outperforming
LSTM by 2.04% in accuracy. ED-TCN outperforms LSTM by less
than 1% in accuracy. This indicates that dilated convolutions in
Dilated TCN can model temporal relationships with less informa-
tion loss compared to the pooling and upsampling mechanism in
ED-TCN.

The better performing Dilated TCN was chosen to form the
Multi-Stage TCN architecture.

5.2 Experiments on Different Stages
The performances of different stages of Dilated TCN were tested
and the results are shown in Table 3.

The results from Table 3 show that Multi-Stage Dilated TCN
architecture can refine the results to some extent. The 2-Stagemodel
shows the greatest improvement. However, further increasing the
number of stages only leads to a marginal improvement and even a
slight drop in accuracy. This may be due to the fact that the model
is deeper and more difficult to train after stacking multiple layers.
This outcome is also influenced by the weights assigned to each
stage.

6 DISCUSSION AND CONCLUSION
This paper presents a model for surgical step recognition using
both visional data and kinematic data based on a TCN network
and a multi-TCN architecture. A ResNet34 network is employed
to extract visual features, which are then inputted into either a
Dilated TCN or an ED-TCN network. Kinematic data is also used
to extract temporal features through TCN. Subsequently, a Multi-
stage TCN architecture is utilized to fine-tune the results. The
experimental results demonstrate the potential of the proposed
network for surgical step recognition. It has been verified that an
appropriate number of stage stacking can progressively refine the
predictions from previous stages.

We have been extending the network to include more datasets
for further evaluation of its effectiveness and making additional
attempts to optimize the architecture by incorporating dynamic
weight allocation of the loss function. Our aim is to incorporate
the fusion of both video data and kinematic data into the network.
There are three distinct levels of fusion:

1. Early Fusion: This combines vision and kinematic data at the
feature level before feeding into the recognition model. This allows
the model to learn joint representations.

2. Late Fusion: The vision and kinematic data are processed
separately using individual models and then their outputs (decisions
or scores) are combined for final recognition steps.

3. Hybrid Fusion: This technique combines features at an inter-
mediate level, allowing the model to leverage joint representations
while retaining some independence of the data sources. After the
features are extracted and fused, they can be fed into the recognition
model, to identify and classify the specific surgical or operational
step.

Kinematic data is essential for robot motion control in an intelli-
gent operating room. As we look into the future, robot assistance is
posed to become an integral element in the operating rooms of the
future. This data, being indispensable for robotic motion control,
holds increased significance in advanced manufacturing environ-
ments. Consequently, such data-driven robotic systems are set to
be foundational in the manufacturing ecosystems of tomorrow.

Building on our surgical foundation, robotic labs can be tailored
for the pioneering and refinement of chemical and drug manufac-
turing processes. In this context, chemical reactions and processes
are intrinsically sequential. Our step recognition algorithms, there-
fore, are primed to autonomously monitor and delineate each phase,
ensuring unmatched production consistency. By ensuring metic-
ulous recognition and validation of each manufacturing step, the
integrity of the chemical or drug production process is maintained.
Beyond pure process enhancement, step recognition also emerges
as an instrumental tool for training newcomers in the industry.

Table 3: Experiments on different stages Dilated TCN.

Model Accuracy (%)
1-Stage 79.42
2-Stage 80.25
3-Stage 80.39
4-Stage 80.26
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Through this, robotic manipulators can be systematically aligned to
the mandated sequence, guaranteeing strict procedural adherence.

In summary, the transition of our step recognition model from
surgical theaters to the robotic labs of chemical and drug man-
ufacturing could mark a paradigmatic shift in the industry. The
promise lies not just in automation, but also in elevating process
robustness and safety standards. With the surgical precision of step
recognition in play, chemical, and pharmaceutical entities stand to
gain in terms of operational efficiency, unwavering product quality,
and diminished operational hazards.

Concluding on a note of emphasis, it is crucial to highlight that
harnessing step recognition for the automation of drug and chemi-
cal manufacturing within the ambit of intelligent cyber-physical
systems remains a central research preoccupation for the first and
last authors of this paper at the National University of Singapore.

Figure 9 provides a structured overview of a cyber-physical
system in the context of drug and chemical development and man-
ufacturing:

1. Human Supervisor: It represents the human oversight element.
There is a bidirectional connection between the human supervisor
and the central entity labeled "Cyber." This suggests an ongoing
interaction where the human supervisor provides inputs and also
receives feedback or data.

2. Cyber: This is a cloud-like entity, representing a cyber sys-
tem or a computational cloud platform. This system has multiple
functions as indicated by the labels:

"Sensing" points towards the connectionwith the human supervi-
sor, suggesting that the cyber system can recognize and understand
inputs from the human supervisor.

"Analyze and Predict", "Optimize and Plan", and "Process Control"
indicates the processing capabilities of this system, which aid in
controlling the robot.

Figure 9: Robot platform for automated drug and chemical
development and manufacturing.

3. Robotic Control: It emphasizes its role in physically executing
tasks. The robotic arm interacts directly with the cyber system,
receiving commands and potentially sending feedback.

4. Drug and Chemical Development and Manufacturing: It indi-
cates the end application or sector where the combined efforts of
the human supervisor, cyber system, and robotic arm are directed.

There are arrows from both the cyber system and the robotic arm
pointing towards this block, suggesting that both computational
decisions and physical actions contribute to the processes in drug
and chemical development and manufacturing.
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