
Disambiguating Performance Anomalies from Workload Changes
in Cloud-Native Applications

Alexandru Baluta
York University

Toronto, Ontario, Canada
balutaal@yorku.ca

Yar Rouf
York University

Toronto, Ontario, Canada
yarrouf@my.yorku.ca

Joydeep Mukherjee
California Polytechnic State

University
San Luis Obispo, California, USA

jmukherj@calpoly.edu

Zhen Ming Jiang
York University

Toronto, Ontario, Canada
zmjiang@cse.yorku.ca

Marin Litoiu
York University

Toronto, Ontario, Canada
mlitoiu@yorku.ca

ABSTRACT
Modern cloud-native applications are adopting the microservice
architecture in which applications are deployed in lightweight con-
tainers that run inside a virtual machine (VM). Containers running
different services are often co-located inside the same virtual ma-
chine. While this enables better resource optimization, it can cause
interference among applications. This can lead to performance
degradation. Detecting the cause of performance degradation at
runtime is crucial to decide the correct remediation action such as,
but not limited to, scaling or migrating. We propose a non-intrusive
detection technique that differentiates between degradation caused
by load and by interference. First, we define an operational zone
for the application. Then we define a disambiguation method that
uses models to classify interference and normal load. In contrast
to previous work, our proposed detection technique does not re-
quire intrusive application instrumentation and incurs minimal
performance overhead. We demonstrate how we can design effec-
tive Machine Learning models that can be generalized to detect
interference from different types of applications. We evaluate our
technique using realistic microservice benchmarks on AWS EC2.
The results show that our approach outperforms existing interfer-
ence detection techniques in 𝐹1 score by at least 2.75% and at most
53.86%.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Software
and its engineering → System administration.

KEYWORDS
Microservice; Interference; Cloud Computing; Machine Learning
ACM Reference Format:
Alexandru Baluta, Yar Rouf, JoydeepMukherjee, ZhenMing Jiang, andMarin
Litoiu. 2024. Disambiguating PerformanceAnomalies fromWorkload Changes

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0444-4/24/05
https://doi.org/10.1145/3629526.3645046

in Cloud-Native Applications. In Proceedings of the 15th ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’24), May 7–11,
2024, London, United Kingdom. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3629526.3645046

1 INTRODUCTION
DevOps practice encourages the use of microservice architecture,
where a traditional monolithic application is broken down into
a collection of easier-to-manage smaller services. Benefits of mi-
croservice architecture include better scalability, easier continuous
delivery support, data decentralization, and improved fault isola-
tion. Due to these advantages, more application developers are
adopting the microservice architecture recently. Microservices are
deployed as cloud-native applications on public cloud platforms
with each service encapsulated within a container running inside a
virtual machine (VM). Containers have risen in popularity for their
faster deployment speeds and their ability to allow applications
to run in complete isolation from one another without incurring
extra overhead. Container orchestration platforms such as Docker
[25] and Kubernetes [7] are increasingly gaining popularity and
are commonly used in public cloud platforms such as Amazon Web
Services (AWS) [3] and Google Cloud Platform [4].

Multiple microservices are generally consolidated on a single
VM. This is done to improve resource consumption levels inside
a VM and thereby optimize cloud costs. When multiple microser-
vices are deployed on the same VM, they can often compete with
each other for shared host-level resources. Such shared resource
contention can alter application behavior and make it deviate from
the development time specifications and performance. We refer
to application performance degradation due to shared resource
contention as performance interference. Performance interference
has been observed before in applications running on public cloud
environments [17, 20, 21, 23, 28–30, 36].

Detecting and disambiguating performance interference anom-
alies from other causes of performance degradation is very im-
portant for application runtime self-management and for avoiding
outages. For example, a performance degradation due to legitimate
workload surge can be automatically mitigated by horizontal scal-
ing whereas interference might be mitigated though application
redeployment and relocation. Another use case where detection
interference anomalies is important is in reducing the number of

286

https://doi.org/10.1145/3629526.3645046
https://doi.org/10.1145/3629526.3645046
https://doi.org/10.1145/3629526.3645046
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629526.3645046&domain=pdf&date_stamp=2024-05-07


ICPE ’24, May 7–11, 2024, London, United Kingdom Alexandru Baluta, Yar Rouf, Joydeep Mukherjee, Zhen Ming Jiang, and Marin Litoiu

alerts the IT operators have to deal with. It is estimated that the
an IT operator faces 80-100 alerts per system [35]. We need to de-
tect if there is interference, and disambiguate if the performance
degradation is from interference or from normal behavior. There-
fore, it is important that an application detects when its execution
environment is perturbed significantly by other applications.

Automatically detecting runtime interference in cloud-native
applications is a challenging task. Application workload variability
and unpredictability can produce the same effects as interference,
and hence it is difficult to distinguish between them. Researchers
have looked, with limited success, into instrumenting applications
[11], recording their mean request response times, and comparing
them against their baseline response times to detect the presence
of interference. Continuously instrumenting application code and
monitoring the response times of running services [19] can sig-
nificantly increase the cost of development and maintenance. In
addition, continuous monitoring of service metrics can incur a
prohibitive overhead when the service is facing a heavy workload
[10, 18]. Furthermore, interference detection techniques that model
the baseline behavior may not generalize well to scenarios where
the interfering application changes at runtime.

To address some of the above challenges, we propose a light-
weight method that uses a small number of deployment and runtime
performance metrics to automatically disambiguate interference
and workload effects on performance. The method involves build-
ing or training a model such as queuing, regression, or machine
learning models prior to deployment. By using interference for
training when using machine learning models, we are no longer
dependent on costly response time instrumentation. At runtime, we
can use the model and readily available performance data to detect
the interference. The method is non-intrusive and does not require
any application performance profiling. We use resource utilization
metrics that can be easily collected at runtime from within each
application container along with simple application level metrics
such as request throughput or response time. The assumption is
that an autonomic manager is application specific, has access only
to managed application metrics and does not see the other applica-
tion metrics, only their effect on the managed application metrics.
The basis of this assumption is that the environment is dynamic
and collocated applications might be deployed after the target ap-
plication. This is in line with the current practice when we develop
autoscalers for each application. We also make the assumption that
the ML model can be trained as a DevOps process activity and
then used at runtime within an AIOps (Artificial Intelligence for IT
Operations) platform for interference detection and mitigation.

The paper addresses the following research questions:
RQ-1: How severe is the impact of performance interference in

cloud-native applications deployed on public cloud? To address this,
we performed experiments to characterize the impact of interfer-
ence on a microservice benchmark, Acme [1], hosted on the AWS
EC2 cloud platform. The results indicate that the response time of
Acme can be severely impacted by interference by at least a factor
of 39% and at most a factor of 6955% at moderate CPU utilization
levels.

RQ-2: How well does a disambiguation method perform when
the interfering workloads used for model training and deployment

are similar? To answer RQ-2, we develop and train models to de-
tect interference caused by applications with similar performance
characteristics. Results show that ML models outperform state-of-
the-art regression based and threshold based interference detection
techniques by at least 0.67% and at most 23.29%. Furthermore, our
method incurs minimal overhead of only 1% to 2% on the service
response time at runtime.

RQ-3:Howwell does our disambiguation method perform when
the interfering workloads used for model training and deployment
are not similar? This question covers a common case when we do
not know a priori what applications might share the infrastruc-
ture with our managed application. To address RQ-3, we show that
we can develop and train models to detect interference caused by
an arbitrary application that stresses the same resources as used
by the target application. In addition, this model generalizes well
for detecting interference from different containerized interfering
applications. Lastly, we evaluate scalability by using our model
to detect interference against a large multi-tired microservice ap-
plication. As presented in our results, our technique outperforms
state-of-the-art regression based and threshold based interference
detection techniques by at least 2.75% and at most 53.86%.

The paper makes the following contributions:

(1) We introduce a formal definition of cloud-native application
interference disambiguation, rooted in queuing theory.

(2) We introduce an interference detection method that gen-
eralizes across interference scenarios and outperforms the
state-of-the-art.

(3) We evaluate the method using several model types, including
queuing and machine learning models.

(4) We validate the method on four industrial strength applica-
tions and show that it scales to large deployments and works
in public clouds.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 details the motivation and method-
ology. Section 4 describes experimental setup. Section 5 presents
the results of RQ-1, RQ-2, and RQ-3. Section 6 details threats to
validity. Section 7 is the conclusion and discussion of future work.

2 RELATEDWORK
2.1 Interference Definitions
Koh et al. [23] investigate the impact of VM-level performance in-
terference from co-located workloads and characterize interference
impact on low level system metrics. They cluster workloads by
interference type and construct performance prediction models for
co-located workloads using weighted means and regression analy-
sis. Paul et al. [30] similarly characterize performance interference
in co-located VMs and further measure the application performance
degradation and impact on low-level system metrics. The authors
highlight types of workloads that perform well or not when co-
located. In contrast to these work, we characterize the impact of
interference among containerized microservices.

287



Disambiguating Performance Anomalies from Workload Changes in Cloud-Native Applications ICPE ’24, May 7–11, 2024, London, United Kingdom

2.2 Interference Measurement and
Classification

Jha et al. [20] measured intra-microservice and inter-microservice
interference using four benchmark microservices. The results of
their experiments showed significant container interference present
in both intra-container and inter-container cases. Garg, and Lak-
shmi. [17] ran experiments using well-known containerized bench-
marks to detect microservice interference and accordingly iden-
tified the shared resources subject to contention in these scenar-
ios. Novaković et al. [29] propose DeepDive to mitigate VM-level
performance interference. Their approach detects interference by
comparing low-level system metrics against a workload’s baseline
values and migrates VMs to other physical machines as needed.
Wang et al. [36] present Vmon, a system that detects and quantifies
VM-level performance interference. Vmon profiles an application
running on a VM to observe how Hardware Performance Counters
correlate with application performance. DeepDive and Vmons de-
tect VM-level interference through use of low-level system metrics
whereas our work detects microservice interference using metrics
that are readily available and do not pose prohibitive overhead
in collecting. Additionally, our work is differentiated in that we
evaluate the effectiveness of model re-use across different scenarios.

2.3 Interference Regression
Joshi et al. [21] propose Sherlock, a method for detecting long-lived
performance interference in containerized services caused by co-
located VMs. The authors employ a regression detection technique
to model performance interference using VM and application-level
metrics at runtime. Kang and Lama [22] predict microservice inter-
ference using Gaussian Process models trained at runtime using a
sliding window technique. Baluta et al. [12] predict microservice
interference using AutoML models trained at runtime using a slid-
ing window technique. Our work differentiates from these as we
explore the reuse of pre-trained interference detection models in
varying environments.

3 DEFINITIONS, MODELS AND
METHODOLOGY

Assume that at deployment time, we profile the performance of an
application and the interference effects in the space (U, 𝜆, R), where
U is the utilization, R is the response time and 𝜆 is the workload
(arrival rate of requests) of the application and infrastructure. That
profile is captured in a model and the profile is defined over a large
workload space and interference levels.

In Figure 1, we illustrate interference in a simplified two-
dimensional space, U and R. The blue area is the baseline profile for
one workload ([𝜆=𝜆1]). The response time of application, with no
interference, falls within 95 percentile Confidence interval, denoted
[𝑚𝑖𝑛𝑅𝑏𝑎𝑠𝑒 𝑚𝑎𝑥𝑅𝑏𝑎𝑠𝑒 ]. With the help of tunable slack variable, 𝛼 , we
define a 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑧𝑜𝑛𝑒 around the operational area (gray area).
This parameter is application-dependent and defined by the appli-
cation owner and can be derived from Service Level Agreements.
Interference zones are those areas in the space (U, 𝜆, R) where
response time is outside the interval [𝑚𝑖𝑛𝑅𝑏𝑎𝑠𝑒 -𝛼 , 𝑚𝑎𝑥𝑅𝑏𝑎𝑠𝑒+𝛼]
but cannot be explained through the change of the workload. For
example, red areas in the figure are interference anomalies, whereas

Figure 1: Interference Range

green areas depict normal behaviour, non-interference, caused by
workload. Although the anomaly depicted in red can be explained
by other causes (bugs, misconfigurations, etc.), in this paper we
focus on interference anomalies. Δ𝑈 is the utilization step size
between non-interference and what is classified as interference.
Although both are outside the operational zone, it is important to
know what causes the shift in the operation region. Different root
causes of anomalies can be mitigated through different runtime
actions.

In Section 3.1, we formulate interference as a Queuing Network
problem. In Section 3.2, we motivate the use of Machine Learning
to address interference. In Section 3.3, we describe our methodol-
ogy including data collection and pre-processing, as well as model
training and deployment.

3.1 Queuing Network Models and Interference
Modeling

In this section, we explain how interference can be formulated as
Queuing Network Models (QNM). To begin, we consider a con-
tainerized application 𝑎 running inside a VM without interference,
as seen in Figure 2. We assume that the application 𝑎 stresses a
single resource 𝑘 in the VM so as to incur an utilization of 𝑈𝑎,𝑘 on
the resource. We assume a request arrival rate of 𝜆𝑎 to application 𝑎.
If, at runtime, we had a way to measure service demand 𝐷𝑎,𝑘 of ap-
plication 𝑎 at resource 𝑘 , we could then predict the no-interference
mean request response time 𝑅𝑎 of application 𝑎 as:

𝑅𝑎 =
𝐷𝑎,𝑘

1 −𝑈𝑘

(1)

where𝑈𝑘 is the total utilization incurred at resource 𝑘 in the VM.
Since in a no-interference scenario, the only application stressing
resource 𝑘 is our monitored application 𝑎, 𝑈𝑘 = 𝑈𝑎,𝑘 . Finally, we
substitute 𝑈𝑘 with𝑈𝑎,𝑘 in eqn. 1 to obtain the response mean time
𝑅𝑎 of application 𝑎 in a no-interference environment as given by:

𝑅𝑎 =
𝐷𝑎,𝑘

1 −𝑈𝑎,𝑘

(2)

288



ICPE ’24, May 7–11, 2024, London, United Kingdom Alexandru Baluta, Yar Rouf, Joydeep Mukherjee, Zhen Ming Jiang, and Marin Litoiu

Figure 2: Effect of Interference on Resource Utilization

By considering the forced and utilization laws as well as steady
state, we have

𝑅𝑎 =
𝐷𝑎,𝑘

1 − 𝐷𝑎,𝑘 ∗ 𝜆 (3)

and this allows us to extrapolate the response time outside of an
operational point and for any workload 𝜆 (cf. green areas in Figure
1).

To illustrate interference, consider another application 𝑏 running
inside the same VM, as seen in Figure 2. Application 𝑏 incurs an
utilization of𝑈𝑏,𝑘 on resource 𝑘 inside the VM. Accordingly, from
eqn. 1, the new response time 𝑅𝑛𝑒𝑤𝑎 of application 𝑎 when it faces
interference from application 𝑏 is:

𝑅𝑛𝑒𝑤𝑎 =
𝐷𝑎,𝑘

1 −𝑈𝑛𝑒𝑤
𝑘

(4)

where𝑈𝑛𝑒𝑤
𝑘

represents the total utilization of resource 𝑘 , i.e. the
sum total of the utilization incurred by both applications 𝑎 and 𝑏 at
resource 𝑘 given by:

𝑈𝑛𝑒𝑤
𝑘

= 𝑈𝑎,𝑘 +𝑈𝑏,𝑘 (5)
Equations 2 and 5 explain interference (cf. Figure 1, red zones).

3.1.1 QNMMethodology. We tune QNM following the approaches
in [14, 38]. Since we work under the assumption that we do not
have access to the metrics of other applications and we consider
the system is a product form network [13], we can use Eq. 3 to
estimate the response time 𝑅 and compare it with the measured
response time. If the measured response time is outside the bounds
[𝑅-𝛼 , 𝑅+𝛼] then we label it as affected by interference, otherwise
we consider the deviation as caused by application load.

3.2 Machine Learning Classification and
Interference Modeling

Based on eqn. 2 and eqn. 4, we observe that a point [𝜆𝑎 , 𝑅𝑎 , 𝑈𝑘 ] is
transposed to [𝜆𝑎 , 𝑅𝑛𝑒𝑤𝑎 ,𝑈𝑛𝑒𝑤

𝑘
] in the same tri-dimensional space

under the impact of interference. Based on this observation, we
aim to use resource and application metrics to train ML models
that can classify two distinct classes of response time values, one
class denoting the no-interference scenario represented by 𝑅𝑎 , and
the other denoting the interference scenario represented by 𝑅𝑛𝑒𝑤𝑎

(corresponding to red and green zones in Figure 1). We note that
it appear more practical to use ML models instead of QNMs for
interference detection since it is infeasible to accurately measure re-
source service demands for all containers belonging to a monitored

microservice application serving different kinds of workloads. Fur-
thermore, multiple levels of virtualization involved in a cloud-based
microservice container can involve estimating service demands for
unknown virtualized resources [27], which can be difficult. In con-
trast, ML models use resource utilization and throughput metrics
that are easy to collect at the container and VM levels.

We use our understanding of QNMs as motivation for applying
machine learning to detect interference. From eqn. 4, since the new
response time 𝑅𝑛𝑒𝑤𝑎 of application 𝑎 is only impacted by the total
utilization 𝑈𝑘 incurred at resource 𝑘 , it follows that 𝑅𝑛𝑒𝑤𝑎 remains
unchanged even if𝑈𝑘 is incurred by different types of applications
as long as the levels of total utilization incurred at resource 𝑘 are
similar. Consequently, we aim to use this logic as motivation for
training our ML models to predict interference classes with one
type of benchmark application which can then be used at runtime
to classify similar interference from other types of applications.

Figure 3: Overview of Interference Detection Technique

3.3 Machine Learning Methodology
In this section, we present our methodology focused on ML models
since they are central to our work. Section 3.3.1 defines the assump-
tions of our technique. Section 3.3.2 details data generation and
pre-processing. Section 3.3.3 describes the methodology to train an
ML model for interference detection. Section 3.3.4 details the use
of an ML model for interference detection at runtime.

3.3.1 General Methodology. We refer to the in-production applica-
tion as the target application. The application owner deploys their
target application on managed cloud services. In doing so, the ap-
plication owner delegates management of physical servers or even
VMs to the cloud provider. Consequently, the application owner
only has guaranteed visibility into the target application’s contain-
ers and access to VM level metrics. Our target application consists
of multi-tiered microservices, each bundled inside a container. It is
typical for microservice applications to be distributed over several
VMs, with each VM hosting one or more microservice containers.

289



Disambiguating Performance Anomalies from Workload Changes in Cloud-Native Applications ICPE ’24, May 7–11, 2024, London, United Kingdom

In our study, we consider an interfering application as one that runs
on the same VMs as the target application and competes for shared
VM resources.

Our detection technique monitors resource utilization data from
inside the VM and the application containers metrics that are easy
to collect. We record container utilization metrics at each target
application container along with VM utilization metrics collected
at a sampling interval of 𝑡 seconds. We also record the overall
application throughput and the response time, at each sampling
interval. The sampling interval needs to be tuned for each target
application so as to incur minimal levels of performance overhead
on the system.

3.3.2 Data Collection and Pre-Processing for ML. Figure 3 presents
the high level overview of our interference detection technique.
As seen in the figure, our technique runs in two phases. The first
phase is the training phase where we run controlled experiments
to train our ML model in an offline model training environment.
In the training phase, we run our target microservice application
in a controlled cloud environment where its response time is not
impacted by performance interference. This is done by running the
target application in isolation on the 𝑛 VMs hosting the microser-
vice without any interfering application present. The objective is
to obtain baseline metrics when no interference is present. To this
end, we increase the arrival rate of the application workload to
the target application in steps to incur a wide range of resource
utilization observed at each application container. This is done
through aWorkload Generator tool running inside a Detector VM
which resides alongside the application VMs, as seen in Figure 3.
We ensure that our workload generation setup is free from internal
software bottlenecks and network latency issues by following the
approach detailed in past work [28]. Since application owners can
only access metrics from the VM and their own application con-
tainers, we omit including metrics of any other kind in our data
set for ML model training. To this end, a Metric Monitor tool from
inside our Detector VM, as shown in Figure 3, collects measurable
metrics from the target application and its environment such as
application response time and throughput, and container and VM
resource usage. Although we choose the average request response
time of a target application as our performance metric, other met-
rics such as the mean throughput values can also be used. Using
only the application throughput and response time along with VM
and application resource utilization metrics as input allows for a
smaller feature set that is easy to monitor, collect and does not incur
prohibitive monitoring overhead at runtime.

We repeat each step of workload generation 𝑁 times to obtain
𝑁 estimates of the average application request response time 𝑅𝑏𝑎𝑠𝑒
at each step. We refer to 𝑁 as the number of workload repetitions.
We use this data to construct the 95% Confidence Interval (CI) of
the baseline application response time at each step. The upper and
lower limits of this CI are denoted as𝑚𝑎𝑥𝑅𝑏𝑎𝑠𝑒 and𝑚𝑖𝑛𝑅𝑏𝑎𝑠𝑒 , re-
spectively. To mitigate against performance variability inherent in
public cloud platforms, we repeat each step, i.e. set the value of 𝑁
in our training phase such that the width of our CI is within 5% of
its sample mean at each step. Alternatively, if the cloud platform
has significant performance variability, the application owner may
consider deploying the application containers inside dedicated VMs

which have same specification as general VMs and are offered by
public cloud platforms to provide stable performance. Although
dedicated VMs are more expensive than general VMs, the applica-
tion owners only need to use them for a short period of time to
collect training data for ML models.

Once we obtain the 95% CI of the application’s baseline response
time, we next introduce interference into the system. For this pur-
pose, we run a controllable interfering probe along with the target
application on the 𝑛 VMs hosting the target application as shown
in Figure 3. Doing so imposes additional stress on shared resources
which is expected to increase response time as depicted in Equation
4. Similar to before, we send the same step-wise increasing work-
load to our target application from our workload generator tool
from inside the Detector VM. We also simultaneously vary load
on the interfering probe to diversify its degree of shared resource
contention and introduce different levels of performance interfer-
ence on our target application at each step. We record the average
request response time 𝑅𝑡 of the target application along with VM
and container utilization metrics collected by the Metric Monitor
tool when the interfering probe is also running. This is done at
our sampling interval of 𝑡 seconds continuously for a duration of 𝑥
seconds to obtain the training data set to be used in the ML model.
The application throughput, response times, and container and VM
utilization metrics for each sampling interval represent a single
record in the training data set of our ML model.

We use the baseline response time data obtained in the training
phase to label the ML data set in our offline model training. As
mentioned before, our ML model outputs binary classification with
2 labels, where label 1 indicates interference and label 0 indicates
no-interference. To this end, we compare the value of 𝑅𝑡 at each
record in this set with its corresponding value of𝑚𝑎𝑥𝑅𝑏𝑎𝑠𝑒 obtained
at the same step of workload. As depicted in Figure 1, if 𝑅𝑡 exceeds
𝑚𝑎𝑥𝑅𝑏𝑎𝑠𝑒 , we infer that the application response time suffers from
performance interference and accordingly assign the label 1 to the
record. Otherwise, the record is assigned with label 0. Once the
training data set is labeled, we remove the associated response time
pairing from each record to construct the final input data set to the
ML model.

3.3.3 ML Model Training. AutoML [15, 24, 32] has gained popular-
ity as an effective solution for training well-performing ML models.
The AutoML framework evaluates several ML models trained on
the same data set against one another and outputs the best perform-
ing model. We leverage the H2O AutoML framework [24] in our
ML model construction. This framework can be easily integrated
with the DevOps feedback loop to automate runtime interference
detection.

The framework trains multiple models including but not limited
to XGBoost and Stacked Ensemble Models. An ensemble model
is composition of several ML models and their predictions. The
framework automatically tunes ML algorithm hyper-parameters
using random grid search over a predefined range of possible hyper-
parameter values. H2O AutoML iteratively evaluates models under
these varying hyper-parameter configurations and outputs the best
performing model. In addition, the H2O AutoML framework em-
ploys 5-Fold cross validation by default to promote models general-
izing well to unseen data. We employ an 80-20 stratified train-test

290



ICPE ’24, May 7–11, 2024, London, United Kingdom Alexandru Baluta, Yar Rouf, Joydeep Mukherjee, Zhen Ming Jiang, and Marin Litoiu

set split while preserving class ratios. We evaluate our models by
Precision, Recall, and 𝐹1 score.

When amodel makes positive predictions indicating interference
as present, the precision score measures how often interference is
truly present in the environment. Recall on the other handmeasures
how well a model identifies true instances of interference relative to
all positive predictions made by the model. 𝐹1 score is the harmonic
mean of precision and recall and summarizes their joint behavior
in a single metric.

3.3.4 ML Model Runtime Deployment. Once ML model construc-
tion is complete, we move on to the second phase, i.e., the runtime
phase, where we deploy the ML model to detect container interfer-
ence at runtime as seen in Figure 3. In this phase, we continuously
monitor throughput, VM and container resource utilization at run-
time as the microservice serves client traffic. Subsequently, this data
is fed as input to the ML model, which in turn classifies the current
runtime state of the target application as either ‘interference’ or
‘no-interference’.

4 EXPERIMENTAL VALIDATION
The experiments are designed to answer research questions RQ-1
to RQ-3 for a range of deployments and interference types. We
consider: a) multiple target and interference applications; b) dif-
ferent deployments for the target and interference applications; c)
different types of interference. In this section, we show the design
of the experiments and the implementation setup. Section 5 details
the results of these experiments.

4.1 Target and Interference applications
In the experiments, we use ‘in-production’ applications such as
ACME Air and Boutique as our Target application. Acme Air emu-
lates transactions for an airline website and consists of 2 microser-
vices, a NodeJS Web server, and a MongoDB database. Acme Air
is a well known and frequently used benchmark [33, 34]. We run
these 2 microservices in their own Docker containers. We refer to
these containers as the Acme-Web and Acme-Db containers respec-
tively. Online Boutique [6] is a popular open-source benchmark
application developed by Google. The e-commerce application is
composed of multiple microservices deployed on Kubernetes, an
open-source container orchestration system.

As interference applications, we use stress-ng and Air Quality
Monitor. Stress-ng [9] is a linux stress tool that allows the user to
stress the CPU, memory, disk and other resources. We use stress-ng
as a configurable artificial application benchmark which can be
used to generate a wide range of resource utilization levels. Air
Quality Monitor [2] is an Internet of Things (IoT) application that
processes air quality sensor data.

4.2 Interference Types
We consider the following interference types:

(1) Correlated and similar workloads (CSI). In this use case, we
consider that the interference is generated by applications
in which the load at different VMs is correlated with the load
of an ingress service/gateway). The interfering applications
belong to the same class as the in-production application,

therefore the workloads of the in-production and interfering
application are similar. We consider e-commerce applica-
tions, like ACME, for both training and inference.

(2) Correlated but dissimilar workloads (CDI). Here, we consider
that the interfering applications belongs to a different class
than the in-production target application. We use ACME as
the in-production application and the Air Quality Monitor
application, [2] which is an Internet of Things (IoT) applica-
tion, as the interference.

(3) Non-correlated and dissimilar workloads (NDI). We consider
that interference can happen at any VM, independently (un-
correlated). Also, the interference is not similar to the load
of the in-production application. We use stress-ng [9] for
training and inference. Prior work [16] has used the stress-
ng benchmark to incur varying level of resource utilization
by stressing the system under study.

4.3 Deployment types
We want to show that we can distinguish the interference from
normal load in multiple application configurations. For that we con-
sider several deployment types for the in-production application.

4.3.1 Single Virtual Machine (1VM). In this deployment, we consol-
idate our in-productionmicroservice application and the interfering
load on the same VM. We run experiments where the interfering
application is either 1.) stress-ng (NDI scenario), 2.) another copy of
Acme Air (CSI scenario), or 3.) Air Quality Monitor application (CDI
scenario). We use our workload generator tool to send a workload
to Acme Air while also running our interfering application to incur
a wide range of resource utilization and interference levels on our
target application.

4.3.2 Dual Virtual Machine (2VM). Here, Acme Air application is
distributed across two VMs. This is done to motivate distributed
use cases where a microservice application like Acme Air is hosted
in containers running across different VMs. In this scenario, we run
the Acme-Web and Acme-Db containers on 2 separate VMs respec-
tively. We run NDI, CSI, and CDI scenarios, similar to the single VM
experiments. In each of these scenarios we run 1 interfering appli-
cation container on each of the 2 VMs hosting the Acme-Web and
Acme-Db containers respectively. Workloads to these two copies
are varied to incur a wide range of resource utilization.
4.3.3 At-scale Deployments. To demonstrate the scalability of our
methodology, we selected Online Boutique, a large 11-tier microser-
vice e-commerce application. In our experimentation, we deploy
Online Boutique on an Amazon EKS (Elastic Kubernetes Service)
Cluster with 4 cluster nodes using an EC2 node group composed
of EC2 m5.large VMs. Our Amazon EKS uses Amazon Linux 2 and
Docker as the container runtime. We have a total of 14 Kubernetes
pods of Online Boutique distributed between the 4 Cluster Nodes.
For our interference application, we selected Acme-Air and stress-
ng from our previous experiments. For the Acme-Air deployment,
we distributed Acme-Air and MongoDB pods on two of our EKS
nodes where the Boutique front-end pods reside. This deployment
pattern is also repeated with two stress-ng pods. We have in total 9
pods responsible for monitoring our cluster at the container, node
and application level.

291



Disambiguating Performance Anomalies from Workload Changes in Cloud-Native Applications ICPE ’24, May 7–11, 2024, London, United Kingdom

4.4 Experimental Setup and Methodology
Our experiments were run in the AWS EC2 Cloud. We use multiple
m5.large EC2 VMs residing in the same availability zone on the
EC2 cloud platform. These VMs run Ubuntu 16.04 and each have 2
VCPUs, 8GiB of RAM, and 64GiB of Elastic Block Storage. We used
Docker version 19.03.13 as the containerization platform on our
EC2 VMs.

4.4.1 Workload Characteristics. We use httperf [26] as the Work-
load Generator tool to send workload to our target Acme Air ap-
plication. The httperf client runs inside a separate VM and is not
containerized. We use the httperf tool to submit the default work-
load obtained from the official Acme Air project [1] as the workload
transaction mix submitted to Acme Air.

We use the number of concurrent connections and inter-request
arrival time settings in httperf to drive a wide range of application
resource utilization. Acme Air workload has a step size increase
of approximately 12.5% CPU utilization. stress-ng has a step size
increase of 20% CPU utilization. The Air Quality Monitor has a step
size increase of 20% CPU utilization.

The workloads were chosen such that comparable Acme Air uti-
lization levels are generated with and without interference present.
Otherwise, lacking overlap between interference and non-interference
scenarios, a simple utilization threshold algorithm could detect in-
terference with ease. Next, we set the number of workload repeti-
tions 𝑁 = 40 to capture variance. Finally, for the purpose of this
study, we set the workload duration 𝑥 = 120 seconds.

For our at-scale deployment, we use Locust, a python-based
workload generator [5], to generate the workload on Online Bou-
tique. The workload generator increases the utilization on each of
the nodes by 15% increments, ranging from 15% to 80% utilization
on the Kubernetes Cluster. We use the same workloads of Acme
Air and stress-ng in the previous experiments as the interference
workload while the Boutique Workload is running for our experi-
ments.

4.4.2 Metrics Monitoring. To monitor the applications and their
environment, we leveraged prominent industry solutions for the
Metric Monitor. Prometheus is an open-source monitoring solution
that integrates with multiple metrics exporters [8]. Additionally,
application metrics averages were output in httperf logs. The appli-
cation metrics are joined with the container and VM metrics from
Prometheus by timestamp. These metrics are used in analysis, data
labelling, and ML model construction.

4.4.3 RQ-2 Setup. We conduct experiments to compare our in-
terference detection technique with baseline and state-of-the-art
techniques. To this end, we first set up experiments where we com-
pare our technique against a simple utilization-threshold detection
technique used in previous work [31]. This serves as a baseline
technique where we monitor the resource utilization metrics from
the Acme-Web and Acme-Db containers at runtime, and indicate
the presence of interference if these metrics exceed pre-defined
threshold values. We set the pre-defined thresholds of CPU and
memory utilization in Acme-Web to 38% and 1.5%, and in Acme-Db
to 18% and 38% respectively. We chose these pre-defined threshold
values since we observed in earlier experimentation that at these
utilization levels, the baseline response time of Acme Air without

interference is 3 ms, which is the average baseline response time
recorded over all utilization levels incurred by Acme Air. We com-
pare the container utilization metrics of Acme to see if they exceed
the pre-defined utilization thresholds. If so, interference is inferred.
In addition to the threshold model, we evaluate Queuing Network
Models to provide another baseline.

We also conduct another set of experiments to compare our
interference detection technique with a state-of-the-art detection
technique used in current research [21]. We chose this technique
as a regression based approach commonly used in interference and
anomaly detection. We adopt the detection method outlined in [21]
to construct logistic regression models for interference detection at
runtime. Logistical regression predicts the probability of occurrence
of a binary classification by using a logistic function. The regression
models are fit on the same datasets that were constructed and used
for our ML approach as described in section 3.3.2. At runtime, we
use the regression model in our single and dual VM experiment
setups to predict whether interference is present or not in our Acme
Air application. We compare the performance of our QNM and ML
approach with the logistical regression model. We evaluate the
Precision, Recall, and 𝐹1 score when these baseline technique are
applied in our experiments.

4.4.4 RQ-3 Setup. We run experiments to evaluate the effective-
ness of ML models in detecting performance interference when the
interfering application class at runtime is different from training
time. State-of-the-art techniques considered are the same Regres-
sion and Threshold based techniques as introduced in the RQ-2
Setup. QNMmodels are omitted as they explicitly define interfering
applications whereas in these experiments we assume no knowl-
edge of the interfering application class at runtime. To train our ML
models, we use the same methodology as described in section 3.3.3.
For these environments, we choose one of our three applications
to serve as the interfering probe benchmark application in the ML
model training. These three applications correspond to the NDI, CSI,
and CDI scenarios. Next, we deploy these trained ML models in the
runtime phase as described in section 3.3.4. However, at runtime,
we evaluate the resultant ML models where a different interfering
application is present in the environment than as seen at training
time. Accordingly, a different interference scenario is encountered
at runtime than training time. The goal is to evaluate the model
performance against an interfering application class not yet seen
by the ML model. To measure the effectiveness of our generalized
ML model, we evaluate our method against state-of-the-art models
of the logistic regression and simple threshold techniques described
in the RQ-2 Setup. The logistic regression model follows a similar
methodology as our ML model in that the interference scenario
encountered at runtime is different than that used at training time.

5 RESULTS AND DISCUSSION
In this section, we evaluate the interference scenarios for our re-
search questions and present our findings.

5.1 RQ-1 Results: How Severe is the Impact of
Interference?

5.1.1 Single VM Experiments Results Analysis. Tables 1, 2, and 3
shows the target Acme Air application’s utilization values along

292



ICPE ’24, May 7–11, 2024, London, United Kingdom Alexandru Baluta, Yar Rouf, Joydeep Mukherjee, Zhen Ming Jiang, and Marin Litoiu

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

238.9 14.36% 1.31% 7.56% 41.18% 1.33 1.34 0.75%
469.4 28.66% 1.35% 13.65% 41.83% 1.91 1.93 1.05%
631.49 37.68% 1.39% 18.09% 41.99% 2.58 2.87 11.24%
937.03 53.66% 1.51% 27.88% 42.00% 9 12.53 39.22%

Table 1: NDI Interference in Single VM

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

238.9 17.93% 1.25% 9.19% 26.65% 1.22 2.66 118.03%
469.29 34.15% 1.41% 16.90% 27.35% 1.78 24.74 1289.89%
631.48 41.80% 1.44% 21.99% 27.66% 2.4 104.13 4238.75%
673.49 45.95% 1.49% 23.18% 28.01% 7.35 518.53 6954.83%

Table 2: CSI Interference in Single VM

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

238.9 15.38% 1.43% 10.04% 20.56% 2.38 8.1 240.34%
469.39 28.08% 1.32% 17.25% 20.64% 2.98 31.83 968.12%
631.4 37.19% 1.40% 23.28% 20.86% 4.16 135.66 3161.06%
938.97 54.04% 1.50% 36.50% 20.78% 16.48 590.88 3485.44%

Table 3: CDI Interference in Single VM

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

469.39 26.03% 1.56% 11.82% 45.20% 1.11 1.81 63.06%
631.48 34.83% 1.61% 15.56% 45.39% 1.57 2.80 78.34%
937 48.88% 1.66% 21.90% 45.39% 3.02 12.23 304.97%

1099.85 54.63% 1.66% 24.29% 45.78% 5.66 24.10 325.80%
Table 4: NDI Interference in Dual VM

the impact of interference on the average request response time of
Acme Air. Accordingly, Web CPU and Web Mem refer to the target
Acme Air’s Web server. Similarly, DB CPU and DB Mem refer to
the target Acme Air’s Database server. 𝑅𝑏𝑎𝑠𝑒 and 𝑅𝑡 refer to the
baseline response time of our target Acme Air application with-
out interference and the runtime response time of Acme Air with
interference respectively. As seen in the tables, depending on the
resource utilization and workload levels, the average response time
of Acme Air is heavily impacted by different levels of performance
interference. Even at comparatively light interference levels, the
response time of Acme Air more than doubles, as seen in the first
row in Table 2.

5.1.2 Dual VM Experiments Results Analysis. Tables 4, 5 and 6
shows the impact of interference on the average request response
time of Acme Air in dual VM scenarios. For the dual VM NDI
Scenario, the impact of interference on the average response time of
Acme Air can be significant. In the worst case, the average Acme Air
response time increases from 5.66 ms to 24.1 ms, a 325.8% increase.
For the dual VM CSI Scenario, the response time of Acme degrades
significantly when running alongside a second copy of the Acme
application. In the worst case scenario, the response time of Acme
increases from 3.46 ms to 202.47 ms. For the dual VM CDI scenario,
Acme’s response time degrades significantly in this scenario as well.

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

238.9 17.52% 1.31% 9.81% 33.70% 1.11 2.46 121.62%
469.34 33.16% 1.44% 17.60% 33.94% 1.33 12.91 870.68%
631.5 41.92% 1.49% 22.22% 34.28% 1.55 28.47 1736.77%
907.29 57.11% 1.56% 30.12% 34.67% 3.46 202.47 5751.73%

Table 5: CSI Interference in Dual VM

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

238.9 14.18% 1.42% 9.35% 26.19% 1.24 5.46 340.32%
469.4 25.98% 1.33% 15.22% 26.44% 1.23 13.67 1011.38%
631.5 34.42% 1.38% 20.74% 26.52% 1.45 26.68 1740.00%
939.21 49.55% 1.49% 30.97% 26.54% 2.32 90.22 3788.79%

Table 6: CDI Interference in Dual VM

In the worst case, the response time of Acme increases from 2.32
ms to 90.22 ms.

RQ-1: Through extensive experimentation, we characterize in-
terference through its impact on container utilization metrics.
Results show significant impact of interference on the response
time of in-production applications for all interference types con-
sidered. For both single and dual VM deployments, response time
degrades by at least a factor of 39% and at most a factor of 6955%
when the normal CPU utilization levels are between 40% and
60%. We also conclude that the higher the utilization, the higher
the impact of interference.

5.2 RQ-2 Results: When Interfering Workloads
for Model Training and Deployment are
Similar

In this section, we evaluate the performance of ML, QNM and
state-of-the-art models to detect interference when the interfering
application load is known in the training phase. The applications
used for the interfering workloads are the same for both model
training and deployment for the RQ-2 results. This is indeed an ideal
case, however, it is important in defining a baseline.We compare the
effectiveness of three different approaches for all our application
scenarios; Regression, QNM and ML.

Figure 4 presents a 𝐹1 score box-plot for ML approach compared
to the other state-of-the-art approaches described in Section 4.4.3.
On the box-plot, the horizontal bar represents the median 𝐹1 scores
across all scenario types and VM deployments. The higher the me-
dian, the shorter the box, the better the performance. The Threshold
model has the lowest performance and the Regression model has
high variability of 𝐹1 scores, showing that the Regression has diffi-
culty consistently detecting interference across different scenarios
and deployment types. We performed the ANOVA test on our data
to to confirm the significant differences between the approaches
(f-value = 16.343801, p-value = 0.000013). Overall, we observe from
the box-plot that our ML approach outperforms all state-of-the-art
methods with the highest 𝐹1 scores and lowest variability.

Table 7 captures a closer look on the details of the performance
of ML approach and state-of-the-art techniques described in Section
4.4.3. The Threshold and QNM approaches performs the worst in all

293



Disambiguating Performance Anomalies from Workload Changes in Cloud-Native Applications ICPE ’24, May 7–11, 2024, London, United Kingdom

Threshold Regression QNM ML
0

20

40

60

80

100

F1
 S

co
re

Figure 4: Performance of ML versus State-of-the-Art Models

Scenario Approach F1 Score Precision Recall
NDI in 1VM Threshold 30.75% 22.69% 47.69%
NDI in 1VM Regression 15.04% 40.0% 9.26%
NDI in 1VM QNM 60.0% 46.15% 85.71%
NDI in 1VM ML 81.64% 100.0% 68.98%
CSI in 1VM Threshold 16.67% 87.5% 9.21%
CSI in 1VM Regression 97.99% 100.0% 96.05%
CSI in 1VM QNM 80.0% 80.0% 80.0%
CSI in 1VM ML 98.67% 100.0% 97.37%
CDI in 1VM Threshold 0.00% 0.00% 0.00%
CDI in 1VM Regression 89.59% 92.79% 86.6%
CDI in 1VM QNM 81.25% 100.0% 68.42%
CDI in 1VM ML 87.46% 100.0% 77.71%
NDI in 2VM Threshold 41.94% 46.43% 38.24%
NDI in 2VM Regression 73.85% 77.42% 70.59%
NDI in 2VM QNM 66.67% 66.67% 66.67%
NDI in 2VM ML 97.14% 94.44% 100.0%
CSI in 2VM Threshold 40.13% 89.85% 25.84%
CSI in 2VM Regression 99.24% 99.27% 99.21%
CSI in 2VM QNM 77.78% 77.78% 77.78%
CSI in 2VM ML 99.91% 99.82% 100.0%
CDI in 2VM Threshold 19.27% 86.45% 10.84%
CDI in 2VM Regression 91.5% 95.44% 87.87%
CDI in 2VM QNM 73.68% 87.5% 63.64%
CDI in 2VM ML 87.97% 100.0% 78.52%

Table 7: Performance of ML vs. State-of-the-Art Models

the scenarios. The Regression approach overall has a significantly
better performance compared to the Threshold and QNM in the
CSI and CDI scenarios. However, the Regression model showed
significant performance degradation in the NDI scenario with a 𝐹1
score of 15.04 %, being on par with the Threshold model. Compared
to the Regression model 𝐹1 score in all the other scenarios in both
VM deployments, this can be considered an outlier. The poor perfor-
mance of the QNMmodel when detecting performance interference
might be impacted by the lack of precision in estimating alpha and
assuming ideal arrival rates and service time distributions. The
ML approach outperforms all the models in each of the scenarios.
The Regression model does outperform out ML approach in the
CDI scenario by 2.13 % and 3.53 %. However, the ML approach is
more consistent in performance with a high F1-score, Precision
and Recall across all the scenarios, unlike the Regression approach.
This demonstrates that the ML approach can consistently classify

Scenario Approach F1 Score Precision Recall
NDI in 4VM QNM 40.45% 34.05% 49.81%
NDI in 4VM Regression 85.71% 81.03% 90.98%
NDI in 4VM ML 99.12% 99.25% 99.00%
CSI in 4VM QNM 42.5% 36.31% 51.24%
CSI in 4VM Regression 90.14% 87.48% 92.98%
CSI in 4VM ML 99.17% 99.0% 99.26%
CDI in 4VM QNM 0% 0% 0%
CDI in 4VM Regression 97.57% 95.82% 99.38%
CDI in 4VM ML 99.79% 99.79% 99.79%

Table 8: Boutique subject to Interference

interference with high accuracy on a variety of different types of
applications and deployments.

Table 8 show the 𝐹1 score, Precision and Recall for the Boutique
deployment experiments. Since the Threshold model performance
was the lowest of the models, we omitted it from our experiments.
The 𝐹1 score for the ML approach has less variability than the
regression method which shows that the ML approach is more
consistently able to detect performance interference for large at-
scale deployments. Our QNM model performed the worst when
detecting interference for at-scale deployments. Specifically, the
CDI scenario demonstrates the limitation of the QNM approach
and it’s inflexibility in handing variability and incomplete metrics
which caused the QNM approach unable to classify interference.
Overall our ML approach outperforms the other approaches from
2.22% up to 13.41%.

Scenario Best ML
Model

F1 Score Precision Recall

NDI in 1VM GBM 81.64% 100.0% 68.98%
NDI in 2VM Ensemble 97.14% 94.44% 100.0%
CSI in 1VM Ensemble 98.67% 100.0% 97.37%
CSI in 2VM Ensemble 99.91% 99.82% 100.0%
CDI in 1VM GBM 87.46% 100.0% 77.71%
CDI in 2VM GBM 87.97% 100.0% 78.52%
Table 9: Top Performing ML Model Per Scenario

Interference
Base Utilization

Interference
Step Size 𝐹1 Score Precision Recall

20 % 10 % 97.95% 100% 96%
10 % 6 % 91.30% 100% 84%
6 % 2 % 89.36% 91.30% 87.50%

Table 10: ML Accuracy with Different Interference Step Size

As the ML approach has the best overall performance, we then
investigated the step size of the workload and it’s effect on the
performance of the ML approach. Since the same workload is used
across all the experiments, we investigate how the 𝐹1 score of the
ML approach are affected with different workload step sizes. Table
10 shows differing workloads of the interfering application with the
Base Utilization as the starting point of the interfering application
and its respective step size. A higher base utilization and step size
increases causes the ML model to classify the interference with
more ease. As the step size of the workload is reduced to smaller

294



ICPE ’24, May 7–11, 2024, London, United Kingdom Alexandru Baluta, Yar Rouf, Joydeep Mukherjee, Zhen Ming Jiang, and Marin Litoiu

Env Training / Run-
time Scenarios

Approach F1 Score Precision Recall

1VM NDI / CSI Threshold 10.3% 94.15% 5.45%
1VM NDI / CSI Regression 21.91% 1.0% 12.31%
1VM NDI / CSI ML 75.77% 99.26% 61.27%
1VM NDI / CDI Threshold 0.0% 0.0% 0.0%
1VM NDI / CDI Regression 53.8% 1.0% 36.8%
1VM NDI / CDI ML 82.77% 78.18% 87.93%
1VM CSI / CDI Threshold 0.0% 0.0% 0.0%
1VM CSI / CDI Regression 87.46% 83.68% 91.61%
1VM CSI / CDI ML 90.21% 82.17% 100.0%
2VM NDI / CSI Threshold 39.88% 88.04% 25.78%
2VM NDI / CSI Regression 91.81% 93.91% 89.8%
2VM NDI / CSI ML 89.53% 98.5% 82.1%
2VM NDI / CDI Threshold 17.8% 85.43% 9.93%
2VM NDI / CDI Regression 78.63% 93.3% 67.95%
2VM NDI / CDI ML 82.62% 93.86% 73.79%
2VM CSI / CDI Threshold 17.8% 85.43% 9.93%
2VM CSI / CDI Regression 90.98% 84.41% 98.67%
2VM CSI / CDI ML 94.37% 91.68% 97.22%

Table 11: Evaluation of Training/Runtime Interference

values, the F1-score decreases. However even at very minimum
step size increases of 1.5 - 3 %, the ML approach has an 89.36 %
F1-Score with relatively high precision and recall when classifying
interference.

Finally, we report the ML models with highest 𝐹1 Score for both
the single and dual VM experiments in Table 9. Scenarios repre-
sented in this table are described by the number of VMs in the
environment as well as the characteristics of interfering application.
As seen in the table, GBM models performs best for interference
detection in all single and dual VM CSI scenarios. In the dual VM
NDI scenario, a stacked ensemble model performs best. In all CDI
scenarios, a stacked ensemble model also performed the best.

RQ-2: We evaluated interference detection techniques on dif-
ferent deployment and interference types where the interfering
load is the same in the training and runtime phases. ML mod-
els outperform logistic regression, QNM and simple threshold
techniques in each of our evaluation experiments in 𝐹1 score
by at least 0.67% and at most 23.29%. The high ML performance
is maintained at-scale deployments and we can conclude ML
models can better handle the variability of the cloud.

5.3 RQ-3 Results: When Interfering Workloads
for Model Training and Deployment are
Different

Cloud environments of scale are subject to frequent change. Con-
tainerized microservices may be co-located and scaling actions may
introduce additional containers that in turn stress the underlying
VMs. It is impractical to train an interference model for every possi-
ble deployment combination. Accordingly, we attempt to construct
a ML model that performs well when our target application is sub-
ject to a different interference scenario in the runtime phase as
opposed to its training phase.

Threshold Regression ML
0

20

40

60

80

F1
 S

co
re

Figure 5: Evaluation for Unknown Interference

Training / Run-
time Scenarios

Approach F1 Score Precision Recall

NDI / CSI Regression 86.19% 88.54% 83.96%
NDI / CSI ML 98.44% 98.69% 98.18%
NDI / CDI Regression 86.05% 99.19% 75.99%
NDI / CDI ML 99.10% 99.50% 98.72%
CSI / CDI Regression 80.18% 99.57% 67.12%
CSI / CDI ML 97.64% 99.48% 95.87%
NDI + CDI / CSI Regression 83.20% 94.25% 74.46%
NDI + CDI / CSI ML 97.11% 99.19% 95.12%
NDI + CSI / CDI Regression 80.72% 99.58% 67.86%
NDI + CSI / CDI ML 99.65% 99.47% 99.83%

Table 12: Boutique Training/Runtime Interference

Table 11 and Figure 5 shows our results from the experiments
conducted in Section 4.4.4. Table 11 denotes the interference sce-
nario encountered at training time aswell as the interfering scenario
present at runtime. In this way the ML models were evaluated in
scenarios where the interference scenario is unknown and previ-
ously unseen. Notably, ML outperformed state-of-the-art methods
in both single VM and dual VM environments. In each scenario,
ML obtained the highest 𝐹1 score when compared to state-of-the-
art techniques. As seen in Figure 5, the ML approach consistently
able to classify interference and significantly outperformed the ML
and Regression. We performed the ANOVA test on the data to to
confirm the significant differences between the approaches (f-value
= 24.650731, p-value = 0.000018).

It’s also notable that the models trained in CSI scenarios and
tested at runtime with CDI interference resulted in a better 𝐹1 score
than the models with NDI interference at training time. Models
where the interference scenario is the same at training and runtime
perform substantially better over their counterparts where inter-
ference scenarios are different. However, using a model trained for
use with different interference scenarios does not suffer from long
pre-deployment or training phases.

For the large at-scale deployment, we compared the highest
performing approaches in the previous experiments. When the in-
terfering application is unknown with large at-scale deployments,
Table 12 shows the Regression approaches begin to struggle in
detecting the performance interference. Our ML approach outper-
forms the 𝐹1 score of the regression up to 20.57%.

295



Disambiguating Performance Anomalies from Workload Changes in Cloud-Native Applications ICPE ’24, May 7–11, 2024, London, United Kingdom

RQ-3: We evaluated ML versus the state-of-the-art interference
detection techniques where the interference scenario is different
in the training and runtime phases. The ML models outperform
state-of-the-art techniques in 𝐹1 score by at least 2.75 % and
at most 53.86 % for all but one interference types and different
deployments. We can conclude that training with interfering
applications yields better performance than if we train with
random interference (NDI with stress-ng). The performance of
the ML approach (𝐹1 score), although lower than in the case
of RQ-2, is high enough and scales well so it can be applied in
production.

6 THREATS TO VALIDITY
We identify threats to validity of our work as per Wohlin et al [37].
We note as an external threat that our ML model training approach
might not detect interference from unknown interfering applica-
tions well if the resource utilization signature of the benchmark
interfering application is significantly different from the interfer-
ing application used at runtime. If the interfering application used
in the training phase and the interfering application at runtime
stresses different VM-level resources, our technique may be unable
to classify interference. Furthermore, as another external threat, in
multi-VM deployment strategies frequently used for microservice
deployment, if the VM characteristics at runtime change relative to
what was used in the training phase, our ML models may not be
successful and will need to be re-trained.

7 CONCLUSIONS AND FUTUREWORK
In this work, we propose a runtime performance interference detec-
tion technique that leverages Machine Learning. Our ML models
are trained on microservice resource utilization metrics subject to
varying environments and different interfering applications. Our ap-
proach does not require expensive service instrumentation and does
not pose prohibitive monitoring overhead. Our proposed technique
is effective in detecting performance interference for a realistic mi-
croservice benchmark running on the EC2 cloud platform and also
outperforms baseline and state-of-the-art interference detecting
techniques. Our ML models are also effectively used in varying
cloud environments where the interference characteristics change
at runtime. In the future, we plan to investigate model maintenance
over time with respect to an application’s behavioural drift through
continuous learning or time series techniques. Furthermore, we
will integrate our ML Models into an AIOps platform that takes
deployment actions to mitigate performance interference.

REFERENCES
[1] [Online]. Acme Air. https://github.com/acmeair
[2] [Online]. Air Quality Monitor. https://github.com/jlofw/air-quality-monitor
[3] [Online]. Amazon Web Services. https://aws.amazon.com/
[4] [Online]. Google Cloud. https://cloud.google.com/
[5] [Online]. Locust. https://locust.io/
[6] [Online]. Online Boutique. https://github.com/GoogleCloudPlatform/

microservices-demo
[7] [Online]. Production-Grade Container Orchestration. https://kubernetes.io/
[8] [Online]. Prometheus. https://prometheus.io/
[9] [Online]. Stress-ng. https://kernel.ubuntu.com/~cking/stress-ng/
[10] Sandip Agarwala, Yuan Chen, Dejan Milojicic, and Karsten Schwan. 2006. QMON:

QoS-and utility-aware monitoring in enterprise systems. In 2006 IEEE Interna-
tional Conference on Autonomic Computing. IEEE, 124–133.

[11] Yasaman Amannejad, Diwakar Krishnamurthy, and Behrouz Far. 2015. Detect-
ing performance interference in cloud-based web services. In 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM). IEEE, 423–431.

[12] Alexandru Baluta, Joydeep Mukherjee, and Marin Litoiu. 2022. Machine Learning
based Interference Modelling in Cloud-Native Applications. In Proceedings of the
2022 ACM/SPEC on International Conference on Performance Engineering. 125–132.

[13] R.J. Boucherie and N.M. van Dijk. 2011. Queueing Networks: A Fundamental
Approach. Springer US. https://books.google.ca/books?id=C98YswEACAAJ

[14] Eli Brookner. 1998. Tracking and Kalman filtering made easy. Wiley New York.
[15] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springen-

berg, Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated
Machine Learning. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’15). MIT
Press, Cambridge, MA, USA, 2755–2763.

[16] Ruoyu Gao and Zhen Ming Jiang. 2017. An exploratory study on assessing the
impact of environment variations on the results of load tests. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). IEEE, 379–
390.

[17] Surya Kant Garg and J Lakshmi. 2017. Workload performance and interference
on containers. In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing & Communications, Cloud &
Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 1–6.

[18] Vojtěch Horký, Jaroslav Kotrč, Peter Libič, and Petr Tůma. 2016. Analysis of
Overhead in Dynamic Java Performance Monitoring. In Proceedings of the 7th
ACM/SPEC on International Conference on Performance Engineering (Delft, The
Netherlands) (ICPE ’16). Association for Computing Machinery, New York, NY,
USA, 275–286. https://doi.org/10.1145/2851553.2851569

[19] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. 2017. Performance Moni-
toring and Root Cause Analysis for Cloud-Hosted Web Applications. In Proceed-
ings of the 26th International Conference on World Wide Web (Perth, Australia)
(WWW ’17). International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, CHE, 469–478. https://doi.org/10.1145/3038912.
3052649

[20] Devki Nandan Jha, Saurabh Garg, Prem Prakash Jayaraman, Rajkumar Buyya,
Zheng Li, and Rajiv Ranjan. 2018. A holistic evaluation of docker containers
for interfering microservices. In 2018 IEEE International Conference on Services
Computing (SCC). IEEE, 33–40.

[21] Kartik Joshi, Arun Raj, and Dharanipragada Janakiram. 2017. Sherlock: Light-
weight detection of performance interference in containerized cloud services.
In 2017 IEEE 19th International Conference on High Performance Computing and
Communications; IEEE 15th International Conference on Smart City; IEEE 3rd In-
ternational Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE,
522–530.

[22] Peng Kang and Palden Lama. 2020. Robust Resource Scaling of Containerized
Microservices with Probabilistic Machine learning. In 2020 IEEE/ACM 13th Inter-
national Conference on Utility and Cloud Computing (UCC). IEEE, 122–131.

[23] Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua Wen, and
Calton Pu. 2007. An analysis of performance interference effects in virtual
environments. In 2007 IEEE International Symposium on Performance Analysis of
Systems & Software. IEEE, 200–209.

[24] Erin LeDell and Sebastien Poirier. 2020. H2O AutoML: Scalable Automatic
Machine Learning. 7th ICMLWorkshop on Automated Machine Learning (AutoML)
(July 2020). https://www.automl.org/wp-content/uploads/2020/07/AutoML_
2020_paper_61.pdf

[25] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux J. 2014, 239, Article 2 (March 2014).

[26] David Mosberger and Tai Jin. 1998. Httperf—a Tool for Measuring Web Server
Performance. SIGMETRICS Perform. Eval. Rev. 26, 3 (Dec. 1998), 31–37. https:
//doi.org/10.1145/306225.306235

[27] JoydeepMukherjee, Alexandru Baluta, Marin Litoiu, and Diwakar Krishnamurthy.
2020. RAD: Detecting Performance Anomalies in Cloud-based Web Services.
In 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). IEEE,

296

https://github.com/acmeair
https://github.com/jlofw/air-quality-monitor
https://aws.amazon.com/
https://cloud.google.com/
https://locust.io/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://kubernetes.io/
https://prometheus.io/
https://kernel.ubuntu.com/~cking/stress-ng/
https://books.google.ca/books?id=C98YswEACAAJ
https://doi.org/10.1145/2851553.2851569
https://doi.org/10.1145/3038912.3052649
https://doi.org/10.1145/3038912.3052649
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://doi.org/10.1145/306225.306235
https://doi.org/10.1145/306225.306235


ICPE ’24, May 7–11, 2024, London, United Kingdom Alexandru Baluta, Yar Rouf, Joydeep Mukherjee, Zhen Ming Jiang, and Marin Litoiu

493–501.
[28] Joydeep Mukherjee and Diwakar Krishnamurthy. 2018. Subscriber-driven cloud

interference mitigation for network services. In 2018 IEEE/ACM 26th International
Symposium on Quality of Service (IWQoS). IEEE, 1–6.

[29] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo
Bianchini. 2013. DeepDive: Transparently Identifying andManaging Performance
Interference in Virtualized Environments. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference (San Jose, CA) (USENIX ATC’13).
USENIX Association, USA, 219–230.

[30] Indrani Paul, Sudhakar Yalamanchili, and Lizy K John. 2012. Performance impact
of virtual machine placement in a datacenter. In 2012 IEEE 31st International
Performance Computing and Communications Conference (IPCCC). IEEE, 424–431.

[31] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatramani,
and Deepak Rajan. 2012. Prepare: Predictive performance anomaly prevention
for virtualized cloud systems. In 2012 IEEE 32nd International Conference on
Distributed Computing Systems. 285–294. https://doi.org/10.1109/ICDCS.2012.65

[32] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Clas-
sification Algorithms. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Chicago, Illinois, USA)
(KDD ’13). Association for Computing Machinery, New York, NY, USA, 847–855.

https://doi.org/10.1145/2487575.2487629
[33] Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara. 2016. Workload charac-

terization for microservices. In 2016 IEEE international symposium on workload
characterization (IISWC). IEEE, 1–10.

[34] Yohei Ueda and Moriyoshi Ohara. 2017. Performance competitiveness of a
statically compiled language for server-side Web applications. In 2017 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 13–22.

[35] Fotios Voutsas, John Violos, and Aris Leivadeas. 2023. Filtering alerts on cloud
monitoring systems. In 2023 IEEE International Conference on Joint Cloud Com-
puting (JCC). IEEE, 34–37.

[36] Sa Wang, Wenbo Zhang, Tao Wang, Chunyang Ye, and Tao Huang. 2015. Vmon:
Monitoring and quantifying virtual machine interference via hardware perfor-
mance counter. In 2015 IEEE 39th Annual Computer Software and Applications
Conference, Vol. 2. IEEE, 399–408.

[37] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, and A. Wesslen. 2000.
Experimentation in Software Engineering. Kluwer Academic Publishers.

[38] Tao Zheng, C. Murray Woodside, and Marin Litoiu. 2008. Performance Model
Estimation and Tracking Using Optimal Filters. IEEE Transactions on Software
Engineering 34, 3 (2008), 391–406. https://doi.org/10.1109/TSE.2008.30

297

https://doi.org/10.1109/ICDCS.2012.65
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1109/TSE.2008.30

	Abstract
	1 Introduction
	2 Related Work
	2.1 Interference Definitions
	2.2 Interference Measurement and Classification
	2.3 Interference Regression

	3 Definitions, Models and Methodology
	3.1 Queuing Network Models and Interference Modeling
	3.1.1 QNM Methodology

	3.2 Machine Learning Classification and Interference Modeling
	3.3 Machine Learning Methodology
	3.3.1 General Methodology
	3.3.2 Data Collection and Pre-Processing for ML
	3.3.3 ML Model Training
	3.3.4 ML Model Runtime Deployment


	4 Experimental Validation
	4.1 Target and Interference applications
	4.2 Interference Types
	4.3 Deployment types
	4.3.1 Single Virtual Machine (1VM)
	4.3.2 Dual Virtual Machine (2VM)
	4.3.3 At-scale Deployments

	4.4 Experimental Setup and Methodology
	4.4.1 Workload Characteristics
	4.4.2 Metrics Monitoring
	4.4.3 RQ-2 Setup
	4.4.4 RQ-3 Setup


	5 Results and Discussion
	5.1 RQ-1 Results: How Severe is the Impact of Interference?
	5.1.1 Single VM Experiments Results Analysis
	5.1.2 Dual VM Experiments Results Analysis

	5.2 RQ-2 Results: When Interfering Workloads for Model Training and Deployment are Similar
	5.3 RQ-3 Results: When Interfering Workloads for Model Training and Deployment are Different

	6 Threats to Validity
	7 Conclusions and Future Work
	References



