Check for updates

Chebyshev Interpolation and Quadrature Formulas of Very High Degree

HERBERT E. SALZER*

All the zeros $x_{2^m,i}$, $i=1(1)2^m$, of the Chebyshev polynomials $T_{2^m}(x)$, m=0(1)n, are found recursively just by taking $n2^{n-1}$ real square roots. For interpolation or integration of f(x), given $f(x_{2^m,i})$, only $x_{2^m,i}$ is needed to calculate (a) the (2^m-1) -th degree Lagrange interpolation polynomial, and (b) the definite integral over [-1,1], either with or without the weight function $(1-x^2)^{-\frac{1}{2}}$, the former being exact for f(x) of degree $2^{m+1}-1$.

KEY WORDS AND PHRASES: Chebyshev polynomials, Chebyshev interpolation, Chebyshev quadrature, Chebyshev points, Chebyshev zeros, interpolation, quadrature, definite integrals

CR CATEGORIES: 5.13, 5.16

From $T_m(x) \equiv \cos(m \arccos x)$ and the well-known $T_{mn}(x) = T_m(T_n(x))$, we have

$$T_{2^n}(x) = T_{2^{n-1}}(T_2(x)). (1)$$

The zeros of $T_m(x)$ in increasing order are

$$x_{m,i} = -\cos\frac{2i-1}{2m}\pi, \qquad i = 1, \dots, m.$$

If y is a root of

$$T_2(y) \equiv 2y^2 - 1 = x_{2^{n-1},i},$$
 (2)

from (1) and (2), $T_{2^n}(y) = T_{2^{n-1}}(x_{2^{n-1},i}) = 0$; so y is a root $x_{2^n,i}$. The two roots of (2) for each $x_{2^{n-1},i}$, $i = 1, \dots, 2^{n-1}$, give all the roots $x_{2^n,i}$, $i = 1, \dots, 2^n$. Solving (2) in succession for $n = 1, 2, \dots, n$, where $x_{2^0,i} = 0$, we get

$$x_{2^{1},i} = \pm \left(\frac{1}{2}\right)^{\frac{1}{2}}, x_{2^{2},i}$$

$$= \pm \left(\frac{1 \pm \left(\frac{1}{2}\right)^{\frac{1}{2}}}{2}\right)^{\frac{1}{2}}, \dots, x_{2^{n},i} = \pm \left(\frac{1 + x_{2^{n-1},i}}{2}\right)^{\frac{1}{2}}.$$

The $(2^n - 1)$ -th degree Lagrange interpolation polynomial $L_{2^n-1}(x)$ which equals f(x) at the 2^n points $x_{2^n,i}$, $i = 1, \dots, 2^n$, is expressible as

$$L_{2^{n}-1}(x) = \sum_{i=1}^{2^{n}} \frac{A_{2^{n},i} f(x_{2^{n},i})}{x - x_{2^{n},i}} / \sum_{i=1}^{2^{n}} \frac{A_{2^{n},i}}{x - x_{2^{n},i}}$$
(3)

* Author's address: 941 Washington Ave., Brooklyn, NY 11225

where

$$A_{2^{n},i} = (-1)^{i}(1 - x_{2^{n},i}^{2})^{\frac{1}{2}}.$$
 (4)

Also from (2),

$$A_{2^{n},i} = (-1)^{i} \left(\frac{1 - x_{2^{n-1},i}}{2} \right)^{\frac{1}{2}}.$$
 (5)

But neither (4) nor (5) is needed in the computation of $L_{2^{n}-1}(x)$, because, from elementary trigonometry,

$$A_{2^{n},i} = (-1)^{i-1} x_{2^{n},2^{n-1}-i+1} = (-1)^{i} | x_{2^{n},i+2^{n-1}} |,$$

$$i = 1, \cdots, 2^{n-1},$$
(6a)

$$A_{2^{n},i} = (-1)^{i-1} x_{2^{n},i-2^{n-1}} = (-1)^{i} | x_{2^{n},i-2^{n-1}} |,$$

$$i = 2^{n-1} + 1, \dots, 2^{n}.$$
(6b)

For x in the interval [-1, 1],

$$f(x) - L_{2^{n}-1}(x) = T_{2^{n}}(x)f^{(2^{n})}(\xi)/2^{2^{n-1}}(2^{n})!,$$

$$-1 \le \xi \le 1.$$
(7)

For quadrature using $x_{2^n,i}$,

$$\int_{-1}^{1} \frac{f(x)}{(1-x^2)^{\frac{1}{2}}} dx = \frac{\pi}{2^n} \sum_{i=1}^{2^n} f(x_{2^n,i}) + R_{2^n}, \quad (8a)$$

where

$$R_{2^n} = \pi f^{(2^{n+1})}(\xi) / 2^{2^{n+1}-1} (2^{n+1})!,$$

$$-1 < \xi < 1.$$
(8b)

When (8) is applied to

$$\int_{-1}^{1} f(x) \ dx = \int_{-1}^{1} \frac{(1-x^2)^{\frac{1}{2}}}{(1-x^2)^{\frac{1}{2}}} f(x) \ dx,$$

from (4) and (6a) we obtain

$$\int_{-1}^{1} f(x) \ dx = \frac{\pi}{2^{n}} \sum_{i=1}^{2^{n-1}} |x_{2^{n}, i+2^{n-1}}|$$

$$\cdot [f(x_{2^{n}, i}) + f(-x_{2^{n}, i})] + \bar{R}_{2^{n}},$$

$$(9)$$

where \bar{R}_{2^n} is found by replacing f(x) by $(1 - x^2)^{\frac{1}{2}} f(x)$ in (8b).

Only n square roots for each i are required for $x_{2^n,i}$, for a total of $n2^{n-1}$. For n = 10, interpolation by (3) gives 1023rd degree accuracy, while quadrature by (8) is exact up to the 2047th degree in f(x); n = 20 gives 1,048,575th degree accuracy in (3) and 2,097,151th degree accuracy in (8).

RECEIVED AUGUST, 1968; REVISED NOVEMBER, 1968

REFERENCES

- FOX, L., AND PARKER, I. B. Chebyshev Polynomials in Numerical Analysis. Oxford U. Press, London, 1968, 205 pp.
- 2. Tables of Chebyshev Polynomials $S_n(x)$ and $C_n(x)$. National Bureau of Standards, Appl. Math. Series, No. 9, Government Printing Office, Washington, D. C., 1952, xxx + 161 pp., especially introduction by C. Lanczos, pp. v-xxvi.
- WENDROFF, B. Theoretical Numerical Analysis. Academic Press, New York, 1966, pp. 48-53.
- Handbook of Mathematical Functions. National Bureau of Standards, Appl. Math. Series, No. 55, M. Abramowitz and I. Stegun (Eds.), Dover, New York, 1965, p. 889, Sec. 25.4.38.