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ABSTRACT
Schedulers are a crucial component in datacenter resource man-
agement. Each scheduler offers different capabilities, and users
use them through their APIs. However, there is no clear under-
standing of what programming abstractions they offer, nor why
they offer some and not others. Consequently, it is difficult to un-
derstand their differences and the performance costs imposed by
their APIs. In this work, we study the programming abstractions
offered by industrial schedulers, their shortcomings, and their re-
lated performance costs. We propose a general reference archi-
tecture for scheduler programming abstractions. Specifically, we
analyze the programming abstractions of five popular industrial
schedulers, understand the differences in their APIs, and identify
the missing abstractions. Finally, we carry out exemplary exper-
iments using trace-driven simulation demonstrating that an API
extension, such as container migration, can improve total execu-
tion time per task by 81%, highlighting how schedulers sacrifice
performance by implementing simpler programming abstractions.
All the relevant software and data artifacts are publicly available at
https://github.com/atlarge-research/quantifying-api-design.
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Figure 1: Performance penalty due to amissing programming
abstraction: storage metadata access.

1 INTRODUCTION
Society’s increasing dependence on digital technologies and infras-
tructure has led to the widespread use of datacenters for deploying
digital services [20, 28]. Schedulers play a vital role in orchestrating
datacenter resources to meet the demands of these services [24, 45].
The interfaces schedulers offer to users determine the limits of the
users’ ability to mold the orchestration process to support their
application needs. Different schedulers offer different levels of pro-
grammability and control to users [27, 47, 51, 58]. For example, some
schedulers provide restricted programming abstractions 1, mini-
mizing user input, while others offer more flexible interfaces that
empower users with greater control over resource allocation and
job placement [47, 58]. This spectrum of scheduler programming
abstractions raises questions about the impact of design choices on
performance, simplicity, and control that users can achieve.

The first question we raise about scheduler abstraction design
is: What programming abstractions are common in current
schedulers? Knowledge of programming abstractions in exist-
ing industrial schedulers informs designers of what is currently
available to the users. The programming abstractions available in
academic research schedulers can also suggest to designers which
abstractions are necessary to incorporate the latest resource man-
agement techniques proposed by the research community.

The second question is:What programming abstractions are
sacrificed for simplicity? Usually, academic schedulers offer a
wide set of programming abstractions, allowing the users to cus-
tomize several aspects of scheduler operational behavior. On the
other hand, industrial schedulers usually implement a restricted
subset for increased security and robustness [46].

The third question is:What is the performance cost of the
sacrificed abstractions? Despite their security and robustness

1We use programming abstraction and API interchangeably.
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benefits, simpler abstractions have a performance cost. The perfor-
mance cost is usually in the form of underutilized resources and
slow-to-complete application jobs. To shed light on this issue, we
conduct three different experiments. Figure 1 depicts an exemplary
result with the median execution time of workflows in a trace from
Google [55]. We consider a scheduler that implements a crucial
abstraction lacking in many industrial schedulers: metadata access
to the data stored on datacenters’ object storage service (e.g., AWS
S3). Comparing it against a scheduler lacking this abstraction, we
observe a 24% reduction in median workflow runtime when using
the abstraction.

To address these questions and enhance our understanding of
scheduler programming abstractions, we develop a comprehen-
sive and structured reference architecture that provides a unified
view of the programming interfaces offered by schedulers. This
reference architecture compliments earlier work on scheduler inter-
nals [5, 30]. It guides developers and researchers in designing and
implementing scheduling APIs, capturing the essential abstractions
in task scheduling and resource management within datacenter
environments.

Establishing a common reference architecture brings several
benefits. First, the reference architecture provides a common frame-
work for analyzing and comparing existing industrial and aca-
demic schedulers. The comparison helps identify similarities, dif-
ferences, and potential shortcomings, thus enabling the assessment
of different implementations and design alternatives [5]. Second, it
serves as a knowledge base for designing better schedulers that can
meet the demands of modern applications by addressing shortcom-
ings [5, 11, 22, 36]. Finally, establishing a common reference model
reduces the risk of a scheduler being specialized to the current in-
terface by providing a view of all possible programming interfaces.
This helps avoid non-extensible designs that must be re-engineered
at great development cost, as has been the case with Condor [51]
and Borg [10] when the need for a new design arises.

To understand datacenter scheduler programming abstractions
and the cost of missing ones, we make a four-fold contribution:

(1) We design a reference architecture for datacenter scheduler
programming abstraction (Section 3). We propose a set of design
principles and, with them, design an architecture that considers
different stakeholders and the programming abstractions of
existing schedulers.

(2) We analyze existing industrial and academic schedulers by map-
ping them to the reference architecture (Section 4). This map-
ping allows us to compare them using a common language.
The comparison reveals abstractions proposed in literature but
missing from industrial schedulers.

(3) We analyze the effect of missing abstractions on the perfor-
mance of modern schedulers (Section 5). To this end, we imple-
ment three missing abstractions in an event-driven simulator
and conduct simulations using real-world traces collected by
major datacenter operators, e.g., Google and Microsoft.

(4) We contribute to open science and reproducibility by releasing
data and software artifacts. To enable the experiments in this
work, we have significantly extended OpenDC [39], a state-of-
the-art simulator. We release the code enabling this work’s ca-
pabilities through Github: https://github.com/atlarge-research/
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Figure 2: Datacenter scheduling system model.

quantifying-api-design. The repository has been archived using
Zenodo at: https://zenodo.org/doi/10.5281/zenodo.10605424.

2 DATACENTER SCHEDULER SYSTEM MODEL
This section contextualizes this work by describing common data-
center scheduling-related concepts depicted by Figure 2.

2.1 Workload
The workload is executed using the resources the scheduler assigns
to the user. Following the taxonomy proposed by Andreadis et al.
[5], we consider four types of workloads:

(1) Batch workflows are workloads comprising several tasks
with dependencies between them.

(2) Bag-of-tasks are jobs formed by several tasks without any
dependency between them.

(3) Long running tasks run for a very long time and are usually
inside a host such as a VM.

(4) Managed jobs are workloads where a manager coordinates
all the tasks, such as Spark.

The users specify the requirements to execute the workload.
Usually, these comprise the amount of CPU and memory. However,
in some cases, other requirements, such as the start time, the depen-
dencies between the tasks, the scalability of the resources, etc., are
also specified. To submit the workload requirements, users interact
with the scheduler through its API.

2.2 Scheduling
A user submits a workload to use the resources through a central
component, the scheduler [10, 41]. The scheduler takes care of sev-
eral tasks: finding resources to assign to the workload based on the
specified requirements, transferring the workload to the resources,
starting the execution of the workload, managing the workload
through its lifecycle (from placement to workload cleanup), and
notifying to the user about lifecycle events.

Throughout the execution of a workload, the resource require-
ments of the workload and the number of resources available to
the scheduler can change. Therefore, the scheduler must adapt
to changing workload requirements by increasing or decreasing
dynamically allocated resources. This is usually done through a
specific subcomponent (e.g., the autoscaler in Kubernetes [2]). A
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scheduler can also preempt, recover, and migrate workloads when
the amount of available resources changes.

Schedulers can be monolithic [35] and run in a single process
that handles all tasks. They can be distributed where tasks are split
into other components, such as the autoscaler [2]. In the same way,
the scheduler and its members can be replicated in several processes
in parallel. Still, they must coordinate among themselves when as-
signing resources to the workloads. In addition, schedulers can be
centralized [42], where a single entity implements the scheduler
and dictates the policies and mechanisms, or it can be decentralized
[51] so that several entities implement a scheduler. Each of them
has different policies and mechanisms. When the scheduler is de-
centralized, the other instances must coordinate through a common
protocol and sometimes use a central matchmaker.

2.3 Scheduler resources
The workloads are executed on top of the resources that the sched-
uler manages. Resources typically refer to physical machines usu-
ally located within a datacenter. These datacenters consist of multi-
ple clusters, each housing several hosts, with each host functioning
as a node within a rack. It is important to note that while our dis-
cussion primarily focuses on virtualized resources such as VMs or
containers running on hosts through a hypervisor, it is also possible
to manage bare metal resources. However, virtualized environments
are more prevalent and present a wider range of interesting phe-
nomena for modeling and analysis.

In this work, we model the resources of a host as the combina-
tion of CPU, memory RAM, and storage. CPUs can have different
frequencies and number of cores. Memory and storage can have
different sizes. We model resource consumption using a discrete
model, where the workload reports how many resource it requires
and for how long. The hypervisor consolidates the consumption of
the different workloads through a fair-sharing policy.

2.4 Programming abstraction
Schedulers offer a set of programming abstractions for users to in-
teract with. Programming abstractions are the API offered by sched-
ulers and are the language by which the user submits workloads
and modifies the workload’s requirements during the workload’s
life cycle. Programming abstractions are offered through a GUI, CLI,
or a protocol such as HTTP.

The API includes both the interactions of the scheduler with the
applications and the resources. In this work, we investigate API
extensions that allow the scheduler to interact with applications
and the resources allocated after the initial resource allocation.

Resource management systems, such as autoscalers, interact
with schedulers and other resource managers in a completely au-
tomated manner without any user intervention. We consider the
API between these different systems a part of the scheduler pro-
gramming abstraction. The API constrains the actions available to
these systems. Obtaining system data and performing actions not
supported by the API is difficult for the systems we analyze in this
work.

3 REFERENCE ARCHITECTURE FOR
SCHEDULER PROGRAMMING
ABSTRACTIONS

We propose a reference architecture to understand and describe
standard programming abstractions available in current schedulers.
With systematic categorization and organization, the reference ar-
chitecture will offer a framework for analyzing and comparing
existing schedulers and a comprehensive view of the range of com-
mon abstractions that a scheduler can implement. This helps us
answer the questionWhat are the programming abstractions com-
mon in current schedulers?.

Our process for designing the reference architecture has the
following steps:

(1) Stakeholder and use case identification
(2) Requirements analysis
(3) Model industrial schedulers
(4) Model emerging concepts from academia
(5) Unify industrial schedulers with emerging concepts

We describe our requirements in Section 3.1. We identify five
popular schedulers in the industry, and we analyze their APIs. Con-
sulting experts in the field, we select the following schedulers: Ku-
bernetes [3], SLURM [35], Spark [56], Condor [51], and Airflow [1].
We further analyze these schedulers in Section 4.

For emerging concepts from academia, we conduct a systematic
literature survey [33], sort the results by citations, and pick the
top 15 papers with new APIs different from what we identified
in industrial schedulers. We end up analyzing the following 15
academic schedulers: [9, 12, 15, 17, 18, 25, 31, 32, 38, 44, 48, 50, 53,
54, 59].

After analyzing industrial and emerging scheduler designs from
academia, we extract, filter, generalize, and unify them into a refer-
ence architecture.

3.1 Requirements
We identify the requirements that must be met by the reference
architecture. This has to be:

R1 Understandable. Different stakeholders should be able to
easily understand the different components that make up the
reference architecture, how they relate to each other, or their
high-level meaning. We enable this through the principles
in Section 3.2 and the description language in Section 3.3.

R2 Actionable. The design must take into account whether
users can use it to take concrete actions. We use the architec-
ture in Section 4 to identify missing abstractions in industrial
schedulers. We quantify the cost of missing abstractions in
Section 5.

R3 Pragmatic. The reference architecture concepts can be im-
plemented in code and evaluate different programming ab-
stractions comparatively. The reference architecture has
been realized in the OpenDC simulator and used for ex-
periments in Section 5.

R4 Comprehensive. Can represent all already known concepts
used in industrial schedulers and emerging concepts from
academia. We map five industrial schedulers to the reference
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architecture in comparison in Section 4. The reference archi-
tecture was built by analyzing 15 research prototypes from
the community.

3.2 Design principles
For the design of the scheduling programming abstractions refer-
ence architecture, we identify the following design principles.

P1 Separation of objects from actions. We distinguish be-
tween the actions that can be performed and the objects,
which represent the system’s state, that are used as input to
the actions. This separation facilitates comprehension (R1).

P2 Grouping of related actions. There may be several ac-
tions that are related to each other. Therefore, to facilitate
comprehension, related actions are grouped.

P3 Avoidance of concrete technologies in objects. We keep
the objects as high-level as possible to avoid strong coupling
to a specific technology.

3.3 Reference Architecture Design
Weanalyze industrial and emerging scheduler designs from academia
for scheduling abstractions. Then we extract, filter, generalize, and
unify them into a reference architecture. In this process, we follow
the requirements and design principles we set out in the previous
subsections. The reference architecture allows us to describe the
different abstractions provided by the schedulers we analyzed using
a common language. This common language allows enables us to
compare the schedulers’ APIs to each other in Section 4.

The reference architecture is depicted in Figure 3. The high-level
components of the reference architecture are actions and objects
that comprise the scheduler API. Object describes the current or
desired state of the system. Actions describe physical events (such
as leasing a VM) that are executed when certain conditions are
met. The conditions use objects in their specification. Each action
must have three types of conditions: WHAT, WHEN, and WHERE,
and for each condition, there can be one or more objects. This
way, programming abstractions can be understood through the
following syntactic structure: <action> <object> IN <object>
WHEN <object>, where the objects and actions are filled using the
reference architecture.

Listing 1: Example scheduler action.
P r o v i s i o n : Lease
UserResource < type : job , runt ime : 5 days >
IN Schedu l e rRe sour ce < type : vm ,

cpu : 2 . 4 Ghz , memory : 1 6Gb>
WHEN Event <day : 1 1 , month : 1 2 , year : 2023 >

Consider the scheduler interaction in Listing 1; the action is "Pro-
vision:Lease," indicating the provisioning and leasing of resources.
The objects involved are "UserResource" with specific character-
istics such as job type and a runtime of 5 days, and "SchedulerRe-
source" with attributes like VM type, CPU of 2.4GHz, and memory
of 16GB. The condition "IN" specifies that the "UserResource" is
allocated within the "SchedulerResource". Lastly, the "WHEN" con-
dition indicates an event occurring on December 31, 2022.

Tables 1 and 2 define and describe the actions and objects within
the reference architecture. These tables serve as a resource for

understanding the specific elements of the reference architecture
and their respective functionalities.

In addition to the visual representation of the reference archi-
tecture for scheduling programming abstractions shown in Figure
3, we have also defined a formally defined syntax which we use in
Listing 1. The syntax is based on the Extended Backus–Naur Form
(EBNF) and provides a structured and consistent way to express
conditions using actions and objects in the programming abstrac-
tions. Due to space constraints, we do not present the formal syntax
definition here but will add it as an appendix. The formally de-
fined syntax enables precise communication using the reference
architecture.

4 ANALYSIS OF INDUSTRIAL SCHEDULERS
We analyze the scheduler APIs of industrial schedulers by qualita-
tively mapping their features to the reference architecture: Kuber-
netes (v1.27) [3], SLURM (v23.02) [35], Spark (v3.4.0) [56], Condor
(v10.4.3) [51], and Airflow (v3.3.0) [1]. Through the mapping, we
respond to the question of What programming abstractions are sac-
rificed for simplicity? The mapping provides insights into their
alignment with the idealized model. This comparison helps iden-
tify missing abstractions compared to all the ones in the reference
architecture, highlighting potential shortcomings.

4.1 The mapping process
For each considered scheduler, we consult its official documentation,
source code, and articles we find online. Then, using these resources,
for each component of the reference architecture, we identify if
there is a complete, partial, or no match. The meaning of the match
is different for objects than for model actions. In the case of actions,
a complete match is when the scheduler offers the action. A partial
match is when the action is offered in a limited way; that is, the
action may only be offered at a specific moment in the lifecycle, e.g.,
it only allows to scale when the CPU utilization is more than 80%,
or when the parameters with which the action can be performed
are limited, e.g., a service can only be scaled by adding VMs of the
same type of resources. A no-match is when the scheduler does not
offer the action. In the case of objects, a full match means that the
scheduler restricts the object parameters, and the user can flexibly
specify whatever parameters they need. For example, the user can
add any metadata information. A partial match means the scheduler
allows the user to specify only a limited set of object parameters.
For example, the user can only specify CPU constraints, not any
other resource type. A no-match means that the scheduler does not
allow that object type.

4.2 Mapping results
Using the reference architecture, we analyze the shortcomings of
the selected group of five industrial schedulers. Currently, it is not
known when nor why you should use some schedulers and not
others. It is also unclear if any scheduler has a clear missing gap or
how to fill it. For that, it is necessary to analyze the scheduling APIs.
We map their APIs into the reference architecture and aggregate
the results in two tables. In Table 3, we map the actions, and in
Table 4, the objects. We specify whether each action and object is a
full, partial, or no match.
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Figure 3: Reference architecture for scheduling programming abstractions.
Table 1: Description of the actions that compose the reference architecture.

Action Sub-action Description

Provision

Lease/release Activation and assignment of a user resource to a scheduler resource.
Scale Addition or reduction of already provisioned user resources.
Migrate Migration of a user resource to a different scheduler resource.
Preempt Abortion of execution or assignment of a user resource, putting it back in the scheduler queue.
Recover Recover a task after failure, restart execution, or put it back into the scheduler queue.

Configure scheduler Configuration of the behavior of the scheduler.

Replicate

Access input data Access to data that user jobs take as input.
Access intermed. Access to data that user jobs generate during their runtime.
Access metadata Access to the information about the user data.
Replicate Replication of the user data.
Partition Partitioning of the user data so that a subset of the data is placed in different scheduler resources.
Recover Recovery of the user data after the failure of execution or the storage system.

Communicate Communication with the user resources, scheduler resources, or even the scheduler, such as setting a callback for
getting notified about scheduling events.

Table 2: Objects in the reference architecture.
Object Description

Event

Representation of objects in time or
instantiations of properties in objects.
Such as concrete date-times (00:00 of
31st of December 2022) or an instantiation
of a property like a metric reaching a numeric
value (CPU utilization is greater than 80%).

User resource

Representation of any kind of input from
the user. This includes execution units like
a job, task, etc., but also data as a file,
environment variable, etc.

Scheduler
resource

Representation of resources owned and
managed by the scheduler. Resources can
be virtual machines, containers, storage
systems, databases, etc.

Communication
process

Representation of the process of communication,
such as a signal, message, callback, etc.

The results indicate that industrial schedulers have several short-
comings. Several actions are under-implemented. There is a very
clear pattern, where most schedulers implement three actions:
lease / release, configure scheduler, access input data.
In most cases, all others are either partially or not implemented.
The biggest shortcoming is in manage data action and its objects,

Table 3: Full overview of programming abstraction actions
of schedulers mapped to the reference architecture. Legend:
●/◗/❍ = full/partial/no match; Ku = Kubernetes; Sl = SLURM;
Sp = Spark; Co = Condor; Ai = Airflow

Action Sub-Action Schedulers
Ku Sl Sp Co Ai

Provision

Lease / release ● ● ● ● ●

Scale ● ❍ ◗ ❍ ❍

Migrate ❍ ❍ ❍ ❍ ❍

Preempt ◗ ● ❍ ● ❍

Recover ◗ ◗ ● ◗ ◗

Configure scheduler ● ◗ ● ● ●

Manage
data

Access input ● ◗ ● ● ●

Access interm. ❍ ❍ ◗ ❍ ❍

Access metadata ❍ ❍ ❍ ❍ ❍

Replicate ❍ ❍ ● ❍ ❍

Partition ❍ ❍ ● ❍ ❍

Recover ◗ ❍ ● ● ❍

Communicate ◗ ● ◗ ◗ ◗

where most sub-actions and objects are not implemented. Overall,
the industrial schedulers examined in our study do not provide data
management abstractions to the user. This means that users have
less control over the data and, consequently, less chance to optimize
performance. For example, if the user has several unordered data
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Table 4: Full overview of programming abstraction objects
of schedulers mapped to the reference architecture. Legend:
●/◗/❍ = full/partial/no match; Ku = Kubernetes; Sl = SLURM;
Sp = Spark; Co = Condor; Ai = Airflow.

Action Object Schedulers
Ku Sl Sp Co Ai

Provision
user resource ● ◗ ◗ ◗ ◗

event ◗ ◗ ◗ ◗ ◗

sched. resource ● ● ◗ ● ●

Configure
scheduler

scheduler ◗ ◗ ● ● ●

event ◗ ◗ ❍ ❍ ❍

sched. resource ◗ ❍ ❍ ❍ ❍

Manage
data

user resource ◗ ◗ ● ◗ ●

event ❍ ❍ ❍ ❍ ❍

sched. resource ❍ ◗ ❍ ◗ ❍

Commu-
nicate

comm. process ◗ ◗ ◗ ◗ ●

event ◗ ◗ ◗ ❍ ◗

user resource ◗ ◗ ● ◗ ●

sched. resource ❍ ◗ ● ❍ ❍

scheduler ❍ ◗ ❍ ❍ ❍

items to process, consulting the metadata and obtaining informa-
tion about the placement and requests load of the storage systems
where the data is stored, could optimize how and when the data is
processed.

In all other cases, the communicate action is partially imple-
mented except in SLURM. Similarly, most communication objects
are partial matches. This might imply a lower performance since
it does not allow the user to inform the scheduler during runtime
about application-level insights, nor vice versa, the scheduler to
inform the user about scheduling-level insights. Moreover, partial
matches imply that actions and objects are limited to a particular
subset and do not allow the user to specify arbitrary inputs. For ex-
ample, the Condor API only provides communication actions with
user jobs, not the scheduler. Therefore, the user can dynamically
inform about application-level insights to their jobs but not to the
scheduler, reducing the scope of potential performance improve-
ments.
Key Takeaway: Many actions and objects have partial or no
matches, meaning their APIs are under-implemented. Consequently,
they reduce users’ ability and scope to optimize their applications’
performance. The main shortcomings are found in manage data
action and its objects but also in communicate actions and their
objects to a lesser extent. Sub-actions related to provisioning other
than lease, such as scale, migrate, and recover, are also not
well supported by schedulers.

5 EVALUATING THE PERFORMANCE COST OF
SIMPLE SCHEDULING ABSTRACTIONS

In this study, we address the limited programmability of industrial
schedulers and highlight the need for greater user programmabil-
ity to improve user-application performance. We identify under-
implemented programming abstractions in scheduler APIs in Sec-
tion 4. In this section, we design experiments to quantify the per-
formance cost of these missing abstractions. The experiments focus
on three specific use cases: 1) reservations, 2) migration requests,

and 3) metadata access. We analyze the shortcomings of various in-
dustrial schedulers in implementing these abstractions and propose
extensions to address them. This answers the question What is the
performance cost of the sacrificed abstractions? raised in Section 1.
A comprehensive overview of these experiments can be found in
Table 5, which outlines the API extensions, parameters, traces, and
metrics for each use-case.

5.1 Implementation, Input Setup, and
Open-Sourcing

Software: The reproducibility of the experiments is ensured through
the use of the OpenDC data center discrete event simulator [39],
which is deterministic. We performed multiple runs with different
seeds of randomness to capture variations in the results. For each
experiment run, we calculated the empirical cumulative distribution
function (ECDF) to analyze the distribution of the measured metrics.
This approach allowed us to assess the behavior and performance
of the proposed extensions across different scenarios and obtain
comprehensive insights.
Input data: Traces from private and public cloud environments,
Azure [13], Google [55], and Bitbrains [49] — a Dutch ICT provider
— were selected to provide realistic and diverse workload data
for evaluating the proposed extensions. By leveraging real-world
traces, our research captures the variability and complexity of cloud
workloads, ensuring the relevance and validity of our findings.
These traces are open source, and the simulator has parsers for
the respective formats. The Azure and Bitbrains traces were used
as they were provided, while the first 2.5 days were used from a
30-day Google trace. The characteristics of the different traces are
outlined in Table 6.
Simulated environment: The number of machines in the simulated
environment are different for different traces and utilization levels.
The environments have 35 machines for the Google trace, 102 ma-
chines fore the Azure trace, and 1039 machines for the Bitbrains
trace when simulating the workloads at 75% utilization. The ma-
chines are heterogeneous having 4 to 32 cores depending on the
configuration. The precise environment specifications for each ex-
periment are described in topology files located in the experiment’s
folder in the applications git repository.

5.2 Reservation
Goal: Schedulers utilize resources better if they know when tasks
arrive and their resource requirements. We investigate if a sched-
uler with an API that accepts this additional information performs
better for three different traces and by how much.

In the context of scheduling and resource allocation in datacen-
ters, there is a specific category of jobs that are long-running and
periodically submitted, which are provisioned into VMs ( 1 and 2
in Figure 4). These jobs exhibit predictable patterns, as they recur
regularly and have well-defined resource requirements. Examples
of such jobs include data processing pipelines, scientific simulations,
and batch processing tasks.

Since their resource requirements and execution patterns are
known in advance, schedulers could use this knowledge to allocate
resources more efficiently and reduce waiting times. However, in
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Table 5: Summary of evaluation experiments.

Name API extension Parameters Fixed parameters Traces Metrics
Reservation
Section 5.2

User provided start time
and resource estimates

Reservation ratio,
resource utilization

Scheduling policy
(EFT)

Azure, Bitbrains,
Google

Waiting time,
slowdown

Migration
Section 5.3

Container migration via
orchestrator callbacks

Migration type,
oversubscription

Resource utilization
(85%), FIFO policy

Azure, Bitbrains,
Google

Execution time,
packing efficieny

Metadata access
Section 5.4

Use storage subsystem
busyness to order tasks

Metadata-aware
task reorder policy

Resource utilization
(80%)

Google and
IBM combined

Buffer size,
total time

Table 6: Characteristics of the traces used in the experiments

Workload VMs/Tasks Duration [days] VM duration [days] CPU cores CPU capacity [GHz] Memory [GBs]
Mean 𝜎 Mean 𝜎 Mean 𝜎 Mean 𝜎

Bitbrains 1250 30 28 5 3.27 4.04 2.7 0.16 11.75 32.6
Azure 1829 30 2 6 2.48 2.28 2.5 0.0 5.8 10.16
Google 1000000 2.5 0.0375 0.083 1.0 0.0 1.68 2.08 0.17 0.2

practice, existing schedulers often do not effectively utilize the
predictability of these long-running and predictable jobs [54]. As a
result, these jobs may be subject to sub-optimal resource allocation
and longer waiting times than necessary.

We propose an extension to datacenter schedulers that enhances
scheduling long-running and predictable jobs by incorporating
reservation programmability. This extension enables schedulers to
be aware of these jobs’ recurring nature and resource requirements,
allowing for more optimized resource allocation and scheduling.

To enable reservations, we extend the system by modifying the
lease action, including two additional parameters: runtime esti-
mates and a specified provisioning time for future reservations.
When a user submits a reservation request, instead of immediately
provisioning it, the scheduler adds the request to a reservation
queue 3 alongside other pending reservations. During this time,
the scheduler applies algorithmic optimizations to improve future
provisioning 4 . In our experiment, we employ a simple Earliest Fin-
ish Time (EFT) scheduling policy [52] to optimize the reservation
queue by prioritizing tasks with earlier estimated finish times, en-
suring that resources are allocated efficiently and effectively. Tasks
without reservation are scheduled according to the FIFO policy.
Once the specified provisioning time arrives, the scheduler pro-
visions the reserved resources into a VM 5 , fulfilling the user’s
reservation request. In Listing 2, we provide an example of the
extension, showcasing the syntax for reservations.

Listing 2: API for reservations using syntax from Section 3.3,
with the extension highlighted in green.
P r o v i s i o n : Lease
UserResource < type : app , i d : 1 , runtime:1h>
IN Schedu l e rRe sour ce < type : vm , c o r e s : 8 ,

cpu− f r e q : 2 . 4 Ghz , memory : 3 2Gb>
WHEN Event<day:11, month:12, year:2023>

We take a scheduler that does not implement reservations as our
baseline and investigate the effects of incorporating reservation ca-
pabilities into this scheduler. We utilize real-world workload traces
from Google, Azure, and Bitbrains to evaluate the performance.
We sample a fraction (reservation ratio) of the trace to reserve and
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Figure 4: Reservations experiment system model.

assume we know the arrival time (from the original trace) of those
tasks in advance.

The experiment configurations involve resource utilization and
reservation ratio variations (the proportion of reserved resources
compared to the total available resources). The resource utilization
levels are set at 75%, 80%, and 85%, and the reservation ratios at 0, 0.5,
and 1.0 to observe the impact of reservation programmability. These
resource utilizations are common in datacenters with high resource
utilization [6]. Metrics collected in the experiment include waiting
time (the duration tasks spend in the queue before execution) and
slowdown (the decrease in task execution speed).

Figure 5 depicts the Azure trace’s waiting time and slowdown
under nine different configurations. Slowdown, calculated as the
ratio of execution time plus waiting time to execution time, rep-
resents the overall task performance. In the Azure trace data, we
observe a clear relationship between reservation ratios, waiting
times, and slowdowns. Specifically, when the system utilization
reaches 85%, the system with reservations has a 43% (35-hour)
shorter 50th percentile waiting time than the system without reser-
vations (ratio=0.0 means no reservations). In the same scenario,
reservations reduce slowdown by 70% (68 units) compared to not
using reservations. However, at a lower utilization of 80%, there
is an increase in waiting time of 2.5 hours (50th percentile) and a
12-unit (60th percentile) increase in slowdowns. In the other traces
examined, there is no significant impact on the waiting times and
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Figure 5: ECDFs of waiting time and slowdown per task of
the Azure trace using the reservation extension. We evaluate
the system at different utilization levels and with a different
fraction of the trace being reserved in advance (ratio). Ratio
0.0 implies no reservations.

slowdowns with varying reservation ratios. This could be due to
workload characteristics, resource utilization levels, or the configu-
ration of the scheduling system. Further investigation is needed to
determine the underlying reasons for the lack of impact.

The results are not as promising for the Google and Bitbrains
traces. The Azure trace differs from the other traces as it has a
multi-hour task duration. The Google trace has short tasks lasting
seconds, and the Bitbrains trace has long jobs lasting weeks. The
full analysis for the other traces is available in the technical report.
Key Takeaway: Reservations reduce slowdown by as much as 70%
for the Azure trace, but not as much for the other traces. The results
are dependent on the durations of the tasks in the trace.

5.3 Migration
Goal:We investigate if offloading migration, to mitigate interfer-
ence, to container orchestrators running on top of VMs leased
from a datacenter scheduler is better than the datacenter scheduler
itself performing VMmigration. We investigate this for three traces.

Datacenter operators oversubscribe their machines as tenants
often do not utilize all the allocated resources. Oversubscription
means allocating more resources to tenants than there are phys-
ically available. Oversubscription leads to interference between
tenants if tenants allocated to the same physical machine fully uti-
lize their allocated resources. In such cases, the datacenter operator
can migrate one or more tenants to less utilized physical machines
to reduce interference.

Migration has a cost proportional to the size of the VM mi-
grated [16, 37]. Therefore it is efficient to migrate only part of
a VM if possible. Nowadays, tenants use container orchestrators
(K1 in Figure 6), such as Kubernetes, making partial migration
possible. The orchestrator requests resources from the datacenter
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K1-VM1
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K2-C2

K2-C1

Phy2
K3-VM1 K2-VM2
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Figure 6: Migrations experiment system model.
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Figure 7: Task packing efficiency of the Azure trace using dif-
ferent migration techniques. Each line represents a different
<Oversubscription ratio>/<Migrations API> configuration.

scheduler 1 . The DC scheduler allocates resources in the form of
VMs 2 . The orchestrator then starts application containers inside
the VM 3 .

We propose an extension to datacenter schedulers that enables
partial migration by making them aware of the tenants’ orches-
trators. The key to enabling partial migration is to enable bidirec-
tional communication between the datacenter scheduler and the
orchestrator. The orchestrator registers a remote callback with the
datacenter scheduler before it requests any VM allocations. The
datacenter scheduler uses this callback ( 4 in Figure 6) to request
the orchestrator to migrate 5 some containers when its monitor-
ing detects interference. In Listing 3, we provide an example of the
extension, showcasing the syntax for migrations.

Listing 3: API for migration using syntax from Section 3.3,
with the extension highlighted in green.
Communicate
Communicat ionProcess <type:callback,

url:orchestratorhost/callback>
IN UserResource < type : app , i d :1 >
WHEN Event <interference:10%>

As a baseline, we take a scheduler implementing VM migrations
and determine the impact of adding container migrations to that
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Figure 8: 90th percentile (P90) total runtime per task of
the Azure trace using different migration techniques.
Each bar represents a different <Oversubscription
ratio>/<Migrations API> configuration.

scheduler. We use three real-world workload traces from Google,
Azure, and Bitbrains for our evaluation.

For each trace, we evaluate the impact of migrations at three
oversubscription ratios: 3, 4, and 5. An oversubscription ratio of 3
means that each physical CPU was fully available to three tenants.
Oversubscription ratios ranging from 3 to 16 are common in data-
centers whose users have low utilization [34, 43]. We model the cost
of migration as the time it takes to migrate the RAM used by the
VM/container at a conservative rate of 512Mbps. The RAM based
cost model and the migration bandwidth are supported by existing
literature [37]. Our hypothesis is that migrating a container takes
less time than migrating a VM running multiple containers.

We simulate 5 Kubernetes clusters simultaneously using the
datacenter. We configure the datacenter topology such that the
traces run at 85% average utilization. The metrics we use are to-
tal workload execution time and packing efficiency. We calculate
packing efficiency by summing the CPU utilization of each vir-
tual machine (VM) and dividing it by the total number of VMs.
This metric provides insights into how effectively the resources
allocated to the VMs were utilized. A higher packing efficiency in-
dicates better utilization of resources, while a lower value suggests
potential inefficiencies or underutilization. By analyzing packing
efficiency, we can assess the effectiveness of the scheduling mech-
anisms in optimizing resource allocation and maximizing overall
system performance.

Figure 7 and 8 depict the packing efficiency and the total exe-
cution time (90th percentile) of the Azure trace under six different
configurations, respectively. In the Azure trace, the highest over-
subscription ratio of 5.0 achieved a remarkable 15% improvement
in packing compared to configurations without the API extension.
Additionally, using the API led to improved performance in terms of
total time per task. For example, with the highest oversubscription
ratio of 5.0, the 90th percentile (P90) of total time per task in the
Azure trace were reduced by 81% when container-level migrations
were employed.

In the remaining Google and Bitbrains traces, using the API re-
sulted in shorter total time per task, indicating higher performance.

The 99th percentile total time per task in the Google trace showed a
reduction of 73% (4.4 hours) with the highest oversubscription ratio
of 5.0. However, it is important to note that not all configurations
yield better performance with container-level migrations. However,
in the Bitbrains trace, no significant improvement in performance is
observed. The results indicate the minimal impact of container-level
migrations on performance in this particular trace.
Key Takeaway: Offloading migration to container orchestrators
benefited the Azure and the Google traces, not the Bitbrains trace.
The Bitbrains trace differs from other traces as it has an extremely
long task duration, with tasks running for weeks.

5.4 Metadata access
Goal:We investigate if providing datacenter schedulers access to
additional information about task data accesses and storage sub-
system busyness has a performance impact. We analyze the impact
of a trace from IBM object storage [21] combined with the compute
trace from Google.

Datacenters offer object storage services that enable users to
store and retrieve data efficiently. Services like AWS S3 provide
a scalable and reliable solution for storing large amounts of data.
In the context of data analysis workloads, users often deploy ap-
plications that require accessing multiple objects from the storage
( 1 and 2 in Figure 9). These workloads (e.g.: data analytics [4],
ML [19]) are often "bag of tasks" where tasks are executed inde-
pendently and the objects to read are known in advance. Such
workloads benefit from reordering their storage access based on
the prevailing resource utilization at the time of access.

Without access to fine-grained information about object place-
ment and load levels, users cannot optimize their data retrieval
process. As a result, the workload takes longer to complete. The
inefficiencies in object access lead to increased latency, reduced
throughput, and decreased overall system performance [40, 57].

We propose an extension that empowers users to access object
metadata to address this limitation. This extension allows users
to make informed decisions regarding the order in which they
retrieve data items. By introducing the accessMetadata action in
the scheduler’s programming model, users can query the metadata
for specific object IDs and obtain estimates of retrieval times. The
scheduler retrieves this information by monitoring the storage
servers ( 3 ). This capability enables users to strategically postpone
the retrieval of objects from congested storage servers, allowing
them to process those objects later when congestion levels have
subsided. In Listing 4, we provide an example of the extension,
showcasing the syntax for metadata access.

Listing 4: API for metadata access using syntax from Sec-
tion 3.3, with the extension highlighted in green.
ManageData :AccessMetadata
UserResource < type : o b j e c t , i d :2 >
IN Schedu l e rRe sou r ce < type : o b j e c t − s t o r age >
WHEN Event < da t e t ime : now>

We aim to determine howmuch performance existing schedulers
are losing out on by not implementing metadata access. As a base-
line, we take a scheduler providing an object storage service and
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determine the impact of adding metadata access to that scheduler.
Our evaluation is based on a combination of real-world workload
traces, specifically a trace from Google and an IBM object storage
trace [21]. We chose to focus on Google trace for this experiment
due to its availability of detailed information about workflows.

We use the interarrival time, duration, and resource usage of
tasks from the Google trace. For each task, we associate an object
identifier from the IBM trace. We read identifiers from the IBM
trace sequentially. This maintains the popularity distribution of
object identifiers and their temporal locality. We assume each task
reads from distributed storage at 1Gbps [8]. We simulate a 10 node
distributed object storage system, with objects accessed by their
identifiers.

We analyze the impact by activating and deactivating metadata
access while maintaining a fixed workload trace and storage service
utilization. The workload trace utilization is set at 80%. We capture
two key metrics to evaluate the system’s performance: buffer sizes
of the object storage service and total workflow times. The buffer
sizes provide insights into the waiting line and load balancing
across servers. Smaller buffer sizes indicate lower system load and

more efficient workload distribution across servers. Additionally,
we measure the total time for each workflow, which encompasses
both the waiting time and the execution time.

Figure 10 displays the normalized buffer sizes and total execu-
tion times of the trace. The results demonstrate that activating the
metadata access API leads to substantially reduced buffer sizes,
approximately 27% (70 GB), within the object storage service, re-
sulting in improved performance. Furthermore, metadata-aware
workflow execution substantially reduces total time per workflow,
with a notable 24% (26-hour) decrease in the median value. These
findings emphasize the critical role of metadata access in optimizing
object retrievals and enhancing overall performance.
Key Takeaway: The significant performance improvements ob-
served in reduced buffer sizes and shorter execution times highlight
the value of exposing storage metadata using an API.

6 THREATS TO VALIDITY
The reference architecture we proposed has two main limitations.

First, the reference architecture design is limited to the objects we
define. In our reference architecture, we identify only five distinct
objects and do not specify sub-objects for each. For example, our
Scheduler Resource object does not differentiate between an API
that offers VMs or Edge mobile devices. While this is a limitation,
we have deliberately chosen to keep our objects at a high level
of abstraction to future-proof our architecture. As the types of
resources available for scheduling are constantly changing, we
believe it is more important to differentiate objects by what they
represent in the highest level of abstraction than by their specific
content.

However, to fully leverage the power of our reference architec-
ture, it will be necessary to build more specific models that differen-
tiate between schedulers with different requirements. For example,
Spark-like schedulers have different scheduling requirements than
Kubernetes-like schedulers. These models must differentiate be-
tween objects based on their specific content rather than just their
highest level of abstraction.

Second, the simulation scenarios we use and the simulator itself
are not a replacement for real-world systems. However, the simu-
lator we use, OpenDC, has been validated for VM and container
scheduling for the Bitbrains and Azure traces [39]. The storage part
of the simulator and the Google trace have not yet been validated.
But we do use realistic models for migration [37] and storage ac-
cesses [8]. These models based on measurements from real systems
ensure that our results are indicative of real-world performance.

7 RELATEDWORK
Schopf’s multi-stage model of the grid scheduling process [30], the
Global Grid Forum [26], and the datacenter scheduler reference
architecture [5] offer conceptual models of the internal workings
of schedulers. Our work complements these models by specifically
addressing the external-facing aspects of scheduling, the program-
ming interface.

Conceptual models of APIs have been proposed for specific com-
puting environments, such as grid computing and cloud computing.
Foster et al. presented a reference architecture for grid comput-
ing [22], and the National Institute of Standards and Technology
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(NIST) introduced models for cloud computing [36]. While these
models provide valuable guidance for designing APIs in their re-
spective domains, they do not deal with the concrete API needs of
schedulers like Spark and Kubernetes, which have unique charac-
teristics and requirements.

Efforts have beenmade to develop schedulers that combinemulti-
ple scheduling abstractions into a single system, such as Ghost [29]
and ESCHER [7]. Ghost delegates OS kernel scheduling decisions
to users, granting them greater control over the scheduling process.
ESCHER allows users to express arbitrary scheduling constraints
as resource requirements, enabling fine-grained control over the
scheduling process. Apache Beam [23] and CWL [14] allow users
to specify a workflow and run it on multiple resource managers.
But they do not allow control over the scheduling mechanism apart
from simple labels.

8 CONCLUSION
In this work, we designed a reference architecture for datacen-
ter scheduler APIs (Section 3). Our reference architecture covers
APIs implemented in 5 industrial schedulers (Kubernetes, SLURM,
Spark, Condor, Airflow) and 15 academic schedulers. We use the
reference architecture to identify abstraction not implemented or
under-implemented in the five industrial schedulers (Section 4). We
find that the industrial schedulers do not implement abstractions
for data management, task migration, and autoscaling.

We evaluate the performance impact of missing abstractions
related to resource reservation, container migration, and storage
metadata access in Section 5. We find a 27% improvement in re-
source usage and a 24% reduction in median workflow runtime
when implementing metadata access, a 15% increase in utilization
and an 81% improvement in total execution time per task (90th
percentile) for container migrations, and a 43% reduction in waiting
times (50th percentile) for reservations.

For future work, we intend to provide a toolkit for users to exper-
iment with different designs using the OpenDC simulator. We also
plan to validate our simulations beyond the basic validation with
VMs, including validation with containers and storage services.

All our data and software artifacts are publicly available at
https://github.com/atlarge-research/quantifying-api-design. The
repository has been archived using Zenodo at: https://zenodo.org/
doi/10.5281/zenodo.10605424
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