Check for
Updates

ALGORITHM 320

HARMONIC ANALYSIS FOR SYMMETRICALLY

DISTRIBUTED DATA [C6]

D. B. Hunter (Reed. 1 June 1965, 4 Jan. 1966, and 26
June 1967)

Department of Mathematics, University of Bradford,
Yorkshire, England

KEY WORDS AND PHRASES: harmonic analysis, cosine series,
sine series, function approximation, curve fitting, trigonometric
series

CR CATEGORIES: 5.13

procedure irigfit (index,n, m, h, ¢, x, f, mt, a);
value index, n, m, h, ¢; integer index, n, m, mt; real h, e; array
z, f) a;
comment Approximates afunctiony of x by ahalf-range cosine or
sine series of period 2k from values specified at discrete points,
not necessarily equally-spaced, in the range (0,). The input
parameters are:
index—if index = 0, a cosine series is fitted, if index = 1, a
sine series. No other value is permitted.
n—number of function-values given.
m—order of the highest harmonic required.
h—half-period of the fitted series.
e—used to terminate the process if rounding errors start to
aceumulate excessively (see note below).

z—the given values of z are stored on z[1], z[2], --- , =z[n].
f—the value of y corresponding to x = z[¢] is stored on f[]
(7‘=17 27 "'yn)'
The procedure then calculates the coefficients afr] in the ap-
proximation
mi
3al0] + > alr] cos (rmz/h) if index = 0,
r=1
S(.’IJ) = mi
L > alr] sin (raz/h) if index = 1.
r=1

Here normally mt = m, but provision is included to calculate
fewer harmonics if rounding errors begin to accumulate exces-
sively (see note below).
Method of calculation. The coefficients alr] are calculated
s0 as to minimize the sum
n 3if 2] = Oorh,
2 wi(flil-8@hk])?, wi = ,
i=1 1 otherwise.
The method used is similar to that of [1]. First S(z) is expanded
in the form

mit
S(z) = bipi(x)
i=index
where
i

Ya:0 + > i cos (jmx/h) if index = 0,

=

pi(z) =
Z ai; sin (jrz/h) if index = 1.
=1
114 Communications of the ACM

P

J. G. HERRIOT, Editor

mi
alr] = Z biir .

=T
The polynomials p;(z) are chosen so as to be orthogonal w.r.t.
summation over z = z[¢], with weights w; . This implies that
n n
b = lejf[j]pi(x[j])/‘ 1wy'lps(xj)]2-
j= i=
The p;(z) are generated by a recurrence relation

pin(z) = (2 cos (rz/h)—ai)pi(z) — Bipii(x)

where
2 Zﬂ: w; cos (xxlf1/h)- [plaliN2
o = =1 - (¢ > index),
> wilpi(zlDI2
=1
2 wilp(xlDI?
g == (i > indez).

Mz |5

wj[pi—l(x[j])]z

1
L

The initial forms are

I

o

Ppol(x) if ndex = 0
or pi(z) = sin (wz/h) if index = 1.

Thus if the z[¢] are equally spaced, i.e. if z[¢] = G—1)h/(n—1),
it follows that
pile) = cos (kwx/h) or sin (krx/h) according as index = Oor 1.
The values of the p:(z) are caleulated by the method of [2].
Note. If the z[i] are verp irregular in their distribution
serious rounding errors may accumulate, and it is recommended
that the points be as nearly as possible equally spaced. However
the procedure includes provision, under control of parameter e,
to reduce the number of harmonics caleulated, mt, if rounding
errors do start to build up.
Rounding error is controlled by estimating the error which
would ocecur in the analysis of a standard function ¢(z) for the
given points, where

[1 if sndex = 0,

I
-

7@ = in sin (ra/h)/ }Ely sin (rolj)/h) | if index
&

The estimate used for the rounding error in the rth harmonic is

7

e = > e X dy,

i=indezt+l

where

¢; = max |a | for index < 7 < 4,
di=| ; “b"jt_l(?&[.i])??i(QE[J'])/JZ=1U):'[I%'(I[J'])]2 [

Volume 11 / Number 2 / February, 1968

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362896.362905&domain=pdf&date_stamp=1968-02-01

If for any r, e, > e, the procedure is terminated with mt = r — 1.
REFERENCES:
1. CrensEaw, C. W. Curve-fitting with a digital computer,
Comput. J. 2, 170-173.
2. Warr, J. M. A note on the evaluation of trigonometric
series. Comput. J. 1, 162;
begin
integer 7, j; real sl, 2, s3, alpha, beia, ¢, d, u, v, w, ¢, s, mean,
p, coeff, er, cer;
array cl[0:m], ¢2[0:m-+1];
g = 3.1415926536/h;
if index = 0 then mean := 1 else
begin mean := 0;
for ¢ := 1 step 1 until » do
mean = mean + abs(sin(gXz[]));
mean 1= n/mean
end;
for ¢ := index step 1 until m do ali] := 0;
c2[m+1] := alpha := cer := 0;
for ¢ := 0 step 1 until m do cl1[i] := ¢2[{] := 0;
cllindex] := —1;
beta := s3 := 1; mi := index;
loop: coeff := 0; for ¢ := index step 1 until mt do
begin
d := (if i=0 then c¢2[1] else cl{i—1]) + c2[i+1] — bela X
cl[i] — alpha X c2[i];
cll7] := ¢2[z]; ¢2[Z] := d; d := abs(d);
if d > coeff then cogff := d
end;
sl :=82:=d:=er:= 0
for ¢ := 1 step 1 until » do
begin
¢ := 2 X cos(gXz[i]);

if mf{ = 0 then begin p := 0.5; go to sum end;

u = v = 0;
for j := mi step — 1 until 1 do
begin
wi=cXu—v+c2jl; vi=u; ui=w
end;
if indez = 0 then
begin
s:=1; p:= 05X (wXc+c2[0]) — »
end
else
begin
s 1= sin(gXzli]); pi=uXs
end;

sum: w := ifz[{] = 0/ z[{] = h then 0.5 else 1;
d:=d+wXpXfLl
if mt > index then er := er + w X p X s X mean;
pi=wXpl2 sli=sl4+cXp; 2:=s2+0p
end;
cer := cer + coeff X abs(er)/s2;
if cer > ¢ then go to exit; alpha := s1/s2;
beia 1= s2/s3; d 1= d/s2; 3 := s2;
for ¢ := inder step 1 until mt do
ali] := ali] + d X c2[l;
mi := mt + 1; if mt < m then go to loop;
exit: mb = mt — 1
end trigfit;
procedure harmanglsymm (n, m, h, e, z, ypos, yneg, mc, ms, a, b);
value n, m, b, ¢; integer n, m, mc, ms; realh, e; arrayz,
ypos, yneg, a, b;
comment Approximates a function y of z by a finite trigono-
metric series of period 2k from values specified at discrete points
in the range (—%, k). Those points need not be equally spaced,
but must be symmetrically distributed about the value z = 0.
Thus only the values of z in the range 0 < z < h need be given.

Volume 11 / Number 2 / February, 1968

The input parameters are:
n—number of values of z in the range 0 < z < h.
m—order of the highest harmonic required.
h—half-period of the fitted series.
e—used to terminate the process if rounding errors start to
accumulate excessively (see note on trigfit).
z—the given values of z in the range (0, &) are stored on z{1],
z[2], -- -, z[n].
ypos—the value of y corresponding to z = + z[¢] is stored on
yposfi] (=1, 2, --- , n).
yneg—the value of y corresponding to z = — z[7] is stored on
ynegli] (¢=1,2,---,n).
The procedure then calculates the coefficients afr] and b[r] in the
approximation

ms

S) = al0] + ila[r] cos (rwx/h) + ;lb[r] sin (rmz/h).

Here normally mec = ms = m, but provision is included to calcu-
late fewer harmonics if rounding errors begin to accumulate
excessively (see note on trigfit), or if m exceeds its maximum per-
missible value. For the cosine terms this maximum value is
n — 1. For the sine terms it is n, this figure being reduced by 1
for each z[7] equal to 0 or k. The cosine and sine series are calcu-
lated separately by trigfi, with

1lil = 0.5 X (yposli] + ynegli]) for cosine series,
0.5 X (ypos[i] — yneg[i]) for sine series;

begin
integer 7, md; array f[l:n]; procedure irigfit;
for 7 := 1 step 1 until n do
flé] = 0.5 X (yposli] -+ ynegliD);
trigfit (0, n,if m > nthenn — 1 else m, k, ¢, z, f, mc, a);
md = n;
for 7 := 1 step 1 until » do
begin
fl] == 0.5 X (ypos[i] — ynegli]};
ifz(f] = 0\ z[¢] = h thenmd := md — 1
end;
trigfit (1, n, if md > m then m else md, h, e, z, f, ms, b)
end harmanalsymm

ALGORITHM 321

i-TEST PROBABILITIES [S14]

Joux Morgris (Recd. 6 Jan. 1967, 18 July 1967, and 10
Oct. 1967)

Computer Institute for Social Science Research, Michigan
State University, East Lansing, Michigan

KEY WORDS AND PHRASES: T-test, Student’s {-statistic, dis-
tribution function

CR CATEGORIES: 5.5

real procedure ilest (z, df, mazn, gauss, error);

value z, df, mazn; real 2; integer df, mazn; real procedure
gauss; label error;

comment This procedure gives the probability that ¢ will be
greater in absolute value than the absolute value of z, where ¢
is the Student t-statistic, as defined and tabled by R. A. Fisher
[2], evaluated at df degrees of freedom: that is, 2 times the inte-
gral of the distribution function of ¢, evaluated from abs{z) to
infinity. The procedure may also be used, e.g., to estimate the
two-tailed probability of a simple correlation, r, where N = the

Communications of the ACM 115

number of pairs of observations, df = N — 2, and ¢t = r X sqrt
(df/ 1.0 — r 12))(cf. e.g. [5]).

For reasonably small df, Student’s cosine formula is used [3,
4]:

0
ttest = 1.0 — coeff cos¥1 6 dp
0

where § = arctan (I/sqri(df)) and
coef = (df—1)/(df—2) X (df—3)/(df—4)

[x @7 for odd df,
) X &) X @) for even df.

Integrated in series, this gives results which appear to be cor-
rect to very nearly the full single precision accuracy of the
machine (in terms of the number of digits after the decimal point,
not necessarily significant digits).

An approximation due to R. A. Fisher [1] gives results accurate
to within 3 X 1077 when maxn has been set at 30. The tradeoff
on time is also optimal at about this point. The real procedure
gauss computes the area under the left-hand portion of the nor-
mal curve. Algorithm 209 {6] may be used for this purpose.

Thanks to the referee for many helpful suggestions, most of
which have been incorporated, and to David F. Foster, who
wrote an early version of part of the program.

REPERENCES:

1. FisHER, R. A. Metron 5 (1925), 109-112.
2. ——. Statistical Methods for Research Workers. Oliver and

Boyd, Edinburgh, 1965. h ‘

3. GosseT, W. S. (Student). The probable error of a mean.
Biometrika 6 (1908), 1.

4. ——. New tables for testing the significance of observations.
Metron & (1925), 105.

5. GuiLrorp, J. P. Fundamental Statistics in Psychology and
Education. McGraw-Hill, New York, 1956, pp. 219-221.

6. IsBETSON, D. Algorithm 209, Gauss. Comm. ACM, 6 (Oct.
1963), 616.

begin

if df < 1 then go to error;

if z = 0 then ttest := 1.0 else

begin real {;

t = abs (x);

if df < mazn then

begin integer ¢, nh;

z = t/sqri(df);
cth := 1.0/sqrt(z 7 2+1.0);
sth := z X cth;
cthsq := cth T 2;
nh := (df—1) + 2;
if df = 2 X (df+2) then
begin
t := sth;
if nh = 0 then go to g;
cth := cthsq; zi := 1.0;
coef := 0.5 X sth
end else
begin
t := 0.6366197724 X arclan(z);
comment 0.6366197723675813430755351- -+ = 2/m;
if nh = 0 then go to g;

real cth, sth, cthsg, xi, coef, z;

xi 1= 0; coef := 0.6366197724 X sth

end;

for ¢ := 1 step 1 until nh do .

begin .
t :=t + coef X cth; cth := cth X cthsq;
xi = 21 + 2.0;

coef := coef X zt/(x1+1.0)

116 Communications of the ACM

end;
g:t:=10—1
end else
if ¢t > 6.0 then { := 0 else
if df < 106 then
begin real f, {2, {4, 16, {8, {10, {12, t14, {16, {18;
Fi=4df; 2:=1tX¢t; t4:=12X12; 16 := 14 X 12;
18 := t6 X 12; 10 := 8 X 12; 12 := {10 X i2;
114 := {12 X {2; {16 := t14 X {2; {18 := {16 X 12;
comment 0.3989422804014326779399461--- = 1/sqrt (2Xx);
t:= 2.0 X (gauss(—1)+1X0.3989422804 X exp(—0.5X12) X
((24+1.0)/ (4.0X)+ (3.0X 16-7.0X t4—5.0X {2—3.0)/
(96.0XfXf)+(£10—11.0X 18+14.0X {6+6.0X t4—3.0X {2~
15.0)/(384.0Xf T 3)+ (15.0X t14—375.0X t12+42225.0X 10—
2141.0X{8—939.0X 16—213.0X 14—915.0X 124+-945.0)/
(92160.0Xf T 4)+(3.0X118~133.0X{16+1764.0X 14—
7516.0¢{124-5994.0X {10+2490.0¢ {8+1140.0X {64+180.0X
t4-+5355.0X 12-4-17955.0) / (368640.0<Xf T 5)))
end else t := 2.0 X gauss(—t);
tiest := if { <0 then 0 else ¢
end
end tlest

ALGORITHM 322

F-DISTRIBUTION [S14]

Econ Dorrer (Reed. 25 Jan. 1967, 3 July 1967, and 17
Oct. 1967)

Institut fir Photogrammetrie und Kartographie, Tech-
nische Hochschule Miinchen, W. Germany; now: De-
partment of Surveying Engineering, University of
New Brunswick, Fredericton, N.B., Canada

KEY WORDS AND PHRASES: Fisher’s F-distribution, Stu-
dent’s t-distribution
CR CATEGORIES: 5.5

real procedure Fisher (m, n, z);
value m, n, z; integer m, n; real z;

comment Fisher’s F-distribution with m and n degrees of
freedom. Computation of the probability

(m+n
2 w
Pr(F < z) =

r{=)-r{=
2 2

where w = (m/n)z and F = (D f=i 22/m)/ (D f=1 y%/n). The
solution results recursively from the basic integrals

Fisher (1,1,2) = 2-arctan ~/w/w, Fisher (1,2,2) = (w/(w+1)),
Fisher (2,1,z) = 1 — 1/(w+1)}, Fisher (2,2,z) = w/(w+1).

7 is introduced by 0.3183008862 = 1/x. By calling Fisher (1,n,
t12), Student’s ¢-distribution will be obtained;
begin integer a, b, 7, j; real w,y, z, d, p;
a:=2X m+2) —m+2; b:=2X n+2) —nt2;
w =z X m/n; z:=1/1+w);
ifa = 1 then
begin
if b = 1 then
begin
p = sgrt(w); y := 0.3183098862;
d:=y X z/p; p:=2Xy X arctan(p)
end else
begin
p = sgri(wXz); d := 0.5Xp X z/w
end
end else

Eml 2—1

dg,

Volume 11 / Number 2 / February, 1968

if b = 1 then

begin
pi=sqri(2); d:=05Xz2Xp; p:=1—p
end else
begin
d:=2z2Xz pi=wXz
end;
Y =2 X w/z
for j := b + 2 step 2 until n do
begin
d:=(Q1+a/(j—2)) Xd Xz

= (1
p:=ifa = 1then p +d X y/(G—1) else (p+w) X z
end j;
=w X z;

y 2:=2/z; b:i=mn—2;
for i := a + 2 step 2 until m do
begin

Ji=i+0b; d:=yXdXjE-2); p:=p—2Xdfj
end 7;
Fisher := p
end Fisher

ALGORITHM 323

GENERATION OF PERMUTATIONS IN

LEXICOGRAPHIC ORDER [G6]

R. J. Orp-Smite (Recd. 27 Apr. 1967 and 26 July 1967)

Computing Laboratory, University of Bradford, Bradford,
Yorkshire, England

KEY WORDS AND PHRASES: permutations, lexicographic
order, lexicographic generation, permutation generation
CR CATEGORIES: 5.39

Author’s Remark. Lexicographic generation involves more
than the minimum of n! transpositions for generation of
the complete set of n! permutations of # objects. The actual
number of transpositions required can be shown to tend
asymptotically to (cosh 1) n! = 1.53n! However, lexi-
cographic generation can be described by an algorithm
requiring very simple book-keeping. The author is indebted
to Professor H. F. Trotter for suggesting an improvement
to an original algorithm, which now results in a process
more than twice as fast as the previously fastest lexi-
cographic Algorithm 202 [Comm. ACM 6 (Sept. 1963),
517]. Tabulated results below show BESTLEX to be only
9.3 percent slower than the transposition Algorithm 115
[Comm. ACM 5 (Aug. 1962), 434] when n = 8.

The usual practice is adopted of using a nonlocal Boolean
variable called first which may be assigned the value true
to initialize generation. On procedure call this is set false
and remains so until it is again set true when complete
generation of permutations has been achieved. Table I
gives results obtained for BESTLEX. The times given in
seconds are for an I.C.T. 1905 computer. £, is the time for
complete generation of n! permutations. r, has the usual
definition 7, = t,/(n-tu—1).

TABLE I
Number of
Algorithm] tg 3 trans positions
BESTLEX 6 47 0.98 — 1.53n!
202 12.4 100 1.00 ?
115 5.6 43 0.98 n!

Volume 11 / Number 2 / February, 1968

procedure BESTLEX (z, n); value n; integer n; array z;
begin own integer array ¢[2:n]; integer k, m; real i;
comment own dynamic arrays are not often implemented. The
upper bound will then have to be given explicitly;
if first then
begin first := false;
for m := 2 step 1 until n do ¢[m] := 1
end of initialization process;
if ¢{2] = 1 then
begin ¢[2] := 2;
L= z[l); 2[1] := 2[2]; =z[2] :=¢;
go to finish
end;
for k := 2 step 1 until n do
if ¢k} = k then ¢lk] := 1 else go to trstart;
first := true; k := n; go to trinit;
trstart: m := qlk]; t:= zim]; =z[m] := z[k]; =[k] := ¢;

gkl :=m 4+ 1; k:=k — 1;

trinit: m :=1;

transpose: ¢ := z[m}; =z[m] := x[k]; =z[k] := ¢;
m:=m-+1; k:=k—1;
if m < k then go to transpose;

finish:

end of procedure BESTLEX

ALGORITHM 324

MAXFLOW [H]

G. Baver (Recd. 31 July 1967)

Technische Hochschule, Braunschweig, Germany

KEY WORDS AND PHRASES: network, linear programming,
maximum flow
CR CATEGORIES: 541

procedure mazflow (from, to, cap, flow, v, n, mflow, source, sink,
inf, eps);
value v, n, source, sink, inf;
integer v, n, source, sink; real inf, eps, mflow;
integer array from, lo; array cap, flow;
comment The nodes of the network are numbered from 1 to sn.
It is not necessary but reasonable that each number represent a
node. The data of the network are given by arrays from, to, cap
in the following manner. There is a maximum possible flow of
caplt], nonnegative, leading from froml[] to tofé)], 2 = 1, --- ,v.
Compute the maximum flow mflow from source to sink,
(source and sink given by their node numbers). inf represents
the greatest positive real number within machine capacity.
flowli] gives the actual flow from froml7] to to[{]. Flows abso-
lutely less than eps are considered to be zero. Literature: G.
Hadley, Linear Programming, Addison-Wesley, Reading (Mass.)
and London, 1962, pp. 337-344.
Multiple solutions are left out of account;
begin integer L, j, k, v, lk, ek, u, s; real gjk,d;
integer array low, up, klist, labj[1:n], ind[lw]; real array
labf[1:n];
comment Note structure of data lists in up and low;
l:=1;
for j := 1 step 1 until » do
begin low[j] := ;)
for r := 1 step 1 until v do
begin if from{r] = j then
begin nd[l] := r;
fowll} := capill;
end

l:=1+1

Communications of the ACM 117

end;

upljl i=1-1
end;
mflow := 0.0;
lab:;

comment Prepare lists for new labeling;

for j := 1 step 1 until » do
begin labj[j] := klisi[j] := 0;

labf[j] := 0.0

end;

labf [source]

1= nf;

comment labeling;

j = source; lk := ek := 0;
path:
u = upl];

for s := low(j] step 1 until 4 do
begin ! := ind[s];

k = toll]; gjk := flow(l];
if labjlk] = 0 \/ abs(gjk) < eps
then go to end;

labjlk] := 7;

labf[k] := if gjk < labf[j] then gjk else labf[j];

if k = sink then go to reached;
Ik =k + 1; klistllk] := k;
end:
end;
ek = ek 4+ 1; j := klistlek];

if j % 0 then go to path else go to maz;
comment sink is labeled, find path and possible

flow, reduce excess capacities along path;

reached:
j = sink; d := labf[j]; mfow
look: k := labjljl; w := uplkl;
for s := lowlk] step 1 until u do
begin [:= ind[s];
if to[l] = j then flow[l] := flow[l] — d
end;
u = upljl;
for s := low[j] step 1 until u do
begin I := ind[s];
if to[l] = k then flow[l] := flow[l] 4+ d
end;
j i=k; if j s source then go to look;
go to lab;
maz:; comment maximal flow found;
for | ;= 1 step 1 until v do
flowll] := cap[l] — flow[l]

end

Al Real Arithmetic, Number Theory

A2 Complex Arithmetic

Bl Trig ond Inverse Trig Functions

B2 Hyperbolic Functions

B3 Exponential and Logarithmic Functions

B4 Roots and Powers

C1 Operations on Polynomials and Power Series

C2 Zeros of Polynomials

C5 Zeros of One or More Transcendental Equa-
tions

Cé6 Summation of Series, Convergence Acceleration

D1 Quadrature

D2 Ordinary Differential Equations

D3 Partial Differential Equations

118

Communications of the ACM

= mflow + d;

ALGORITHM 325

ADJUSTMENT OF THE INVERSE OF A SYM-

METRIC MATRIX WHEN TWO SYMMETRIC

ELEMENTS ARE CHANGED [F1]

GeruArD ZIELKE (Reed. 24 Aug. 1967)

Institut fiir Numerische Mathematik der Martin Luther
Universitit Halle-Wittenberg, German Democratic
Republic

KEY WORDS AND PHRASES: symmetric matrix, matrix in-
verse, matrix perturbation, matrix modification
CR CATEGORIES: 5.14

procedure INVSYM 2 (n, 1, j, ¢, a, b);
value n, 1, j, ¢; integer n, 7, j; real ¢; array a, b;
comment INVSYM 2 computes the inverse A=! = a of a non-
singular symmetric nth order matrix A = B + c(eie;’ + eje’)
which arises from a symmetric matrix B by a change ¢ in two
elements B:; and Bj; = By; (¢ # j). The inverse matrix B = b
is assumed to be known. The calculation with the new formula

where

hi =1 4 ¢biy,

h2 = _ijj y

=b - (fi [b.:(hubs. + habs) + bi(hsbs. + hubs.)]

hs = —Cbii N d = h12 — hohy

requires n% - O(n) multiplications, therefore only about the

same number of operations as if the well-known Sherman-

Morrison formula for a change in one element (see Algorithm
51 [Comm. ACM 4 (Apr. 1961), 180]) is used. In these equations
e; denotes the 7th column and e;’ the ith row of the unit matrix,
b.; = be; denotes the 7th column and b;. = e;’b the ith row of

the matrix b;
begin integer k, [;
array r, s{l:n];

real hl, h2, b3, d;

Bl := 1+ ¢ X bls, jl;

h3 :

—c¢ X blZ, 1];

d:=hl T 2 — h2 X h3;

K2 := —c X blj, jl;

hl := hl X d; h2 := h2 X d; h3 := h3 X d;
for k := 1 step 1 until n» do

begin

k] := k1 X B[, k] + h2 X bli, kl;
slk) := k3 X blj, k] + k1 X b[i, k]

end;

for k := 1 step 1 until n do
for [:= 1 step 1 until k do
alk, 1] := all, k] := bk, 1] — blk, 7] X 7[I] — bk, j] X sl

end INVSYM 2

MODIFIED SHARE CLASSIFICATIONS

D4
E1
E2
E3
E4
F1
F2
F3
F4
F5
G1
G2
G5
Gé

[Designations follow algorithm titles.]

Differentiation

Interpolation

Curve and Surface Fitting

Smoothing

Minimizing or Maximizing a Function
Matrix Operations, Including Inversion
Eigenvalues and Eigenvectors of Matrices
Determinants

Simultaneous Linear Equations
Orthogonalization

Simple Calculations on Statistical Data
Correlation and Regression Analysis
Random Number Generators
Permutations and Combinations

G7 Subset Generators and Classifications

H Operations Research, Graph Structures

15 Input—Composite

J6 Plotting

K2 Relocation

M1 Sorting

M2 Data Conversion and Scaling

02 Simulation of Computing Structure

S Approximation of Special Functions. ..
Functions are Classified SO1 to $22, Following
Fletcher-Miller-Rosenhead, Index of Math,
Tables

z All Others

Volume 11 / Number 2 / February, 1968

