
Rethinking ‘Complement’ Recommendations at Scale with SIMD
Shrey Pandey

shreypandey1509@gmail.com
Myntra Designs Pvt. Ltd.

Data Science
Bangalore, India

Saikat Kumar Das
saikat.kumar@myntra.com
Myntra Designs Pvt. Ltd.

Data Science
Bangalore, India

Hrishikesh V. Ganu∗
hrishikeshvganu@gmail.com

Independent
Bangalore, India

Satyajeet Singh
satyajeet.singh@myntra.com
Myntra Designs Pvt. Ltd.

Data Science
Bangalore, India

Figure 1: ‘Complement’ Recommendations service in Myntra. Left: Primary product Added-to-Cart by user and corresponding
‘complement’ recommendations to increase discovery and item count in cart. Right: Comparative graph depicting the improve-
ment in service scalability due to proposed vectorized reformulation of recommendation components.

ABSTRACT
Maximizing cart value by increasing the number of items in elec-
tronic carts is one of the key strategies adopted by e-commerce
platforms for optimal conversion of positive user intent during an
online shopping session. Recommender systems play a key-role
in suggesting personalized candidate items that can be added to
cart by the user. However, it is important to serve a diverse set of
personalized recommendations that ‘complement’ user’s cart con-
tent to practically increase item count in cart and also contribute

∗work was done while affiliated to Myntra Designs Pvt. Ltd.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0444-4/24/05. . . $15.00
https://doi.org/10.1145/3629526.3645041

towards product discovery. Borrowed from Quantum Physics, De-
terminantal Point Processes (DPP) are used widely in recommender
systems to diversify personalized product recommendations for
improved user engagement. However, vertically scaling DPP for
recommendation sets, personalized with vector similarity metric
like cosine similarity, to serve large scale real-time concurrent user
requests is non-trivial. We propose a vectorized reformulation of
cosine similarity and conditional DPP implementation to best uti-
lize the highly improved vector computation capabilities (SIMD)
of modern processors. Experimental evidence on real-world traffic
shows that the proposed method can handle upto 15x more con-
current traffic while improving latency. The proposed method also
uses portable SIMD constructs from Python libraries which can
be easily adopted in most available SIMD supported CPUs with
minimal code changes.

CCS CONCEPTS
• Computer systems organization→ Single instruction, mul-
tiple data; • Applied computing→ Online shopping; • Com-
puting methodologies→ Linear algebra algorithms.

25

https://orcid.org/0000-0002-5772-7919
https://orcid.org/0000-0002-6613-287X
https://doi.org/10.1145/3629526.3645041
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629526.3645041&domain=pdf&date_stamp=2024-05-07

ICPE ’24, May 7–11, 2024, London, United Kingdom Shrey Pandey, Saikat Kumar Das, Hrishikesh V. Ganu, & Satyajeet Singh

KEYWORDS
Vectorization, SIMD, Diversification, Recommender Systems, Rec-
ommendations, Determinantal Point Processes

ACM Reference Format:
Shrey Pandey, Saikat Kumar Das, Hrishikesh V. Ganu, and Satyajeet Singh.
2024. Rethinking ‘Complement’ Recommendations at Scale with SIMD. In
Proceedings of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24), May 7–11, 2024, London, United Kingdom. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3629526.3645041

1 INTRODUCTION
‘Add-To-Cart’ (ATC) is a key event in a user session on e-commerce
platforms. ATC indicates positive intent from user to complete a
purchase from current session. However, this also presents a unique
opportunity for the platform to improve cart value by increasing
the number of items in cart and optimize conversion, generally re-
ferred to as cart completion or cart filling. Cart completion has been
a subject of extensive research for decades, evolving continually to
cater to changing customer behaviour and research community’s
understanding of the same. Early works on cart completion works
on the principle of finding likely items to be added to cart based
on previous co-click events [4] and browsing history from a co-
hort of similar users [48]. Though effective, these approaches do
not differentiate browsing patterns and user motivation based on
occurrence of key-events like ATC or ‘Wish-listing’. Close et al.
[15] conducted a detailed study for understanding user behaviour
patterns related to the usage of electronic carts. Building on the
broader patterns of user motivation of adding items in cart beyond
immediate purchase as outlined by the researchers, we can identify
scope of optimizing conversion by increasing the number of items
in cart. Mcauley et al. [38] explored the concept of ‘complement’
and ‘substitute’ in their work, where they claim complements are
items that can be bought alongside items already in cart and substi-
tutes are used for replacing current cart items. For users looking to
take advantage of price promotion or browsing for entertainment
[15], recommending similar items or ‘substitutes’ to those already
in cart can be detrimental to the eventual cart value. In the first
case, user looking for price promotions may chose to replace a cart
item with a new item of lower or same value, which may not lead to
optimizing conversion. In the second case, users looking for enter-
tainment may find it monotonous to keep browsing similar items
which they have already explored. Apart from this, for users with
immediate purchase intent, substitute recommendations from their
cart can induce doubts about their selection, which may lead to
session abandonment. Similar item recommendations can be useful
to users looking for research or information search, but studies [15]
have shown that purchase probability for such sessions are much
lower than the cases mentioned above.

Thus, to optimize conversion through increasing items in cart,
diversification of personalized recommendations to suggest ‘com-
plements’ based on cart-items appears to be the better strategy as
it complements user selections rather than competing. However
naive diversification of personalized recommendations can lead to
degrading quality of suggestion. Diversification should be closely
aligned with user preferences and user journey on platform along
with cart-items. Determinantal Point Process [6, 21, 30] is a popular

method for diversifying personalized recommendations, personal-
ized with vector similarity metric like cosine similarity. However,
one practical consideration in using automated recommendation
system on e-commerce platform [1, 11, 16, 29, 43, 63] is the scale
and concurrency it has to handle in real-time shopping scenarios.
Online recommendation systems can receive millions of requests
per minute (RPM) on high traffic event days. Moreover, most e-
commerce platform will host millions of items in their catalogue
to serve millions of customers. Thus, it is imperative to build a
system that can handle large scale traffic of few million RPM while
also being flexible enough to be deployable without costly hard-
ware requirements. Cosine similarity and DPP [59], although being
an excellent algorithms to consider diversification of personalized
recommendations, but is not scalable vertically, especially when
deployed on CPU-only cloud servers. Tensorized versions of DPP
has been proposed [58] to harness GPU powers in-order to pro-
vide higher order scalability but as per our knowledge, re-thinking
DPP formulation and Cosine similarity implementation to best uti-
lize the untapped compute capacity of SIMD (Single Instruction
Multiple Data) enabled modern CPUs has not been explored previ-
ously in literature. To this end, we propose a reformulation of the
DPP algorithm and vectorized implementation of Cosine Similarity,
tailored for SIMD acceleration on CPU that is highly scalable yet
portable across various available server CPUs (Sec. 3). Proposed,
reformulated DPP reduces number of computation involving 𝑁

candidate recommendations and 𝑘 items from O(𝑥) + O(𝑁 2) to
O(𝑥) + O(𝑁 × 𝑘)), where 𝑁 >> 𝑘 and 𝑁 2 > 𝑥 > 𝑁 3; 𝑥 being the
number of computations for matrix multiplication.

Our proposed diversifying recommendation system (Fig. 1 (Left))
enabled us to reduce hardware requirement by nearly 12 times in
production environment (Fig. 1 (Right)) while also improving the top
99th-percentile (P99) latency under the maximum throughput by 13
times (realtime traffic observations discussed in Sec. 5). Our key
contributions in this work are

• Evaluation of parallel processing strategies for CPU for real-
time concurrent services on e-commerce platform.
• Vectorized implementation of cosine similarity used for user
personalization of recommendations that can leverage the
superior SIMD compute capability of modern CPUs.
• Reformulation and vectorization of DPP, commonly used for
diversification of recommendations, to best utilize the gain
in efficiency with SIMD.
• A portable implementation of vectorized SIMD acceleration
using Python libraries that can be migrated amongst various
CPUs and architectures with minimal to no code changes.
• Provide long-term scalability solution to recommendation
pipelines through SIMD vector optimization instead of par-
allel processing.

2 RELATEDWORK
Recommendation system has been an active area of research for
decades with ever evolving requirements to filter out information
overload and generate optimal set of recommendations for con-
sumers. Early works in recommendation systems started with find-
ing correlations of amongst items in large scale databases from
browsing sequences of users [4]. The widely studied ‘GroupLens’

26

https://doi.org/10.1145/3629526.3645041

Rethinking ‘Complement’ Recommendations at Scale with SIMD ICPE ’24, May 7–11, 2024, London, United Kingdom

project [27, 28, 46] introduced collaborative information filtering in
recommendation systems inspired from the real world news groups.
Sarwar et al. [48] proposed to use item based collaborative filtering
in-place of the conventional user centric filtering, while Shahabi et
al. [49] introduced large scale recommendation system by augment-
ing collaborative filtering with content-based querying. Amazon
also published their report [34] on personalizing shopping with
item-to-item collaborative filtering using co-browsing data in 2003.
Hijikata et al. [23] proposed to use discovery driven collaborative
filtering that for each user recommends undiscovered items with
higher probability while personalizing the ranking based on user’s
discovery till that point of time.

On the other hand, the importance of diversity and maximizing
representation of the entire collection in the recommended subset
gained traction almost at the same time as well. Ko et al. [26] pro-
posed to select the most informative subset of recommendations
by maximizing entropy of the set. Adomavicius et al. [1] use mul-
ticriteria ranking to provide better and diverse recommendations.
Carbinell et al. [7] proposed re-ranking of document search results
to maximize information retrieved. Diversification of search results
and its impact on information filtering was studied widely in the
early 2010s [3, 9, 14, 17, 18, 22, 45, 47]. The impact of diversifica-
tion on auto recommendations was also studied widely at the same
time [55, 61, 62, 64]. Lathia et al. [33] studied relevance of temporal
diversity in recommendations. Chapelle et al. [10] explored com-
bining diversification objective with intent based metric ERR-IA
to evaluate relevance and diversity together. Genre and category
based diversification was also explored for generation better recom-
mendations [43, 54]. Diversification also played a important part
in improving relevance of video recommendations. Covington et al.
[16] use a deep-learning based recommendation model for gener-
ating diverse recommendations. While, Mark et al. [59] used DPP
for personalized diversification of video search results in Youtube.
Another widely adopted diversification strategy are the submodu-
lar functions [42] which operates on the principle of maximizing
information from a subset. Researcher’s in [41, 51] use submodular
functions to diversify recommendations in e-commerce.

Lot of research has been also done to better understand and inter-
pret user-behaviour and inferred signals in e-commerce shopping.
McNee et al. [39] attempted to establish a user-centric metric with
informal arguments to better evaluate recommendation quality.
Close and Kukar-Kinney [15] attempted to breakdown and analyse
various user motivation behind the use of electronic carts. In their
work they identify motivations such as entertainment, research also
to play a major role apart from usual factors like price promotions
and immediate purchase. The data evidence backed hypothesis
from this work helped to identify opportunities to increase cart
items and in effect the gross revenue. Hohnhold et al. [24] proposed
to focus on long term user retention rather than short-term gains.
Mcauley et al. [38] explored item relations based on substitutes and
complements, here substitutes refer to products which can replace
the item already in cart and complements are products which can
be bought along with the item already planned for purchase. Zheng
et al. [63] also explore substitute and complement relations between
items to enrich recommendations list.

Determinantal Point Processes originated in Quantum Physics
[6, 25, 35] and are a natural choice for modelling informative sub-
set selection problem like document summarization, diversifying
search and recommendations. Kulesza et al. [31] parameterized
conditional DPP and attempted to learn DPPs from the resulting
convex and tractable learning formulation. Kulesza et al. also pro-
posed to improve the efficiency of DPP computation with the fixed
size k-DPP formulation [30] and also advocated for using DPPs over
MRF in ML tasks mentioned above for better tractability of the for-
mer. Considerable effort has been invested collectively to improve
the efficiency of the DPP computation [5, 19, 20, 30, 36, 37]. Chen
et al. [11] used DPP to improve recommendations with diversity.
Mark et al. [59] also used DPP to generate diverse video recom-
mendations for Youtube. However, reformulating DPP to reduce
complexity of the algorithm without compromising on precision or
exact solution has not been explored in-depth in literature. In our
work, we introduce a reformulated personalization and DPP based
diversification process, highly scalable for online recommendations
by using vectorized computations efficiently. Proposed recommen-
dation pipeline is able to serve 15𝑥 more traffic than the existing
solutions without comprising on the quality of the results.

3 METHOD
For a given query product 𝑝𝑞 and user 𝑢𝑞 , Yan et al. [60] and Agar-
wal et al. [2] described the process of calculating relevant cross-
category or ‘complement’ recommendations. A product-embedding
vector 𝑒 represents a product 𝑝 present in the product catalogue
C of millions of products. Similarly, an user-embedding vector 𝑣
represents a user 𝑢 of the e-commerce platform in vector space.
Every embedding vector is part of a 𝑘-dimensional vector spaceV
stored in the form of a one-dimensional array in computer memory
(Eq. 1).

𝑒, 𝑣 ∈ V ⊂ R𝑘 (1)

For a query product 𝑝𝑞 with product embedding 𝑒𝑞 , a set of 𝑁 prod-
ucts containing the relevant cross-category recommended products
is generated using the product-embedding vectors 𝑒 inV . This set
which acts as a candidate set of recommendations, is called the re-
call set𝐶 for the query product 𝑝𝑞 . The sequence of products in the
recall set is not personalized according to the user preference as it
does not consider user-embedding vectors. It is essential to suggest
products in a personalized sequence tailored to user preference to
increase the relevance of the recommendations. Each product in
the recall set, represented by 𝑝𝑖 ∀𝑖 ∈ [1..𝑁], is assigned a user rele-
vance score 𝑠𝑖 , using user-embedding vector 𝑣𝑞 of user 𝑢𝑞 , and the
product embedding 𝑒𝑖 to personalize the product recommendations.
The personalized recall set is then re-ranked by Determinantal Point
Process (DPP) [35], which uses the relevance scores and product-
embeddings for diversifying the recommendations. The re-ranked
set of products are the recommended ‘complements’ of the product
𝑝𝑞 , personalized to user 𝑢𝑞 .

Fig. 2 shows the workflow for the cross-category-related prod-
uct recommendations. The recommendation workflow is broadly
divided into three steps:- (1) Recall set generation, (2) Personalised
scoring, and (3) Diversified re-ranking.

27

ICPE ’24, May 7–11, 2024, London, United Kingdom Shrey Pandey, Saikat Kumar Das, Hrishikesh V. Ganu, & Satyajeet Singh

Figure 2: ‘Complement’ recommendation service workflow

3.1 Recall Set Generation
This step acts as a filter on a catalogue of millions of products. It
filters out the less relevant products to generate the the recall set
𝐶 , a set of the most relevant 𝑁 products to the query product 𝑝𝑞 .
This step calculates the approximate nearest neighbours (ANN)
of the query product 𝑝𝑞 in the vector spaceV using the product-
embedding vectors 𝑒𝑞 of the query product and remaining products
𝑒𝑙∀ 𝑙 ∈ [1..NC] in the catalogue C .

𝑠𝑖𝑚(𝑔, ℎ) =
𝑁∑︁
𝑖=1

𝑔𝑖 × ℎ𝑖 (2)

The cosine similarity distance Eq. 2 between the embedding vectors
is the metric for the relevance between two products. Distance
between the embedding vector 𝑒𝑞 and embedding vectors 𝑒𝑖∀𝑖 ∈
[1...𝑁] of the products 𝑝𝑖 in the recall set𝐶 gives the style relevance
score 𝑟𝑖 for the recommendation as shown in Eq. 3.

∀{𝑖 ∈ N, 𝑖 ≤ 𝑁 }, 𝑟𝑖 =
𝑘∑︁
𝑗=1

𝑒𝑞𝑗 × 𝑒𝑖 𝑗 (3)

User embedding vector 𝑣𝑞 depends on the real time in-session
data and user browsing behaviour. Thus, it is expected to evolve
with each action in a browsing session. Product attributes remain
mostly unchanged over their lifetime, barring few exceptions. This
makes user embeddings more volatile than product embeddings.
This property allows us to calculate the recall set of products, offline,
once a day without risking the consistency of the pipeline. Recall set
is stored in appropriate data-stores like Aerospike [50] and Redis [8].
During online recommendations, recall set 𝐶 for the query product
𝑝𝑞 is fetched from the corresponding data-store and passed into
next step of recommendation generation pipeline.

3.2 Personalised Scoring
The Recall set 𝐶 generated till now is non-personalized. For per-
sonalised recommendations, the candidate recommendations in 𝐶
should be re-scored, taking user affinity into account. The user-
personalized score of a product in the recall set is the distance of
the user embedding vector and product embedding vector in the
𝑘-dimensional space. A combination of the user-personalised score
with the style relevance score of each product acts as input for
re-ranking the recommendations.

Consider, 𝑣 is the user embedding vector, 𝑉 is the row-major
matrix of size𝑁 × 𝑘 with each row representing product embedding
𝑒𝑖 for each product in recall set 𝐶 i.e. candidate recommendation

𝑝𝑖 . 𝑆 is the vector containing user personalised score for every
candidate recommendation. User-personalized score 𝑠𝑖 of product
𝑝𝑖 in the recall set 𝐶 can be computed by Eq. 4.

∀{𝑖 ∈ N, 𝑖 ≤ 𝑁 }, 𝑠𝑖 =
𝑘∑︁
𝑗=1

𝑣 𝑗 ×𝑉𝑖 𝑗 (4)

User and Product embedding are normalized, i.e ∥𝑣 ∥ = 1 and
∥𝑒𝑖 ∥ = 1,∀ 𝑖 ∈ [1..𝑁]. The baseline algorithmic implementation is
described in Alg.1

Algorithm 1 Baseline implementation of cosine similarity

Require: (𝑢,𝑉)
Ensure: 𝑢𝑠𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒𝑠 = 𝑆

𝑆 ← {0.0, 0.0, 0.0....0.0}𝑁
𝑖 ← 1
while 𝑖 ≤ 𝑁 do

𝑠𝑐𝑜𝑟𝑒 ← 0.0
𝑗 ← 1
while 𝑗 ≤ 𝑘 do

𝑋 ← 𝑢 [𝑗] ×𝑉 [𝑖] [𝑗]
𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 + 𝑋
𝑗 ← 𝑗 + 1

end while
𝑆 [𝑖] ← 𝑠𝑐𝑜𝑟𝑒

𝑖 ← 𝑖 + 1
end while

Since each iteration of outer loop in the baseline implementa-
tion as mentioned in Alg. 1 calculates score 𝑠𝑖 for each product 𝑝𝑖 ,
every iteration of outer loop is independent of each other and can
be computed in parallel. This limits the optimal efficiency of the
baseline implementation as it works on one vector element at a
time, increasing the latency of the cosine similarity calculation. For
optimising the latency of the user-personalised score calculation,
parallelism should be incorporated with the goal of the minimum
overhead in data transfer, data copy, context switching and cache
miss. Generally, parallelization is incorporated in the following
fashion:-

3.2.1 Multithreading. This method of parallelization is helpful in
case CPU cores are under-utilised and idle most of the time to share
the compute-heavy work and reduce the latency. In a user-facing
online system, thousands of concurrent users request recommenda-
tions at a given time, so CPU cores are occupied most of the time
to compute recommendations for the users, and there are no free
cores to incorporate more threads. Spawning more threads will
increase the load average of the system due to increase in number
of waiting threads. This will lead to frequent context switching due
to OS scheduler which adds the extra overhead latency of context
switching, thread creation and cache miss. This leads to the scenario
that the amount of time spent on context switching can exceed the
amount of time spent on computation. This behaviour suggests that
multi-threading will not reduce the latency and cannot scale well
for online system involving compute intensive machine learning
workloads. Efficient use of CPU cores is the key to increasing the
throughput, latency per request and performance.

28

Rethinking ‘Complement’ Recommendations at Scale with SIMD ICPE ’24, May 7–11, 2024, London, United Kingdom

3.2.2 Register level parallelism/SIMD. Modern processors usually
have a wider register length which can consume more data in a
single instruction cycle. The proposed method is efficient when
the same operation is performed on multiple continuous and in-
dependent data, and the result is stored in multiple independent
yet continuous memory locations. Thus, enabling parallel computa-
tions with added advantage of more cache hits results in efficiently
generating user-personalised scores.

3.2.3 Proposed Cosine Similarity. Since cosine similarity calcula-
tion is a reduction operation, in which dependent data is continuous
in computer memory, the implementation mentioned in Alg.1 can-
not leverage register level parallelism. We propose a batch cosine
similarity operation to calculate similarity between user 𝑢 with
𝑁 products in recall set 𝐶 that is hardware-agnostic, optimized
and can be easily implemented in any high level programming lan-
guage like Python [53]. It is implemented according to instruction
set architecture, processors vector length, cache length and scope,
temporal and spatial locality of data. It is powered by the SIMD
(or vector parallelism) which performs 216× better than baseline
implementation.

The column-major matrix 𝑉 (𝑉 = 𝑉𝑇 , 𝑉 is the original product
embedding matrix 𝑉) represents the product embeddings, where
𝑖𝑡ℎ column contains the embedding 𝑒𝑖 for the product 𝑝𝑖 in the
candidate set 𝐶 and 𝑗𝑡ℎ row represents the 𝑗𝑡ℎ feature element
in the embedding of every product in 𝐶 , i.e. 𝑉𝑖 𝑗 represents 𝑗𝑡ℎ

feature element of the 𝑖𝑡ℎ product in𝐶 . Let us consider Intel® Xeon®

Platinum 8171MCPU@2.60GHz processor as the processing unit. It
has a maximum register length of 512 bits, implying it can consume
16 consecutive 32-bit floating point numbers in a single instruction
cycle, essentially processing 16 elements in parallel. In addition to
wide register length, it also has the functionality of Fused Multiply
Add (FMA) in the instruction set, which allows multiplication and
addition in a single clock cycle.

𝑓𝑚𝑎(𝑎, 𝑏, 𝑐) = 𝑎 + 𝑏 × 𝑐

The proposed optimised cosine similarity calculations can be repre-
sented by Eq. 5,

𝑆 =

𝑘∑︁
𝑗=0
(∀{𝑖 ∈ N, 𝑖 ≤ 𝑁 } 𝑢 𝑗 ×𝑉𝑗𝑖) (5)

Algorithm 2 Optimised implementation of cosine similarity

Require: (𝑢,𝑉)
Ensure: 𝑢𝑠𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒𝑠 = 𝑆

𝑆 ← {0.0, 0.0, 0.0....0.0}𝑁
𝑖 ← 1
while 𝑖 ≤ 𝑘 do

𝑗 ← 1
while 𝑗 ≤ 𝑁 do ⊲

𝑆 [𝑗 : 𝑗 + 16] ← 𝑓𝑚𝑎(𝑆 [𝑗 : 𝑗 + 16], 𝑢 [𝑖], 𝑉 [𝑖] [𝑗 : 𝑗 + 16])
𝑗 ← 𝑗 + 16

end while
𝑖 ← 𝑖 + 1

end while

The proposed algorithm Alg. 2 ensures the maximum utilisation
of accumulator and CPU registers with the least data transfer, data
copy and cache miss overhead because of FMA instruction, as il-
lustrated in Fig. 3a. It processes 16 elements in a single clock cycle,
which is efficient and has lower latency than other implementations.
It also ensures maximum spatial and temporal locality for cache
hits, reducing the latency. Additionally, the proposed algorithm re-
duces number of total computations bringing down the processing
footprint of each request, enough to localize each request to a single
core of processor. Thus, providing significant scaling opportunity
by enabling multiple instance of computation process to run in a
single node. The number of instances is equal to number of cores
available in the node which is empirically calculated.

3.3 Diversified Re-Ranking
After generating the user-personalized score 𝑠𝑖 from the scoring
layer, the score is merged with the product relevance score 𝑟𝑖 to
obtain the recommendation quality for each product. Let 𝑞𝑖 be the
recommendation quality score for the product 𝑝𝑖 in the recall set𝐶 .

𝑞𝑖 = 𝛽𝑠𝑖 + (1 − 𝛽)𝑟𝑖 (6)

where 𝛽 is personalization hyperparameter which controls the
personalization in recommendations, whose value is derived empir-
ically. The candidate recommendations are then re-ranked ensuring
diversity and relevance in the recommendations, and the top 𝑀

products are shown to the user. The ranking of each product should
maximize the recommendation quality score 𝑞𝑖 and minimize the
repetition of similar products to maximize user engagement and
product discovery. In other words, the cumulative quality score and
the distance between the top𝑀 recommended products should be
maximized jointly. Cosine similarity between two product embed-
ding can be used to calculate the distance between two products.

Let𝑊 be a subset of products sampled from set of candidate
recommendations 𝐶 such that |𝑊 | = 𝑀 ; For each 𝑊 ⊆ 𝐶 , let
P(𝑊) be the probability that the user will browse and add products
to cart from the recommended product set𝑊 . P(𝑊) should be
maximized to get the most optimal set of top𝑀 recommendations.
This behaviour can be modelled as a Determinantal Point Process
(DPP) as illustrated by Mark et al. [59] and Warlop et al. [58].

The process of diversification in the recommendations comprise
of the following steps:-

(1) Learning the positive semi-definite kernel matrix 𝐿 that can
represent the point process.

(2) Sampling the top 𝑀 products from the candidate from the
DPP kernel matrix.

3.3.1 Learning the DPP kernel. Diversification in the recommended
products considers the quality scores 𝑞 and product-embedding
vectors in recall set 𝐶 .

Let 𝑑𝑖 𝑗 is the cosine similarity distance between the embedding
vector of the 𝑖𝑡ℎ and 𝑗𝑡ℎ product in the candidate set. The kernel
matrix can be parameterized as follows:-

𝐿𝑖 𝑗 = exp(𝛼2𝑞𝑖𝑞 𝑗)𝑑𝑖 𝑗

𝛼 =
𝜃

2 × (1 − 𝜃)
(7)

29

ICPE ’24, May 7–11, 2024, London, United Kingdom Shrey Pandey, Saikat Kumar Das, Hrishikesh V. Ganu, & Satyajeet Singh

(a) Optimised cosine similarity workflow

(b) Baseline DPP Implementation

(c) Proposed DPP Implementation

Figure 3: Optimization of cosine similarity and reformulation of DPP Kernel matrix generation

For diagonal elements since 𝑖 = 𝑗 , cosine distance between the same
products will be 1,i.e. 𝑑𝑖 𝑗 = 1. Eq. (7) can be simplified to

𝐿𝑖𝑖 = exp(𝛼2𝑞2𝑖)
𝐿𝑖 𝑗 = exp(𝛼2𝑞𝑖𝑞 𝑗)𝑑𝑖 𝑗 𝑓 𝑜𝑟 𝑖 ≠ 𝑗

𝛼 =
𝜃

2 × (1 − 𝜃)

(8)

𝜃 ∈ [0, 1] is the tunable hyperparameter that controls the recom-
mendations’ relevance and diversity. In our experiments, we use
𝜃 = 0.7, empirically derived, for best results in recommendations in
terms of relevance and diversity. A high value of 𝜃 ensures a higher
priority to the quality score of recommendations as the kernel
matrix will be parameterized heavily on the quality of recommen-
dations. Similarly, a small value of 𝜃 will prioritize the diversity of
recommended products as the kernel matrix will be parameterized
by cosine similarity distance between the embedding vectors.

Constructing the kernel matrix involves getting the cosine sim-
ilarity distance 𝑑𝑖 𝑗 for every (𝑖, 𝑗) pair in candidate recommenda-
tions. Since the embedding vectors are normalized in the candidate
generation phase, 𝑑𝑖 𝑗 is the dot product of vector pair𝑉𝑖 and𝑉𝑗 . Dot
product for every vector pair can be calculated by matrix multiplica-
tion of𝑉 by its transpose𝑉 ⊺ . Let𝐷 is an𝑁×𝑁 matrix in which each
element𝐷𝑖 𝑗 contains the cosine similarity distance between 𝑖𝑡ℎ and
𝑗𝑡ℎ product in recall set 𝐶 . In other words, 𝐷𝑖 𝑗 = 𝑑𝑖𝑠 (𝑝𝑖 , 𝑝 𝑗) = 𝑑𝑖 𝑗 .

𝐷 = 𝑉 ⊺ ×𝑉 (9)

OpenBLAS [57] and Intel® MKL [56], which use the BLAS interface
for OS’s kernel-level optimized routines for linear algebra oper-
ations, can be utilized for computation of 𝐷 . Each component of
quality scores for product 𝑝𝑖 , exp(𝛼 × 𝑞𝑖), is multiplied by the cor-
responding element of the similarity matrix 𝐷 indexed by 𝑖 to get
the parameterized kernel matrix [12, 59]. The implementation is

explained in Alg. 3 and illustrated in Fig. 3b. Let 𝑥 be number of com-
putations involved in matrix multiplication to generate similarity
matrix 𝐷 . Also, number of computations required to parameterise
similarity matrix 𝐷 to generate kernel matrix 𝐿 is proportional to
𝑁 2 as shown in Alg. 3. Therefore, approx number of computations
of generating kernel matrix from baseline implementation Alg.3
can be estimated to

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 = O(𝑥) + O(𝑁 2) (10)

Algorithm 3 Baseline implementation of kernel matrix generation
Require: 𝜃 ⊲ DPP hyperparamter for controlling relevance
Require: 𝑞,𝑉 ⊲ Quality score and Product embeddings
Require: 𝑁 ⊲ Number of candidate recommendations
Ensure: 𝐿 ⊲ Parametrised Kernel Matrix
𝛼 ← 𝜃 ÷ (2 × (1 − 𝜃))
𝐿 ← 𝑉 ⊺ ×𝑉 ⊲ Using BLAS matrix multiplication subroutine
𝑖 ← 1
while 𝑖 ≤ 𝑁 do

while 𝑗 ≤ 𝑁 do
𝐿[𝑖] [𝑗] ← exp(𝛼𝑞𝑖) × exp(𝛼𝑞 𝑗) × 𝐿[𝑖] [𝑗]
𝑗 ← 𝑗 + 1

end while
𝑖 ← 𝑖 + 1

end while

3.3.2 Proposed DPP. We propose an efficient way to compute ker-
nel matrix which involves less number of computation to generate
kernel matrix than Alg. 3. Let (∗) represents element wise multipli-
cation of a vector and matrix. In case of element wise multiplication
of row vector and matrix, each element of vector is multiplied to
every element of the corresponding columns. Similarly in case of ele-
ment wise multiplication of column vector andmatrix, each element

30

Rethinking ‘Complement’ Recommendations at Scale with SIMD ICPE ’24, May 7–11, 2024, London, United Kingdom

of vector is multiplied to every element of the corresponding rows.
Let 𝑆 be the row vector with component of scores, 𝑆𝑖 = exp(𝛼 ×𝑞𝑖).
The algorithm Alg. 3 can be represented using (∗) as follows:-

𝐿 = 𝑆⊺ ∗ (𝑉 ⊺ ×𝑉) ∗ 𝑆 (11)

Eq. 11 can be further simplified as,

𝐿 = 𝑆⊺ ∗ (𝑉 ⊺ ×𝑉) ∗ 𝑆
⇔ 𝐿 = 𝑆⊺ ∗𝑉 ⊺ ×𝑉 ∗ 𝑆
⇔ 𝐿 = (𝑆⊺ ∗𝑉 ⊺) × (𝑉 ∗ 𝑆)
⇔ 𝐿 = (𝑉 ∗ 𝑆)⊺ × (𝑉 ∗ 𝑆)

(12)

The term 𝑉 ∗ 𝑆 represents a matrix with each column is the
embedding vector 𝑒𝑖 of each product 𝑝𝑖 is elongated by the factor of
the component of quality score exp(𝛼×𝑞𝑖). Using the simplification
mentioned in Eq. 12, the implementation of kernel matrix creation
can be further optimised by prior computation of 𝑉 ∗ 𝑆 and the
result of the matrix multiplication of the transpose of 𝑉 ∗ 𝑆 with
itself will give the parameterised kernel matrix 𝐿 as illustrated in
Fig. 3c.

Algorithm 4 Proposed Optimised implementation of kernel matrix
generation
Require: 𝜃 ⊲ DPP hyperparamter for controlling relevance
Require: 𝑞,𝑉 ⊲ Quality score and Product embeddings
Require: 𝑁 ⊲ Number of candidate recommendations
Ensure: 𝐿 ⊲ Parametrised Kernel Matrix
𝛼 ← 𝜃 ÷ (2 × (1 − 𝜃))
𝑖 ← 1
while 𝑖 ≤ 𝑘 do

while 𝑗 ≤ 𝑁 do
𝑉 [𝑖] [𝑗] ← exp(𝛼𝑞𝑖) × exp(𝛼𝑞 𝑗) ×𝑉 [𝑖] [𝑗]
𝑗 ← 𝑗 + 1

end while
𝑖 ← 𝑖 + 1

end while
𝐿 ← 𝑉 ⊺ ×𝑉 ⊲ Using BLAS matrix multiplication subroutine

Since, the number of computations required to parameterise sim-
ilarity matrix𝐷 in Alg. 4 to generate kernel matrix 𝐿 is proportional
to 𝑁 × 𝑘 . Therefore, number of computations of generating kernel
matrix from proposed implementation Alg. 4 can be estimated to

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 = O(𝑥) + O(𝑁𝑘) (13)

For production use cases, since 𝑘 can be treated as constant as it
is independent on number of products in the recall set 𝐶 and for
various practical cases 𝑘 << 𝑁 , the algorithm Alg. 4 works better
than Alg. 3 as it iterates over less number of elements to generate
the parameterised kernel matrix.

3.3.3 Sampling the top relevant recommendations. Sampling the
top𝑀 relevant products involves fetching the optimal set of prod-
ucts satisfying Eq. 7. Since, finding the optimal subset of products
𝑊𝑀 is NP-Hard, a greedy algorithm [12] for submodular maximisa-
tion [42] is used.

4 IMPLEMENTATION DETAILS
We have implemented the proposed workflow of the cross-category
recommendations system using Python3.8 with Numba [32] and
NumPy [52].

• NumPy is a Python library used to store numerical data in
the form of arrays. Internally, NumPy uses low-level func-
tions and kernel libraries for fast mathematical operations.
Also, it stores the arrays in a continuous memory buffer like
any other low-level programming language like C or For-
tran, making it easier to utilize SIMD due to the increase in
memory colocation. User and Product embedding vectors
are stored in the form of NumPy arrays.
• Numba is a JIT(just-in-time) python compiler that compiles
high-level python functions to low-level machine code using
the LLVM compiler library. SIMD capabilities can be utilized
in by translating into low-level machine code according to
embedding vectors memory layout, CPU specification and
available registers on the cloud machines without manually
specifying the compilation flags.

We avoided assembly-level SIMD to make the implementation
portable across systems within x86 architecture. This also makes
the implementation easy to develop, debug and maintain as pro-
grammer does not have to understand the underlying hardware.

5 EXPERIMENTS AND RESULTS
In this section we discuss the benchmarking of the proposed refor-
mulated components and its impact on the whole recommendation
pipeline against the non-optimized baseline method. We bench-
marked the baseline workflow and the proposed workflow and
established the latency and throughput gains on a private recom-
mendation dataset. We also benchmarked the latency of various
compute intensive components and the throughput and latency
gain on baseline and proposed workflows.

5.1 Experimental setup
Recommendation dataset consists of 5000 query products and user
pairs. These query products are randomly selected from a prod-
uct catalogue of 1.5 million products. Each embedding are in 81-
dimensional vector spaceV (𝑘 = 81) and each product have a recall
set of 500 products(𝑁 = 500) and 60 products are sampled as the
top relevant products to recommend to user. The experiments are
performed on Microsoft Azure cloud based virtual machines which
uses Microsoft Azure Cloud Hypervisor based on Microsoft Hyper-
V. The underlying hardware on the virtual machine has Intel® Xeon®

Platinum 8171M CPU with frequency 2.60GHz with 16 cores and
64GB memory.

5.2 Experiments
We evaluate the impact of our proposed method on scalability of
user-facing online services through a series of experiments on
the existing and proposed pipelines. We first evaluate the baseline
process pipeline (P-Base), which is a implementation of the person-
alization and diversification algorithm as described in [59]. P-Base
is agnostic of the concurrency in online services and does not con-
tain any explicit thread or multiprocessing control. We introduce

31

ICPE ’24, May 7–11, 2024, London, United Kingdom Shrey Pandey, Saikat Kumar Das, Hrishikesh V. Ganu, & Satyajeet Singh

Table 1: Latency(in milliseconds) benchmarking of the baseline implementation(P-Base), single threaded baseline
implementation(P-Base-OnlineServ) and proposed implementation(P-Proposed) of recommendation service. KO indicates
request timeout.

Traffic

P-Base P-Base-OnlineServ P-Proposed
Latency Components Latency Components Latency Components
(in ms) (in ms) (in ms) (in ms) (in ms) (in ms)

Mean P95 P99 Cos DPP Mean P95 P99 Cos DPP Mean P95 P99 Cos DPPSim Sim Sim

0.9 k 20.1 43.7 54 3.70 2.78 14.6 24.7 25.2 2.03 1.32 11.1 16.5 19.7 0.052 0.677
3.0 k 98.1 348 555 11.5 50.7 15.1 27.0 29.9 2.14 1.40 11.2 17.2 19.9 0.053 0.678
15.0 k KO KO KO KO KO 16.7 32.7 41.5 2.74 1.63 12.0 19.2 25.3 0.053 0.776
42.0 k KO KO KO KO KO 196 742 1050 4.18 2.28 18.4 41.5 61.3 0.059 0.909
45.0 k KO KO KO KO KO KO KO KO KO KO 20.5 43.5 63.5 0.061 0.936

Table 2: Ablation study (in milliseconds) of individual proposed components of the recommendation pipeline.

Throughput
Latency (in ms)

Baseline Baseline + Vec. Similarity Baseline + Vec. DPP Baseline + Vec. Sim. & DPP
[P-Base-OnlineServ] [P-VecSim] [P-VecDPP] [P-Proposed]
Mean P95 P99 Mean P95 P99 Mean P95 P99 Mean P95 P99

3.0 k 15.1 27.0 29.9 11.9 17.7 19.7 14.6 25.3 28.2 11.2 17.2 19.9
12.0 k 16.5 31.7 40.2 12.6 20.4 25.5 15.1 29.1 36.6 11.7 17.8 22.2
18.0 k 17.3 34.7 47.4 13.6 22.7 30.5 15.9 31.7 41.5 12.0 19.2 26.5
24.0 k 19.5 41.5 62.0 14.6 28.7 31.5 17.4 35.9 49.1 14.1 27.2 29.0
30.0 k 22.6 51.3 75.2 15.1 34.5 34.9 22.1 45.7 64.3 14.5 32.5 33.1
36.0 k 50.9 150.0 217.0 19.4 44.7 49.3 39.1 62.5 78.2 18.2 37.6 41.9

Table 3: Benchmarking the impact of using multithreading in the proposed implementation of the recommendation service.

Throughput
Latency (in ms)

1 Threads 4 Threads 8 Threads 16 Threads
Mean P95 P99 Mean P95 P99 Mean P95 P99 Mean P95 P99

0.9 k 11.1 16.5 19.7 15.0 24.0 26.7 16.6 25.3 33.4 20.1 43.7 54
1.5 k 11.2 16.9 19.8 16.2 25.8 29.7 17.9 34.4 59.3 26.9 75.2 120
3.0 k 11.2 17.2 19.9 18.2 30.6 45.7 27.9 79.1 131 98.1 348 508

optimal multiprocessing conditions, suited to online services han-
dling concurrent requests, to P-Base and establish new pipeline
P-Base-OnlineServ by controlling number of intra and inter process
threads spawned for each request. Finally, we experiment with our
proposed pipeline P-Proposed which contains the thread control
mentioned before and also the vectorized implementation of per-
sonalization (Alg. 2) and diversification (Alg. 4). To analyze the
scalability of the pipelines under consideration we subject each
to varying load of concurrent requests ranging from 900 to 45000
Requests Per Minute (0.9K-45K RPM). We monitor the change of
latency under the increasing throughput of requests for each of the
pipeline and ascertain the breaking-point as the load under which
the pipelines go out-of-service due to congestion and non-serviced
timeout of incoming requests. The metrics used for comparative
analysis of the experiments are average and peak latency of end-to-
end service of a request. Average latency is nothing but the mean
of all observed latency in a observation set and peak latency refers

to the 99th percentile of all observations, also written as P-99. The
permissible limit of P-99 latency is 100ms. The observations are
recorded in Table. 1, where latency numbers in red represents un-
acceptable because P-99 latency exceeds permissible limit and ‘KO’
represents the experiment could not complete at higher level of
concurrency and requests being terminated by system.

5.3 Comparative analysis
Table. 1 shows the observed latency numbers of the P-Base, P-Base-
OnlineServ and P-Proposed under various loads on the system sim-
ulated with the real-world traffic simulator. As mentioned above,
P-Base does not contain any explicit thread control built into it
and runs with out-of-box settings of high level production APIs in
Python. At 0.9K RPM traffic the pipeline runs without any issue,
serving requests in 20.1ms on average and the peak latency lies
around 54ms. However, with increase in the load, the pipeline starts

32

Rethinking ‘Complement’ Recommendations at Scale with SIMD ICPE ’24, May 7–11, 2024, London, United Kingdom

(a) Comparison of P-99 latencies (b) Cosine Similarity (c) DPP

Figure 4: a) Comparison of mean and peak P-99 latency of single threaded baseline implementation (P-Base-OnlineServ) and
proposed implementation (P-Proposed). Complete benchmarking including P-Base in inset. Benchmarking of b) Optimization
of cosine similarity and c) reformulation of DPP Kernel matrix generation

to choke up and finally gives away under 3.0K RPM load with aver-
age latency of 98.1ms and the peak latency climbing upto 555ms.
Thus, it can be concluded that P-Base is not vertically scalable. From
our analysis we ascertained the over usage of multi-threaded par-
allelization to be the source of bottleneck in the pipeline. Python
APIs, in general, are designed with goal of achieving optimal per-
formance of single request on dedicated infra. Thus, lift-and-shift
implementation of such APIs in user facing online services that
are expected to handle large concurrency is not suitable. Hence,
we decided to re-establish the baseline after optimizing the multi-
threaded behaviour to make the implementation more suitable to
online services for fair comparison. Next we benchmark the thread
controlled implementation (P-Base-OnlineServ) of Alg. 1 and Alg. 3.
The pipeline becomes much more resilient under scale as it can
easily serve requests in 15.1ms on average under a load of 3.0K RPM.
It is easily able to handle even 15.0K RPM with 16.7ms average and
41.5ms Peak latency. However, breaking-point for P-Base-OnlineServ
occurs around 42.0K RPM traffic. Next we benchmark our proposed
pipeline P-Proposed with vectorized implementation of Alg. 2 and
Alg. 4 and optimal thread control, derived empirically. P-Proposed
performs much better under the basic load of 0.9K throughput with
average serving latency of 11.1ms and peak latency at P99 of 19.7ms.
We also observe that P-Proposed scales efficiently under increasing
load of 3K and 15K RPM load with less than 10% increase in average
serving latency. Under 15.0K RPM, P-Proposed has peak latency of
only 25.3ms which is significantly improved over P-Base-OnlineServ.
We validated the proposed pipeline P-Proposed to be operational un-
der traffic load of 45.0K RPM. Under this extreme load, the pipeline
is still able to serve requests under 20.5ms on average and with peak
latency (P99) of 63.5ms. Fig. 4a shows the latency vs. throughput
plot of P-Base, P-Base-OnlineServ and P-Proposed which visually de-
picts the improvement in vertical scalability between the pipelines.
Considering horizontal scaling to serve production traffic beyond
45k RPM, we can conclude that P-Proposed requires 50-times less
hardware instances than P-Base and 3-times less hardware instances
than P-Base-OnlineServ to support a certain amount of traffic. Next,
we benchmark each of the individual components impacted by our
proposed optimization in P-Proposed. Table. 1 also shows the ob-
served average latency for cosine similarity and DPP calculations in

P-Base, P-Base-OnlineServ and P-Proposed under increasing traffic.
Both cosine similarity and DPP module latency grows aggressively
in P-Base and reaches 11.5ms and 50.7ms on average respectively.
This validates the earlier observations that 3.0K RPM is the breaking-
point traffic for P-Base. At 0.9K RPM traffic, in P-Base-OnlineServ,
latency of cosine similarity computation is 2.03ms while that of
DPP is 1.32ms on average which is acceptable but on the higher side
for a real-time recommendation service. However, with increase
in the traffic, latency of both components increase rapidly. This
causes ‘thrashing’ in the system i.e. more time is wasted in context
switching than computing. This causes congestion and non-served
request queue build-up in the system, leading to rapid increase in
latency. At 42.0K RPM traffic, average latency of cosine similarity
goes upto 4.18ms and DPP latency reaches upto 2.28ms. Thus, it can
be concluded that the baseline implementation of cosine similarity
and DPP are not entirely vertically scalable. However, in contrast,
the cosine similarity and DPP component serving latency in the pro-
posed vectorized implementation P-Proposed is significantly lower
compared to the baseline implementation P-Base-OnlineServ.

In case of P-Proposed, vectorized cosine similarity incurs a aver-
age serving latency of 52𝜇𝑠 under nominal load of 0.9K RPM, which
only increases upto 61𝜇𝑠 under 45.0K RPM traffic. This indicates
the proposed vectorized implementation of Alg. 2 is highly scalable
and can perform with almost constant latency under aggressively
increasing requests traffic. Fig. 4b shows the comparative plots of
mean latency of cosine similarity pipeline. Similarly, the reformu-
lated vectorized DPP operates with average execution latency of
677𝜇𝑠 under 0.9K RPM traffic and is able to constrain the average
latency to just under 1ms (936𝜇𝑠) when subjected to a traffic of
45.0K RPM. Fig. 4c shows the comparative plots of mean latency
of DPP pipeline. Although the plots of DPP component in P-Base-
OnlineServ and P-Proposed seem to be close to each other but that
is due to the unconstrained growth of the DPP latency in P-Base.

Thus, the comparative analysis of critical components of our
proposed method comprehensively support our claims of signifi-
cantly improving the scalability of the diversified recommendation
pipeline. We take a further closer look at the impact of these critical
components later in Sec. 6 by evaluating their influence in isolation.

33

ICPE ’24, May 7–11, 2024, London, United Kingdom Shrey Pandey, Saikat Kumar Das, Hrishikesh V. Ganu, & Satyajeet Singh

6 ABLATION STUDY
In this section, we analyse the results of our ablation study of
the individual components of the proposed method to assess their
individual and collective influence on improving the scalability
of the pipeline. We also evaluate the impact of using traditional
optimization methods like threaded parallelization on our proposed
method.

6.1 Impact of individual components
We analyse the influence of individual proposed components in
improving the scalability of the recommendation pipeline through
a set of ablation experiments. Table. 2 shows the result of the ab-
lation experiments. The behaviour of P-Base-OnlineServ is already
discussed above and noted to be not scalable to a high degree. How-
ever, upon introducing the proposed vectorized Cosine similarity
(Alg. 2) to this pipeline, we observed that the resultant pipeline
P-VecSim becomes significantly more scalable. P-VecSim can serve
with an average and P-99 latency of 19.4ms and 49.3ms respectively
under 36.0K RPM traffic. This shows significant improvement over
P-Base-OnlineServ which have average and P-99 latency of 50.9ms
and 217.0ms respectively under similar conditions. Next, we evalu-
ate the influence of the proposed vectorized DPP (Alg. 4) module.
Upon introducing same to P-Base-OnlineServ, the resultant pipeline
P-VecDPP also becomes readily more scalable. The average and
peak latency of P-VecDPP, 39.1ms and 78.2ms respectively, when
subjected to a traffic of 36.0K RPM, remains decently under con-
trol to keep the pipeline operational. Introducing both vectorized
similarity and vectorized DPP to P-Base-OnlineServ creates our pro-
posed pipeline P-Proposed, which by virtue of including both the
scalable components demonstrates highest scalability. Subjected to
a traffic of 36.0K RPM, P-Proposed incurs average and peak latency
of 18.2ms and 41.9ms respectively, growing only 60% over the aver-
age latency of 11.2ms under 3.0K RPM. The peak latency growth
under maximum traffic is also constrained under only to 3 times
the original peak latency for a 12x growth in traffic. These observa-
tions prove our claims of proposing individual scalable components,
whose sum is even greater than the parts in terms of improving
scalability of the recommendation pipeline.

6.2 Impact of threaded parallelization
We also evaluated impact of using conventional optimization of
multithreaded parallelism on scalability of proposed recommen-
dation system pipeline. Table. 3 shows that the single threaded
pipeline scales most efficiently under increasing traffic with less
than 10% increase in the average serving latency over the range of
loads. However, even with 4 threads per request, the average and
peak latency doubles at 3.0K RPM than the 1-thread pipeline. 8 and
16 threaded implementations cross real-time SLA limits under only
3K RPM load with nearly 7x and 25x growth in peak latency over
1-thread pipeline. Thus, it can be concluded that naive usage of
multithreading without vectorization does not work well in practice
for online recommendation systems.

7 OPEN PROBLEMS AND FUTUREWORK
We have conducted in-depth experiments to evaluate the perfor-
mance of our proposed modification to the similarity and DPP

algorithms to leverage benefits of SIMD multiprocessing in server
and virtual machine environments. Evaluating the performance of
the same algorithms with SIMD multiprocessing in a container-
ized environment e.g. Kubernetes (k8s) is one of the goals of our
future work. We have also been exposed solely to x86 and x86_64
Instruction Set Architecture (ISA) as these are the most commonly
found instruction set in server and cloud VM environments. Evalu-
ating the impact of SIMD multiprocessing on different ISAs such
as ARM also remains an open problem to be addressed in future
publications from this body of work. On the other hand, we have
focused on constituting portable SIMD accelerated method and thus
had to look beyond Assembly level SIMD which becomes bound to
specific CPUs with specific register counts. However, this problem
can be solved alternatively by bypassing the dependency of regis-
ter lengths in Assembly level SIMD and we believe considerable
amount of research scope is present in that area.

8 CONCLUSION
In this paper, we explored the opportunities of moving past con-
ventional optimization strategies like threaded parallelization for
CPU only online recommendation systems and adopting the SIMD
optimizations by redesigning critical components, with motivations
of vectorization, of a ‘complement’ recommendation system. We
experimentally show that vectorized implementation of the well
known blocks like personalization and diversification can be made
significantly more scalable by utilizing SIMD compute powers of
modern day CPUs. We use portable SIMD constructs in Python
to make the implementation easily portable across different CPUs
and architectures. The approach advocated-for in this work can be
extended to many available recommendation systems that are de-
ployed in CPU only servers and can be pivotal shift towards making
efficient large scale e-commerce services. In addition to endorsing
the use in recommender systems, we propose and encourage further
exploration of proposed algorithm in vector similarity operations,
particularly within applications such as vector databases, which
serve as efficient storage and retrieval systems for vector embed-
dings (e.g., Milvus [40], Pinecone [44], ChromaDB [13]). As these
applications are heavily reliant on similarity algorithms of the kind
proposed in this work, we believe further research into same will
help make these applications more optimized and real-time. Fur-
thermore, considering the influence of these applications in the
increasingly popular Generative-AI paradigm, optimizing them
holds the promise of rendering Generative-AI applications more
responsive and suitable for large-scale deployments in real-world
scenarios.

REFERENCES
[1] Gediminas Adomavicius and YoungOk Kwon. 2007. New Recommendation

Techniques for Multicriteria Rating Systems. IEEE Intelligent Systems 22, 3 (2007),
48–55. https://doi.org/10.1109/mis.2007.58

[2] Pankaj Agarwal, Sreekanth Vempati, and Sumit Borar. 2018. Personalizing similar
product recommendations in fashion e-commerce. AI for fashion, The third
international workshop on fashion and KDD (2018).

[3] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.
Diversifying Search Results. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining (Barcelona, Spain) (WSDM ’09).
Association for Computing Machinery, New York, NY, USA, 5–14. https:
//doi.org/10.1145/1498759.1498766

[4] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Association
Rules between Sets of Items in Large Databases. SIGMOD Rec. 22, 2 (jun 1993),

34

https://doi.org/10.1109/mis.2007.58
https://doi.org/10.1145/1498759.1498766
https://doi.org/10.1145/1498759.1498766

Rethinking ‘Complement’ Recommendations at Scale with SIMD ICPE ’24, May 7–11, 2024, London, United Kingdom

207–216. https://doi.org/10.1145/170036.170072
[5] Rémi Bardenet and Michalis Titsias RC AUEB. 2015. Inference for determinantal

point processes without spectral knowledge. In Advances in Neural Information
Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett
(Eds.), Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2015/file/2f25f6e326adb93c5787175dda209ab6-Paper.pdf

[6] Alexei Borodin. 2015. 231Determinantal point processes. In
The Oxford Handbook of Random Matrix Theory. Oxford Univer-
sity Press. https://doi.org/10.1093/oxfordhb/9780198744191.013.11
arXiv:https://academic.oup.com/book/0/chapter/365880931/chapter-ag-
pdf/45289415/book_43656_section_365880931.ag.pdf

[7] Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-Based
Reranking for Reordering Documents and Producing Summaries. In Proceed-
ings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (Melbourne, Australia) (SIGIR ’98). As-
sociation for Computing Machinery, New York, NY, USA, 335–336. https:
//doi.org/10.1145/290941.291025

[8] Josiah Carlson. 2013. Redis in action. Simon and Schuster.
[9] Olivier Chapelle, Shihao Ji, Ciya Liao, Emre Velipasaoglu, Larry Lai, and Su-

Lin Wu. 2011. Intent-based diversification of web search results: metrics and
algorithms. Information Retrieval 14 (2011), 572–592.

[10] Olivier Chapelle, Shihao Ji, Ciya Liao, Emre Velipasaoglu, Larry Lai, and Su-
Lin Wu. 2011. Intent-based diversification of web search results: metrics and
algorithms. Information Retrieval 14, 6 (2011), 572–592. https://doi.org/10.1007/
s10791-011-9167-7

[11] Laming Chen, Guoxin Zhang, and Hanning Zhou. 2017. Improving the diversity
of top-N recommendation via determinantal point process. (2017).

[12] Laming Chen, Guoxin Zhang, and Hanning Zhou. 2018. Fast Greedy MAP Infer-
ence for Determinantal Point Process to Improve Recommendation Diversity. In
Proceedings of the 32nd International Conference on Neural Information Processing
Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY,
USA, 5627–5638.

[13] ChromaDB. 2023. Chroma : the AI-native open-source embedding database. https:
//www.trychroma.com/

[14] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova, Azin
Ashkan, Stefan Büttcher, and Ian MacKinnon. 2008. SIGIR - Novelty and diversity
in information retrieval evaluation. Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval - SIGIR
’08 NA, NA (2008), 659–666. https://doi.org/10.1145/1390334.1390446

[15] Angeline G. Close and Monika Kukar-Kinney. 2010. Beyond buying: Motivations
behind consumers’ online shopping cart use. Journal of Business Research 63,
9 (2010), 986–992. https://doi.org/10.1016/j.jbusres.2009.01.022 Advances in
Internet Consumer Behavior & Marketing Strategy.

[16] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (Boston, Massachusetts, USA) (RecSys ’16). Association for
Computing Machinery, New York, NY, USA, 191–198. https://doi.org/10.1145/
2959100.2959190

[17] Van Dang and W. Bruce Croft. 2012. Diversity by Proportionality: An Election-
Based Approach to Search Result Diversification. In Proceedings of the 35th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (Portland, Oregon, USA) (SIGIR ’12). Association for Computing Ma-
chinery, New York, NY, USA, 65–74. https://doi.org/10.1145/2348283.2348296

[18] Marina Drosou and Evaggelia Pitoura. 2010. Search result diversification. ACM
SIGMOD Record 39, 1 (2010), 41–47. https://doi.org/10.1145/1860702.1860709

[19] Mike Gartrell, Ulrich Paquet, andNoamKoenigstein. 2016. RecSys - Bayesian Low-
Rank Determinantal Point Processes. Proceedings of the 10th ACM Conference on
Recommender Systems NA, NA (2016), 349–356. https://doi.org/10.1145/2959100.
2959178

[20] Jennifer Gillenwater. 2014. Approximate inference for determinantal point pro-
cesses. NA NA, NA (2014), NA–NA.

[21] Jennifer A Gillenwater, Alex Kulesza, Emily Fox, and Ben Taskar. 2014.
Expectation-Maximization for Learning Determinantal Point Processes. In Ad-
vances in Neural Information Processing Systems, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger (Eds.), Vol. 27. Curran As-
sociates, Inc. https://proceedings.neurips.cc/paper_files/paper/2014/file/
4462bf0ddbe0d0da40e1e828ebebeb11-Paper.pdf

[22] Sreenivas Gollapudi and Aneesh Sharma. 2009. WWW - An axiomatic approach
for result diversification. Proceedings of the 18th international conference on World
wide web - WWW ’09 NA, NA (2009), 381–390. https://doi.org/10.1145/1526709.
1526761

[23] Yoshinori Hijikata, Takuya Shimizu, and Shogo Nishida. 2009. Discovery-
Oriented Collaborative Filtering for Improving User Satisfaction. In Proceedings
of the 14th International Conference on Intelligent User Interfaces (Sanibel Island,
Florida, USA) (IUI ’09). Association for Computing Machinery, New York, NY,
USA, 67–76. https://doi.org/10.1145/1502650.1502663

[24] Henning Hohnhold, Deirdre O’Brien, and Diane Tang. 2015. KDD - Focusing on
the Long-term: It’s Good for Users and Business. Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining NA,
NA (2015), 1849–1858. https://doi.org/10.1145/2783258.2788583

[25] J Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág. 2006. Deter-
minantal processes and independence. Probability surveys 3 (2006), 206–229.

[26] Chun-Wa Ko, Jon Lee, and Maurice Queyranne. 1995. An exact algorithm for
maximum entropy sampling. Operations Research 43, 4 (1995), 684–691. https:
//doi.org/10.1287/opre.43.4.684

[27] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R
Gordon, and John Riedl. 1997. Grouplens: Applying collaborative filtering to
usenet news. Commun. ACM 40, 3 (1997), 77–87.

[28] Joseph A Konstan, John Riedl, Al Borchers, and Jonathan L Herlocker. 1998.
Recommender systems: A grouplens perspective. In Recommender Systems: Papers
from the 1998 Workshop (AAAI Technical Report WS-98-08). AAAI Press Menlo
Park, 60–64.

[29] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37. https:
//doi.org/10.1109/MC.2009.263

[30] Alex Kulesza and Ben Taskar. 2011. K-DPPs: Fixed-Size Determinantal Point
Processes. In Proceedings of the 28th International Conference on International Con-
ference on Machine Learning (Bellevue, Washington, USA) (ICML’11). Omnipress,
Madison, WI, USA, 1193–1200.

[31] Alex Kulesza and Ben Taskar. 2011. Learning Determinantal Point Processes. In
Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelli-
gence (Barcelona, Spain) (UAI’11). AUAI Press, Arlington, Virginia, USA, 419–427.

[32] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A LLVM-Based
Python JIT Compiler. In Proceedings of the SecondWorkshop on the LLVM Compiler
Infrastructure in HPC (Austin, Texas) (LLVM ’15). Association for Computing
Machinery, New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/
2833157.2833162

[33] Neal Lathia, Stephen Hailes, Licia Capra, and Xavier Amatriain. 2010. SIGIR -
Temporal diversity in recommender systems. Proceeding of the 33rd international
ACM SIGIR conference on Research and development in information retrieval - SIGIR
’10 NA, NA (2010), 210–217. https://doi.org/10.1145/1835449.1835486

[34] G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: item-to-
item collaborative filtering. IEEE Internet Computing 7, 1 (2003), 76–80. https:
//doi.org/10.1109/MIC.2003.1167344

[35] Odile Macchi. 1975. The coincidence approach to stochastic point processes.
Advances in Applied Probability 7, 1 (1975), 83–122.

[36] Zelda Mariet and Suvrit Sra. 2015. Fixed-point algorithms for learning de-
terminantal point processes. In Proceedings of the 32nd International Confer-
ence on Machine Learning (Proceedings of Machine Learning Research, Vol. 37),
Francis Bach and David Blei (Eds.). PMLR, Lille, France, 2389–2397. https:
//proceedings.mlr.press/v37/mariet15.html

[37] Zelda E. Mariet and Suvrit Sra. 2016. Kronecker Determinantal Point
Processes. In Advances in Neural Information Processing Systems, D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2016/file/
bad5f33780c42f2588878a9d07405083-Paper.pdf

[38] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring Networks
of Substitutable and Complementary Products. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (Syd-
ney, NSW, Australia) (KDD ’15). Association for Computing Machinery, New
York, NY, USA, 785–794. https://doi.org/10.1145/2783258.2783381

[39] Sean M McNee, John Riedl, and Joseph A Konstan. 2006. CHI Extended Abstracts
- Being accurate is not enough: how accuracy metrics have hurt recommender
systems. CHI ’06 Extended Abstracts on Human Factors in Computing Systems NA,
NA (2006), 1097–1101. https://doi.org/10.1145/1125451.1125659

[40] Milvus. 2023. Milvus: Vector database. https://milvus.io/
[41] Houssam Nassif, Kemal Oral Cansizlar, Mitchell Goodman, and SVN Vish-

wanathan. 2016. Diversifying Music Recommendations. arXiv: Multimedia
NA, NA (2016), NA–NA.

[42] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis
of approximations for maximizing submodular set functions–I. Mathematical
Programming 14, 1 (1978), 265–294. https://doi.org/10.1007/bf01588971

[43] Yonathan Perez, Michael Schueppert, Matthew Lawlor, and Shaunak Kishore.
2015. Category-Driven Approach for Local Related Business Recommendations.
In Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management (Melbourne, Australia) (CIKM ’15). Association for Com-
puting Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/2806416.
2806495

[44] Inc. Pinecone Systems. 2023. Pinecone: Vector Database for Vector Search. https:
//www.pinecone.io/

[45] Davood Rafiei, Krishna Bharat, and Anand Shukla. 2010. WWW - Diversifying
web search results. Proceedings of the 19th international conference on World
wide web - WWW ’10 NA, NA (2010), 781–790. https://doi.org/10.1145/1772690.
1772770

[46] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. 1994. GroupLens: An Open Architecture for Collaborative Filtering of

35

https://doi.org/10.1145/170036.170072
https://proceedings.neurips.cc/paper_files/paper/2015/file/2f25f6e326adb93c5787175dda209ab6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/2f25f6e326adb93c5787175dda209ab6-Paper.pdf
https://doi.org/10.1093/oxfordhb/9780198744191.013.11
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/365880931/chapter-ag-pdf/45289415/book_43656_section_365880931.ag.pdf
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/365880931/chapter-ag-pdf/45289415/book_43656_section_365880931.ag.pdf
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025
https://doi.org/10.1007/s10791-011-9167-7
https://doi.org/10.1007/s10791-011-9167-7
https://www.trychroma.com/
https://www.trychroma.com/
https://doi.org/10.1145/1390334.1390446
https://doi.org/10.1016/j.jbusres.2009.01.022
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2348283.2348296
https://doi.org/10.1145/1860702.1860709
https://doi.org/10.1145/2959100.2959178
https://doi.org/10.1145/2959100.2959178
https://proceedings.neurips.cc/paper_files/paper/2014/file/4462bf0ddbe0d0da40e1e828ebebeb11-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/4462bf0ddbe0d0da40e1e828ebebeb11-Paper.pdf
https://doi.org/10.1145/1526709.1526761
https://doi.org/10.1145/1526709.1526761
https://doi.org/10.1145/1502650.1502663
https://doi.org/10.1145/2783258.2788583
https://doi.org/10.1287/opre.43.4.684
https://doi.org/10.1287/opre.43.4.684
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/1835449.1835486
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1109/MIC.2003.1167344
https://proceedings.mlr.press/v37/mariet15.html
https://proceedings.mlr.press/v37/mariet15.html
https://proceedings.neurips.cc/paper_files/paper/2016/file/bad5f33780c42f2588878a9d07405083-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/bad5f33780c42f2588878a9d07405083-Paper.pdf
https://doi.org/10.1145/2783258.2783381
https://doi.org/10.1145/1125451.1125659
https://milvus.io/
https://doi.org/10.1007/bf01588971
https://doi.org/10.1145/2806416.2806495
https://doi.org/10.1145/2806416.2806495
https://www.pinecone.io/
https://www.pinecone.io/
https://doi.org/10.1145/1772690.1772770
https://doi.org/10.1145/1772690.1772770

ICPE ’24, May 7–11, 2024, London, United Kingdom Shrey Pandey, Saikat Kumar Das, Hrishikesh V. Ganu, & Satyajeet Singh

Netnews. In Proceedings of the 1994 ACM Conference on Computer Supported
Cooperative Work (Chapel Hill, North Carolina, USA) (CSCW ’94). Association for
Computing Machinery, New York, NY, USA, 175–186. https://doi.org/10.1145/
192844.192905

[47] Rodrygo LT Santos, Craig Macdonald, and Iadh Ounis. 2010. WWW - Exploiting
query reformulations for web search result diversification. Proceedings of the 19th
international conference on World wide web - WWW ’10 NA, NA (2010), 881–890.
https://doi.org/10.1145/1772690.1772780

[48] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-
Based Collaborative Filtering Recommendation Algorithms. In Proceedings of
the 10th International Conference on World Wide Web (Hong Kong, Hong Kong)
(WWW ’01). Association for Computing Machinery, New York, NY, USA, 285–295.
https://doi.org/10.1145/371920.372071

[49] Cyrus Shahabi, Farnoush Banaei-Kashani, Yi-Shin Chen, and Dennis McLeod.
2001. Yoda: An Accurate and Scalable Web-Based Recommendation System. In
Cooperative Information Systems, Carlo Batini, Fausto Giunchiglia, Paolo Giorgini,
and Massimo Mecella (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
418–432.

[50] V. Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, Andrew Good-
ing, Rajkumar Iyer, Ashish Shinde, and Thomas Lopatic. 2016. Aerospike: Archi-
tecture of a Real-Time Operational DBMS. Proc. VLDB Endow. 9, 13 (sep 2016),
1389–1400. https://doi.org/10.14778/3007263.3007276

[51] Choon Hui Teo, Houssam Nassif, Daniel Hill, Sriram Srinivasan, Mitchell Good-
man, Vijai Mohan, and SVN Vishwanathan. 2016. RecSys - Adaptive, Personalized
Diversity for Visual Discovery. Proceedings of the 10th ACM Conference on Recom-
mender Systems NA, NA (2016), 35–38. https://doi.org/10.1145/2959100.2959171

[52] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. 2011. The NumPy
Array: A Structure for Efficient Numerical Computation. Computing in Science &
Engineering 13, 2 (2011), 22–30. https://doi.org/10.1109/MCSE.2011.37

[53] Guido Van Rossum and Fred L Drake. 2009. Python 3 reference manual. CreateS-
pace.

[54] Saúl Vargas, Linas Baltrunas, Alexandros Karatzoglou, and Pablo Castells. 2014.
RecSys - Coverage, redundancy and size-awareness in genre diversity for recom-
mender systems. Proceedings of the 8th ACM Conference on Recommender systems
- RecSys ’14 NA, NA (2014), 209–216. https://doi.org/10.1145/2645710.2645743

[55] Erik Vee, Utkarsh Srivastava, Jayavel Shanmugasundaram, Prashant Bhat, and
Sihem Amer Yahia. 2008. ICDE - Efficient Computation of Diverse Query Results.
2008 IEEE 24th International Conference on Data Engineering NA, NA (2008),
228–236. https://doi.org/10.1109/icde.2008.4497431

[56] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel Math Kernel Library. Springer International

Publishing, Cham, 167–188. https://doi.org/10.1007/978-3-319-06486-4_7
[57] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. 2013. AUGEM: Au-

tomatically Generate High Performance Dense Linear Algebra Kernels on X86
CPUs. In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (Denver, Colorado) (SC ’13). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 25, 12 pages.
https://doi.org/10.1145/2503210.2503219

[58] RomainWarlop, JérémieMary, andMike Gartrell. 2019. Tensorized Determinantal
Point Processes for Recommendation. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (Anchorage, AK,
USA) (KDD ’19). Association for Computing Machinery, New York, NY, USA,
1605–1615. https://doi.org/10.1145/3292500.3330952

[59] Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H. Chi, and
Jennifer Gillenwater. 2018. Practical Diversified Recommendations on YouTube
with Determinantal Point Processes. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management (Torino, Italy) (CIKM
’18). Association for Computing Machinery, New York, NY, USA, 2165–2173.
https://doi.org/10.1145/3269206.3272018

[60] An Yan, Chaosheng Dong, Yan Gao, Jinmiao Fu, Tong Zhao, Yi Sun, and Ju-
lian Mcauley. 2022. Personalized Complementary Product Recommendation. In
Companion Proceedings of the Web Conference 2022 (Virtual Event, Lyon, France)
(WWW ’22). Association for Computing Machinery, New York, NY, USA, 146–151.
https://doi.org/10.1145/3487553.3524222

[61] Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. 2009. EDBT - It takes variety
to make a world: diversification in recommender systems. Proceedings of the 12th
International Conference on Extending Database Technology Advances in Database
Technology - EDBT ’09 NA, NA (2009), 368–378. https://doi.org/10.1145/1516360.
1516404

[62] Mi Zhang and Neil Hurley. 2008. RecSys - Avoiding monotony: improving the
diversity of recommendation lists. Proceedings of the 2008 ACM conference on
Recommender systems - RecSys ’08 NA, NA (2008), 123–130. https://doi.org/10.
1145/1454008.1454030

[63] Jiaqian Zheng, Xiaoyuan Wu, Junyu Niu, and Alvaro Bolivar. 2009. Substitutes
or Complements: Another Step Forward in Recommendations. In Proceedings
of the 10th ACM Conference on Electronic Commerce (Stanford, California, USA)
(EC ’09). Association for Computing Machinery, New York, NY, USA, 139–146.
https://doi.org/10.1145/1566374.1566394

[64] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen.
2005. WWW - Improving recommendation lists through topic diversification.
Proceedings of the 14th international conference on World Wide Web - WWW ’05
NA, NA (2005), 22–32. https://doi.org/10.1145/1060745.1060754

36

https://doi.org/10.1145/192844.192905
https://doi.org/10.1145/192844.192905
https://doi.org/10.1145/1772690.1772780
https://doi.org/10.1145/371920.372071
https://doi.org/10.14778/3007263.3007276
https://doi.org/10.1145/2959100.2959171
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1145/2645710.2645743
https://doi.org/10.1109/icde.2008.4497431
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1145/2503210.2503219
https://doi.org/10.1145/3292500.3330952
https://doi.org/10.1145/3269206.3272018
https://doi.org/10.1145/3487553.3524222
https://doi.org/10.1145/1516360.1516404
https://doi.org/10.1145/1516360.1516404
https://doi.org/10.1145/1454008.1454030
https://doi.org/10.1145/1454008.1454030
https://doi.org/10.1145/1566374.1566394
https://doi.org/10.1145/1060745.1060754

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Recall Set Generation
	3.2 Personalised Scoring
	3.3 Diversified Re-Ranking

	4 Implementation Details
	5 Experiments and Results
	5.1 Experimental setup
	5.2 Experiments
	5.3 Comparative analysis

	6 Ablation Study
	6.1 Impact of individual components
	6.2 Impact of threaded parallelization

	7 Open Problems and Future Work
	8 Conclusion
	References

