
ICPE Companion ’24
Companion of the 15th ACM/SPEC International Conference on
Performance Engineering
Sponsored by:

ACM SIGMETRICS, ACM SIGSOFT, & SPEC
General Chairs:

Simonetta Balsamo (Ca’ Foscari University of Venice, Italy)
William Knottenbelt (Imperial College London, UK)
Program Chairs:

Cristina L. Abad (Escuela Superior Politecnica del Litoral, Ecuador)
Weiyi Shang (University of Waterloo, Canada)
Publications Chairs:

Mauro Iacono (Università degli Studi della Campania Luigi Vanvitelli, Italy)
Jianing Qiu (Imperial College London, UK)

May 7–11, 2024
London, United Kingdom

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629527&domain=pdf&date_stamp=2024-05-07

The Association for Computing Machinery

1601 Broadway, 10th Floor

New York, NY 10019-7434

Copyright © 2024 by the Association for Computing Machinery, Inc. (ACM).

Permission to make digital or hard copies of portions of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this notice and the full citation on

the first page. Copyright for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request

permission to republish from: permissions@acm.org or Fax +1 (212) 869-0481.

For other copying of articles that carry a code at the bottom of the first or last page,

copying is permitted provided that the per-copy fee indicated in the code

is paid through www.copyright.com.

ISBN: 979-8-4007-0445-1

Additional copies may be ordered prepaid from:

ACM Order Department

PO Box 30777

New York, NY 10087-0777, USA

Phone: 1-800-342-6626 (USA and Canada)

+1-212-626-0500 (Global)

Fax: +1-212-944-1318

E-mail: acmhelp@acm.org

Hours of Operation: 8:30 am – 4:30 pm ET

Printed in the USA

mailto:acmhelp@acm.org

ICPE 2024 Companion Welcome Message

It is our pleasure to welcome you to the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE), hosted at Imperial College London in South Kensington, London, UK, from May 7-11,
2024.

The International Conference on Performance Engineering (ICPE) is the leading international forum for
presenting and discussing novel ideas, innovations, trends and experiences in the field of performance
engineering.

This companion volume collects papers from the following ICPE 2024 tracks.

The Emerging Research track has the goal to present and discuss work-in-progress and new-ideas
contributions, where some aspects of the work remain open. Seven papers were accepted in this track.

The Artifacts track received submissions for already accepted research track papers and three
independently submitted data artifact papers that are presented in this volume. The Artifact Chairs
oversaw a dedicated verification process with a team of reviewers willing to try out code, review datasets,
and provide iterative feedback.

At its third successful edition, the Data Challenge track at ICPE asked participants to address challenges
in analyzing datasets of microservices execution traces, as provided by the track organizers. Five papers
were accepted in this track.

The Posters and Demonstrations track hosts three demo papers and two posters outlining work relevant
to the performance engineering community.

The Tutorial track presents three high-quality tutorials on high-performance system design, industry
perspectives on performance analysis, and distributed tracing analysis.

In addition to the main conference and its tracks, we were also very happy to host seven interesting
colocated workshops on topics related to performance engineering.

These various tracks and workshops provide a valuable forum for discussing ideas in a broad range of
topics related to performance engineering. They also provide a platform for researchers, students, and
practitioners to discuss their ideas informally and establish collaborations.

ICPE 2024 will be held in person to stimulate the connection and socialization among young and senior
researchers and practitioners. The organizing committee strongly believes that an “in-presence”
conference is more effective in providing new insights and concrete opportunities to create strong
relationships among ICPE community members.

As always, ICPE 2024 is the result of hard work made by the authors, the program committees of the
different tracks and the external reviewers, and the conference organizers. We thank them for their
invaluable contribution. We also acknowledge the individual workshop organizers and program
committees for their contributions. Our sincere thanks go to SPEC and ACM, through SIGSOFT and
SIGMETRICS, for their continuous support. We are also thankful to ACM SIGSOFT CAPS for providing
travel grants to students and professionals, enabling increased participation.

On behalf of the whole organizing committee, we welcome you to South Kensington and hope you will
enjoy the conference and the city of London.

Simonetta Balasamo
ICPE’24 General Co-Chair
Ca’Foscari University of Venice, Italy

William Knottenbelt
ICPE’24 General Co-Chair
Imperial College London, UK

 Chairs continued.

iii

Cristina L. Abad
ICPE’24 Program Co-Chair
Escuela Superior Politécnica del Litoral, Ecuador

Weiyi Shang
ICPE’24 Program Co-Chair
University of Waterloo, Canada

Vittoria de Nitto Personè
ICPE’24 Emerging Research Co-Chair
Tor Vergata University of Rome, Italy

Lishan Yang
ICPE’24 Emerging Research Co-Chair
George Mason University, USA

Robert Ricci
ICPE’24 Artifact Evaluation Co-Chair
University of Utah, USA

Dmitry Duplyakin
ICPE’24 Artifact Evaluation Co-Chair
NREL, USA

Luca Traini
ICPE’24 Data Challenge Co-Chair
University of L'Aquila, Italy

Christoph Laaber
ICPE’24 Data Challenge Co-Chair
Simula Research Laboratory, Norway

André Bauer
ICPE’24 Poster and Demo Co-Chair
University of Chicago, USA

Martin Straesser
ICPE’24 Poster and Demo Co-Chair
University of Würzburg, Germany

Heng Li
ICPE’24 Tutorial Chair
Polytechnique Montreal, Canada

iv

Welcome from the Workshops Chairs

It is our great pleasure to present the ICPE 2024 workshops program. ICPE workshops extend the main
conference by providing a forum to foster discussion on hot and emerging topics from the broad field of
performance engineering. They offer a highly dynamic venue to exchange ideas, establish new
collaborations, and bootstrap debates on novel techniques, methodologies, and their associated early
research results. Workshops feature various presentation formats, including research paper
presentations, panel discussions, and keynote talks. Through these presentations and discussions with
peer researchers, ICPE workshops help shape future research and identify promising research directions
for performance engineering.

This year, the workshop program includes 7 workshops. Our program highlights both the continuity of
well-established workshops and the emerging research directions of new workshops joining ICPE for the
first time. These 7 workshops cover a notable range of topics from the perspective of performance
engineering, including cloud computing, extreme-scale systems, and artificial intelligence.

The complete list of accepted workshops is:

● The Second International Workshop on Artificial Intelligence for Performance Modeling,
Prediction, and Control (AIPerf 2024)

● The Fifth Workshop on Benchmarking in the Datacenter: Expanding to the Cloud (BID 2024)
● The Second Workshop on Serverless, Extreme-Scale, and Sustainable Graph Processing

Systems (GraphSys 2024)
● The First Workshop on Performance Optimization in the LLM World (PerfLLM 2024)
● The Seventh Workshop on Hot Topics in Cloud Computing Performance (HotCloudPerf-2024)
● The Twelfth International Workshop on Load Testing and Benchmarking of Software Systems

(LTB 2024)
● Ninth Workshop on Challenges in Performance Methods for Software Development (WOSP-C)

We thank all workshop chairs for organizing programs focusing on such diverse and inspiring topics,
which attracted many high-quality paper submissions and enabled exciting workshop programs,
featuring 30 accepted papers. Moreover, we would like to thank the technical program committee
members of all workshops for their careful reviews. Further, we would like to thank the ICPE general
chairs (William Knottenbelt and Simonetta Balsamo), the program chairs (Cristina L. Abad and Weiyi
Shang), the publication chairs (Mauro Iacono and Jianing Qiu), the publicity and social-media chair
(Marco Paolieri), and the web chair (Giordano d’Aloisio) for their help and support.

Finally, we thank all authors, keynote speakers, panelists, and anyone providing content that is so
valuable for the workshops program. We are proud to welcome all ICPE workshop participants, and the
community as a whole, to discuss and debate a broad range of topics for two full days. We are looking
forward to meeting all of you at ICPE 2024, and we wish you a great experience attending the ICPE 2024
workshops!

Diego Elias Costa
ICPE 2024 Workshops Chair
Concordia University, Canada

Michele Tucci
ICPE 2024 Workshops Chair
University of L’Aquila, Italy

v

 vi

Table of Contents

ICPE 2024: 15th ACM/SPEC International Conference on Performance
Engineering Organization .. xi

ICPE 2024 Sponsors & Supporters ... xv

Emerging Research Track

• Context-aware Root Cause Localization in Distributed Traces Using Social Network
Analysis (Work In Progress paper).. 1
Mahsa Panahandeh (Electrical and Computer Engineering department, University of Alberta),
Naser Ezzati-Jivan (Department of Computer Science, Brock University),
Abdelwahab Hamou-Lhadj (Department of Electrical and Computer Engineering, Concordia University),
James Miller (Department of Electrical and Computer Engineering, University of Alberta)

• Enhancing the Performance of Deep Learning Model Based Object Detection using
Parallel Processing (Work In Progress Paper) .. 7
Omar Imran (Carleton University), Shikharesh Majumdar (Carleton University),
Sreeraman Rajan (Carleton University)

• Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs 14
Hongwu Peng (University of Connecticut), Caiwen Ding (University of Connecticut),
Tong Geng (University of Rochester), Sutanay Choudhury (Pacific Northwest National Laboratory),
Kevin Barker (Pacific Northwest National Laboratory), Ang Li (Pacific Northwest National Laboratory)

• FAIR Sharing of Data in Autotuning Research (Vision Paper).. 21
Jana Hozzová (Institute of Computer Science, Masaryk University),
Jacob O. Tørring (Department of Computer Science, Norwegian University of Science and Technology),
Ben van Werkhoven (Leiden Institute of Advanced Computer Science, Leiden University),
David Střelák (Institute of Computer Science, Masaryk University & National Biotechnology Center),
Richard Vuduc (Georgia Institute of Technology)

• Mastering Computer Vision Inference Frameworks ... 28
Pierrick Pochelu (University of Luxembourg FSTM-DCS),
Oscar Castro Lopez (University of Luxembourg FSTM-DCS)

• Matrix Network Analyzer: A New Decomposition Algorithm for Phase-type Queueing
Networks (Work In Progress Paper) ... 34
Zhuoyuan Li (Imperial College London), Giuliano Casale (Imperial College London)

• Towards Efficient Diagnosis of Performance Bottlenecks in Microservice-Based
Applications (Work In Progress paper) .. 40
Adel Belkhiri (École Polytechnique de Montréal), Maroua Ben Attia (Humanitas Solutions),
Felipe Gohring De Magalhaes (École Polytechnique de Montréal),
Gabriela Nicolescu (École Polytechnique de Montréal)

Artifacts Track

• DMBench: Load Testing and Benchmarking Tool for Data Migration ... 47
Fares Hamouda (York University), Marios Fokaefs (York University), Dariusz Jania (IBM)

• STIGS: Spatio-Temporal Interference Graph Simulator for Self-Configurable Multi-Tenant
Cloud Systems .. 52
Iqra Zafar (Hasso Plattner Institute), Christian Medeiros Adriano (Hasso Plattner Institute),
Holger Giese (Hasso Plattner Institute)

• KubePlaybook: A Repository of Ansible Playbooks for Kubernetes Auto-Remediation
with LLMs ... 57
Komal Sarda (York University), Zakeya Namrud (York University), Marin Litoiu (York University),
Larisa Shwartz (IBM T. J. Watson Research Center), Ian Watts (IBM Canada Lab)

 vii

Data Challenge Track

• Efficient Unsupervised Latency Culprit Ranking in Distributed Traces with GNN
and Critical Path Analysis ... 62
Mahsa Panahandeh (Electrical and Computer Engineering department, University of Alberta),
Naser Ezzati-Jivan (Department of Computer Science, Brock University),
Abdelwahab Hamou-Lhadj (Department of Electrical and Computer Engineering, Concordia University),
James Miller (Department of Electrical and Computer Engineering, University of Alberta)

• Network Analysis of Microservices: A Case Study on Alibaba Production Clusters 67
Ghazal Khodabandeh (Brock University), Alireza Ezaz (Brock University),
Naser Ezzati-Jivan (Brock University),

• Unveiling Temporal Performance Deviation: Leveraging Clustering in Microservices
Performance Analysis .. 72
André Bauer (University of Chicago), Timo Dittus (University of Würzburg),
Martin Straesser (University of Würzburg), Alok Kamatar (University of Chicago),
Matt Baughman (University of Chicago), Lukas Beierlieb (University of Würzburg),
Marius Hadry (University of Würzburg), Daniel Grillmeyer (University of Würzburg),
Yannik Lubas (University of Würzburg), Samuel Kounev (University of Würzburg),
Ian Foster (Argonne National Laboratory), Kyle Chard (University of Chicago)

• Grammar-Based Anomaly Detection of Microservice Systems Execution Traces 77
Andrea D’Angelo (DISIM Department, University of L’Aquila),
Giordano d’Aloisio (DISIM Department, University of L’Aquila)

• Analyzing Performance Variability in Alibaba’s Microservice Architecture:
A Critical-Path-Based Perspective ... 82
Alireza Ezaz (Brock University), Ghazal Khodabandeh (Brock University),
Naser Ezzati-Jivan (Brock University),

Posters and Demonstrations Track

• LLaMPS: Large Language Models Placement System ... 87
Likhith Bandamudi (TCS Research), Ravi Kumar Singh (TCS Research), Shruti Kunde (TCS Research),
Mayank Mishra (TCS Research), Rekha Singhal (TCS Research)

• Into the Fire: Delving into Kubernetes Performance and Scale with Kube-burner 89
Sai Sindhur Malleni (Red Hat, Inc.), Raul Sevilla Canavate (Red Hat, Inc.), Vishnu Challa (Red Hat, Inc.)

• SuperArch: Optimal Architecture Design for Cloud Deployment ... 91
Kuldeep Singh (TCS), Chetan Phalak (TCS), Dheeraj Chahal (TCS),
Shruti Kunde (TCS), Rekha Singhal (TCS)

Second International Workshop on Artificial Intelligence for Performance
Modeling, Prediction, and Control (AIPerf 2024)
• AIPerf’24: 2nd International Workshop on Artificial Intelligence for Performance

Modeling, Prediction, and Control .. 93
Emilio Incerto (IMT School For Advanced Studies Lucca),
Marin Litoiu (Lassonde School of Engineering, York University),
Daniele Masti (IMT School For Advanced Studies Lucca)

Fifth Workshop on Benchmarking in the Datacenter:
Expanding to the Cloud (BID 2024)
• Benchmarking in the Datacenter (BID): Expanding to the Cloud.. 94

Wei-Chen Lin (University of Bristol), Jens Domke (RIKEN Center for Computational Science)

Second Workshop on Serverless, Extreme-Scale, and Sustainable Graph
Processing Systems (GraphSys 2024)
• GraphSys-2024: 2nd Workshop on Serverless, Extreme-Scale, and Sustainable Graph

Processing Systems ... 95
Alexandru Iosup (VU University Amsterdam), Radu Prodan (Alpen-Adria-Universität Klagenfurt),
Ana-Lucia Varbanescu (University of Twente)

 viii

• Linked Data Benchmark Council: 12 years of fostering competition in the graph
processing space .. 97
Gábor Szárnyas (Linked Data Benchmark Council)

• GraphMa: Towards new Models for Pipeline-Oriented Computation on Graphs 98
Daniel Thilo Schroeder (SINTEF), Tobias Herb (Independent Researcher),
Brian Elvesæter (SINTEF), Dumitru Roman (SINTEF)

• Exploring the Utility of Graph Methods in HPC Thermal Modeling... 106
Bruno Guindani (Department of Electronics, Information and Bioengineering, Politecnico di Milano),
Martin Molan (Department of Electrical, Electronic and Information Engineering, Università degli Studi di
Bologna),
Andrea Bartolini (Department of Electrical, Electronic and Information Engineering, Università degli Studi di
Bologna),
Luca Benini (Department of Information Technology and Electrical Engineering, ETH Zurich)

• AutoGrAN: Autonomous Vehicle LiDAR Contaminant Detection using Graph Attention
Networks ... 112
Grafika Jati (DEI Department, University of Bologna),
Martin Molan (DEI Department, University of Bologna),
Junaid Ahmed Khan (DEI Department, University of Bologna),
Francesco Barchi (DEI Department, University of Bologna),
Andrea Bartolini (DEI Department, University of Bologna), Giuseppe Mercurio (FEV Italia s.r.l.),
Andrea Acquaviva (DEI Department, University of Bologna)

• Enabling Operational Data Analytics for Datacenters through Ontologies, Monitoring,
and Simulation-based Prediction ... 120
Shekhar Suman (Vrije Universiteit Amsterdam), Xiaoyu Chu (Vrije Universiteit Amsterdam),
Dante Niewenhuis (Vrije Universiteit Amsterdam), Sacheendra Talluri (Vrije Universiteit Amsterdam),
Tiziano De Matteis (Vrije Universiteit Amsterdam), Alexandru Iosup (Vrije Universiteit Amsterdam)

• ExaQuery: Proving Data Structure to Unstructured Telemetry Data in Large-Scale HPC 127
Junaid Ahmed Khan (DEI Department, University of Bologna),
Martin Molan (DEI Department, University of Bologna), Matteo Angelinelli (HPC Department, Cineca),
Andrea Bartolini (DEI Department, University of Bologna)

• An Extensive Characterization of Graph Sampling Algorithms ... 135
S. Haleh S. Dizaji (University of Klagenfurt), Jože M. Rožanec (Jožef Stefan Institute),
Reza Farahani (University of Klagenfurt), Dumitru Roman (SINTEF),
Radu Prodan (University of Klagenfurt)

• Building Massive Knowledge Graphs using an Automated ETL Pipeline 141
Aaron Eberhart (metaphacts GmbH), Peter Haase (metaphacts GmbH), Wolfgang Schell (metaphacts GmbH)

• Serverless Workflow Management on the Computing Continuum: A Mini-Survey 146
Reza Farahani (Alpen-Adria-Universität Klagenfurt), Frank Loh (University of Würzburg),
Dumitru Roman (Sintef), Radu Prodan (Alpen-Adria-Universität Klagenfurt)

• Go-Network: a graph sampling library written in Go .. 151
Jože M. Rožanec (Jožef Stefan Institute), Matias Rožanec (Facultad de Ingeniería, Universidad de Buenos Aires)

First Workshop on Performance Optimization in the LLM World (PerfLLM
2024)
• Performance Optimization in the LLM World 2024 .. 156

Kingsum Chow (College of Software Technology, Zhejiang University),
Yu Tang (College of Software Technology, Zhejiang University),
Zhiheng Lyu (Department of Computer Science, The University of Hong Kong),
Anil Rajput (Datacenter Ecosystem, AMD Corporation), Khun Ban (Datacenter and AI, Intel Corporation)

• EchoSwift: An Inference Benchmarking and Configuration Discovery Tool for Large
Language Models (LLMs) .. 158
Karthik Krishna (Infobell IT Solutions Pvt Ltd), Ramana Bandili (Infobell IT Solutions PVt Ltd)

 ix

Seventh Workshop on Hot Topics in Cloud Computing Performance
(HotCloudPerf-2024)
• HotCloudPerf’24 Workshop Chairs’ Welcome ... 163

Dragi Kimovski (University of Klagenfurt), Klervie Toczé (Linköping University),
Nikolas Herbst (University of Würzburg), Tiziano De Matteis (Vrije Universiteit Amsterdam)

• Upscaling Messaging and Stateful Computation ... 165
Josef Spillner (Zurich University of Applied Sciences)

• Engineering Serverless Application Life-cycles in Federated Serverless Infrastructures 166
Sashko Ristov (Department of Computer Science, University of Innsbruck)

• A Systematic Configuration Space Exploration of the Linux Kyber I/O Scheduler 167
Zebin Ren (Vrije Universiteit Amsterdam), Krijn Doekemeijer (Vrije Universiteit Amsterdam),
Animesh Trivedi (Vrije Universiteit Amsterdam)

• Baking Disaster-Proof Kubernetes Applications with Efficient Recipes 174
Runyu Jin (IBM Almaden Research Center), Paul Muench (IBM Almaden Research Center),
Travis Janssen (IBM Almaden Research Center), Brian Hatfield (IBM Almaden Research Center),
Veera Deenadhayalan (IBM Almaden Research Center)

• Empirical Evaluation of ML Models for Per-Job Power Prediction ... 181
Debajyoti Halder (Stony Brook University), Manas Acharya (Stony Brook University),
Aniket Malsane (Stony Brook University), Anshul Gandhi (Stony Brook University),
Erez Zadok (Stony Brook University)

• FootPrinter: Quantifying Data Center Carbon Footprint .. 189
Dante Niewenhuis (Vrije Universiteit Amsterdam), Sacheendra Talluri (Vrije Universiteit Amsterdam),
Alexandru Iosup (Vrije Universiteit Amsterdam), Tiziano De Matteis (Vrije Universiteit Amsterdam)

• Peeking Behind the Serverless Implementations and Deployments of the Montage
Workflow .. 196
Simon Triendl (Department of Computer Science, University of Innsbruck),
Sashko Ristov (Department of Computer Science, University of Innsbruck)

• Towards a Workload Trace Archive for Metaverse Systems ... 204
Radu Aps,an <fix accent> (Vrije Universiteit Amsterdam), Damla Ural (Vrije Universiteit Amsterdam),
Paul Daniëlse (Vrije Universiteit Amsterdam), Vlad-Andrei Cursaru (Vrije Universiteit Amsterdam),
Eames Trinh (Vrije Universiteit Amsterdam), Jesse Donkervliet (Vrije Universiteit Amsterdam),
Alexandru Iosup (Vrije Universiteit Amsterdam)

• Towards Geo-Distributed Training of ML Models in a Multi-Cloud Environment 211
Chetan Phalak (TCS Research), Dheeraj Chahal (TCS Research),
Manju Ramesh (TCS Research), Rekha Singhal (TCS Research)

• Hypergraphs: Facilitating High-Order Modeling of the Computing Continuum 218
Dragi Kimovski (University of Klagenfurt)

• Resource Demand Profiling of Monolithic Workflows .. 222
Ivo Rohwer (Julius-Maximilians-Universität Würzburg),
Maximilian Schwinger (German Aerospace Center (DLR)),
Nikolas Herbst (Julius-Maximilians-Universität Würzburg), Peter Friedl (German Aerospace Center (DLR)),
Michael Stephan (Leibniz Rechenzentrum), Samuel Kounev (Julius-Maximilians-Universität Würzburg)

Twelfth International Workshop on Load Testing and Benchmarking of
Software Systems (LTB 2024)
• 12th International Workshop on Load Testing and Benchmarking of Software Systems:

LTB’24 Chairs’ Welcome ... 226
Marios-Eleftherios Fokaefs (York University), Filipe Oliveira (Redis),
Naser Ezzati-Jivan (Brock University)

• Fastcrypto: Pioneering Cryptography Via Continuous Benchmarking .. 227
Kostas Kryptos Chalkias (Mysten Labs), Jonas Lindstrøm (Mysten Labs), Deepak Maram (Mysten Labs),
Ben Riva (Mysten Labs), Arnab Roy (Mysten Labs),
Alberto Sonnino (Mysten Labs & University College London), Joy Wang (Mysten Labs)

 x

• Exemplary Determination of Cgroups-Based QoS Isolation for a Database Workload 235
Simon Volpert (Institute of Information Resource Management, Ulm University),
Sascha Winkelhofer (Gini GmbH), Stefan Wesner (University of Cologne),
Daniel Seybold (BenchANT GmbH), Jörg Domaschka (BenchANT GmbH)

• Self-Service Performance Testing Platform for Autonomous Development Teams 242
Aleksei Vasilevskii (Performance & Observability Team, Wolt),
Oleksandr Kachur (Performance & Observability Team, Wolt)

• Overhead Comparison of Instrumentation Frameworks ... 249
David Georg Reichelt (Lancaster University Leipzig), Lubomír Bulej (Charles University),
Reiner Jung (Kiel University), André van Hoorn (Universität Hamburg)

Ninth Workshop on Challenges in Performance Methods for Software
Development (WOSP-C)
• 9th Workshop on Challenges in Performance Methods for Software Development:

WOSP-C’24 Chairs’ Welcome ... 257
Luca Traini (Department of Information Engineering, Computer Science, and Mathematics, University of L’Aquila),
Heng Li (Computer and Software Engineering, Polytechnique Montréal)

• Closing the Loop: Building Self-Adaptive Software for Continuous Performance
Engineering .. 258
Marin Litoiu (Electrical Engineering and Computer Science Department; School of IT, York University)

• 25+ years of Software Performance: From Integrated System Modelling to ML-based
Analysis, What’s Next? ... 260
Vittorio Cortellessa (University of L’Aquila)

• HetSim: A Simulator for Task-based Scheduling on Heterogeneous Hardware 261
Marcel Lütke Dreimann (Universität Osnabrück), Birte Friesel (Universität Osnabrück),
Olaf Spinczyk (Universität Osnabrück)

• Privacy-Preserving Sharing of Data Analytics Runtime Metrics for Performance
Modeling ... 269
Jonathan Will (Technische Universität Berlin), Dominik Scheinert (Technische Universität Berlin),
Seraphin Zunzer (Technische Universität Berlin), Jan Bode (Technische Universität Berlin),
Cedric Kring (Technische Universität Berlin), Lauritz Thamsen (University of Glasgow)

• Approximating Fork-Join Systems via Mixed Model Transformations .. 273
Rares-Andrei Dobre (Department of Computing, Imperial College London),
Zifeng Niu (Department of Computing, Imperial College London),
Giuliano Casale (Department of Computing, Imperial College London)

• Establish a Performance Engineering Culture in Organizations: Performance as a Value 281
Josef Mayrhofer (Performetriks LLC)

• Green Software Metrics ... 287
Andreas Brunnert (Munich University of Applied Sciences HM)

Author Index ... 289

ICPE 2024: 15th ACM/SPEC International Conference
on Performance Engineering Organization

General Chairs: Simonetta Balsamo (Ca’ Foscari University of Venice, Italy)
William Knottenbelt (Imperial College London, UK)

Program Chairs: Cristina L. Abad (Escuela Superior Politecnica del Litoral, Ecuador)
Weiyi Shang (University of Waterloo, Canada)

Journal-First Chairs: Cristina L. Abad (Escuela Superior Politecnica del Litoral, Ecuador)
Weiyi Shang (University of Waterloo, Canada)

Industry Track Chair: Alexander Podelko (Amazon/AWS, USA)

Emerging Research Track Chairs: Vittoria de Nitto Personè (Tor Vergata University of Rome, Italy)
Lishan Yang (George Mason University, USA)

Artifact Evaluation Chairs: Robert Ricci (University of Utah, USA)
Dmitry Duplyakin (NREL, USA)

Workshop Chairs: Diego Costa (Concordia University, Canada)
Michele Tucci (University of L’Aquila, Italy)

Tutorial Chair: Heng Li (Polytechnique Montreal, Canada)

Poster and Demos Chairs: André Bauer (University of Chicago, USA)
Martin Straesser (University of Würzburg, Germany)

Data Challenge Chairs: Luca Traini (University of L’Aquila, Italy)
Christoph Laaber (Simula Research Laboratory, Oslo, Norway)

Award Chairs: Katinka Wolter (Freie Universitaet zu Berlin, Germany)
Marin Litoiu (York University, Canada)

Publicity & Social-Media Chair: Marco Paolieri (University of Southern California, USA)

Finance Chair: Tom Curtin (Imperial College London, UK)

Publications Chairs: Mauro Iacono (Università degli Studi della Campania Luigi Vanvitelli, Italy)
Jianing Qiu (Imperial College London, UK)

Web Chair: Giordano d’Aloisio (University of L’Aquila, Italy)

Program Committee: Antinisca Di Marco (University of L’Aquila)
Varsha Apte (Indian Institute of Technology – Bombay)
Yiming Tang (Rochester Institute of Technology)
Alexandru Iosup (VU)
Federica Sarro (University College London)
Murray Woodside (Carleton University)
Josef Spillner (Zurich University of Applied Sciences)
Philipp Leitner (Chalmers | University of Gothenburg)
Tingting Yu (University of Cincinnati)
Nikolas Herbst (University of Würzburg)
Cor-Paul Bezemer (University of Alberta)
Catia Trubiani (Gran Sasso Science Institute)
André van Hoorn (University of Hamburg)
Samuel Kounev (University of Wuerzburg)
Andre Bondi (Software Performance and Scalability Consulting LLC)
José Merseguer (Universidad de Zaragoza)
Valeria Cardellini (University of Roma “Tor Vergata”)
Andrea Marin (Università Ca’ Foscari Venezia)
Maria Carla Calzarossa (Universita di Pavia)
Raffaela Mirandola (Politecnico di Milano)
Steffen Becker (University of Stuttgart)
Marco Vieira (University of Coimbra)
Yintong Huo (Hong Kong University of Science and Technology)
Mauro Iacono (Università degli Studi della Campania “Luigi Vanvitelli”)
Lishan Yang (George Mason University)
Alberto Avritzer (EsulabSolutions Inc.)
Wes Lloyd (University of Washington)
Junwen Yang (University of Chicago)
Petr Tuma (Charles University)
Patrick P. C. Lee (The Chinese University of Hong Kong)
Catalina M. Lladó (Universitat Illes Balears)
Sen He (The University of Arizona)
Vittorio Cortellessa (Università dell’Aquila)
Connie Smith (Performance Engineering Services)
Katinka Wolter (Freie Universitaet zu Berlin)
Jianmei Guo (East China Normal University)
Anne Koziolek (Karlsruhe Institute of Technology)
Wilhelm Hasselbring (Kiel University)
Evgenia Smirni (College of William and Mary)
Aris Leivadeas (École de technologie supérieure)
Shaohua Wang (Central University of Finance and Economics)
Daniele Di Pompeo (University of L’Aquila)

Program Committee (continued): Manoj Nambiar (Tata Consultancy Services)
Heng Li (Polytechnique Montréal)
André Bauer (University of Chicago)
Tse-Hsun (Peter) Chen (Concordia University)

Program Committee

 (Industry track):

Muhammad Shoaib Bin Altaf (Oracle)
Vlastimil Babka (SUSE)
David Daly (MongoDB)
François Farquet (Oracle Labs)
Matt Flemming (Datastax)
Ajay Joshi (ARM)
Klaus-Dieter Lange (HPE)
Sai Sindhur Malleni (Red Hat)
Anoush Najarian (MathWorks)
Nishant Rawtani (HPE)
Daniel Seybold (benchANT)
Rekha Singhal (TCS)
Igor Trubin (Capital One)
Alexander Wert (Elastic)

Program Committee (Artifact) Aarushi Jain (University of Texas Arlington)
Aleksandra Kowalczuk (University of Warsaw)
Amit Samanta (University of Utah)
Elizabeth Ondula (University of Southern California)
Ghadeer Almusaddar (Binghamton University)
Hongyu Hè (ETH Zurich)
Jaiaid Mobin (Rochester Institute of Technology)
Juno Suárez (Portland State University)
Kevin Assogba (Rochester Institute of Technology)
Matthew Forshaw (Newcastle University)
Mazahir Hussain (Korea Institute of Science and Technology Information)
Muhammed Emin Ozturk (University of Utah)
Pegah Ahadian (Kent State University)
Rafael Herrera (University of Delaware)
Ryan Scherbarth (University of New Mexico)
Saheed Olayemi Bolarinwa (The Leibniz Supercomputing Centre)
Sören Henning (Johannes Kepler University Linz)
Stephen Nicholas Swatman (University of Amsterdam)
Swetha Varadarajan
Tamoghna Sarkar (University of Southern California)
Souptik Sen (Snowflake)
Urjoshi Sinha (Lawrence Berkeley National Lab)
Radhakrishnan Venkataramani (Snowflake)

Program Committee

(Data Challenge):

Jinfu Chen (Wuhan University)
Zishuo Ding (University of Waterloo)
Martin Grambow (Technische Universität Berlin)
Sen He (University of Arizona)
Lizhi Liao (University of Waterloo)
Max Weber (Leipzig University)
Chenxi Zhang (Fudan University)

Additional Reviewers: Andres Abad

Palak Bhandari

Prateek Bhatnagar

Andrea Bianchi

Vanessa Borst

Sophie Corallo

Robert Cordingly

Timo Dittus

Daniel Grillmeyer

Marius Hadry

Zhihan Jiang

Supriya Kamthania

Shruti Kunde

Yichen Li

Chuansheng Lu

Yannik Lubas

Maximilian Meissner

Diletta Olliaro

Kebin Peng

Ivo Rohwer

Larissa Schmid

Seyedehhaleh Seyeddizaji

Shuai Shao

Anushree Singh

Michael Stenger

Rajesh Tadakamadla

Chen Zou

ACM/SPEC ICPE 2024 Sponsors & Supporters

Sponsors:

Supporters:

Context-aware Root Cause Localization in Distributed Traces
Using Social Network Analysis (Work In Progress paper)

Mahsa Panahandeh
Electrical and Computer Engineering department,

University of Alberta
Edmonton, Alberta, Canada
panahand@ualberta.ca

Naser Ezzati-Jivan
Department of Computer Science, Brock University

St. Catharines, Ontario, Canada
nezzatijivan@brocku.ca

Abdelwahab Hamou-Lhadj
Department of Electrical and Computer Engineering,

Concordia University
Montreal, Quebec, Canada

wahab.hamou-lhadj@concordia.ca

James Miller
Department of Electrical and Computer Engineering,

University of Alberta, Canada
Edmonton, Alberta, Canada

jimm@ualberta.ca

ABSTRACT
The complexity of microservices and their distributed nature neces-
sitates constantmonitoring and tracing of their execution to identify
performance problems and underlying root causes. However, the
large volume of collected data and the complexity of distributed
communications pose challenges in identifying and locating ab-
normal services. In this paper, we propose a novel approach that
takes into consideration the importance of execution contexts in
propagating and localizing performance root causes. We achieve
this by integrating social network analysis techniques with spec-
trum analysis. To evaluate our proposed approach, we conducted
an experiment using a real-world benchmark, and we observed
promising preliminary results, with a success rate of 91.3% in cor-
rectly identifying the primary root cause (top-1), and a perfect
100% success rate in finding the root cause within the top three
candidates (top-3).

CCS CONCEPTS
• Software and its engineering → Software reliability; Soft-
ware performance.

KEYWORDS
Root-cause Localization, Social Network Analysis, Spectrum Anal-
ysis, Distributed Traces, Contextual Analysis
ACM Reference Format:
Mahsa Panahandeh, Naser Ezzati-Jivan, AbdelwahabHamou-Lhadj, and James
Miller. 2024. Context-aware Root Cause Localization in Distributed Traces
Using Social Network Analysis (Work In Progress paper). In Companion
of the 15th ACM/SPEC International Conference on Performance Engineering
(ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3629527.3651426

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3651426

1 INTRODUCTION
Despite the widespread adoption of microservices for their scalabil-
ity, modularity, and rapid deployment capabilities, their distributed
architecture introduces significant challenges in diagnosing perfor-
mance issues and localizing their root causes. Consider a complex e-
commerce platform built upon this architecture. Services frequently
depend on each other to accomplish tasks. When a performance
issue such as a slowdown occurs, it rarely remains isolated but
instead propagates through dependent services. A performance
issue, say a slowdown, in a single service can have a cascading
effect on all services dependent on it. Alternatively, it might also
be the case that poor performance in a particular service is actually
rooted in another service it depends upon. Without understanding
these structural interconnected dependencies, diagnosing issues
will become a complicated process. In the worst cases, the actual
root cause may be entirely overlooked.

Therefore, accurate diagnosis requires understanding services
interactions and dependencies. This necessitates an in-depth study
of structural dependencies, particularly in cases of forward or back-
ward anomaly propagation where the starting point of an issue
might be several services away from where it eventually manifests.

Understanding complex inter-dependencies is essential for com-
prehending anomaly propagation and troubleshooting distributed
systems, a topic explored in various research works [5, 8, 13, 15].
Some researchers advocate for prioritized diagnostic processes
based on the likelihood of anomaly propagation in different compo-
nents [4, 18]. However, the specific challenges faced by existing stud-
ies vary. Certain studies [13] face challenges in precisely pinpoint-
ing the direction of dependencies and analyzing the propagation
path of anomalies. Others are restricted to insights derived solely
from abnormal system executions, overlooking the information pro-
vided by normal request propagation [8]. Some studies [4, 5, 15, 18]
remain constrained, often relying on isolated aspects of individual
services in anomaly propagation, lacking the holistic view needed
for accurate root cause identification. This limitation stems from
the inherent structural complexity of distributed systems, where
services are interconnected and interdependent, adding multiple
layers of complexity to anomaly resolution.

1

https://orcid.org/0000-0002-6369-8982
https://doi.org/10.1145/3629527.3651426
https://doi.org/10.1145/3629527.3651426

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Mahsa Panahandeh, Naser Ezzati-Jivan, Abdelwahab Hamou-Lhadj, and James Miller

To address existing limitations, we introduce a strategy using
social network algorithms to enhance spectrum analysis, a method
for estimating system component faultiness based on successful and
failed executions. Our approach incorporates three key contexts:
individual services, service communities, and execution paths. Then,
it explains how anomalies propagate through these contexts and
identifies key nodes where performance issues likely originate.
Utilizing graph theory concepts like PageRank and community
detection adds a new layer of depth to our spectrum analysis. The
result is a context-aware, finely-grained method for accurately
pinpointing the root causes of performance issues. Our approach
utilizes distributed traces [11], to represent these contexts.

Upon detecting anomalies, we generate graphs and use social
network techniques to calculate the structural importance of ser-
vices, including an assessment of execution path importance. The
resulting impact scores are used as weights in our spectrum analy-
sis, generating a ranked list of probable root cause services, thus
reducing the debugging effort required by programmers [17].

Our preliminary tests on an instance of a real-world production
microservice system in China Mobile Zhejiang, a known complex
and large-scale system, indicate a 91.3% success rate of our approach
in identifying the primary root cause (top-1) and a 100% success rate
for locating the root cause among the top three candidates (top-3)
across various scenarios. Our preliminary tests employed rigorous
sampling and evaluation metrics, ensuring the robustness of our
findings. We have designed our method for generalizability, so it
can be applied in many different situations and we have concrete
plans for future empirical validation to strengthen our findings.

Our main contributions are as follows: I) Employing social net-
work analysis to construct and analyse the structural interdepen-
dence of services, communities, and execution paths for forward
and backward anomaly propagation and root cause identification,
II) Proposing an enhanced weighted spectrum analysis. While ex-
isting methods often rely on individual services and isolated exe-
cutions, our approach breaks new ground by introducing contex-
tual layers, encompassing individual services, service communities,
and execution paths, into root cause analysis. This context-aware
methodology refines spectrum analysis, providing a more accurate
identification of root causes, and thus advances the state-of-the-art.

2 FOUNDATIONAL EXPERIMENTS
Spectrum-based techniques are commonly used for debugging and
fault localization in software applications. These techniques gather
various types of test coverage data to identify likely root causes of
failures. Specifically, they collect metrics such as𝑂𝑒 𝑓 ,𝑂𝑛𝑓 ,𝑂𝑒𝑝 , and
𝑂𝑛𝑝 , which count the presence or absence of a given component
in both failed and successful test cases [18]. A risk factor, like the
Ochiai risk factor, is then used to quantify the suspicion level for
each component being the root cause [3, 10]. In microservices,
spectrum-based methods utilize distributed traces for both normal
and abnormal system states to perform similar analyses [17].

Applying spectrum-based methods to distributed traces has lim-
itations in root cause localization. For instance, our experiments,
shown in Figure 1, based on a scenario from dataset C published
by Li et al. [6], found that the original spectrum analysis ranked
the true root cause (docker_003) only fifth in suspicion, while it

placed os_021 at the top, identified as the most suspicious due to
having the highest Ochiai score of 0.319. Yu et al.’s approach [18],
which integrates a personalized PageRank algorithm into spectrum
analysis, also falls short. It places emphasis on service frequency in
determining the significance of an execution path for root cause
localization, but it lacks granularity in understanding anomaly prop-
agation, leading to suboptimal root cause identification. Figure 1,
middle table, shows our experiments when we integrate a PageRank
algorithm with spectrum analysis. It identifies the true root cause
in the third place, while os_021 remains at the top.

In our experiments, we noticed two issues with integrating spec-
trum analysis with PageRank for root cause identification. First,
about 30% of the cases presented multiple services with identical
suspicion scores, complicating the ranking. Second, both original
and integrated methods struggle when the root cause does not fre-
quently appear in abnormal traces, e.g., the presence of a frequent
loop between non-true root cause services in abnormal traces.

To address these issues, we study the significance of services
in interconnected groups (communities) rather than prioritizing
them based on their frequency across all traces. Here, by ’commu-
nities,’ we refer to clusters of services that frequently interact with
each other, thereby forming a closely-knit functional group within
the larger system. Finding communities assists in distinguishing
observed contexts and differentiating between similar connectiv-
ity patterns, which highly reduces (up to 98%, according to our
preliminary experimental results) the likelihood of encountering
multiple services with the same suspicious score all occupying the
same position in the rank list of candidates. Additionally, studying
the significance of services according to the significance of their
interconnected services prioritizes less frequently observed ser-
vices when they are significant within their own context. Therefore,
the root cause service can be detected even if it is not frequently
invoked in the collected abnormal traces. In addition to studying
the significance of services in communities, we introduce a novel
aspect to the root cause identification process by evaluating con-
textual details in requests or traces. While existing research by
Yu et al. [18] assigns more weight to shorter traces, our approach
innovatively refines this by equalizing the importance of services
and trace diversity, regardless of the trace length. This offers a more
comprehensive and effective method for root cause localization.
Please refer to the right table in Figure 1 for a comparison between
our method (context-aware root cause localization) and traditional
approaches, which clearly illustrates the efficacy of our strategy.
With our approach, the true root cause is ranked at the top with an
Ochiai score of 0.286.

3 SYSTEM DESIGN
Figure. 2 represents our context-aware root cause localization ap-
proach including several steps of data collection, Service Call Graph
(SCG) construction, social network analysis, and spectrum analysis.

3.1 Data Collection
Our process is initiated in response to a detected anomaly. Once an
anomaly is detected, we collect normal and abnormal distributed
traces within a specified time window (5 minutes in this paper). Any

2

Context-aware Root Cause Localization in Distributed Traces Using Social Network Analysis
(Work In Progress paper) ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 1: Comparison of Original, PageRank-Integrated, and Context-aware Weighted Spectrum Analyses in a Real-world
Scenario (True root cause: docker_003, Top-1 identified root cause by each method has been highlighted.)

Figure 2: Context_aware Root Cause Localization

state-of-the-art anomaly detection techniques [12] can be employed
to detect performance anomalies and label distributed traces as
normal or abnormal. In this paper, we utilize the anomaly detection
approach proposed by Li et al. [4]. However, as recommended by
the literature [18], subsequent occurrences of the same anomalous
state within the time window are not treated as separate anomalies.

3.2 SCG Construction
Following the data collection phase, two SCGs, built from each
group of normal and abnormal traces, serve as weighted graphs.
In these graphs, nodes symbolize services, edges represent service
calls, and edge weights quantify the frequency of these calls within
the respective set of traces. Distributed traces provide the neces-
sary context information, capturing parent-child relations between
services, which helps in constructing SCGs.

3.3 Social Network Analysis
In this phase, social network methods are employed to assess the
structural influence of services communities, individual services,
and traces during anomalies within SCGs. The output comprises im-
portance scores for services and traces in both normal and abnormal
conditions.

3.3.1 Community Analysis. Upon constructing normal and abnor-
mal SCGs, we apply the Louvain graph community algorithm [1] to
each SCG to partition them into smaller, closely related contextual
communities. This aids in identifying cohesive groups and strong
inter-node communication. For example, in abnormal SCG, these

communities highlight partitions susceptible to anomalies should
they contain an anomaly-affected node.

The Louvain method has two phases. First, nodes within an SCG
are iteratively assessed and assigned to neighbouring nodes based
on modularity cost function gains[1], continuing until no more
modularity gains are achievable. Second, communities identified
in the first phase are amalgamated into supervertices, converting
nodes within each community into a single node. Supervertices’
connectivity depends on at least one edge between nodes from cor-
responding communities, with the edge weight determined by the
sum of all edges weight between their respective lower-level parti-
tions. The algorithm iteratively applies these phases to supergraphs
until communities stabilize, typically after a few rounds.

3.3.2 Service Analysis. Next, after identifying the community con-
texts, we quantify services importance within their community. To
this end, we adopt the suggested approach in trace abstraction by
Wang et al. [14]. First, we use an iterative PageRank algorithm [16]
for each community to determine the significance of services based
on their interactions within the community. The process begins
by initializing the PageRank values for each service within the
community. These initial values are set to 1

𝑛 , where 𝑛 represents
the total number of services in the community. Subsequently, the
PageRank values are iteratively calculated until they converge to a
stable value. The PageRank for a service 𝑛 in a community of 𝐶 is
determined based on the PageRanks of its neighbouring services
over 𝑡 iterations, and it can be defined as follows:

𝑃𝑅(𝑛)𝑡 = 𝛼
∑︁

(𝑛→𝑛′) ∈ edges of𝐶

𝑃𝑅𝑡−1 (𝑛′)
𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒 (𝑛′) (1)

where 𝛼 is a normalization factor for the total rank of all services
and out_degree is the number of outgoing edges from 𝑛′.

This step is performed for services in identified communities of
both normal and abnormal SCGs.

3.3.3 Trace Analysis. In this step, we focus on prioritizing different
request types considering their effectiveness in uncovering a root

3

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Mahsa Panahandeh, Naser Ezzati-Jivan, Abdelwahab Hamou-Lhadj, and James Miller

cause. According to Yu et al. [18], less diverse traces expedite root-
cause localization. This is because more similar traces indicate a
narrower scope of difference, simplifying the pinpointing of the
root cause. However, Yu et al. measure trace diversity using the
count of operations covered in traces, which makes it dependent on
trace size. Consequently, shorter traces with less important services
may overshadow longer ones with more critical services. In our
approach, we prioritize traces by considering both their diversity
and the significance of the services they cover, regardless of the
number of services involved.

We first, cluster collected traces based on their request type sep-
arately for normal and abnormal distributed traces. This approach
ensures that we study all observed request types, regardless of how
frequently they have occurred. Then, for each request-type clus-
ter, we calculate a score based on the diversity and importance of
covered services.

To measure the importance score of clusters based on the im-
portance of the services they cover, we adjust the formula recom-
mended by Chen et al. [2] as follows. This refinement allows us
to measure the rank score of a cluster 𝑐𝑙𝑖 based on the PageRank
score (PR) of services they cover. In this context, PR is the computed
scores using equation 1, The function 𝐿(𝑋) denotes the position of
score 𝑋 within the ordered list of ascending PR scores within the
SCG, and |SCG| represents the number of SCG’s nodes (services).
For abnormal request-type clusters, SCG refers to abnormal SCG
and PRs are scores of all services computed from abnormal SCG.
The same is applied to normal request-type clusters.

𝑅𝑎𝑛𝑘 (𝑐𝑙𝑖) =
𝐿(𝑀𝑎𝑥 (𝑃𝑅𝑠 ∈ 𝑐𝑙𝑖) − 1

|𝑆𝐶𝐺 | + 𝑀𝑒𝑎𝑛(𝑃𝑅𝑠 ∈ 𝑐𝑙𝑖)
|𝑆𝐶𝐺 |𝑠𝑢𝑚(𝑃𝑅𝑠 ∈ 𝑆𝐶𝐺) (2)

Next, we measure diversity between request-type clusters using
Jaccard distance [7], favouring less diverse clusters. Finally, the
adapted heuristic search algorithm [2] searches for the next cluster
based on the prior one, aiming to maximise the sum of Rank(𝑐𝑙𝑖)
score while minimizing the cluster diversity.

3.4 Spectrum Analysis
Considering the importance of services in the community context
and request type (trace), we redefine spectrums. For instance,𝑂𝑒 𝑓 is
modified as follows where, T is a set of abnormal traces of𝑇1,𝑇2, ..𝑇𝑘
including service 𝑠𝑖 , 𝑐𝑙𝑇𝑗

is the abnormal request-type cluster for
trace 𝑇𝑗 , and 𝑃𝑅(𝑠𝑖) is the Pagerank for 𝑠𝑖 in the abnormal SCG.

𝑂𝑒 𝑓 (𝑠𝑖) = 𝑃𝑅(𝑠𝑖) ×
∑︁

∀𝑇𝑗 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑖 ,𝑇𝑗 ∈𝑇
𝑟𝑎𝑛𝑘 (𝑐𝑙𝑇𝑗

) (3)

Similarly, other notation definitions are updated by being influenced
by the rank scores, while 𝑂𝑒𝑝 and 𝑂𝑛𝑝 are computed based on the
normal SCG, normal set of traces, and normal request-type clusters
identified in the previous step.

To estimate the suspicious score using the notations, we use the
Ochiai factor [10], measured for each service 𝑠𝑖 as:

𝑂𝑐ℎ𝑖𝑎(𝑠𝑖) =
𝑂𝑒 𝑓√︃

(𝑂𝑒 𝑓 +𝑂𝑒𝑝) (𝑂𝑒 𝑓 +𝑂𝑛𝑓)
(4)

4 PRELIMINARY RESULT AND DISCUSSION
We evaluate the efficiency of our approach by conducting exper-
iments on a real-world microservice benchmark (dataset C), pro-
vided during the 2020 AIOps Challenge Event1[6]. Given that this
dataset extends beyond microservice applications, in alignment
with literature recommendations [4, 18], we exclusively focus on
faults related to microservice. Our evaluation involves the random
selection of 46 time windows, each containing labelled root causes,
as well as corresponding normal and abnormal distributed traces.
Our experiment dataset includes 15 instances of CPU stress, 15
cases of network delays, and 16 occurrences of network loss. We
define "Top-1" to "Top-3" as the probability of locating the true root
causes within the top 1 to 3 service instances among all services,
descendingly sorted based on their computed Ochiai score. This
sorted list of ranked services is referred to as the ranked list of can-
didates [8, 18]. Figure. 3 shows the result of root cause identification
by our context-aware root cause localization approach for all 46
time windows compared to the original spectrum analysis [17] and
spectrum analysis integrated with PageRank, inspired by [18]. The
context-aware root cause localization outperforms the spectrum
analysis integrated with PageRank by 13.5% in detecting the true
root cause at the top position of the ranked list of candidates, and
it performs 35% better than the original spectrum analysis.

Figure 3: Performance Comparison Across 46 Scenarios: Orig-
inal Spectrum Analysis [17] vs. Enhanced Methods

Our approach also exhibits a higher success rate in detecting root
causes of CPU exhaustion scenarios, followed by network loss sce-
narios, and finally network delay cases. This performance variation
can be attributed to the ability of our approach to effectively cap-
ture abnormal behavioural patterns within the collected traces. As
anomalies propagate through more traces and spans, they become
more likely to be successfully identified. Our initial investigation
revealed that CPU exhaustion affected a larger number of services
compared to the delay. This discrepancy can be attributed to the
different approaches used to inject these anomalies into the system.

To evaluate the importance of studying services in contexts of
communities and traces for root cause localization, we examine a
scenario containing more than 530 traces collected after injecting
the CPU stress into one of the services of the benchmark. After
labelling normal and abnormal traces identified by the anomaly
detection stage, we perform an original spectrum analysis to find
the root cause. We then incorporate our approach components
into the original spectrum analysis one by one to highlight how
each contributes to enhancing the result of root cause localization.
1https://github.com/NetManAIOps/AIOps-Challenge-2020-Data

4

Context-aware Root Cause Localization in Distributed Traces Using Social Network Analysis
(Work In Progress paper) ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Table 1 demonstrates the result of each improvement applied to
the same scenario, indicating the position within the ranked list
of candidates where the root cause was identified by that specific
improvement. The original spectrum analysis [17] locates the un-
derlying root cause of this scenario in the sixth position of the
ranked list of candidates. As shown, using our context-aware root
cause localization, the true root cause is identified at the top po-
sition while each component also enhances the accuracy of root
cause identification.

Table 1: Performance Ranking of Localization Components

Method Pos.
Orig. Spectrum [17] 6th
Orig. + Service PageRank 4th
Orig. + Community_based Service PageRank 2nd
Context-aware: Full Method 1st

5 RELATEDWORK
Root cause localization has become prominent in recent research
due to its significant role in assuring the quality of complex sys-
tems [9, 13, 15, 17, 18]. A common approach to finding root causes
involves studying the dependencies between services or traces to
understand anomaly propagation, ultimately pinpointing the un-
derlying root cause [5, 8, 15]. However, certain research works [13],
face limitations in determining the propagation direction between
dependent components. Furthermore, a significant portion of root-
cause localization methods concentrates solely on abnormal execu-
tions [8, 13, 15].

Ye et al. [17] emphasize the significance of using both normal
and abnormal traces, proposing a root cause localization approach
based on an original spectrum analysis that leverages all traces
to identify root causes. Addressing the requirements of spectrum
analysis for distributed traces, Yu et al. [18] suggest integrating
a personalized PageRank algorithm with the original spectrum
analysis. The proposed personalized PageRank prioritizes services
and traces based on their importance in uncovering root causes.
However, as mentioned in Section 2, we found that studying the
importance of individual services in Yu et al. study [18], is not al-
ways effective, especially when the true root cause is not frequently
observed in abnormal traces. Moreover, Yu et al. [18] study the
importance of traces in revealing the root cause based on their
frequency and length, which is not always applicable, especially
when the true root cause occurs in longer traces calling only a few
services. These limitations are also discussed in Sections 2 and 3.

To address these limitations, we incorporate spectrum analysis
with social network concepts to assess structural importance in
forward and backward anomaly propagation across interconnected
services. Studying the importance of services in interconnected
communities helps analyze the significance of services within their
respective communities. This approach overcomes biased rankings
of services based solely on their high outgoing connections, ne-
glecting the density of connections in overall SCGs. Moreover, to
examine the importance of trace scope in uncovering root causes,
we introduce a heuristic search algorithm to simultaneously evalu-
ate trace importance based on both the significance and diversity

of covered services within the trace scope. This makes trace scope
analysis independent of the trace length and differentiates traces
based on what they cover rather than their length. As our pre-
liminary results show, this improves upon simply counting called
services in each trace context, as done in Yu et al.’s work [18].

While there are research works employing social network anal-
ysis in root cause localization, they are often limited in utilizing
techniques for studying the prominence of individual nodes within
a network [9, 18, 19]. To the best of our knowledge, our work stands
as the only research investigating the impact of different levels of
contextual structures, such as individual services, service commu-
nities, and traces, in uncovering root cause localization using social
network techniques.

6 CONCLUSIONS AND FUTURE PLAN
This study introduces a novel context-aware approach for root
cause localization in distributed systems. Our methodology under-
scores the pivotal role of service communities, individual services,
and trace scope in pinpointing the root causes of system anomalies.
Through our work, we have effectively mitigated the issues delin-
eated in Section 2. Preliminary outcomes showcase a high success
rate, ranging from 91.36% to 100%, in accurately identifying root
causes across diverse settings.

Moving forward, there are several directions for further improve-
ment and extension. Firstly, we plan to explore modifications to
obtain more detailed models beyond SCGs. These models can in-
corporate additional modalities, such as profiling metrics, enabling
us to add performance insights to our social network analysis and
analyze execution states instead of solid services. This will also help
provide explanations about the issues associated with the ranked
candidates, aiding in debugging or further investigations.

Furthermore, we aim to investigate how our approach impacts
the detection of multi-root causes within service communities. By
focusing on the interplay of anomaly propagation within commu-
nities, we anticipate that our methodology may excel in identifying
complex scenarios where multiple root causes manifest within or
across service communities.

Additionally, we aim to explore and adapt network analysis con-
cepts that align with the unique characteristics of distributed traces.
By leveraging these concepts, we can further investigate their cor-
relation with different system types or collected data, potentially
uncovering new insights instrumental in customizing network anal-
ysis concepts, such as community detection for distributed traces,
thereby enhancing the precision of our methodology.

In conjunction with these efforts, we plan to evaluate our ap-
proach across a diverse set of case studies varying in size, com-
plexity, and nature of their design. This assessment will help us
gauge the scalability and adaptability of our approach for real-world
systems.

Lastly, we acknowledge the importance of performing compre-
hensive comparative assessments against establishedmethods. Such
evaluations are crucial for validating the efficacy of our approach
and identifying its advantages, shortcomings, and avenues for re-
finement across different use cases.

5

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Mahsa Panahandeh, Naser Ezzati-Jivan, Abdelwahab Hamou-Lhadj, and James Miller

REFERENCES
[1] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[2] Lizhe Chen, Ji Wu, Haiyan Yang, and Kui Zhang. 2022. Does PageRank apply to
service ranking in microservice regression testing? Software Quality Journal 30,
3 (2022), 757–779.

[3] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test
Information to Assist Fault Localization. In Proceedings of the 24th International
Conference on Software Engineering (Orlando, Florida) (ICSE ’02). Association for
Computing Machinery, New York, NY, USA, 467–477. https://doi.org/10.1145/
581339.581397

[4] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang,
Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, Zhekang Chen, Wenchi Zhang,
Xiaohui Nie, Kaixin Sui, and Dan Pei. 2021. Practical Root Cause Localization
for Microservice Systems via Trace Analysis. In 2021 IEEE/ACM 29th Interna-
tional Symposium on Quality of Service (IWQOS). 1–10. https://doi.org/10.1109/
IWQOS52092.2021.9521340

[5] Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong Chang,
Xiaohui Nie, Li Cao, Wenchi Zhang, Kaixin Sui, et al. 2022. Actionable and
interpretable fault localization for recurring failures in online service systems. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 996–1008.

[6] Zeyan Li, Nengwen Zhao, Shenglin Zhang, Yongqian Sun, Pengfei Chen, Xidao
Wen, Minghua Ma, and Dan Pei. 2022. Constructing large-scale real-world
benchmark datasets for AIOps. arXiv preprint arXiv:2208.03938 (2022).

[7] Jackson A Prado Lima and Silvia R Vergilio. 2020. Test Case Prioritization in
Continuous Integration environments: A systematic mapping study. Information
and Software Technology 121 (2020), 106268.

[8] JinJin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint per-
formance issues with causal graphs in micro-service environments. In Service-
Oriented Computing: 16th International Conference, ICSOC 2018, Hangzhou, China,
November 12-15, 2018, Proceedings 16. Springer, 3–20.

[9] Leonardo Mariani, Cristina Monni, Mauro Pezzé, Oliviero Riganelli, and Rui
Xin. 2018. Localizing faults in cloud systems. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST). IEEE, 262–273.

[10] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Transactions on software engineering and method-
ology (TOSEM) 20, 3 (2011), 1–32.

[11] Austin Parker, Daniel Spoonhower, Jonathan Mace, Ben Sigelman, and Rebecca
Isaacs. 2020. Distributed tracing in practice: Instrumenting, analyzing, and debug-
ging microservices. O’Reilly Media.

[12] Jacopo Soldani and Antonio Brogi. 2022. Anomaly detection and failure root cause
analysis in (micro) service-based cloud applications: A survey. ACM Computing
Surveys (CSUR) 55, 3 (2022), 1–39.

[13] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia,
Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer. 2017. Sieve:
Actionable insights from monitored metrics in distributed systems. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference. 14–27.

[14] Ji Wang and Naser Ezzati-Jivan. 2020. Enhanced execution trace abstraction
approach using social network analysis methods. Softwaretechnik-Trends 40, 3
(2020), 58–60.

[15] Li Wu, Johan Tordsson, Jasmin Bogatinovski, Erik Elmroth, and Odej Kao. 2021.
MicroDiag: Fine-grained Performance Diagnosis for Microservice Systems. In
2021 IEEE/ACM International Workshop on Cloud Intelligence (CloudIntelligence).
31–36. https://doi.org/10.1109/CloudIntelligence52565.2021.00015

[16] W. Xing and A. Ghorbani. 2004. Weighted PageRank algorithm. In Proceedings.
Second Annual Conference on Communication Networks and Services Research,
2004. 305–314. https://doi.org/10.1109/DNSR.2004.1344743

[17] Zihao Ye, Pengfei Chen, and Guangba Yu. 2021. T-Rank:A Lightweight Spectrum
based Fault Localization Approach for Microservice Systems. In 2021 IEEE/ACM
21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
416–425. https://doi.org/10.1109/CCGrid51090.2021.00051

[18] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao
Jing, Tianjun Weng, Xinmeng Sun, and Xiaoyun Li. 2021. MicroRank: End-to-
End Latency Issue Localization with Extended Spectrum Analysis in Microser-
vice Environments. In Proceedings of the Web Conference 2021 (Ljubljana, Slove-
nia) (WWW ’21). Association for Computing Machinery, New York, NY, USA,
3087–3098. https://doi.org/10.1145/3442381.3449905

[19] Guangba Yu, Zicheng Huang, and Pengfei Chen. 2021. TraceRank: Abnormal
service localization with dis-aggregated end-to-end tracing data in cloud native
systems. Journal of Software: Evolution and Process (2021), e2413.

6

https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/581339.581397
https://doi.org/10.1109/IWQOS52092.2021.9521340
https://doi.org/10.1109/IWQOS52092.2021.9521340
https://doi.org/10.1109/CloudIntelligence52565.2021.00015
https://doi.org/10.1109/DNSR.2004.1344743
https://doi.org/10.1109/CCGrid51090.2021.00051
https://doi.org/10.1145/3442381.3449905

Enhancing the Performance of Deep Learning Model Based
Object Detection using Parallel Processing (Work In Progress

Paper)
Omar Imran

Carleton University
Ottawa, ON, Canada

omarimran@cmail.carleton.ca

Shikharesh Majumdar
Carleton University
Ottawa, ON, Canada

majumdar@sce.carleton.ca

Sreeraman Rajan
Carleton University
Ottawa, ON, Canada

sreeramanr@sce.carleton.ca

ABSTRACT
The need for accelerated object detection is paramount for safety
critical applications such as autonomous vehicles. This paper fo-
cuses on leveraging parallel processing techniques for enhancing
the performance of object detection. Specifically, this research engi-
neers system performance by timely detection of common objects
encountered by vehicles, such as other automobiles, pedestrians,
and bicycles. Deploying popular pretrained deep learning models
like the You Only Look Once (YOLO) model within the Apache
Spark framework, the potential enhancements in detection speed
achieved through parallel processing are investigated. The capabil-
ity of the system to efficiently handle large datasets and distribute
time-critical applications across multiple nodes is explored to im-
prove both latency and scalability. The one-factor-at-a-time method
is used to assess the impact of different system and workload pa-
rameters on performance. Of particular interest is the impact of
Spark data partitioning on performance, especially for driving sce-
narios where the number of objects are changing rapidly. A novel
data partitioning technique that uses the principles of entropy is
utilized. The overall performance objective of this research will be
to improve speed for object detection in cars which can improve
safety in time critical events such as sudden braking or turning.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
Object detection.

KEYWORDS
Parallel Processing, Object Detection, Deep Learning, Apache Spark,
Video Processing

ACM Reference Format:
Omar Imran, Shikharesh Majumdar, and Sreeraman Rajan. 2024. Enhancing
the Performance of Deep Learning Model Based Object Detection using
Parallel Processing (Work In Progress Paper). In Companion of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE ’24

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651427

Companion), May 7–11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3629527.3651427

1 INTRODUCTION
Timely detection of objects is crucial in safety critical applications
such as autonomous vehicles and has become an important subject
of research due to increase of accidents happeningwith autonomous
vehicles such as self driving cars [10, 21, 23]. Particularly, the in-
cident when a Tesla in autopilot mode failed to stop at a red light
and crashed it into another car killing two people questioned the
safety of autonomous vehicles [24]. Object detection is crucial for
ensuring the safety of autonomous vehicles and other safety critical
applications, such as the detection of objects by Unmanned Aerial
Vehicles [32]. The focus of this paper is to use parallel processing
to improve object detection.

This work in progress paper specifically concentrates on the
identification of objects like pedestrians, traffic lights, and trucks
encountered by moving vehicles. The research will utilize the MIT
DriveSeg dataset, featuring video frames captured by a camera
mounted on a moving vehicle [6]. These video frames capture vari-
ous driving environments including rural roads, busy highways, and
city streets, enabling the simulation of diverse scenarios encoun-
tered by vehicles in daily life. Then, using the You Only Look Once
Version 3 (YOLOv3) pretrained deep learning model and the Apache
Spark parallel computing framework, object detection on the frames
will be carried out in parallel. This research will utilize Amazon
Web Services (AWS) cloud servers to create scalable Spark clusters
which will facilitate in the deployment of the proof-of-concept
prototype used in the different experiments. The experiments will
use the one-factor-at-a-time approach [27] to systematically alter
various system parameters, including the number of worker nodes
and the average number of objects in each scenario, to assess their
individual impact. This paper will also explore the effect of data
partitioning strategies on performance when evenly distributing
dynamically changing frames across the various nodes. The pa-
per will introduce a unique method for estimating workload and
allocating frames across partitions using frame entropy.

The contributions of this paper include:
• A frame entropy based novel technique for workload esti-
mation and frame allocation across the different nodes in a
parallel processing platform such as Spark.

• A proof-of-concept prototype deployed on Spark for ana-
lyzing the performance of the concurrent object detection
techniques discussed in the paper. This includes combining
the YOLOv3 pretrained deep learning model with Apache

7

https://doi.org/10.1145/3629527.3651427
https://doi.org/10.1145/3629527.3651427

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Imran, Majumdar and Rajan

Spark’s distributed computing framework thus enabling the
performance engineering of deep learning based object de-
tection on parallel platforms.

• Initial insights into the impact of different system and work-
load parameters on the performance of the object detection
techniques.

Further contributions to the state of the art are expected from
continuation of the research as discussed in Section 6.

Previous research done has shown a 60% performance increase
when deploying deep learning models on Spark clusters, suggesting
the potential of parallel programming in object detection tasks
[20]. The YOLOv3 model has been vastly used in the literature for
object detection for applications such as the detection of unmanned
aerial vehicles [11]. Furthermore, research has been done in the
literature as well on different partitioning algorithms in Spark. They
analyzed different partitioning approaches for a textual dataframe
and concluded that Spark’s standard random Hash Partitioning
could be optimized further with custom partitioning strategies [22].
This further indicates that the choice of partitioning algorithm could
also play a significant role in other applications such as enhancing
performance in video processing. Notably, while most research
papers emphasize the quantity of data points in partitioning studies,
this paper uniquely concentrates on the specific content within each
partition to estimate workload.

This paper is organized as follows. Section 2 gives a background
on the methodologies used in this research. Section 3 gives an
overview on the design of the system and the experiments. Section
4 goes over the experimental results. Section 5 concludes the paper
and Section 6 gives a summary of the steps for further work.

2 BACKGROUND
This section will provide a background on the different topics used
in this paper.

2.1 Apache Spark
Apache Spark can be used to efficiently distribute workloads and
data across a cluster of machines or nodes and is used for distribut-
ing the processing of the video frames. This distributed computing
framework specializes in parallel task execution, enabling fast pro-
cessing and analysis of big data tasks such as video processing
[18, 30]. Its in-memory computing capability reduces disk access,
significantly boosting processing speeds compared to alternatives
such as the Hadoop Distributed File System [31]. Spark supports
multiple programming languages and offers various libraries for
data processing tasks, such as PySpark.

2.1.1 Partitioning . A key component of Apache Spark concerns
partitioning which is fundamental in determining the processing
speed of the job at hand. Partitioning involves splitting up the data
and tasks into smaller partitions that will ultimately be processed
in parallel across the various nodes [22]. Ensuring a balanced dis-
tribution of tasks across partitions is critical to prevent any single
node from becoming a bottleneck due to an excessive workload
compared to others.

In this paper, the frames will be split up into different partitions
that will be distributed across the various nodes. Traditional ap-
proaches typically divide data into partitions of equal size, basing

the division on the quantity of data [8], which can be useful for
tabular or time series data. However, in this research, information
from each data point (i.e., the video frames) will be leveraged to
dynamically create the partitions and better split up the workload.

2.2 Dataset
In this paper, the MIT DriveSeg dataset, which contains images
of different driving scenarios that were acquired using a camera
mounted on top of a car during the daylight was utilized. The dataset
contains 20,100 video frames from 68 different driving scenarios [6].
The different scenarios depict different situations such as driving
through a busy downtown street with a large number of potential
objects or driving on a rural road with very few objects. The images
have annotations for the different objects that have been labeled
using semi-automated methods [7]. Some annotations may not
be accurate because of semi-automatic labeling. Therefore, the
annotations and labels have not been used in this paper.

2.3 Object Detection Techniques
As mentioned in Section 2.2, the annotations that came with the
MIT DriveSeg dataset, were shown not to be accurate due to the use
of semi-automated methods which provided the segmentation of
the images. Therefore, in this work, object detection of the driving
scenarios is done through the utilization of bounding boxes. A
bounding box is a rectangular frame that can be used to identify
objects within a given video frame [17].

2.3.1 YOLO Pretrained Model. The YOLOv3 model was used to
eliminate the need to train a deep learning model from scratch. The
use of YOLOv3 resulted in saving time by eliminating the need
for precise labels and allowing for the implementation of transfer
learning.

YOLO models are typically trained and optimized on a large
dataset such as the Common Objects in Context (COCO) dataset
[16]. Then, the model’s weights can be further optimized or reused
in other smaller datasets for object detection. YOLOv3 has shown
improved metrics such as mean Average Precision (mAP) and also
better processing speed when compared with other YOLO and
pretrained models [16]. Additionally, YOLOv3 has been effective in
maintaining a balance between detection speed and accuracy [13].
The YOLOv3 model has 80 possible classes of objects that can be
detected within each image [12]. YOLOv3 is capable of detecting
various objects that can be encountered in a driving scenario, such
as cars, traffic lights, buses, trucks, street signs, pedestrians, and
more. Each object found in the image can be represented using a
bounding box.

2.3.2 Entropy . As mentioned in Section 2.1.1, one of the objec-
tives of this research is to dynamically create partitions based on
the estimated workload. A frame that has an abundant number of
objects will take longer to process compared to a frame that has
fewer objects. Therefore, there is a need to swiftly estimate the
workload so that it can be split up into balanced partitions.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝐿∑︁
𝑖=1

𝑝𝑖 log2 (𝑝𝑖) (1)

8

Enhancing the Performance of Deep Learning Model Based Object Detection using Parallel
Processing (Work In Progress Paper) ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

(a) Frame with low entropy

(b) Frame with high entropy

Figure 1: Two different driving scenarios illustrating low and
high entropy.

Entropy can be used to determine the uncertainty or complexity
in an image. Entropy can also be mathematically defined as the
probability of occurrence 𝑝𝑖 at gray level 𝑖 where 𝐿 is the maxi-
mum pixel value [5, 19, 26]. Overall, equation 1 is computing the
uncertainty in each pixel of the frame. Furthermore, local entropy
can be used for images to examine the variance in images given a
window or a neighbourhood [26]. In Figure 1, there are two frames
from the MIT DriveSeg shown with their entropy overlaid on top
of each other. Pixels that are brighter have a higher local entropy
and vice versa. Homogeneous and less complex images (see Figure
1a) have a lower entropy when compared to heterogeneous and
more complex images (see Figure 1b). Therefore, entropy can serve
as a quick indicator of the number of objects in a frame, under the
assumption that more complex images typically contain a greater
number of objects, and simpler ones contain fewer.

3 PROPOSED APPROACH
This section will provide the overall approach used in devising the
proposed technique and a description of how the proof-of-concept
(POC) was implemented.

3.1 System Design
This system POC for the proposed technique was hosted on Ama-
zon Web Services (AWS). AWS is a cloud platform which provides
scalable computing and storage services [3]. AWS offers an ideal
platform for rapidly deploying different resources which can have
varying hardware specifications like the number of cores.

The MIT DriveSeg dataset was first uploaded to a Simple Storage
Service (S3) bucket which is a durable and scalable data storage
tool in AWS [4]. After the data was uploaded, a Spark cluster was
created. AWS provides a service known as Elastic Map Reduce
(EMR) which can be used to create and manage a Spark cluster with
a main node and multiple worker nodes. EMR uses the Hadoop

Yet Another Resource Negotiator (YARN) manager to organize the
different nodes. The main node requests different resources such
as memory or CPU cores from the YARN manager which then
distributes the tasks among the worker nodes [4].

Each node in the cluster represents an AWS Elastic Cloud Com-
puting (EC2) instance which is a cloud server containing various
libraries including Python and Spark [4]. Additionally, PySpark, the
Python library for Apache Spark, is installed on every node in the
cluster, serving as the main library for the program in this paper.
EC2 instances can be scaled up to include varying number of nodes
which have varying numbers of cores. For the POC, the m5 family
of EC2 instances which can have anywhere from 2 to 96 cores and
from 8 to 384 GB of memory for each node were used [2].

Figure 2 gives an illustration of the system and can be described
with the following steps.

(1) The EMR cluster will read from the S3 bucket containing
frames from a driving scenario.

(2) The main node will load in the YOLOv3 model with weights
trained on the COCO dataset using TensorFlow, a Python
deep learning library which can be used to create and load
neural network models [14].

(3) The YOLOv3 model is broadcast in the main node. In Spark,
memory-intensive variables can be broadcast to provide a
read-only version on the main node instead of replicating
them across all worker nodes [29].

(4) The tasks and frames are submitted to the main node. The
frames are split into partitions based on the chosen parti-
tioning algorithm that are outlined in Table 1.

(5) The YARNmanager performs task schedulingwith theworker
nodes.

(6) The worker nodes concurrently detect the objects in their
assigned frames using the YOLOv3 model.

(7) The bounding box detections are sent back to the main node.
(8) Once all worker nodes are done with their tasks, the results

are stored in a S3 bucket.

3.2 Experimental Design
The experiments used the one-factor-at-a-time approach where all
the factors in the experiment are set to their default values while
one factor was varied at a time [27]. The processing time required by
the worker nodes to complete all of the detections is the measured
metric for evaluating performance. The measurement of processing
time is the duration from the moment the frames are dispatched to
the worker nodes until the completion of all detections. The one-
factor-at-a-time approach helps in identifying the key factors that
impact the processing time. The different factors and their values
are shown in Table 1, with the default value shown in bold. The
selection of each factor will be further explained in this section.

3.2.1 Distribution Framework. The distribution framework is a
simple factor that will compare whether the use of distributed
computing is useful for the problem. Using no distribution will
mean running the program on a single node and with no parallelism
which will be compared to running it using multiple nodes on
Apache Spark.

9

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Imran, Majumdar and Rajan

Figure 2: Overall system design for object detection.

3.2.2 Number of Objects . The number of objects within the sce-
nario will be compared to evaluate whether this led to a difference
in processing time. The hypothesis that needs to be verified is that
as the average number of objects in a scenario increases, it would
increase the overall workload for the system. For example, a driving
scenario in a busy urban street, would require a lengthier duration
for object detections, unlike a sparsely populated rural road with
few objects.

3.2.3 Number of Worker Nodes . The number of worker nodes will
be varied to analyze the impact of parallelism on performance.

3.2.4 Number of CPU Cores. Similar to Section 3.2.3, the number of
CPU cores within each worker node will be changed to investigate
the impact of core parallelism on performance.

3.2.5 Total Number of Frames . The total number of frames in a
video being processed will be varied to assess concomitant changes
in throughput. System throughput is defined as the number of
frames processed per second [27].

3.2.6 Partitioning Algorithm . Asmentioned in Section 2.1.1, one of
the important objectives of this paper is to experiment with different
partitioning algorithms. The number of partitions in Spark can be
set manually. In most cases, setting the number of partitions to the
number of total cores has been observed to yield good results [9].

For experimenting with this parameter, two different video sce-
narios were combined; one scenario concerning a busy street with
a lot of objects and the other concerning a rural road with fewer
objects. The combined video is meant to replicate a scenario where
the number of objects varies throughout the video. For this case,
partition splits should be based on the estimated workload in each
partition and not based on the number of frames. One partition
could have frames from the scenario that has numerous objects
meaning it could become the performance bottleneck for the overall
system. This is because as mentioned in Section 3.2.2, as the number
of objects increase in a frame, the overall processing time for the
frame is expected to increase.

The four partitioning algorithms are experimented with include
the following.

(i) Video-based: In Video-based partitioning, each partition
split will have frames from the same video scenario.

(ii) Spark-based: In Spark-based partitioning, the partitions will
be assigned frames using the default Spark settings. Spark’s
default partitioning mechanism uses Hash Partitioning [9].
For this, a hash function is used to randomly assign the frame
to a partition. However due to its randomness, it could result
in a skewed data distribution as some partitions may contain
larger portions of the data while some partitions could be
empty [25, 28].

(iii) Object-based: In Object-based partitioning, each partition
will have an equal number of frames from each video. There-
fore, this implies that each partition should contain roughly
an equal number of objects, based on the assumption that ev-
ery frame from the each scenario possesses a similar quantity
of objects. To estimate the workload, one random frame was
sampled from each scenario with the assumption that frames
with higher number of objects will have a higher workload
and vice versa. To minimize overheads, the YOLOv3 model
was deployed on this one frame to estimate whether there is
a high or low number of objects within the whole scenario.
A threshold of 7 objects was established through experimen-
tation, categorizing a frame with 7 or more objects as an
indicator of high workload and and as an indicator of low
workload otherwise.

(iv) Entropy-based: As mentioned in Section 2.3.2, entropy can
be used to estimate the workload resulting from a given
frame, using the observation that frames with more objects
will generally have a larger entropy value than those that do
not. Therefore, similar, to Object-based partitioning, Entropy-
based partitioning can be used to estimate the workload
based on the contents of the frames. One of the benefits
of using Entropy-based partitioning is its fast computation

10

Enhancing the Performance of Deep Learning Model Based Object Detection using Parallel
Processing (Work In Progress Paper) ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

speed, meaning it can be applied for all the frames. In con-
trast, Object-based partitioning can only be applied to one
frame since it requires running the YOLOv3 model to get
an estimate of the number of objects, which requires signifi-
cantly more computation power compared to calculating the
entropy of a frame. Additionally, to minimize system over-
heads, it is necessary to select a simple metric like entropy
for estimating workload. Entropy-based partitioning is pre-
sented in Algorithm 1. First, in Algorithm 1, the videos and
their frames are loaded into a variable known as df as shown
in lines 1 to 4. Then the entropy of each frame is found on
line 5. From lines 6 to 12, the frames are classified as having a
low or high number of objects based on if they have a low or
high entropy. The threshold value, found experimentally, will
distinguish whether a frame has more or less objects. Once
the groups are made, each partition will contain an equal
number of LESS_OBJECTS and MORE_OBJECTS frames, as
shown in lines 13 and 14.

Algorithm 1 High Level Algorithm for Partitioning Frames Based
on Entropy

1: for video in videos do
2: 𝑓 𝑖𝑙𝑒𝑠 = 𝑓 𝑖𝑙𝑒𝑠 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑙𝑜𝑎𝑑_𝑣𝑖𝑑𝑒𝑜 (𝑣𝑖𝑑𝑒𝑜))
3: end for
4: 𝑑 𝑓 = 𝑠𝑝𝑎𝑟𝑘.𝑟𝑒𝑎𝑑.𝑓 𝑜𝑟𝑚𝑎𝑡 (”𝑏𝑖𝑛𝑎𝑟𝑦𝐹𝑖𝑙𝑒”) .𝑙𝑜𝑎𝑑 (𝑓 𝑖𝑙𝑒𝑠)
5: 𝑑 𝑓 [”𝑒𝑛𝑡𝑟𝑜𝑝𝑦”] = 𝑔𝑒𝑡𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑑 𝑓 [”𝑓 𝑟𝑎𝑚𝑒𝑠”])
6: for row in df do
7: if 𝑟𝑜𝑤 [”𝑒𝑛𝑡𝑟𝑜𝑝𝑦”] < THRESHOLD then
8: 𝑟𝑜𝑤 [”𝑔𝑟𝑜𝑢𝑝”] = 𝐿𝐸𝑆𝑆_𝑂𝐵𝐽𝐸𝐶𝑇𝑆
9: else
10: 𝑟𝑜𝑤 [”𝑔𝑟𝑜𝑢𝑝”] = 𝑀𝑂𝑅𝐸_𝑂𝐵𝐽𝐸𝐶𝑇𝑆
11: end if
12: end for
13: partitions = df.rdd.getNumPartitions()
14: df = partitionFrames(df, partitions)

4 EXPERIMENTAL RESULTS
The results for the experiments will be summarized. Each exper-
iment was executed 10 times to calculate a mean and a standard
deviation for the processing time.

Table 1: System and Workload Parameters.

Factor Value
Distribution Framework (None, Apache Spark)
Number of Objects (1-2, 7-8, 12-13)
Number of Worker Nodes (1, 2, 3, 4)
Number of CPU Cores in Worker Nodes (4, 8, 16, 32)
Number of Total Frames (150, 300, 900, 2700)
Partitioning Algorithm (Video, Spark,

Object, Entropy

Figure 3 shows that using Spark results in 50% decrease in pro-
cessing time, compared with using no distribution framework. This
establishes that using distributed computing is proven to be benefi-
cial for the given problem.

Figure 4 depicts that as the number of objects increase in the
frames, the processing time increases. This means that the workload
in the system is related to the average number of objects in each
scenario. This observation is important as it forms a necessary cri-
terion for differentiating between various partitioning algorithms.

Figure 5 show that as the computation power increases, the pro-
cessing times decreases. As the number of worker nodes increases,
the performance improves. Similar results were found when in-
creasing the number of cores.

Figure 6 shows that as the number of frames increase, the system
throughput also increases. This is an expected result because as the
size of the dataset increases, the throughput is expected to increase
as the impact on overall performance of fixed overheads due to
Spark, decreases with a larger dataset [1, 15].

Figure 7 shows the comparative performance of the different par-
titioning algorithms for two different scenarios, one on a busy street
with a large number of objects and one on a rural street with no
objects. By combining these scenarios a simulated dynamic video
is created where the number of objects are varying from one frame
to another. As shown, the worst performance was achieved by the
Video-based algorithm where each partition contains frames from
only one scenario which leads to uneven workload distribution. In
Video-based partitioning, certain partitions may turn into bottle-
necks due to the allocation of frames from scenarios with higher
workloads. Spark’s default partitioning algorithm was the second
worst in terms of performance. As described in Section 3.2.6, Spark’s
default partitioning algorithm relies on a random Hash partitioner
which may lead to a skewed data distribution. The randomness in
results can be seen as the standard deviation after 10 runs of the
algorithm is high, compared to the other algorithms analyzed in
this research. This implies that relying on Spark’s default algorithm
for data distribution in a dynamic video scenario may not always
give effective results. Object-based partitioning produced the best
results in Figure 7. However, as mentioned in Section 3.2.6, using
a single frame from each video to assess workload may lead to
inaccuracies in dynamic scenarios and may not be a good choice
to use for workload partitioning. If the video has varying number
of objects, then it is not sufficient to use one frame to estimate the
workload. Entropy-based partitioning produced comparable per-
formance results as Object-based. The entropy for each frame was
computed, making this approach the most accurate partitioning
algorithm as it is frame-specific. Furthermore, as shown in Figure
7, Entropy-based partitioning achieved an improvement of ~13%
in processing time when compared to Spark’s default partitioning
algorithm.

As mentioned in Section 3.2.6, for Entropy-based partitioning
a threshold parameter needs to be set so that the workload of
the frame can be classified. To experimentally find the threshold
value, three scenarios that had a large number of objects and three
scenarios that had a few objects were analyzed to calculate the
entropy of each frame (see Figure 8). Each bin in the histogram is
the number of frames that correspond to the energy value captured
in the x-axis. As shown in the figure, there is a clear difference

11

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Imran, Majumdar and Rajan

between the two groupings. From these results, the threshold value
used in Algorithm 1 was set at 2.5 × 106, since this is the value that
can differentiate a high workload frame from a low workload frame.

Figure 3: Processing time for object detection versus distri-
bution framework.

Figure 4: Processing time for object detection versus average
number of objects in each frame.

Figure 5: Processing time for object detection versus number
of worker nodes.

Figure 6: Throughput versus total number of frames being
processed.

5 CONCLUSIONS
This paper demonstrated how parallel processing techniques de-
ployed on Apache Spark can be used to improve performance of the
deep learning based YOLOv3 model for detecting objects in videos.
First it was shown that using parallel processing is significantly
faster than using only TensorFlow with no parallel programming.
The results showed that as the number of objects in the videos
increased, the processing time also increased, this demonstrating
the correlation between the workload intensity and the number
of objects in the scenarios. As the computation power is increased
by adding more worker nodes or CPU cores, the performance im-
proved as well. Throughput was also found to be related to the
size of the videos. Different partitioning algorithms for dynamic
workload distribution were studied. The Entropy-based partition-
ing algorithm showed improved performance in processing the
detections when compared to Spark’s random partitioning.

6 FUTUREWORK
The preliminary results presented in this research open up several
items for future work which will include the following:

(i) The investigation of longer videos is one of the important
components of future work. For the initial work presented
in this pilot project, each video was 300 frames long. In the
results, it was shown that as the size of the dataset increases,
parallel processing becomes more beneficial. Therefore, ex-
perimentation with larger videos, that give rise to larger
datasets, need to be carried out. Furthermore, longer videos

Figure 7: Processing time for detection for different parti-
tioning algorithm.

Figure 8: Distribution of entropy grouped by number of ob-
jects.

12

Enhancing the Performance of Deep Learning Model Based Object Detection using Parallel
Processing (Work In Progress Paper) ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

that have dynamically changing scenes need to be used to
further confirm the usefulness of Entropy-based partitioning.

(ii) The removal of redundant frames is expected to improve
system performance. In this paper, every single frame in the
video was used for detection; however, many of these frames
have overlapping information. Performance would improve
by sampling a fixed number of frames once a substantial
change has taken place. Algorithms for identifying redun-
dant frames will be investigated. Improving the latency of
object detection will also be useful for real time applications.

(iii) Incorporating the use of other deep learning models will be
another direction for future work. In this paper, the YOLOv3
model was used for object detection but there are newer
versions of YOLO models, the performance of which can
be compared with the results from this research. Other pre-
trained models such as EfficientNet will also be investigated.

(iv) Computing the accuracy of object detections would be in-
cluded in future work. In this research, the accuracy of the
bounding boxes were not computed. Metrics like mean Aver-
age Precision (mAP) and Jaccard index are used to determine
the accuracy of the bounding box. Analysis of the potential
trade-offs between speed and accuracy will be performed.

(v) Future workwill also look to distribute pixels from individual
frames among the different nodes using parallel processing.

(vi) The use of Graphical Processing Units (GPUs) will be used in
future work to study its impact in performance, given their
proven ability to speed up processing times in deep learning
applications [27].

ACKNOWLEDGMENTS
This research was funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

REFERENCES
[1] Nasim Ahmed, Andre LC Barczak, Teo Susnjak, and Mohammed A Rashid. 2020.

A comprehensive performance analysis of Apache Hadoop and Apache Spark
for large scale data sets using HiBench. Journal of Big Data 7, 1 (2020), 1–18.

[2] AWS. [n. d.]. Amazon EC2 M5 Instances. https://aws.amazon.com/ec2/instance-
types/m5/

[3] Ignacio Bermudez, Stefano Traverso, Marco Mellia, and Maurizio Munafo. 2013.
Exploring the cloud from passive measurements: The Amazon AWS case. In 2013
Proceedings IEEE INFOCOM. IEEE, 230–234.

[4] Lin Chen, Rui Li, Yige Liu, Ruixuan Zhang, and Diane Myung-kyung Wood-
bridge. 2017. Machine learning-based product recommendation using Apache
Spark. In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Ad-
vanced & Trusted Computed, Scalable Computing & Communications, Cloud
& Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 1–6.

[5] Sandipan Dey. 2018. Hands-On Image Processing with Python: Expert techniques
for advanced image analysis and effective interpretation of image data. Packt
Publishing Ltd.

[6] Li Ding, Michael Glazer, Jack Terwilliger, Bryan Reimer, and Lex Fridman. 2020.
MIT DriveSeg (Semi-auto) Dataset. https://doi.org/10.21227/nb3n-kk46

[7] Li Ding, Jack Terwilliger, Rini Sherony, Bryan Reimer, and Lex Fridman. 2020.
MIT DriveSeg (Semi-auto) Dataset: Large-scale Semi-automated Annotation of
Semantic Driving Scenes. Massachusetts Institute of Technology AgeLab Technical
Report 2 (2020).

[8] J Geetha and N. G. Harshit. 2019. Implementation and Performance Comparison
of Partitioning Techniques in Apache Spark. In 2019 10th International Conference
on Computing, Communication and Networking Technologies (ICCCNT). 1–5. https:
//doi.org/10.1109/ICCCNT45670.2019.8944759

[9] Anastasios Gounaris, Georgia Kougka, Ruben Tous, Carlos Tripiana Montes, and
Jordi Torres. 2017. Dynamic Configuration of Partitioning in Spark Applications.
IEEE Transactions on Parallel and Distributed Systems 28, 7 (2017), 1891–1904.
https://doi.org/10.1109/TPDS.2017.2647939

[10] Edward Helmore. 2022. Tesla behind eight-vehicle crash was in “full self-driving”
mode, says driver. https://www.theguardian.com/technology/2022/dec/22/tesla-
crash-full-self-driving-mode-san-francisco

[11] Bowen Li, Nat Shineman, Jayson Boubin, and Christopher Stewart. 2021. Compar-
ison of Object Detectors for Fully Autonomous Aerial Systems Performance. In
Companion of the ACM/SPEC International Conference on Performance Engineering
(Virtual Event, France) (ICPE ’21). Association for Computing Machinery, New
York, NY, USA, 165–166. https://doi.org/10.1145/3447545.3451170

[12] Tao Li, Yitao Ma, and Tetsuo Endoh. 2020. A Systematic Study of Tiny YOLO3
Inference: Toward Compact Brainware Processor With Less Memory and Logic
Gate. IEEE Access 8 (2020), 142931–142955. https://doi.org/10.1109/ACCESS.2020.
3013934

[13] Ignacio Martinez-Alpiste, Gelayol Golcarenarenji, Qi Wang, and Jose Maria
Alcaraz-Calero. 2021. A dynamic discarding technique to increase speed and
preserve accuracy for YOLOv3. Neural Computing and Applications 33, 16 (2021),
9961–9973.

[14] Bo Pang, Erik Nijkamp, and Ying Nian Wu. 2020. Deep learning with tensorflow:
A review. Journal of Educational and Behavioral Statistics 45, 2 (2020), 227–248.

[15] Md Armanur Rahman, J Hossen, and C Venkataseshaiah. 2018. SMBSP: a self-
tuning approach using machine learning to improve performance of spark in big
data processing. In 2018 7th International Conference on Computer and Communi-
cation Engineering (ICCCE). IEEE, 274–279.

[16] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
arXiv:1804.02767 [cs.CV]

[17] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid,
and Silvio Savarese. 2019. Generalized intersection over union: A metric and a
loss for bounding box regression. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 658–666.

[18] Sajad Sameti, Mea Wang, and Diwakar Krishnamurthy. 2018. Stride: Distributed
video transcoding in spark. In 2018 IEEE 37th International Performance Computing
and Communications Conference (IPCCC). IEEE, 1–8.

[19] scikit image. [n. d.]. Entropy. https://scikit-image.org/docs/stable/auto_
examples/filters/plot_entropy.html

[20] Arindrajit Seal and ArindamMukherjee. 2019. Real Time Accident Prediction and
Related Congestion Control Using Spark Streaming in an AWS EMR cluster. In
2019 SoutheastCon. 1–7. https://doi.org/10.1109/SoutheastCon42311.2019.9020661

[21] David Shepardson. 2023. GM’s cruise recalling 950 driverless cars after pedestrian
dragged in ... https://www.reuters.com/business/autos-transportation/gms-
cruise-recall-950-driverless-cars-after-accident-involving-pedestrian-2023-
11-08/

[22] Tinku Singh, Shivam Gupta, Manish Kumar, et al. 2023. Performance analysis
and deployment of partitioning strategies in apache spark. Procedia Computer
Science 218 (2023), 594–603.

[23] Lauren Smiley. 2023. The legal saga of Uber’s fatal self-driving car crash is
over. https://www.wired.com/story/ubers-fatal-self-driving-car-crash-saga-
over-operator-avoids-prison/

[24] Hayley Smith and Russ Mitchell. 2022. A Tesla on autopilot
killed two people in Gardena. is the driver guilty of manslaughter?
https://www.latimes.com/california/story/2022-01-19/a-tesla-on-autopilot-
killed-two-people-in-gardena-is-the-driver-guilty-of-manslaughter

[25] H. S. Sreeyuktha and J. Geetha Reddy. 2019. Partitioning in Apache Spark. In
Innovations in Computer Science and Engineering, H. S. Saini, Rishi Sayal, Aliseri
Govardhan, and Rajkumar Buyya (Eds.). Springer Singapore, Singapore, 493–498.

[26] Badri Narayan Subudhi, Pradipta Kumar Nanda, and Ashish Ghosh. 2011. Entropy
based region selection for moving object detection. Pattern recognition letters 32,
15 (2011), 2097–2108.

[27] Azhar Talha Syed and ShikhareshMajumdar. 2022. Parallel Processing Techniques
for Analyzing Large Video Files: a Deep Learning Based Approach. In 2022 IEEE
Intl Conf on Parallel and Distributed Processing with Applications, Big Data and
Cloud Computing, Sustainable Computing and Communications, Social Computing
and Networking (ISPA/BDCloud/SocialCom/SustainCom). 270–279. https://doi.
org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00041

[28] Zhuo Tang, Wei Lv, Kenli Li, and Keqin Li. 2018. An intermediate data partition al-
gorithm for skew mitigation in spark computing environment. IEEE Transactions
on Cloud Computing 9, 2 (2018), 461–474.

[29] Isaac Triguero, Mikel Galar, D Merino, Jesus Maillo, Humberto Bustince, and
Francisco Herrera. 2016. Evolutionary undersampling for extremely imbalanced
big data classification under apache spark. In 2016 IEEE congress on evolutionary
computation (CEC). IEEE, 640–647.

[30] Md Azher Uddin, Aftab Alam, Nguyen Anh Tu, Md Siyamul Islam, and Young-
Koo Lee. 2019. SIAT: A distributed video analytics framework for intelligent
video surveillance. Symmetry 11, 7 (2019), 911.

[31] Ankush Verma, Ashik Hussain Mansuri, and Neelesh Jain. 2016. Big data manage-
ment processing with Hadoop MapReduce and spark technology: A comparison.
In 2016 symposium on colossal data analysis and networking (CDAN). IEEE, 1–4.

[32] Haijun Zhang, Mingshan Sun, Qun Li, Linlin Liu, Ming Liu, and Yuzhu Ji. 2021.
An empirical study of multi-scale object detection in high resolution UAV images.
Neurocomputing 421 (2021), 173–182.

13

https://aws.amazon.com/ec2/instance-types/m5/
https://aws.amazon.com/ec2/instance-types/m5/
https://doi.org/10.21227/nb3n-kk46
https://doi.org/10.1109/ICCCNT45670.2019.8944759
https://doi.org/10.1109/ICCCNT45670.2019.8944759
https://doi.org/10.1109/TPDS.2017.2647939
https://www.theguardian.com/technology/2022/dec/22/tesla-crash-full-self-driving-mode-san-francisco
https://www.theguardian.com/technology/2022/dec/22/tesla-crash-full-self-driving-mode-san-francisco
https://doi.org/10.1145/3447545.3451170
https://doi.org/10.1109/ACCESS.2020.3013934
https://doi.org/10.1109/ACCESS.2020.3013934
https://arxiv.org/abs/1804.02767
https://scikit-image.org/docs/stable/auto_examples/filters/plot_entropy.html
https://scikit-image.org/docs/stable/auto_examples/filters/plot_entropy.html
https://doi.org/10.1109/SoutheastCon42311.2019.9020661
https://www.reuters.com/business/autos-transportation/gms-cruise-recall-950-driverless-cars-after-accident-involving-pedestrian-2023-11-08/
https://www.reuters.com/business/autos-transportation/gms-cruise-recall-950-driverless-cars-after-accident-involving-pedestrian-2023-11-08/
https://www.reuters.com/business/autos-transportation/gms-cruise-recall-950-driverless-cars-after-accident-involving-pedestrian-2023-11-08/
https://www.wired.com/story/ubers-fatal-self-driving-car-crash-saga-over-operator-avoids-prison/
https://www.wired.com/story/ubers-fatal-self-driving-car-crash-saga-over-operator-avoids-prison/
https://www.latimes.com/california/story/2022-01-19/a-tesla-on-autopilot-killed-two-people-in-gardena-is-the-driver-guilty-of-manslaughter
https://www.latimes.com/california/story/2022-01-19/a-tesla-on-autopilot-killed-two-people-in-gardena-is-the-driver-guilty-of-manslaughter
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00041
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00041

Evaluating Emerging AI/ML Accelerators: IPU, RDU, and
NVIDIA/AMD GPUs

Hongwu Peng∗
University of Connecticut

Storrs, CT, USA
hongwu.peng@uconn.edu

Caiwen Ding
University of Connecticut

Storrs, CT, USA
caiwen.ding@uconn.edu

Tong Geng
University of Rochester
Rochester, NY, USA

tgeng@ur.rochester.edu

Sutanay Choudhury
Pacific Northwest National

Laboratory
Richland, WA, USA

sutanay.choudhury@pnnl.gov

Kevin Barker
Pacific Northwest National

Laboratory
Richland, WA, USA

kevin.barker@pnnl.gov

Ang Li
Pacific Northwest National

Laboratory
Richland, WA, USA
ang.li@pnnl.gov

ABSTRACT
The relentless advancement of artificial intelligence (AI) and ma-
chine learning (ML) applications necessitates the development of
specialized hardware accelerators capable of handling the increas-
ing complexity and computational demands. Traditional computing
architectures, based on the von Neumann model, are being out-
stripped by the requirements of contemporary AI/ML algorithms,
leading to a surge in the creation of accelerators like the Graph-
core Intelligence Processing Unit (IPU), Sambanova Reconfigurable
Dataflow Unit (RDU), and enhanced GPU platforms. These hard-
ware accelerators are characterized by their innovative data-flow
architectures and other design optimizations that promise to deliver
superior performance and energy efficiency for AI/ML tasks.

This research provides a preliminary evaluation and comparison
of these commercial AI/ML accelerators, delving into their hard-
ware and software design features to discern their strengths and
unique capabilities. By conducting a series of benchmark evalua-
tions on common DNN operators and other AI/ML workloads, we
aim to illuminate the advantages of data-flow architectures over
conventional processor designs and offer insights into the perfor-
mance trade-offs of each platform. The findings from our study
will serve as a valuable reference for the design and performance
expectations of research prototypes, thereby facilitating the de-
velopment of next-generation hardware accelerators tailored for
the ever-evolving landscape of AI/ML applications. Through this
analysis, we aspire to contribute to the broader understanding of
current accelerator technologies and to provide guidance for future
innovations in the field.

∗Work done during an internship at Pacific Northwest National Laboratory.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only. Request permissions from owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651428

CCS CONCEPTS
• Computer systems organization→ Architectures; • Comput-
ingmethodologies→ Parallel computingmethodologies;Ma-
chine learning; Parallel computing methodologies; Machine
learning;

KEYWORDS
High-Performance Computing, Dataflow architecture, Performance
benchmarking
ACM Reference Format:
Hongwu Peng∗, Caiwen Ding, Tong Geng, Sutanay Choudhury, Kevin
Barker, and Ang Li. 2024. Evaluating Emerging AI/ML Accelerators: IPU,
RDU, and NVIDIA/AMD GPUs . In Companion of the 15th ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE ’24 Companion), May
7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3629527.3651428

1 INTRODUCTION
The rapid expansion of artificial intelligence (AI) and machine learn-
ing (ML) applications has led to a paradigm shift in computational
hardware design. Traditional von-Neumann architectures, which
have served as the backbone of computing for decades, are increas-
ingly challenged by the demands of modern AI/ML workloads.
These workloads often involve complex operations such as matrix
multiplications, convolutions, and graph processing, which can
be highly parallelizable but are bottlenecked by the data transfer
constraints inherent in the von-Neumann architecture. To address
these challenges, there has been a surge in the development of
specialized hardware accelerators that aim to optimize the perfor-
mance of AI/ML tasks through innovative architectural designs and
execution models.

Among the emerging contenders in the field of AI/ML accel-
erators, Graphcore’s Intelligence Processing Unit (IPU) [8] and
Sambanova’s Reconfigurable Dataflow Unit (RDU) [25] stand out
for their unique approach to hardware acceleration. These plat-
forms leverage data-flow architectures, which are fundamentally
different from the von-Neumann architecture, to enable more effi-
cient computation for AI/ML workloads. By aligning the hardware
design with the data-centric nature of AI/ML algorithms, these
accelerators promise significant gains in performance and energy
efficiency.

14

https://doi.org/10.1145/3629527.3651428
https://doi.org/10.1145/3629527.3651428

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Hongwu Peng, Caiwen Ding, Tong Geng, Sutanay Choudhury, Kevin Barker, & Ang Li

Table 1: Device information of Graphcore IPU, Sambanova RDU, and Nvidia/AMD GPU

Device TSMC
Process

Die size
(mm^2) Transistors Archi. On-chip SRAM

(MB)
Off-chip
Memory

Clk
(GHz)

FP64
(TFLOPs)

FP32
(TFLOPs)

FP16
(TFLOPs) Power

IPU GC2000 7nm 823 59.4 B IPU
(MIMD) 900@Scratchpad 448 GB@DRAM

20 GB/s 1.33 \ 62.5 (AMP) 250 (AMP) 165 W

SN10 RDU 7nm N/A 40 B RDU
(CGRA) 320@PMU 1.5 TB@DRAM

100 GB/s N/A \ \ 325 N/A

Nvidia V100 12nm 815 21.1 B Volta
(SIMT)

10.2@L1 Cache
6.1@L2 Cache

16 GB@HBM2
1.13 TB/s 1.41 7.8 (CUDA Core) 15.7 (CUDA Core) 125 (Tensor Core) 250 W

Nvidia A100 7nm 826 54.2 B Ampere
(SIMT)

24.6@L1 Cache
40.9@L2 Cache

40GB@HBM2
1.6 TB/s 1.6 9.7 (CUDA Core)

19.5 (Tensor Core) 19.5 (CUDA Core) 312 (Tensor Core) 250 W

AMD MI100 7nm 750 25.6 B CDNA
(SIMT)

1.92@L1 Cache
8@L2 Cache

32 GB@HBM2
1.23 TB/s 1.5 11.5 (CU Core) 23.1 (CU Core)

46.14 (Matrix core) 184.57 (Matrix Core) 290 W

In addition to these specialized data-flow accelerators, Graphics
Processing Units (GPUs) have also been at the forefront of AI/ML
acceleration. With their highly parallel structure and robust ecosys-
tem, GPUs continue to evolve with features such as Tensor Cores
and enhanced memory hierarchies to better support the intensive
computational demands of AI/ML applications.

In this study, we aim to provide a comprehensive evaluation and
comparison of these commercial AI/ML accelerators. Our research
delves into the architectural intricacies of the Graphcore IPU, Sam-
banova RDU, and various GPU platforms, examining their system
design, memory hierarchy, computing resources, and programming
models. By conducting a series of benchmark evaluations across a
range of DNN operators, we seek to uncover the strengths and limi-
tations of each platform, offering insights into their lower-precision
floating-point numerical performance characteristics and suitability
for different AI/ML tasks.

Our findings will serve as a valuable reference for both the aca-
demic and industrial communities, guiding the development of
future hardware accelerators. By understanding the common strate-
gies employed by current accelerators and identifying the unique
features that contribute to their performance, we can inform the
design of next-generation AI/ML hardware that is even more tai-
lored to the requirements of emerging workloads. In doing so, we
contribute to the ongoing quest for hardware architectures that can
keep pace with the relentless advancement of AI/ML technologies.

2 EMERGING AI/ML ACCELERATORS
2.1 Graphcore IPU
System Information. The Graphcore Intelligence Processing Unit
(IPU) system used in the test is the IPU-POD16with four IPU-M2000
units [9]. The IPU-POD16 utilizes a Dell R6525 Poplar server with
dual-socket AMD Epyc2 CPUs as the host server. Each IPU-M2000
unit (1U) comprises four GC200 IPU chips connected through IPU-
Link with a bandwidth of 192 GB/s. The GC200 IPU chip contains
1472 independent IPU-tiles and can process up to 8832 separate
program threads in parallel.

Memory Resource and Hierarchy. The architecture of the
GC200 IPU chip is illustrated in Fig. 1(a). Each tile of the GC200 IPU
chip [8] is equipped with 624 KiB of local scratchpad memory, and
1472 tiles contribute to a total of 900 MB of in-processor memory
with 47.5 TB/s on-chip bandwidth for a single chip. Columns of
IPU-tiles are connected through IPU-Exchange with 8 TB/s band-
width [8], but with higher latency penalty [20]. Unlike cache, the

scratchpad memory within an IPU-tile can be accessed irregularly
without penalty. Each GC200 IPU chip features 10 IPU-Links and
supports up to 320 GB/s chip-to-chip bandwidth. In addition to
the abundant on-chip SRAM memory, each IPU-M2000 unit also
offers 448 GB of streaming DDR memory with 20 GB/s bandwidth,
which is used to store the dataset or output and support infrequent
transactions.

Computing Resource. The GC200 IPU chip employs Accumu-
lating Matrix Product (AMP) units for its floating-point computa-
tion. Each IPU-tile has one AMP unit and can perform up to 64
multiply-accumulate (MAC) operations per cycle. The theoretical
computing throughput of a single GC200 IPU chip is 250 TFLOPs
(with sparsity) for FP16 format and 62.5 TFLOPs (with sparsity)
for FP32 format. A single IPU-M2000 unit can achieve up to 1
PetaFLOPs peak throughput for FP16 format.

Architecture Information IPUs offer a much larger core count
than CPU platforms, and each IPU-tile is capable of executing
completely distinct programs [20]. Compared to GPU platforms,
IPU-tiles are connected with high-performance on-chip networks,
providing greater flexibility for Multiple Instruction Multiple Data
(MIMD) programming capability and better suitability for sparse
and irregular processing. The IPU programming model follows the
standard Bulk Synchronous Parallel (BSP) model [29]. The IPU ex-
ecution flow consists of three steps: (1) local compute, (2) global
synchronization, and (3) on-chip data exchange. During the com-
pute phase, IPU-tiles operate on their local data. After the computa-
tion is completed, IPU-tiles synchronize before data exchange. The
data exchange phase is supported by an on-chip interconnect with
efficient point-to-point and collective communications [20]. Each
IPU-tile has hardware support for six threads with Simultaneous
Multi-Threading (SMT) [28] capability to use shared hardware re-
sources in a round-robin fashion. SMT technology can effectively
hide memory access and branch latency, increasing overall through-
put.

Compiler Stack & Parallelism Support. The Graphcore IPU
utilizes the Poplar compiler stack [11] for runtime deployment and
optimization. For machine learning workloads, popular frameworks
such as TensorFlow and PyTorch are used as front-ends for easier
development. The Poplar Advanced Run Time (PopART) serves
as the interface between the machine learning front-end and the
Poplar Graph Compiler. The output of the Poplar Graph Compiler
is further processed by the Graph Element Compiler to exploit
efficient computation and computation patterns according to the

15

Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s s s s

s

s

s

s

s

s

s

s

s

s

s

s

s s s

DRAM
Interface

DRAM
Interface

Weight
Input Conv

Weight
Pool Conv Norm Sum

PMU

PMU

PCU

PCU

PMU

PMU

PCU

PCU

PMU

PMU

PMU

PCU

PCU

PMU

PMU

PCU

PCU

PMU

PMU

PCU

PCU

PMU

PMU

PCU

PCU

DRAM
Interface

DRAM
Interface

Conv Conv

Pool

Sum

Norm

IPU-Tiles

IPU-Core

IPU-Exchange

IPU-Links

In-Processor-Memory

(a) (b)

Figure 1: (a) Graphcore IPU architecture. (b) Sambanova RDU architecture

BSP model. IPUs have abundant instruction set support for vari-
ous applications, and Graph Elements can be written using C/C++
with LLVM compiler or IPU assembly. The current version of IPU
supports task-level parallelism [10] across multiple IPUs. However,
only a limited form of task parallelism can be used within an IPU
chip to overlap the IO latency. Consequently, single-chip IPU ex-
ecution flow optimizes individual operator performance and has
limited support for operator-wise parallelism.

2.2 Sambanova RDU
System Information. The Sambanova Reconfigurable Dataflow
Unit (RDU) system SN10-8 used in the test is built upon eight
Cardinal SN10 RDUs [23, 24]. The SN10 RDU adopts a coarse-grain
reconfigurable array (CGRA) data-flow architecture [13] for its
hardware. As shown in Fig. 1(b), the basic units of RDU [25] include
pattern compute units (PCUs), pattern memory units (PMUs), and
pipelined switches for the on-chip network. Each PCU is equipped
with six SIMD stages, and each stage has 16 single instruction
multiple data (SIMD) lanes, totaling 96 Functional Units (FUs). Each
SN10 chip contains 640 PCUs and 640 PMUs, providing 320 MB of
on-chip SRAM. The PCU for the SN10 chip supports only the FP16
format for arithmetic computations, and the theoretical throughput
of a single SN10 chip is 325 TFLOPs.

Memory Resource and Hierarchy. Each PMU scratchpad of
the SN10 has 512 KB of memory and 16 banks, with the number
of banks matching the number of PCU lanes to provide vectorized
data access. The PMU supports several memory access modes [25]
to facilitate different applications: strided-banking mode for dense
operators, FIFO mode for streaming data, line-buffer mode for slid-
ing window accesses, duplication mode to support parallel reads,
and N-buffering mode for coarse-grained pipelines. In addition
to on-chip memory resources, the SN10 can be connected to up
to 1.5 TB of external DRAM for streaming and random accesses.
The streaming access of external DRAM supports up to 100 GB/s
bandwidth, while random (sparse) access supports only 12 GB/s
bandwidth.

Architecture Information. The data-flow graph is mapped
across PCU and PMU stages, utilizing vectorization to increase the
parallelism level within each PCU lane. Each PCU has multiple
SIMD lanes and stages, exploiting fine-grained parallelism for its

computation tasks. The PCU consumes pipelined data from previous
stages and generates pipelined data for later stages. Communication
between PCUs and PMUs is based on streaming to avoid pipeline
stalls and memory latency overhead. Reconfigurable controller
blocks are distributed among PCUs and PMUs to match data stream
rates and trigger instruction execution. Operators within the data-
flow graph are mapped to multiple PCUs and PMUs depending
on their size. The hardware mapping and scheduling of PCUs and
PMUs to the data-flow graph aim to maximize throughput and
minimize latency.

Compiler Stack & Parallelism Support. The Sambanova sys-
tem utilizes SambaFlow [4] as the end-to-end compiler framework
for machine learning acceleration. SambaFlow takes open-source
frameworks such as PyTorch and TensorFlow as entry points to
build the DNN model. The model is then fed into a dataflow graph
analyzer to generate a dataflow graph with Spatial intermediate
representation (IR) [21]. The dataflow graph analyzer conducts de-
sign space exploration and performs domain-specific optimizations,
such as layer fusion for DNN model mapping on RDU hardware.
If the operators are not present in existing ML frameworks, users
can also specify new operators through the tensor index notation
API. The template compiler maps the operator into an optimized
dataflow implementation, called a spatial template, on RDU hard-
ware. The final dataflow compiler and assembler layer performs
final transformations such as parallelization, placement, and rout-
ing. The dataflow graph is then transformed into the final RDU
hardware mapping, and the executable file is generated.

2.3 Nvidia & AMD GPU
System Information.We use Nvidia V100 [3] and A100 [2], as well
as AMD MI100 and MI250 for the GPU platform benchmark evalua-
tion. Detailed information such as L1 cache, L2 cache, global mem-
ory bandwidth, and theoretical throughput is provided in Tab. 1.

Nvidia GPU Architecture For Nvidia GPUs, the streaming
multiprocessors (SM) serve as the basic unit for instruction exe-
cution and scheduling. An SM may have multiple SM partitions,
which share the same global L1 data cache (shared memory) and
L1 instruction cache. Each SM partition has its own register file, L0
instruction cache, warp scheduler, dispatch unit, and computing
resources. Computing resources within the SM partition include

16

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Hongwu Peng, Caiwen Ding, Tong Geng, Sutanay Choudhury, Kevin Barker, & Ang Li

102 103 104

Matrix size
10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32

(a) Graphcore

102 103 104

Matrix size
10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

BF16

(b) Sambanova

102 103 104

Matrix size
10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32
FP64

(c) MI100

102 103 104

Matrix size
10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32
FP64

(d) V100

102 103 104

Matrix size
10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32
FP64

(e) A100

Figure 2: Cross platform evaluation on square GEMM operators.

floating-point Compute Unified Device Architecture (CUDA) cores
and Tensor Cores. Tensor Cores perform multiple FP16/FP32 mixed-
precision fused multiply-add (FMA) operations within a single
cycle and offer much higher computational throughput. Thirty-
two threads are grouped into a warp and are mapped to a single
SM partition for SIMD execution. Warp execution is overlapped
through a fine-grained pipeline to hide instruction fetch or memory
fetch latency. Multiple SM units are grouped into a single texture
processing cluster (TPC), and multiple TPCs are grouped into a
single GPU processing cluster (GPC). GPCs share a global L2 cache
for on-chip data buffering.

AMD GPU Architecture AMD GPUs use the CDNA architec-
ture [15, 16] for their MI100 and MI250 products. The architecture
is similar to the Nvidia Volta/Ampere architecture. The CDNA ar-
chitecture employs terms such as Compute Unit (CU), CU Core,
and Matrix Core, as opposed to SMs, CUDA core, and tensor core
for Nvidia GPUs. The CU uses the Graphics Core Next (GCN) ar-
chitecture [17] and has multiple floating-point cores and a single
Matrix Core with enhanced throughput.

Memory Resource and Hierarchy. To boost the data transfer
rate between GPU on-chip resources and off-chip memory, High
Bandwidth Memory (HBM) technology is widely adopted for both
Nvidia and AMD GPUs. HBM consists of stacks of DRAM dies with
through-silicon via (TSV) connections, providing up to several TB/s
of external memory bandwidth. The connection of HBM dies with
GPU dies is based on an underlying silicon interposer to ensure
reliable and high-speed connections.

Programming Model. Nvidia employs the CUDA parallel pro-
gramming model [1] for its GPUs to leverage their massive process-
ing power with minimal implementation coding effort. It enables
heterogeneous computation where the CPU and GPU have separate
memory and thread spaces. The CUDA programming is based on
kernel functions, which are called by the host CPU and executed
on the GPU device. The kernel function is executed with massive
concurrent threads on the GPU that share the same kernel code.
The thread ID is used for memory addressing and thread coopera-
tion. CUDA threads are extremely lightweight, allowing them to
be created or switched with minimal penalties. Thirty-two threads
are grouped into a single warp, and the warp scheduler determines
the sequence of warp execution to hide instruction and memory
access latency. To reduce global memory traffic, thread cooperation
within a thread block is enabled through shared memory (L1 cache)
and thread synchronization primitives. An L2 cache with residency

control is also available to further reduce global memory access
bandwidth and latency. Thread blocks to SMs mapping are sched-
uled during runtime, and multiple thread blocks can be mapped
to a single SM. The CUDA programming model makes the CUDA
code scalable for various hardware platforms, ranging from laptops
to high-end servers with minimal changes.

AMD adopted ROCm [19] for its software stack and uses the Het-
erogeneous Interface for Portability (HIP) [18] programming model.
HIP Runtime API and kernel programming methods can be used
for both AMD and Nvidia GPU platforms. The HIP programming
model is similar to the CUDA programming model.

Compiler Support Existing deep learning frameworks, such as
TensorFlow and PyTorch, can be used with the CUDA and ROCm
software stack to support automatic differentiation and DNN com-
putational graph generation.

Table 2: System information.

Device SambaNov SN10 GraphCore GC200 NvidiaV100
Host CPU AMD EPYC 7742 AMD EPYC 7302 Intel E5-2620

Software Stack PyTorch 1.10.2
SambaFlow 1.14.0

TensorFlow 1.15.5
Poplar 2.4.0

PyTorch 1.12.1
CUDA 11.6

Device Nvidia A100 AMD MI100 AMD MI250
Host CPU AMD EPYC 7502 AMD EPYC 7543

Software Stack PyTorch 1.12.1
CUDA 11.6

PyTorch 1.13.0
ROCm 5.3.0

PyTorch 1.13.0
ROCm 5.3.0

2.4 Summary
Similarity Between Platforms Graphcore IPU, Sambanova RDU,
and GPU platforms each have their own basic SIMD/SIMT units:
IPU-tile, PCU, and SM. These basic SIMD units share similar archi-
tecture and process lightweight concurrent threads while switching
between thread groups (warps) withminimal penalty. Such SIMD ar-
chitecture fully exploits fine-grained pipelined parallelism, enabling
high throughput and high energy-efficient parallel computation.

Difference Between Platforms Although the three acceler-
ator platforms’ basic SIMD/SIMT units have similar architecture
and execution models, the interconnect and scheduling between
these units differ among platforms. Graphcore IPU features a global
crossbar that connects every IPU-tile, and the scheduling and exe-
cution model between IPU-tiles follows the BSP model with three
steps: local computation, synchronization, and data communica-
tion/exchange. Sambanova RDU provides reconfigurable switches

17

Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

107 108 109 1010 1011 1012 1013

Number of Operations
10 3

10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32

(a) Graphcore

107 108 109 1010 1011 1012 1013

Number of Operations
10 3

10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

BF16

(b) Sambanova

107 108 109 1010 1011 1012 1013

Number of Operations
10 3

10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32
FP64

(c) MI100

107 108 109 1010 1011 1012 1013

Number of Operations
10 3

10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32
FP64

(d) V100

107 108 109 1010 1011 1012 1013

Number of Operations
10 3

10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32
FP64

(e) A100

Figure 3: Cross platform evaluation on BERT operators.

106 107 108 109 1010 1011 1012

Number of Operations
10 3

10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32

(a) Graphcore

106 107 108 109 1010 1011 1012

Number of Operations
10 3

10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

BF16

(b) Sambanova

106 107 108 109 1010 1011 1012

Number of Operations
10 3

10 2

10 1

100

101

102
FL

OP
s (

TO
P/

s)
FP16
FP32
FP64

(c) MI100

106 107 108 109 1010 1011 1012

Number of Operations
10 3

10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32
FP64

(d) V100

106 107 108 109 1010 1011 1012

Number of Operations
10 3

10 2

10 1

100

101

102

FL
OP

s (
TO

P/
s)

FP16
FP32
FP64

(e) A100

Figure 4: Cross platform evaluation on 2D convolution operators.

104 105 106 107 108 109

Number of Operations
10 3

10 2

10 1

100

101

102

103

FL
OP

s (
GO

P/
s)

COO w. FP32

(a) Graphcore

104 105 106 107 108 109

Number of Operations
10 3

10 2

10 1

100

101

102

103

FL
OP

s (
GO

P/
s)

Torch CSR w. FP32
Torch CSR w. FP64
Torch COO w. FP32
Torch COO w. FP64

(b) MI100

104 105 106 107 108 109

Number of Operations
10 3

10 2

10 1

100

101

102

103

FL
OP

s (
GO

P/
s)

Torch CSR w. FP16
Torch CSR w. FP32
Torch CSR w. FP64
Torch COO w. FP32
Torch COO w. FP64
PyG w. FP16
PyG w. FP32
PyG w. FP64

(c) V100

104 105 106 107 108 109

Number of Operations
10 3

10 2

10 1

100

101

102

103

FL
OP

s (
GO

P/
s)

Torch CSR w. FP16
Torch CSR w. FP32
Torch CSR w. FP64
Torch COO w. FP32
Torch COO w. FP64
PyG w. FP16
PyG w. FP32
PyG w. FP64

(d) A100

Figure 5: Cross platform evaluation on SPMM operators.

for PCU and PMU connections, where scheduling and mapping of
PCUs and PMUs use the Spatial dataflow graph compiler for task
parallelism. GPU architecture has limited connections and commu-
nication bridges between SMs, and the execution and mapping of
tasks to the GPU follow the CUDA programming model with SIMT
style. Overall, Graphcore IPU and Sambanova IPU platforms offer
greater flexibility in SIMD/SIMT unit mapping and scheduling than
the GPU platform, potentially providing more advantages for appli-
cations with sparse or irregular computation and communication
patterns.

3 EVALUATION RESULTS
We conduct benchmark evaluations of several commonly used
DNN operators on the target platforms, including ❶ general ma-
trix multiplication (GEMM), ❷ 2D convolution (Conv2D), and ❸

sparse-matrix dense-matrix multiplication (SPMM). It is important
to note that the Sambanova SN10 platform lacks compiler support
for SPMM, and therefore is not evaluated for this operator.

3.1 Square GEMM Benchmark
We conduct benchmarking of square matrix multiplication follow-
ing the software setup outlined in Table 2. The matrix size is varied
from 256 to 10,624 with a 128 step size, and from 10,752 to 20,992
with a 512 step size. We record throughput performance over avail-
able floating-point formats for each platform. The Graphcore GC200
IPU platform is benchmarked for its available FP16 and FP32 data
types, with matrix size limited to 10,496 due to limited on-chip
memory. Both FP16, FP32, and FP64 throughputs were recorded
for the GPU platforms. The evaluation results are shown in Fig. 2.
It is worth noting that for the Sambanova platform, throughput

18

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Hongwu Peng, Caiwen Ding, Tong Geng, Sutanay Choudhury, Kevin Barker, & Ang Li

performance becomes unstable when matrix sizes grow to 2500 and
above, due to unstable PCUs and PMUs mapping through the Sam-
baFlow compiler. The AMD MI100 GPU platform shows unstable
performance between matrix sizes 256 to 7936 for FP32 format due
to choices of CU core and Matrix core during PyTorch to ROCm
compilation.

Table 3: Normalized geomean hardware throughput for
GEMM.

Platform A100 V100 MI100 GC200 SN10
FP16 10.64 4.81 7.00 6.00 2.96
FP32 1.30 1.00 2.06 2.55 \
FP64 1.12 0.52 0.20 \ \

We present the performance summary of platforms in Table 3,
which is computed by taking the geometric mean of benchmarks
and using V100 FP32 format as the normalization baseline. Among
all platforms, Graphcore IPU GC200 delivers the highest FP32 per-
formance, while A100 achieves the highest FP16 and FP64 perfor-
mance.

3.2 BERT Operator Benchmark
We benchmark the BERT model’s operators across a variety of
batch sizes, sequence lengths, and the number of heads. For the
Graphcore GC200 IPU platform, there are 8 configurations for the
batch size: [1, 2, 4, ..., 128], and 8 configurations for (sequence length,
number of head) pairs: [(128, 12), (128, 16), (128, 32), (384, 12), (384,
16), (384, 32), (512, 16), (512, 32)]. For other platforms, there are
11 configurations for the batch size: [1, 2, 4, ..., 1024], while the
(sequence length, number of head) configurations remain the same
as those in the IPU platform setup. Benchmark results are presented
in Fig. 3.

3.3 2D Convolution Operator Benchmark
We benchmark operator performance on three commonly used
convolutional neural networks (CNNs) with the same input image
size as the ImageNet dataset [22]: ResNet-18, ResNet-50 [14], and
MobileNetV2 [27]. We evaluate the CNN operators on eight batch
size configurations (1, 2, 4, ..., 128) using the Graphcore GC200 IPU
platform and 11 batch size configurations (1, 2, 4, ..., 1024) on other
platforms. The benchmark results are presented in Fig. 4.

Table 4: Normalized geomean hardware throughput for con-
volution.

Platform A100 V100 MI100 GC200 SN10
FP16 2.26 1.48 1.99 8.18 0.35
FP32 1.86 1.00 1.26 4.60 \
FP64 0.26 0.16 0.14 \ \

The geometric mean benchmark results for CNNs are presented
in Table 4, where the V100 FP32 format is used as the baseline for
normalization. In both FP16 and FP32 formats, the Graphcore IPU
GC200 platform outperforms all other platforms with at least a 2×
speedup.

3.4 SPMM Benchmark
Graph neural network (GNN) is significant workload in the field
of AI/ML, and their performance bottleneck is the sparse-matrix
dense-matrix multiplication (SPMM) [30]. We evaluate the perfor-
mance of SPMM on both Graphcore IPU GC200 and GPU platforms.
For the IPU platform, we use PopSparse library [12] and follow the
benchmarking example in [7]. PopSparse currently only supports
COO format for sparse matrices and provides backpropagation on
both sparse and dense inputs. For GPU platform, we use PyTorch
sparse library [26] to perform SPMM, which supports two sparse
matrix formats: coordinate (COO) and compressed sparse row (CSR).
COO format-based PyTorch SPMM supports sparse gradient back-
propagation, while CSR format does not. We also provide SPMM
benchmark using PyTorch Geometric (PyG) [6], an open-source
message-passing-based framework, on Nvidia GPU.

We conduct benchmarks on a selection of 100 sparse matrices
sourced from the SuiteSparse library [5]. To generate additional
results, we vary the second dimension (batch size) of the dense ma-
trix. The benchmark is performed on both the GC200 IPU platform
and GPU platforms, with batch sizes ranging from 8 to 4096 and 8
to 8192, respectively. Figure 5 shows the raw results.

Table 5: Normalized geomean hardware throughput for
SPMM.

Framework PyG Torch CSR Torch COO
Platform FP16 FP32 FP64 FP16 FP32 FP64 FP32 FP64
A100 3.86 3.47 3.36 8.16 12.24 9.29 0.95 0.78
V100 2.73 2.64 2.45 10.01 11.25 8.54 1.00 0.81
MI100 \ \ \ \ 3.14 2.64 0.35 0.29
GC200 \ \ \ \ \ \ 1.06 \

The benchmark results’ geometric mean is presented in Table 5,
with the V100 FP32 format as the normalization baseline. The Py-
Torch CSR on V100/A100 platform achieves the highest throughput
for the SPMM benchmark. The PyG framework exhibits more sta-
ble performance for differentiable SPMM and supports more data
formats. The Graphcore IPU GC200 platform shows great poten-
tial in SPMM tasks, with a high peak performance; however, the
performance is not optimized for varying problem sizes.

3.5 Streaming Operator Benchmark
We benchmark streaming operators, including element-wise square
and non-linear operators such as ReLU and Sigmoid, on both plat-
forms. The Sambanova SN10 platform’s compiler stack, SambaFlow,
does not support the individual element-wise square operator; there-
fore, it is not recorded. The benchmark results of streaming opera-
tors are presented in Fig. 6.

4 CONCLUSION
In this study, we evaluate and compare three major types of hard-
ware platforms for AI/ML acceleration: Graphcore IPU, Sambanova
RDU, and GPU. Through our benchmarking, we have identified the
potential of the Graphcore IPU for accelerating AI/ML applications
such as CNNs and GNNs. Overall, our work contributes to a better
understanding of the current state-of-the-art in AI/ML hardware
acceleration and provides guidance for future research in this field.

19

Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

104 105 106 107 108 109

Number of Operations
100

101

102

FL
OP

s (
GO

P/
s)

ele mul FP16
ele mul FP32
ReLU FP16
ReLU FP32
sigmoid FP16
sigmoid FP32

(a) Graphcore

104 105 106 107 108 109

Number of Operations
100

101

102

FL
OP

s (
GO

P/
s)

ReLU BF16
sigmoid BF16

(b) Sambanova

104 105 106 107 108 109

Number of Operations
100

101

102

FL
OP

s (
GO

P/
s)

Ele mul FP16
Ele mul FP32
Ele mul FP64
ReLU FP16
ReLU FP32
ReLU FP64
Sigmoid FP16
Sigmoid FP32
Sigmoid FP64

(c) MI100

104 105 106 107 108 109

Number of Operations
100

101

102

FL
OP

s (
GO

P/
s)

Ele mul FP16
Ele mul FP32
Ele mul FP64
ReLU FP16
ReLU FP32
ReLU FP64
Sigmoid FP16
Sigmoid FP32
Sigmoid FP64

(d) V100

104 105 106 107 108 109

Number of Operations
100

101

102

FL
OP

s (
GO

P/
s)

Ele mul FP16
Ele mul FP32
Ele mul FP64
ReLU FP16
ReLU FP32
ReLU FP64
Sigmoid FP16
Sigmoid FP32
Sigmoid FP64

(e) A100

Figure 6: Cross platform evaluation on element-wise operators.

ACKNOWLEDGEMENT
This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific
Computing Research, ”ComPort: Rigorous Testing Methods to Safe-
guard Software Porting”, under Award Number 78284. This work
uses platforms supported by U.S. DOE Office of Science, Office
of Advanced Scientific Computing Research, under award 66150:
”CENATE - Center for Advanced Architecture Evaluation”.

REFERENCES
[1] Nvidia Corporation. [n. d.]. CUDA C++ Programming Guide. Retrived from

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. Accessed:
2022, Oct. 30th.

[2] Nvidia Corporation. [n. d.]. NVIDIA A100 Tensor Core GPU Archi-
tecture, unprecedented acceleration at every scale. Retrived from
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-
ampere-architecture-whitepaper.pdf. Accessed: 2022, Oct. 30th.

[3] Nvidia Corporation. [n. d.]. Nvidia Tesla V100 GPU Architecture, The World’s
Most Advanced Data Center GPU. Retrived from https://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf. Accessed:
2022, Oct. 30th.

[4] Sambanova System Corporation. [n. d.]. SambaFlow - SambaNova Systems.
Retrived from https://sambanova.ai/wp-content/uploads/2021/04/SambaNova_
SambaFlow_Datasheet_English.pdf. Accessed: 2022, Oct. 30th.

[5] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1–25.

[6] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[7] Graphcore. [n. d.]. Graphcore: Dynamic Sparsity. Retrived from https://github.
com/graphcore/examples/tree/master/sparsity/dynamic_sparsity/tensorflow1.
Accessed: 2022, Oct. 30th.

[8] Graphcore. [n. d.]. Introducing the Colossus𝑇𝑀 MK2 GC200 IPU. Retrived from
https://www.graphcore.ai/products/ipu. Accessed: 2022, Oct. 30th.

[9] Graphcore. [n. d.]. IPU-POD16 Direct Attach Datasheet. Retrived
from https://docs.graphcore.ai/projects/ipu-pod16-datasheet/en/latest/product-
description.html. Accessed: 2022, Oct. 30th.

[10] Graphcore. [n. d.]. IPU Programming Model. Retrived from https:
//docs.graphcore.ai/projects/ipu-programmers-guide/en/latest/programming_
model.html. Accessed: 2022, Oct. 30th.

[11] Graphcore. [n. d.]. Poplar Graph Framework Software. Retrived from https:
//www.graphcore.ai/products/poplar. Accessed: 2022, Oct. 30th.

[12] Graphcore. [n. d.]. PopSparse Matrix Multiplication (Dynamic Pattern) on
the IPU. Retrived from https://docs.graphcore.ai/projects/dynamic-sparsity/
en/latest/dynamic-sparsity.html. Accessed: 2022, Oct. 30th.

[13] Reiner Hartenstein. 2001. Coarse grain reconfigurable architectures. In Proceed-
ings of the ASP-DAC 2001. Asia and South Pacific Design Automation Conference
2001 (Cat. No. 01EX455). IEEE, 564–569.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[15] AMD Inc. [n. d.]. AMD CDNA 2 Architecture. Retrived from https://www.amd.
com/system/files/documents/amd-cdna2-white-paper.pdf. Accessed: 2022, Oct.
30th.

[16] AMD Inc. [n. d.]. AMD CDNA Architecture. Retrived from https://www.amd.
com/system/files/documents/amd-cdna-whitepaper.pdf. Accessed: 2022, Oct.
30th.

[17] AMD Inc. [n. d.]. AMD Graphics Cores Next (GCN) Architecture. Retrived from
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf. Ac-
cessed: 2022, Oct. 30th.

[18] AMD Inc. [n. d.]. HIP: C++ Heterogeneous-Compute Interface for Portability.
Retrived from https://github.com/rocm-developer-tools/hip. Accessed: 2022, Oct.
30th.

[19] AMD Inc. [n. d.]. ROCm Documentation. Retrived from https://rocmdocs.amd.
com/_/downloads/en/latest/pdf/. Accessed: 2022, Oct. 30th.

[20] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza. 2019.
Dissecting the graphcore ipu architecture via microbenchmarking. arXiv preprint
arXiv:1912.03413 (2019).

[21] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, StefanHadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al.
2018. Spatial: A language and compiler for application accelerators. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 296–311.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classi-
fication with deep convolutional neural networks. Commun. ACM 60, 6 (2017),
84–90.

[23] Kunle Olukotun. 2020. Plasticine-AUniversal Data Analytics Accelerator. Technical
Report. Leland Stanford Junior University Stanford United States.

[24] Raghu Prabhakar, Sumti Jairath, and Jinuk Luke Shin. 2022. SambaNova SN10
RDU: A 7nm Dataflow Architecture to Accelerate Software 2.0. In 2022 IEEE
International Solid-State Circuits Conference (ISSCC), Vol. 65. IEEE, 350–352.

[25] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,
Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2018.
Plasticine: a reconfigurable accelerator for parallel patterns. IEEE Micro 38, 3
(2018), 20–31.

[26] Pytorch. [n. d.]. TORCH.SPARSE. Retrived from https://pytorch.org/docs/stable/
sparse.html. Accessed: 2022, Oct. 30th.

[27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[28] Dean M Tullsen, Susan J Eggers, and Henry M Levy. 1995. Simultaneous mul-
tithreading: Maximizing on-chip parallelism. In Proceedings of the 22nd annual
international symposium on Computer architecture. 392–403.

[29] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103–111.

[30] Xi Xie, Hongwu Peng, Amit Hasan, Shaoyi Huang, Jiahui Zhao, Haowen Fang,
Wei Zhang, Tong Geng, Omer Khan, and Caiwen Ding. 2023. Accel-GCN: High-
Performance GPU Accelerator Design for Graph Convolution Networks. arXiv
preprint arXiv:2308.11825 (2023).

20

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://sambanova.ai/wp-content/uploads/2021/04/SambaNova_SambaFlow_Datasheet_English.pdf
https://sambanova.ai/wp-content/uploads/2021/04/SambaNova_SambaFlow_Datasheet_English.pdf
https://github.com/graphcore/examples/tree/master/sparsity/dynamic_sparsity/tensorflow1
https://github.com/graphcore/examples/tree/master/sparsity/dynamic_sparsity/tensorflow1
https://www.graphcore.ai/products/ipu
https://docs.graphcore.ai/projects/ipu-pod16-datasheet/en/latest/product-description.html
https://docs.graphcore.ai/projects/ipu-pod16-datasheet/en/latest/product-description.html
https://docs.graphcore.ai/projects/ipu-programmers-guide/en/latest/programming_model.html
https://docs.graphcore.ai/projects/ipu-programmers-guide/en/latest/programming_model.html
https://docs.graphcore.ai/projects/ipu-programmers-guide/en/latest/programming_model.html
https://www.graphcore.ai/products/poplar
https://www.graphcore.ai/products/poplar
https://docs.graphcore.ai/projects/dynamic-sparsity/en/latest/dynamic-sparsity.html
https://docs.graphcore.ai/projects/dynamic-sparsity/en/latest/dynamic-sparsity.html
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://github.com/rocm-developer-tools/hip
https://rocmdocs.amd.com/_/downloads/en/latest/pdf/
https://rocmdocs.amd.com/_/downloads/en/latest/pdf/
https://pytorch.org/docs/stable/sparse.html
https://pytorch.org/docs/stable/sparse.html

FAIR Sharing of Data in Autotuning Research (Vision Paper)
Jana Hozzová

Institute of Computer Science,

Masaryk University

Brno, Czech Republic

hozzova@mail.muni.cz

Jacob O. Tørring

Department of Computer Science,

Norwegian University of Science and

Technology

Trondheim, Norway

jacob.torring@ntnu.no

Ben van Werkhoven

Leiden Institute of Advanced

Computer Science, Leiden University

Leiden, The Netherlands

b.van.werkhoven@liacs.leidenuniv.nl

David Střelák

Institute of Computer Science,

Masaryk University

Brno, Czech Republic

National Biotechnology Center

Madrid, Spain

373911@mail.muni.cz

Richard Vuduc

Georgia Institute of Technology

Atlanta, USA

richie@cc.gatech.edu

ABSTRACT
Autotuning is an automated process that selects the best computer

program implementation from a set of candidates to improve perfor-

mance, such as execution time, when run under new circumstances,

such as new hardware. The process of autotuning generates a large

amount of performance data with multiple potential use cases,

including reproducing results, comparing included methods, and

understanding the impact of individual tuning parameters.

We propose the adoption of FAIR Principles, which stands for

Findable, Accessible, Interoperable, and Reusable, to organize the

guidelines for data sharing in autotuning research. The guidelines

aim to lessen the burden of sharing data and provide a comprehen-

sive checklist of recommendations for shared data. We illustrate

three examples that could greatly benefit from shared autotuning

data to advance the researchwithout time- and resource-demanding

data collection.

To facilitate data sharing, we have taken a community-driven

approach to define a common format for the data using a JSON

schema and provide scripts for their collection.

The proposed comprehensive guide for collecting and sharing

performance data in autotuning research can promote further ad-

vances in the field and encourage research collaboration.

CCS CONCEPTS
• General and reference → Measurement; Performance; • Soft-
ware and its engineering → Collaboration in software develop-
ment.

KEYWORDS
autotuning; benchmarks; performance; measurements; open data;

data sharing

This work is licensed under a Creative Commons Attribution

International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0445-1/24/05.

https://doi.org/10.1145/3629527.3651429

ACM Reference Format:
JanaHozzová, JacobO. Tørring, Ben vanWerkhoven, David Střelák, and Richard

Vuduc. 2024. FAIR Sharing of Data in Autotuning Research (Vision Paper). In

Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3629527.3651429

1 INTRODUCTION
Autotuning is an automated process, guided by experiments, that

selects one from among a set of candidate computer program im-

plementations to improve its execution time, energy, or another

performance characteristic [2]. An autotuner refers to a system

that implements this process and may be viewed as having two

main parts: a code generator that can produce a space of possible

implementations; and a search mechanism that explores this space,

using models or automated benchmarking experiments, to find one

that performs well. During this process, an autotuner may generate

and collect a considerable amount of performance data.

These data have value for other researchers, but making them

easily reusable is a complex task. As a focal point for thinking

through data-sharing issues, we selected a research problem that

arises in autotuning research: how to compare search methods

fairly. For instance, there may be differences in how the samples

were measured and the environment in which data were collected.

In benchmarking search methods, it is essential to know if a data set

covers the full configuration space or only some subset (as with a

grid search, for instance). As another example, it might be useful to

know whether or not so-called invalid configurations are included

in the data set and how these can be recognized.

The field of autotuning research would benefit from a thorough

discussion about how and what to collect and share so that other

researchers might be able to find, access, integrate and reuse perfor-

mance data. At the time of this writing, several autotuning systems

are under active development, and data sharing is considered a

prerequisite for better understanding which methods work best,

under what scenarios, and why.

In this paper, we outline principles, guidelines, and mechanisms

to reflect the questions about performance data sharing from the

view of developers, practitioners, and users of autotuning systems.

21

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3651429
https://doi.org/10.1145/3629527.3651429

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Jana Hozzová, Jacob O. Tørring, Ben van Werkhoven, David Střelák, & Richard Vuduc

It was initiated during ameeting of autotuning researchers inMarch

2022
1
.

Moreover, in collaboration with other researchers, we devised

JSON schema to define a common format for sharing the data and

a script to facilitate their collection. We suggest best practices for

sharing autotuning data specifically while avoiding being overly

prescriptive. We derive a comprehensive checklist of requirements

for shared data using the following analysis: see Checklist for FAIR

Sharing of Data in Autotuning Research or repository
2
for down-

loadable version. We consider these guidelines, the schema, the

script and the checklist to be main contributions of this paper.

Together, they provide a comprehensive view on sharing data in

autotuning, offer a standard format of data and help with the col-

lection.

The value of these data lies in multiple potential use cases. These

can be categorized as:

Reproduction and Verification:
• Reproducing results of other researchers.

• Comparing search methods [17].

• Storing “wisdom” to cache best-results in specific tuning

contexts [5].

Search Method Modifications and Code Generation:
• Using data to drive code generation, a la profile-guided opti-

mizations in compilers.

• Using data to optimize the tuning budget [11].

• Constructing models to guide tuning, either by an expert or

by a machine learning method [6].

Analysis and Insights:
• Running and developing statistical data analysis, machine

learning, and visualization methods “tuned” to autotuning.

• Understanding the impact of individual tuning parameters

and their interactions.

• Developing insights into the behavior of compilers and com-

puter architectures.

• Studying the sensitivity of programs to their inputs and

characteristics.

Curation and Benchmarking:
• Curating of entire tuning spaces used as “ground truth”.

• Curating performance with respect to various metrics, in-

cluding time, energy, storage, and accuracy.

• Making leaderboards or scoreboard reporting for specific

classes of problems.

The rest of the paper is organized as follows. First, we propose

data sharing guidelines in the context of autotuning (see Shar-

ing autotuning data following FAIR principles). We adopted the

doctrine of Findable, Accessible, Interoperable, and Reusable digi-

tal assets, also known as the FAIR Principles,
3
to organize these

guidelines [16]. Second, we outline several use cases that show

how shared performance data can stimulate research in autotuning

1
Generic Autotuning Technology for GPU Applications at the Lorentz Center, March

7–13, 2022:

https://www.lorentzcenter.nl/generic-autotuning-technology-for-gpu-applications

.html

2
https://github.com/odgaard/TuningSchema/tree/T4/checklist.md

3
Developed, coincidentally, by others during a Lorentz Center workshop in 2014

https://www.lorentzcenter.nl/jointly-designing-a-data-fairport.html

(see Use Case Examples). Third, we summarize surveyed work on

scientific data sharing and reproducibility in general, as well as

performance data benchmarking, collection, and sharing in partic-

ular (see Related Work). Fourth, we describe the challenges of data

sharing and lay out future work that would foster the discussion of

these questions and the adoption of our approach (see Challenges

and Future Work).

2 SHARING AUTOTUNING DATA
FOLLOWING FAIR PRINCIPLES

The FAIR Guiding Principles suggest that shared data will be most

useful to the broader scientific community if it is findable, accessi-

ble, interoperable, and resuable [16]. We recommend how to apply

these desiderata to autotuning datasets, focusing on what infor-

mation should be included to enable the use cases mentioned in

Introduction.

For concreteness, other researchers and we devised a JSON

schema for sharing the metadata regarding the autotuning pro-

cess and its results.
4
Moreover, we implemented a script that auto-

matically collects recommended information about software and

hardware involved in autotuning experiments.
5
Several autotuners

under active development already export their outputs in accor-

dance with JSON schema [12, 15]. Additionally, the BAT project [13,

14] supports exporting data from many Python-based tuners that

do not natively support the format.

In this section, we define the terms we use, and then we list

recommendations and guidelines by following FAIR principles.

2.1 Used nomenclature
In this proposal, we adopt the OpenML distinction between raw
datasets and run datasets.6 A raw dataset is an exhaustive search

of a benchmark over the entirety of a searched configuration space.

The dataset of an exhaustive search would contain the global opti-

mum. In some cases, even a dataset of a partial exhaustive search

of the configuration space might be useful to share.

A run dataset consists of data from runs of the search algorithm.

Tuning configurations included in it represent the path of the search

method, as it was going through the searched configuration space,

looking for well-performing configuration. This dataset might not

contain the global optimum.

In a common scenario, a user could download a raw dataset

and evaluate different search techniques using it as a surrogate

for real hardware. We refer to this as a simulated run. Each run

dataset is the full experimental result for how this search would

have performed on the configurations contained in the raw dataset.

A run dataset could also hold the results from a hardware run that

is not simulated.

A raw dataset should include information that could be used

to set up the same environment and run the benchmarks, thereby

reproducing the exhaustive search’s results. For a simulated run

dataset, authors could provide a DOI to the raw dataset and thus

4
https://github.com/odgaard/TuningSchema/tree/T4/metadata.py

5
https://github.com/odgaard/TuningSchema/blob/T4

6
https://openml.org

22

https://www.go-fair.org/fair-principles/
https://www.lorentzcenter.nl/generic-autotuning-technology-for-gpu-applications.html
https://www.lorentzcenter.nl/generic-autotuning-technology-for-gpu-applications.html
https://github.com/odgaard/TuningSchema/tree/T4/checklist.md
https://www.lorentzcenter.nl/jointly-designing-a-data-fairport.html
https://github.com/odgaard/TuningSchema/tree/T4/metadata.py
https://github.com/odgaard/TuningSchema/blob/T4
https://openml.org

FAIR Sharing of Data in Autotuning Research ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

simplify the metadata that they need to provide. If the authors pro-

vide a hardware run dataset, there would be additional requirements

to ensure that other researchers can reproduce the results.

We use the term kernel to refer to a unit of autotuned code. A

kernel may be a CUDA kernel, the critical routine of an application,

or an entire application if autotuned as a whole via, for instance,

tuning compiler switches.

2.2 Findable
“Findability” refers to the ability to find and filter data of interest by

other researchers. We strongly recommend that all datasets have

DOIs to make citation possible. We mention other approaches to

make datasets more available to other researchers in section Chal-

lenges and Future Work.

2.3 Accessible
“Accessibility” refers to the ability of other researchers to obtain a

copy of the dataset. We recommend using repositories like Zenodo

to host autotuning datasets. Zenodo data artifacts are citable via

DOI and available for open or closed submission with versioning

of datasets of 50 GB (or bigger if needed). We also recommend

that authors provide contact details of the person responsible for

collecting the data.

2.4 Interoperable
“Interoperability” means providing the information necessary to use

the data in another autotuner or computing environment. Doing

so implies a common data format or an otherwise completely and

precisely described format and provides information related to

invalid data points.

2.4.1 Standard Data Formats. It is a good practice to format data in

standard and widely recognized formats for easy interpretation and

integration. For example, JSON is recommended as it is universally

recognized and easy to parse.

2.4.2 Performance Measurement Recommendations. For accurate
performance measurements, it is necessary to report key details

that align with the metrics for search method comparisons. This

includes:

• Kernel experiment time, or the individual run time of kernel

configurations.

• Time spent validating the output of the kernel configuration.

• Compilation time.

• Overhead details, such as the search method overhead (inclu-

sive of model prediction time) and the autotuner’s overhead.

• The timestamp of the measurement.

2.4.3 Additional Measurements and Metrics. It is beneficial to re-

port supplementary measurements, such as power consumption,

profiling counters, and clock frequencies, whenever possible. De-

rived metrics like compute performance in GFLOP/s or energy

efficiency in GFLOPS/W can provide deeper insights. Importantly,

if there is variability in some measurements due to factors like per-

formance counter acquisition, it is crucial to describe the reasons

and mark the data accordingly.

2.4.4 Detailed Information on Tuning Parameters. Tuning param-

eters should be described in detail. This encompasses the name,

type (like int, float, string), and values or range (valid and used).

Any conditions or restrictions on these parameters, especially com-

plex ones, should be documented. It should be explicitly stated if

there is a relationship between the input problem size and tuning

parameters.

2.4.5 Handling of Invalid Data Points. Including invalid data points,
especially in full configuration space explorations, provides a com-

plete picture. Such data points should be marked based on their

type, whether due to not meeting conditions, failed compilation, or

computational issues during runtime.

2.4.6 Validation. Details about the validation of the results, includ-

ing the benchmarked kernel configurations and their correctness

criteria, must be provided.

2.4.7 Miscellaneous Recommendations. Minor details include the

notation for decimal points (dot or comma). We also advise noting

the timestamp of the experiment’s start, as the GPU’s runtime

duration might influence the performance.

2.5 Reusable
The concept of "Reusability" in the context of dataset manage-

ment extends beyond merely providing the dataset; it involves

furnishing essential and supplementary information that aids in

further research utilizing the dataset. This necessitates compre-

hensive metadata detailing both the data collection and processing

methodologies.

2.5.1 General Dataset Information. Several key elements are in-

tegral to ensuring both clarity and traceability in dataset usage.

These include providing links to associated research and data pa-

pers and offering a license recommendation, such as the Open

Data Commons Open Database License (ODbL) 1.0 (available at

[https://opendatacommons.org/licenses/odbl/1-0/]). Additionally,

it is useful to clarify any data usage restrictions and establish clear

citation guidelines for the dataset.

2.5.2 Computational Problem Description. Explaining the compu-

tational problem in lay terms would aid a broader understanding,

particularly for those not specialized in the field. This should be

complemented by an outline of common programming patterns into

which the problem might fit and a clarification regarding whether

the problem is predominantly memory-bound or compute-bound.

2.5.3 Kernel Implementation Details. Detailing the specifics of the

kernel’s programming aspects is important. This includes informa-

tion on the source code’s location and version, the programming

language employed, details of the compiler and its options, the

kernel’s grid and thread size, and specifics about the kernel’s argu-

ments.

2.5.4 Tuning Parameter Insights. An in-depth exploration of the

tuning parameters and their impacts is recommended. This should

cover the effects of commonly used tuning parameters, details of

the dataset’s configuration space, and information on the dataset’s

run data, including the search methods and models utilized.

23

https://zenodo.org/

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Jana Hozzová, Jacob O. Tørring, Ben van Werkhoven, David Střelák, & Richard Vuduc

2.5.5 Input Data Details. Providing information on the dataset’s

inputs is suggested. This encompasses detailing the input’s size

and other relevant characteristics and whether this input data is

included within the dataset.

2.5.6 Data Collection and Processing. A comprehensive dive into

data management practices is necessary. This involves outlining the

data acquisition methods, autotuner details, techniques used in data

processing and filtering, visualization and other scripts, execution

environment details, and the software and scripts employed to

ensure reproducibility.

2.5.7 Hardware Specifications. Providing in-depth details about

the hardware utilized in the dataset’s creation and processing is

significant to ensure reproducibility. This should include informa-

tion on device details and model numbers, chipsets and memory

specifics, methods for measuring power consumption, and details

as recommended by the Supercomputing conference environment

script
7
.

2.5.8 Environment and Execution Details. Detailing the ecosystem

surrounding the dataset makes the data actually reusable. This

includes specifics on the software used, including operating systems

and compilers, details of scripts and software for dataset acquisition,

and information related to compilation and execution.

This comprehensive list of recommended shared information

about data may be considered intimidating. Therefore, we encour-

age to use the script
8
we developed in collaboration with other

researchers to automate the collection of bulk of these metadata.

We provide an actual checklist in PDF and MD format for easier

reference in the same repository and in the appendix of this paper.

3 USE CASE EXAMPLES
Shared performance data have many potential use cases; we listed

several in section Introduction. In this section, we elaborate on

three of them in greater detail. With these use cases, researchers

could aim to devise more effective and faster search methods by

better understanding current search methods or by deeper insight

into tuning spaces.

One of the main issues related to the search in autotuning is that

tuning spaces are hard to search. They are discrete, non-convex,

and show little or no locality, i.e. similar configurations usually

have vastly different performance. It means that many traditional

approaches for search in optimization space do not perform well or

they do not perform better than random search [3].

Reusing the performance data might be extremely difficult or

even impossible in all use cases without all the necessary infor-

mation. Our recommendations on sharing autotuning-related data

have been chosen with these use cases (and more) in mind.

3.1 Comparing search methods
Comparing search methods and understanding which work best

and under what scenarios facilitates the development and use of ef-

fective and fast search methods. However, fair comparison presents

7
https://submissions.supercomputing.org/?page=SampleForm&id=PaperArtifactDe

scriptionArticleEvaluationADAEAppendix&site=sc21

8
https://github.com/odgaard/TuningSchema/blob/T4

a difficult task in itself. The simplest way (although it also has its

pitfalls) is to have all the search methods in one autotuner. Then,

one could search for the best configuration of the same computa-

tional problem using the same input on the same hardware and

see which search method finds the solution the fastest. To provide

more robustness and fairness to comparison, one would repeat it

many times to deal with the stochastic nature of the search, change

out the input and hardware to deal with the sensitivity and pos-

sibly even change the parameters of the search method. Even if

we ignore the implementation phase that might be needed, prepar-

ing and executing all of these experiments is heavily time- and

resource-consuming.

Reusing performance data shared by other researchers would

save a lot of time and resources, as someone else has already done

the most consuming part. Clearly, a fair comparison of search meth-

ods implemented within different autotuners poses another set of

challenges. It might even be impossible if the shared dataset does

not include all the information needed, e.g. kernel code to ensure

that we compare the same computational problem; details about

performance measurements (whole experiment time vs. separately

noting kernel time and compilation time and overhead time) to

ensure we can account for the overhead of the search; or execution

environment (hardware and software setup details) to ensure we

compare experiments run on the same or comparable hardware.

Recently,Willemsen et al. [17] published amethod for comparing

search methods in different autotuners fairly. Our list includes all

the data needed to use their comparison metric.

3.2 Creating models to guide tuning
One of the ways to search faster is to give it domain- and problem-

specific information, for example, a performance model created

either by an expert or a machine learning technique. If trained

properly, it can assess the shape of the tuning space of the given

computational problem and guess what configuration would be the

best next step.

In order to create and train the performance model, one needs

performance data above the usual time or energy spent in the ker-

nel. Performance profiling counters, also called hardware counters,

provide more reusable information. However, their collection is

heavily time- and resource-consuming; kernel run with profiling

turned on runs much slower than usual. Thus, reusing the data

collected by others would save many resources. Apart from pro-

filing counters, detailed information about the tuning space and

computing environment is required.

Data from previous runs on other hardware or input have been

used to guide the tuning in [6]. Filipovič et al. gathered all profiling

counters themselves and explicitly noted how demanding it was.

They shared the data in [9]. Machine learning method based on

statistical analysis guides the profiling also in [10].

3.3 Analyzing data to gain insight
Gaining deeper insight into tuning spaces would help researchers

make more informed decisions while developing search methods

or creating performance models to guide the tuning. Via statis-

tical analysis, they can inspect the interactions between tuning

parameters, look at input sensitivity and learn the intricate details

24

https://submissions.supercomputing.org/?page=SampleForm&id=PaperArtifactDescriptionArticleEvaluationADAEAppendix&site=sc21
https://submissions.supercomputing.org/?page=SampleForm&id=PaperArtifactDescriptionArticleEvaluationADAEAppendix&site=sc21
https://github.com/odgaard/TuningSchema/blob/T4

FAIR Sharing of Data in Autotuning Research ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

about hardware and programming models beyond often poorly

documented behaviour.

Running all the experiments "just" for statistical analysis seems

wasteful and worthless. By using shared data, one can build upon

the work of others and move the research further.

4 RELATEDWORK
Several related initiatives have been created for or could be reason-

ably used towards sharing data in autotuning research. For instance,

there are many machine learning and data science competition plat-

forms, such as Kaggle
9
or OpenML

10
, that allow researchers to

publish or share datasets. While the data sharing principles we

have proposed could be implemented using any of these platforms,

our guidelines for autotuning go beyond the typical use case of

these platforms by providing specific recommendations with regard

to what metadata to collect and how datasets can be made FAIR.

Several computer science conferences and journals are currently

trying to improve the reproducibility and replicability of results

by implementing artifact description and evaluation initiatives. We

have drawn inspiration from the questionnaire used for artifact

evaluations in SuperComputing
11

and specialized them to cover

information required to enable FAIR sharing of autotuning perfor-

mance measurement data.

In terms of autotuning research specifically, a set of initiatives by

Grigori Fursin under the names of cTuning
12
, Collective Mind [8],

Collective Knowledge (CK) [7], and work of Cho et al. [4] are prob-

ably the most closely related works. The cTuning initiative started

with a similar goal: to enable or bootstrap sharing of performance

data within the autotuning research community. Collective Mind

aimed to crowd-source such autotuning performance data for many

different computing hardware systems. It seems these systems have

inspired Collective Knowledge, a system for automating research

actions similar to CodaLab.
13

It appears that cTuning can only be

used through the Collective Knowledge workflow. It is unclear

how, where, and in what form the data or metadata is stored. The

main contribution of the initiative appears to be in automating

the experimentation workflow through the Collective Knowledge

system.

Finally, Cho et al. have proposed a JSON database to leverage

historical data for Bayesian optimization and provide CK for meta-

data collection [4].
14
. They also propose a website where users can

upload their results.
15

However, this repository is specific to their

autotuner GPTune (which is limited to integer, real, and categor-

ical types of parameters and the Bayesian optimization process),

whereas what we are proposing tries to be more general and inclu-

sive of other autotuning frameworks. The developers of GPTune

also collect additional metadata, such as software version, machine

information and evaluation data. These are publicly available, with

over 14 thousand evaluations spanning 23 problems. Capitalizing

9
https://www.kaggle.com/

10
https://www.openml.org/

11
https://submissions.supercomputing.org/?page=SampleForm&id=PaperArtifactDe

scriptionArticleEvaluationADAEAppendix&site=sc21

12
https://ctuning.org/

13
https://worksheets.codalab.org/

14
https://github.com/gptune/CK-GPTune

15
https://gptune.lbl.gov

on these data-sharing opportunities is a central goal of our more

general proposal.

5 CHALLENGES AND FUTUREWORK
Many researchers may view data sharing as a hardly feasible task -

it is undoubtedly a challenge. We have addressed a few perceived

barriers in this paper; several remain for future work.

The main challenges of data collection include that researchers

do not know what to collect and how to collect data without too

much effort. Data sharing brings additional worries: where to share

and what to share so that the data can be reused. Moreover, data col-

lection and sharing are usually not at the center of the researcher’s

attention; they are just a byproduct of the ongoing research. There-

fore, anything that makes data collection and sharing quicker and

easier can sway the decision to make public or to keep private.

In our guidelines, we address the question about what data
should be collected, both in terms of actual, primary data and ad-

ditional descriptions of the environment and processes. All these

suggestions have been made with a focus on the future reusability

of data. Having a checklist gives researchers a solid starting point,

ensuring they do not omit anything critically important.

The question of how to collect data can be divided into three

parts: primary data (measurements and tuning space details), envi-

ronment data (hardware information, code location) and process

data (details about the computational problem, search method and

data processing). Collecting the measurements and details about

tuning space in our proposed JSON format is automatic in some

autotuning frameworks. So far, KTT [12] and KernelTuner [15]

export data in this format, and BAT project [13, 14] can export data

from several Python-based tuners, most notably OpenTuner [1]. For

the environment data, we offer the script that automatically collects

most of them. The last part is the most time-consuming; details

about methods and processes need to be written down. However,

this effort pays off later, as these descriptions most probably should

also appear in the research article; they are not relevant only to

data sharing.

We address the question of where to share the data by suggesting
both the repository and licence. To make autotuning data more

readily findable, we foresee a website that could serve as a primary

entry point. For those creating data, it should provide an easy way

to submit links to their datasets and facilitate data sharing. For

those seeking data, it should offer basic filtering on the metadata

properties of the datasets to help look up by criteria of specific

interest in autotuning, such as what hardware or performance

metrics were used. For example, EOSC initiative
16

aims to provide

a venue for such websites.

We realize that even with the guidelines, a checklist and scripts

at our disposal, the feat of data sharing might seem unreachable. A

sample dataset and a sample description of data that would abide by

our guidelines ease the hurdle and make it conceivable to undertake.

We have created a simple example of shared data https://zenodo.org

/records/7212426. It contains only automatically generated data, no

detailed descriptions of all processes. Nevertheless, it can illustrate

how the shared data generated by our scripts and schemas look

like.

16
https://eosc-portal.eu/

25

https://www.kaggle.com/
https://www.openml.org/
https://submissions.supercomputing.org/?page=SampleForm&id=PaperArtifactDescriptionArticleEvaluationADAEAppendix&site=sc21
https://submissions.supercomputing.org/?page=SampleForm&id=PaperArtifactDescriptionArticleEvaluationADAEAppendix&site=sc21
https://ctuning.org/
https://worksheets.codalab.org/
https://github.com/gptune/CK-GPTune
https://gptune.lbl.gov
https://zenodo.org/records/7212426
https://zenodo.org/records/7212426
https://eosc-portal.eu/

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Jana Hozzová, Jacob O. Tørring, Ben van Werkhoven, David Střelák, & Richard Vuduc

6 CONCLUSION
We have formulated several recommendations and guidelines to

enable sharing FAIR data with the autotuning research community

based on twelve foreseen use cases. Based on the FAIR principles

(Findable, Accessible, Interoperable, and Reusable), we recommend

specific actions the autotuning community can take, including what

metadata to collect to sustain the use cases and ultimately make the

autotuning data FAIR. We hope that the community’s refinement

and ultimate adoption of this proposal will help address data sharing

issues in autotuning. Indeed, we strongly believe such data have

high intrinsic value, not just within the autotuning community but

also for improving our overall understanding of computer system

performance.

ACKNOWLEDGMENTS
The CORTEX project has received funding from the Dutch Re-

search Council (NWO) in the framework of the NWA-ORC Call (file

number NWA.1160.18.316). The Generic Autotuning Technology for
GPU Applications workshop has received funding from the Lorentz

Center, Netherlands eScience Center, and the CORTEX consortium.

This work was supported by the Ministry of Education, Youth

and Sports of the Czech Republic through the e-INFRACZLM2018140.

This research work was also funded by the European Commision

– NextGenerationEU(Regulation 2020/2094), through CSIC´s Global
Health Platform (PTI Salud Global).

REFERENCES
[1] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,

Jeffrey Bosboom, Una-MayO’Reilly, and SamanAmarasinghe. 2014. Opentuner:

an extensible framework for program autotuning. In International Conference on
Parallel Architectures and Compilation Techniques (PACT). Edmonton, Canada,

(Aug. 2014). http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-ope

ntuner.pdf.

[2] Prasanna Balaprakash, Jack Dongarra, Todd Gamblin, Mary Hall, Jeffrey K

Hollingsworth, Boyana Norris, and Richard Vuduc. 2018. Autotuning in high-

performance computing applications. Proceedings of the IEEE, 106, 11, 2068–
2083.

[3] Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland. 2011. Can search

algorithms save large-scale automatic performance tuning? Procedia Computer
Science. Proceedings of the International Conference on Computational Science,

ICCS 2011 4, (Jan. 1, 2011), 2136–2145. doi: 10.1016/j.procs.2011.04.234.

[4] Younghyun Cho, James W Demmel, Xiaoye S Li, Yang Liu, and Hengrui Luo.

2021. Enhancing autotuning capability with a history database. In 2021 IEEE
14th International Symposium on Embedded Multicore/Many-core Systems-on-
Chip (MCSoC). IEEE, 249–257.

[5] FFTW.org. 2023. Words of wisdom - saving plans. Web page. (2023). Retrieved

Feb. 8, 2023 from https://www.fftw.org/fftw3_doc/Words-of-Wisdom_002d

Saving-Plans.html#Words-of-Wisdom_002dSaving-Plans.

[6] Jiří Filipovič, Jana Hozzová, Amin Nezarat, Jaroslav Ol’ha, and Filip Petrovič.

2022. Using hardware performance counters to speed up autotuning conver-

gence on GPUs. Journal of Parallel and Distributed Computing, 160, (Feb. 1,
2022), 16–35. doi: 10.1016/j.jpdc.2021.10.003.

[7] Grigori Fursin. 2021. Collective knowledge: organizing research projects as

a database of reusable components and portable workflows with common

interfaces. Philosophical Transactions of the Royal Society A, 379, 2197, 20200211.
[8] Grigori Fursin. 2013. Tutorial at hpsc 2013 at ntu, taiwan: collective mind:

novel methodology, framework and repository to crowd-source auto-tuning.

In HPSC-Conference on Advanced Topics and Auto Tuning in High Performance
and Scientific Computing-2013.

[9] Jana Hozzová, Jiří Filipovič, Amin Nezarat, Jaroslav Ol’ha, and Filip Petrovič.

2021. Searching CUDA code autotuning spaces with hardware performance

counters: data from benchmarks running on various GPU architectures. Data
in Brief, 39, (Dec. 1, 2021), 107631. doi: 10.1016/j.dib.2021.107631.

[10] Edward Hutter and Edgar Solomonik. 2021. Accelerating Distributed-Memory

Autotuning via Statistical Analysis of Execution Paths. In 2021 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). 2021 IEEE

International Parallel and Distributed Processing Symposium (IPDPS). (May

2021), 46–57. doi: 10.1109/IPDPS49936.2021.00014.

[11] Jaroslav Oľha, Jana Hozzová, Matej Antol, and Jiří Filipovič. 2024. Estimat-

ing resource budgets to ensure autotuning efficiency. Journal of Parallel and
Distributed Computing. Submitted. http://dx.doi.org/10.2139/ssrn.4661862.

[12] Filip Petrovič, David Střelák, Jana Hozzová, Jaroslav Ol’ha, Richard Trembecký,

Siegfried Benkner, and Jiří Filipovič. 2020. A benchmark set of highly-efficient

cuda and opencl kernels and its dynamic autotuning with kernel tuning toolkit.

Future Generation Computer Systems, 108, 161–177.
[13] Ingunn Sund, Knut A. Kirkhorn, Jacob O. Tørring, and Anne C. Elster. 2021.

BAT: a benchmark suite for AutoTuners. Norsk IKT-konferanse for forskning og
utdanning, 1, (Nov. 14, 2021), 44–57. Number: 1. Retrieved Dec. 10, 2021 from

https://ojs.bibsys.no/index.php/NIK/article/view/915.

[14] Jacob O. Tørring, Ben van Werkhoven, Filip Petrovič, Floris-Jan Willemsen, Jiří

Filipovič, and Anne C. Elster. 2024. Towards a Benchmarking Suite for Kernel

Tuners. 2023 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). Submitted.

[15] Ben van Werkhoven. 2019. Kernel tuner: a search-optimizing gpu code auto-

tuner. Future Generation Computer Systems, 90, 347–358. doi: https://doi.org/1
0.1016/j.future.2018.08.004.

[16] Mark D. Wilkinson et al. 2016. The FAIR Guiding Principles for scientific

data management and stewardship. Scientific Data, 3, 160018, (Mar. 2016). doi:

10.1038/sdata.2016.18.

[17] Floris-JanWillemsen, Richard Schoonhoven, Jiří Filipovič, Jacob O. Tørring, Rob

van Nieuwpoort, and Ben vanWerkhoven. 2024. A methodology for comparing

optimization algorithms for auto-tuning. Future Generation Computer Systems.
Submitted.

26

http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
https://doi.org/10.1016/j.procs.2011.04.234
https://www.fftw.org/fftw3_doc/Words-of-Wisdom_002dSaving-Plans.html#Words-of-Wisdom_002dSaving-Plans
https://www.fftw.org/fftw3_doc/Words-of-Wisdom_002dSaving-Plans.html#Words-of-Wisdom_002dSaving-Plans
https://doi.org/10.1016/j.jpdc.2021.10.003
https://doi.org/10.1016/j.dib.2021.107631
https://doi.org/10.1109/IPDPS49936.2021.00014
http://dx.doi.org/10.2139/ssrn.4661862
https://ojs.bibsys.no/index.php/NIK/article/view/915
https://doi.org/https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1038/sdata.2016.18

FAIR Sharing of Data in Autotuning Research ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

A CHECKLIST FOR FAIR SHARING OF DATA
IN AUTOTUNING RESEARCH

This appendix contains a checklist of recommended information to

share. Information that gets automatically collected by using our

scripts or those that are present in our proposed JSON schemas

available in repository https://github.com/odgaard/TuningSchema/

blob/T4/ is marked by �.

• General information

□ name of the dataset for easier future reference

□ DOI and link to repository

□ contact information to authors

□ how to cite

□ licence and usage restrictions

□ link to related papers

• Measurements

� kernel experiment time

� validation time

� compilation time

� overhead details (search method overhead, autotuner over-

head, model overhead)

� timestamp

� if possible, additional measurements, such as power con-

sumption, profiling counters or clock frequencies

• Tuning space

� names and types of tuning parameters

� values or ranges of tuning parameters

� conditions of tuning parameters

□ details about how different types of invalid data points are

handled

� details about how the results are validated

□ description of the effects of tuning parameters

□ details about search space, i.e. raw dataset or run dataset

• Computational problem and its implementation

□ explanation for non-experts

□ common programming patterns it fits into

□ memory- or compute-bound

□ source code location and version

� programming language used

� grid and thread size

� kernel argument details

• Search method and models

� hyperparameters of the search method

� budget

� performance metric and optimization objective function

□ details about how models were created and trained

• Environment and execution

– Input data

□ size and other relevant characteristics

□ whether it is included within the dataset

– Hardware

� details about the device and the model

� chipsets and memory specifics

□ details about how power consumption is measured

� details provided by the recommended Supercomputing

conference environment script

– Software

� software specifics, OS and compilers

� details about compilation

� details about execution environment

– Data processing

□ details about how data were acquired

□ details about how the autotuner was set and executed

□ details about data processing and filtering

□ if relevant, details about analysis and visualization

□ software and scripts used for dataset acquisition, pro-

cessing, analysis and visualization

27

https://github.com/odgaard/TuningSchema/blob/T4/
https://github.com/odgaard/TuningSchema/blob/T4/

Mastering Computer Vision Inference Frameworks
Pierrick Pochelu

University of Luxembourg FSTM-DCS
Luxembourg

pierrick.pochelu@uni.lu

Oscar Castro-Lopez
University of Luxembourg FSTM-DCS

Luxembourg
oscar.castro@uni.lu

ABSTRACT
In this paper, we present a comprehensive empirical study to evalu-
ate four prominent Computer Vision inference frameworks. Our
goal is to shed light on their strengths and weaknesses and provide
valuable insights into the challenges of selecting the right inference
framework for diverse situations. Additionally, we discuss the po-
tential room for improvement to accelerate inference computing
efficiency.

CCS CONCEPTS
• Software and its engineering; • Computing methodologies
→ Computer vision;

KEYWORDS
software performance, neural networks, inference
ACM Reference Format:
Pierrick Pochelu and Oscar Castro-Lopez . 2024. Mastering Computer
Vision Inference Frameworks. In Companion of the 15th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’24 Companion), May
7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3629527.3651430

1 INTRODUCTION
In the field of deep learning, the deployment of trained neural net-
works to make predictions, a process also known as inference, is
the pivotal moment where these models provide value in applica-
tions. Inference deep learning frameworks play a central role in
this process by translating the mathematical representation of the
neural network into low-level code optimized for specific hardware
platforms. These inference frameworks employ a diverse range of
optimizations aimed at significantly improving the computational
speed of neural network predictions.

While the training phase of deep neural networks is generally a
time-bounded computing process with a fixed number of epochs or
batches, the inference phase often involves long-term deployment.
This is why pursuing lower prediction time has been recognized as
a strategically significant endeavor for reducing the financial cost
of computing infrastructure [6] and greener computing [5].

Various benchmarks have emerged to assess the speed of deep
neural networks, they often focus on the performance of specific

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3651430

operators like matrix multiplication and convolution. These mi-
crobenchmarks, while informative, fall short of comprehensively
evaluating the intricate complexities of modern neural networks
[19]. Additionally, benchmarks like Dawn Bench [3] have high-
lighted that neural networks frequently under-utilize computing
cores due to memory transfer bottlenecks. Although studies such as
MLPerf Inference [15] and ML Bench [13] provide comprehensive
assessments of various inference applications, frameworks, and
hardware, they generally lack in-depth analysis of the comparison
between different inference frameworks and software settings. This
paper aims to address this gap by providing fresh perspectives to
steer the future development of inference technology and set of
tools for reproducibility.

This paper explores the inference performance exhibited by the
inference frameworks such as TensorRT [4], ONNX-runtime [16],
OpenVINO [7], LLVM MLIR [11], TVM [2]. These inference frame-
works employ a diverse range of optimizations aimed at signifi-
cantly improving the computational speed of neural network in-
ference. Additionally, we also test/compare the performance of
Tensorflow XLA [12] which, unlike the aforementioned inference
frameworks, is a software environment that applies optimizations
for both the training and inference phases.

With the inference frameworks we benchmark different convolu-
tional neural network (CNN) architectures used in computer vision
tasks selected for their diversified neural topology: Resnet50[9]
VGG19[20] and DenseNet201[10]. For each framework, we col-
lected over 80 data points, encompassing metrics such as predic-
tion throughput (predictions per second), loading time, memory
consumption, and power consumption on both GPU and CPU hard-
ware configurations. The code and additional plots are linked in
the GitHub repository at the end of the conclusion.

The structure of this paper is as follows. In Section 2, we dis-
cuss inference frameworks state-of-art and their optimization tech-
niques. In Section 3, we elaborate on the settings used. In Section 4,
we present the experimental results with different metrics. In Sec-
tion 5, we provide key insights by summarizing the lessons learned
from the experiments. Finally, in Section 6 we conclude by showing
the importance of this work direction, future work, and GitHub
links.

2 POST-TRAINING REPRESENTATION AND
OPTIMIZATION

Post-training representation and optimization serve as a critical
bridge between model training and efficient inference deployment.

The optimization is generally done in two steps, high-level and
low-level optimizations. While high-level optimizations focus on al-
gorithmic and architectural enhancements, low-level optimizations
delve into the intricacies of code generation and hardware-specific

28

https://orcid.org/0000-0002-3525-5033
https://orcid.org/0000-0003-4025-7903
https://orcid.org/0000-0002-3525-5033
https://orcid.org/0000-0003-4025-7903
https://doi.org/10.1145/3629527.3651430
https://doi.org/10.1145/3629527.3651430

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Pierrick Pochelu & Oscar Castro-Lopez

performance tuning. The synergy between these optimization lay-
ers empowers deep learning frameworks to deliver both accuracy
and speed in real-world applications. However, different inference
frameworks have different implementations.

One fundamental high-level optimization strategy is known as
"fusing," a technique that consolidates multiple operations into a
single kernel launch. For example, sequences of convolutions can
be merged into one single convolution [1]. Fusing offers several
advantages, including the elimination of slow intermediate tensor
storage, improved cache utilization, and the removal of synchro-
nization barriers between operations. Notably, these optimization
methods, such as XLA [12], not only accelerate inference but can
also benefit the training phase. Moreover, certain fusing opera-
tions involve mathematical simplifications, like combining adjacent
convolution layers together without lowering the accuracy of the
model [8].

Additional high-level optimizations encompass techniques such
as constant-folding and static memory planning. Constant-folding
evaluates constant expressions before executing the program and
static memory planning creates a plan to reuse ahead and use
intermediate tensor buffers.

On the other end, low-level optimization entails converting the
computational graph into highly optimized low-level code tailored
for specific hardware platforms. Drawing upon decades of com-
pilation expertise, this optimization category encompasses sub-
expression elimination, vectorization, loop ordering, tiling, un-
rolling, threading patterns, and memory caching/reusing strategies.
Notably, the field benefits from two noteworthy low-level compil-
ers and optimizers, namely TVM [2] and LLVM MLIR [11], both
enriched with tensor types, which enable efficient code generation
and execution.

3 EXPERIMENTAL SETTINGS
3.1 Evaluated Neural Networks
To assess the performance of different inference frameworks, we
utilize a diverse set of convolutional neural networks, including
VGG19, ResNet50, DenseNet201, and EfficientNetB0. Overall, these
networks offer a range of characteristics, such as varying depths,
widths (parametric ratio to the number of layers), and densities, pro-
viding a comprehensive evaluation of the frameworks’ capabilities.
The details of these architectures are summarized in Table 1.

Table 1: Summary of the CNNs architectures used in the
benchmark.

#𝑝𝑎𝑟𝑎𝑚.

#𝑙𝑎𝑦𝑒𝑟𝑠 #layers #jumps #param. Jump type

VGG19 7.26M 19 0 138M No jumps
ResNet50 0.52M 50 16 26M Additions
DensetNet201 0.1M 201 98 20M Concatenations
EfficientNetB0 0.06M 89 25 5.3M Mult. and Add.

3.2 Evaluated Machine Specifications
Our benchmarking experiments are conducted on two distinct ma-
chines, namely Machine A and B. Machine A is equipped with Tesla

V100 SXM2 GPUs and its CPU is a dual-socket Intel(R) Xeon(R)
CPU E5-2698 v4. Whereas, Machine B has NVIDIA Amper A100
PCI-E GPUs and its CPU is a single-socket AMD EPYC 7F52. Table
2 presents the full details for both machines.

For the Software Stack, we maintain consistent software ver-
sions across both machines. Our assessment involves popular infer-
ence frameworks, including TensorFlow 2.6, TensorRT 8.0, ONNX-
runtime 1.10, and OpenVINO 2021. To facilitate the benchmarking
process, we utilize neural network converters such as tf2onnx 1.9.3
and LLVM 14.0.

Machine A operates on Ubuntu with Python 3.9, while Machine
B runs on CentOS with Python 3.8. It’s worth noting that special-
ized real-time operating systems may enhance latency determinism
and speed but could potentially impact throughput negatively. We
also explored MLIR (onnx-mlir 0.2 framework [11]) on Machine B;
however, it only supports ResNet50. In all our benchmarks, Tensor-
flow benefits from acceleration via XLA [12] (Accelerated Linear
Algebra).

Table 2: Summary of the characteristics of the machines used
in the benchmark.

Feature Machine A Machine B

GPU model Tesla V100 SXM2 Amper A100 PCIE
GPU # of cores 5,120 6,912
GPU clock speed 1,312MHz-1,530MHz 765MHz-1,310MHz
GPU memory 16GB 40GB
GPU board cons. 300 watts 250 watts
CPU model Intel XEON E5-2698 v4 AMD EPYC 7f52
CPU # of cores 80 16
CPU clock speed 1.2GHz-3.6GHz 2.5GHz-3.5GHz
CPU memory 512GB 256GB
OS Ubuntu CentOS
Python version 3.9 3.8

3.3 Graph Optimization Settings
To discuss optimization settings and the effect of each performance
we discuss the obtained speed up by ablation (starting from the
mostly well optimized settings and discussing the impact of chang-
ing a specific setting).

• TensorflowXLA:We freeze the computational graph, which
means all weights are stored in read-onlymemory.We enable
the "optimize_for_inference_lib" optimizer, although it
doesn’t significantly impact performance. XLA is enabled
on the GPU because disabling it reduces speed by 15%. How-
ever, enabling XLA multiplies initialization time by a factor
of six on the range of neural networks. We do not observe a
performance gain from enabling XLA on the CPU. Therefore,
it remains disabled.

• ONNX-RT (ONNX-runtime) [16]: We enable caching, as
disabling it reduces speed by approximately 3%. We also
enable maximum graph-level optimization, and using the
default optimization settings reduces speed by 8%.

• OpenVINO We enabled two settings: "NCHW" and con-
volution fusing. NCHW stands for batch (N), channels (C),

29

Mastering Computer Vision Inference Frameworks ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

height (H), and width (W). NCHW is a data format, a way
to represent a tensor in memory and all input images are
converted into this format for this framework. In a nutshell,
convolution fusing combines or merges multiple convolu-
tional operations within a CNN model into a single, more
efficient operation. When convolutional fusing is disabled
the execution speed is reduced by 9%. We disabled concate-
nation optimization because there was no significant gain
in any experiment. In fact, with Densenet201 concatenation
optimization reduced the performance by 1%.

• MLIR [11] (Multi-Level Intermediate Representation from
the LLVM project): MLIR is still under development, but we
could compile the Resnet50 graph with the "-O3" optimiza-
tion level for performance. This optimization level represents
the highest level of optimization provided by the compiler.

These settings have been carefully configured to ensure optimal
performance for each framework, enabling a fair and informative
comparison of their capabilities.

4 EXPERIMENTAL RESULTS
After the training phase, the importance of performance metrics
can significantly differ depending on the application at hand. The
prioritization of specific metrics over others is deeply influenced
by the unique requirements of each use case. In this study, we con-
duct assessments focusing on prediction speed, memory utilization,
power consumption, and model loading time.

4.1 Prediction Speed
Our assessment of prediction speed encompasses three key scenar-
ios, each measured differently:

• Batch Applications: In scenarios where neural networks pre-
dict a substantial workload of data samples, optimizing the
batch size becomes critical to maximize predictions per sec-
ond, referred to as throughput. Throughput is quantified as
the number of predictions per second.

• Data Flow Applications: For use cases involving sequential
data sample prediction, such as real-time embedded sys-
tems and Markov Decision Processes in deep reinforcement
learning, we evaluate latency, represented as the number of
milliseconds required for a single prediction.

• Irregular Batch Applications: In situations where data sam-
ples arrive irregularly, such as web services serving multiple
client requests, a dynamic batch computing approach is es-
sential. Here, we carefully balance latency for responsiveness
and throughput when the service faces heavy request loads.

Figure 1 and 2 show the throughput results for machines A and
B, respectively. Each figure has results for the inference frameworks
by varying the batch size and the model. Notice the vertical axis is
log2-scale. Please note that we have opted not to display latencies
for predicting a single data point (data flow applications) since
these results exhibited a strong correlation with batch size 1. In
cases where there are no bars in the figure, it indicates out-of-
memory issues (e.g., VGG with TensorRT) or compilation errors
(e.g., EfficientNet with OpenVINO).

4.2 Memory Consumption
Optimizing memory usage within the inference framework un-
locks various GPU utilization possibilities, effectively reducing the
need for investments in multi-GPU configurations and minimizing
their associated power demands. The diverse memory consumption
scenarios encompass serving larger models, enhancing accuracy
through the management of asynchronous ensembles [14], and
efficiently handling independent applications [18]. Figure 3 shows
the memory consumption of an ensemble model, quantified as the
combined storage occupied by the neural network on disk and
the current batch of features propagating through the layers. The
ensemble results from diverse topologies: VGG19 has wider convo-
lutions, Resnet50 is deeper, and Densenet201 includes numerous
jumps between layers.

4.3 Power consumption
Figure 4 presents the power consumption (Watt/sec.) of different
inference frameworks (“TRT” for TensorRT, “TF” for Tensorflow,
“ORT” for ONNX-RT) with batch sizes 1, 32, and 128. The model
running is the ensemble of VGG19, Resnet50, and DenseNet201.

We use the following command to estimate GPU power draw:

$ nv id i a −smi − i $GPUID −− fo rmat = csv −−query −
↩→ gpu=power . draw −− loop −ms=3000

Where $GPUID is the corresponding GPU identifier hosting the
neural network.

It’s worth noting that the Relative Standard Deviation (RSD)
of instantaneous power consumption (watt) can be high, approxi-
mately around 20%. The oscillations observed in the estimated GPU
consumption are attributed to a combination of factors including
instruction flows, dynamic voltage and frequency, temperature reg-
ulation, and measurement error. This underscores the significance
of averaging power consumption over multiple sampling to obtain
a more representative value.

Power consumption is a pivotal metric, with implications for
ecological sustainability, energy costs, and thermal management.
We express power consumption in terms of watt-seconds required
by the inference system to predict a fixed quantity of data samples,
denoted as 𝐷 . The actual value of power consumption is influenced
by the specific neural network, chosen inference engine, and batch
size. These measurements can be further converted into equiva-
lent units such as CO2 emissions, energy expenses, or thermal
dissipation.

Equation 1 is used to describe power consumption denoted as 𝐸.
The variable 𝐷 stands for the quantity of data samples. Whereas
variable𝑊 represents the mean instantaneous power consumption
in watts during the prediction period 𝑇 in seconds.

𝐸 = 𝐷 ×𝑊 ×𝑇 (1)
Equation 1 provides insights into the relationship between the

throughput of an inference system and its power consumption. It
appears that the relationship adheres to a power law 𝑦 = 𝛼𝑥𝛽 , with
𝛼 and 𝛽 coefficients for different GPU generations.

The measurement teaches us two lessons for sustainable com-
puting. First, model speed and power consumption are linked in a
predictable way, their correlation is above 0.95. Second, the power

30

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Pierrick Pochelu & Oscar Castro-Lopez

Figure 1: Machine A. Inference framework comparison with different batch size values.

Figure 2: Machine B. Inference framework comparison with different batch size values.
law curvature shows us that to a certain degree, improving the
model parallelism may not reduce significantly the power con-
sumption. This reduction in the trend can be interpreted like the
following: maximizing cores utilization reduces computing time

(𝑇) but increases instantaneous power consumption (𝑊), less ef-
ficient internal parallelism keeps the cores idle which takes more
computing time but consumes less power.

31

Mastering Computer Vision Inference Frameworks ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 3: Memory consumption of the model’s ensemble with different frameworks varying the batch size.

Figure 4: Plot of the throughput and power consumption with the ensemble model varying the batch size.

4.4 Loading Time
Loading time refers to the duration from the neural network’s repre-
sentation on disk to its readiness in memory for making predictions.
This metric is of particular interest in applications requiring rapid
service setup to accommodate peak demand periods, such as elastic
cloud services [17]. In all our benchmarks, we enable or implement
caching systems to measure loading times.

The loading times for the ensemble model (containing VGG19,
Resnet50, and Densenet121) are displayed in Table 3. The data is
organized by machine and processing unit (CPU/GPU), with faster
loading times listed before slower ones for clarity.

TensorFlowwith XLA optimization exhibits slower loading times
due to the current absence of caching for optimized graphs on disk.
However, disabling XLA optimization reduces loading time by a
factor of 6 but it keeps staying the slowest inference framework to
load the model.

5 KEY TAKEAWAYS
In this section, we offer valuable insights derived from our bench-
marking outcomes. These insights are designed to aid deep learning
practitioners in selecting the most suitable inference framework
for their specific requirements.

Table 3: Results of loading themodels categorized bymachine
and processing units.

Machine Device Framework Time (seconds)

A

CPU
OpenVINO 3.4
TensorFlow 8.7
ONNX-RT 8.7

GPU
TensorRT 3.6
ONNX-RT 5.7
Tensorflow XLA 42.5

B
CPU

ONNX-RT 0.5
Tensorflow 2.9

GPU
ONNX-RT 2.1
TensorRT 3.9
Tensorflow XLA 29.2

The performance of GPU-based frameworks, including ONNX-
RT, TensorRT, and TensorFlow with XLA, had results in response
to different scenarios (batch size values and model architecture).
For low-latency and sporadic request scenarios, ONNX-RT had the
best results. TensorRT shines in high-throughput scenarios with
larger batch sizes. TensorFlow optimized with XLA shows the good
speed with high-density networks (i.e. VGG19).

32

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Pierrick Pochelu & Oscar Castro-Lopez

For CPU inference, Intel OpenVINO consistently outperformed
other CPU-based frameworks, making it a strong choice for CPU-
centric deployments. MLIR shows promise and should be considered
for future use as it continues to mature.

It is widely acknowledged by deep learning practitioners that
optimizing the batch size for speed’s sake is an empirical process.
A "sufficiently large" batch size value allows inference frameworks
to harness the full power of a particular processing unit. However,
if the batch size value is too large, it can result in cache memory
issues, potentially slowing down execution. It is worth noting that
some inference frameworks have specific constraints on tensor
shapes (such as TensorRT with VGG19 and batch size 1024). Fur-
thermore, very large tensor shapes may lead to memory crashes
due to indexing element errors.

In terms of GPU memory usage, TensorFlow XLA GPU con-
sumes significantly more memory than other technologies but the
gap is slightly reduced when the batch size increases. Conversely,
TensorRT stands out for having the lowest overall memory foot-
print. For CPU memory usage, Tensorflow XLA exhibits the largest
memory footprint, particularly noticeable with batch sizes 1 and 32.
However, with a batch size of 128, ONNX-RT for CPU experiences a
considerable increase in memory usage. The most memory-efficient
option for CPU is OpenVINO.

With the power consumption metric, we provide a link between
computing speed and power consumption for a fixed amount of
data samples. This leads us to the conclusion that optimizing the
computing time reduces the power consumption up to a certain
extent.

6 CONCLUSION AND FUTURE DIRECTIONS
We benchmark four deep learning inference frameworks: TensorRT,
ONNX-runtime, OpenVINO, and LLVM MLIR and a diverse array
of neural network architectures and configurations. Some inference
frameworks are still missing such as TVM and will be introduced
later in our repo.

Our study has yielded valuable insights into the domain of ma-
chine learning inference optimization. We learned that selecting the
ideal inference framework from the multitude of options available
can be a daunting task. In addition to that, our findings under-
score the importance of aligning the specific choice with the final
application requirements and hardware environment. Therefore
fast experimentation of the application under different settings is
desirable to optimize it, this is what we published in our GitHub
repo.

Looking ahead, more in-depth analysis will lead our future explo-
rations in the design of inference development tools and inference
systems. We anticipate that our work will inspire research and
innovation leading to more efficient and effective machine learning
solutions for making easier the development and deployment of
optimized neural networks.

Supplementary materials, including the GitHub repository link
and full-resolution figures, will be provided upon acceptance for
the double-blind reviewing process.

REFERENCES
[1] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer

CNN accelerators. In 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). 1–12. https://doi.org/10.1109/MICRO.2016.7783725
[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan

Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (Carlsbad, CA, USA) (OSDI’18).
USENIX Association, USA, 579–594.

[3] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian
Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. 2019. Analysis
of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark.
SIGOPS Oper. Syst. Rev. 53, 1 (jul 2019), 14–25. https://doi.org/10.1145/3352020.
3352024

[4] Pooya Davoodi, Chul Gwon, Guangda Lai, and Trevor Morris. 2019. TensorRT
inference With TensorFlow. GPU Technology Conference.

[5] Radosvet Desislavov, Fernando Martínez-Plumed, and José Hernández-Orallo.
2023. Trends in AI inference energy consumption: Beyond the performance-vs-
parameter laws of deep learning. Sustainable Computing: Informatics and Systems
38 (2023), 100857. https://doi.org/10.1016/j.suscom.2023.100857

[6] Dominic Divakaruni, Peter Jones, Sudipta Sengupta, Liviu Calin. 2018. Amazon
Elastic Inference: Reduce Learning Inference Cost. AWS re:Invent 2018.

[7] Yi Ge and Monique Jones. 2018. Inference With Intel. AI DevCon 2018.
[8] Mathilde Guillemot, Catherine Heusele, Rodolphe Korichi, Sylvianne Schnebert,

and Liming Chen. 2020. Breaking Batch Normalization for better explainability
of Deep Neural Networks through Layer-wise Relevance Propagation. CoRR
abs/2002.11018 (2020). arXiv:2002.11018 https://arxiv.org/abs/2002.11018

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[10] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger.
2017. Densely Connected Convolutional Networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2261–2269. https://doi.org/10.
1109/CVPR.2017.243

[11] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In Proceedings of the 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (Virtual Event, Republic of Korea) (CGO ’21).
IEEE Press, 2–14. https://doi.org/10.1109/CGO51591.2021.9370308

[12] Chris Leary and Todd Wang. 2017. XLA: Tensorflow, Compiled!. In Tensorflow
developer summit.

[13] Yu Liu, Hantian Zhang, Luyuan Zeng,WentaoWu, and Ce Zhang. 2018. MLbench:
Benchmarking Machine Learning Services against Human Experts. Proc. VLDB
Endow. 11, 10 (jun 2018), 1220–1232. https://doi.org/10.14778/3231751.3231770

[14] P. Pochelu, S. G. Petiton, and B. Conche. 2021. An efficient and flexible inference
system for serving heterogeneous ensembles of deep neural networks. In 2021
IEEE International Conference on Big Data (Big Data). IEEE Computer Society,
Los Alamitos, CA, USA, 5225–5232. https://doi.org/10.1109/BigData52589.2021.
9671725

[15] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin
Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee,
Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micike-
vicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Ra-
jan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan,
Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. 2020. MLPerf Inference
Benchmark. In Proceedings of the ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (Virtual Event) (ISCA ’20). IEEE Press, 446–459.
https://doi.org/10.1109/ISCA45697.2020.00045

[16] Dmytro Dzhulgakov Sarah Bird. 2017. ONNX. InWorkshop NIPS2017.
[17] Rahul Sharma. 2019. Amazon Elastic Inference: Reduce Deep Learning Inference

Cost. GPU Technology Conference.
[18] Fuxun Yu, Di Wang, Longfei Shangguan, Minjia Zhang, Chenchen Liu, and

Xiang Chen. 2022. A Survey of Multi-Tenant Deep Learning Inference on GPU.
arXiv e-prints, Article arXiv:2203.09040 (March 2022), arXiv:2203.09040 pages.
https://doi.org/10.48550/arXiv.2203.09040 arXiv:2203.09040 [cs.DC]

[19] Wei Zhang, Wei Wei, Lingjie Xu, Lingling Jin, and Cheng Li. 2019. AI Matrix:
A Deep Learning Benchmark for Alibaba Data Centers. CoRR abs/1909.10562
(2019). arXiv:1909.10562 http://arxiv.org/abs/1909.10562

[20] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. 2016. Accelerating
Very Deep Convolutional Networks for Classification and Detection. IEEE Trans.
Pattern Anal. Mach. Intell. 38, 10 (Oct. 2016), 1943–1955. https://doi.org/10.1109/
TPAMI.2015.2502579

33

https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1016/j.suscom.2023.100857
https://arxiv.org/abs/2002.11018
https://arxiv.org/abs/2002.11018
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.14778/3231751.3231770
https://doi.org/10.1109/BigData52589.2021.9671725
https://doi.org/10.1109/BigData52589.2021.9671725
https://doi.org/10.1109/ISCA45697.2020.00045
https://doi.org/10.48550/arXiv.2203.09040
https://arxiv.org/abs/2203.09040
https://arxiv.org/abs/1909.10562
http://arxiv.org/abs/1909.10562
https://doi.org/10.1109/TPAMI.2015.2502579
https://doi.org/10.1109/TPAMI.2015.2502579

Matrix Network Analyzer: a New Decomposition Algorithm for
Phase-typeQueueing Networks

(Work in Progress Paper)
Zhuoyuan Li

Imperial College London
London, United Kingdom

zhuoyuan.li22@imperial.ac.uk

Giuliano Casale
Imperial College London
London, United Kingdom
g.casale@imperial.ac.uk

ABSTRACT
This paper proposes a new traffic decomposition method called
MNA to solve multi-class queueing networks with first-come first-
serve stations having phase-type (PH) service, which generalizes
the classic QNA method by Whitt. MNA not only supports open
queueing networks but also closed networks, which are useful to
model concurrency limits in software systems. Using validation
models, we show that under low SCV of service time and inter-
arrival time, the new method is on average more accurate than
QNA. Therefore, MNA can provide better software performance
prediction for quality-of-service management tasks.

CCS CONCEPTS
• Theory of computation→ Theory and algorithms for application
domains; Design and analysis of algorithms; • Mathematics of
computing→Markov processes; •Computingmethodologies
→ Modeling methodologies; • Software and its engineering;

KEYWORDS
Queueing Theory; Matrix Analytic Method; Marked Markovian
Arrival Process; Phase-type Distribution

ACM Reference Format:
Zhuoyuan Li and Giuliano Casale. 2024. Matrix Network Analyzer: a New
Decomposition Algorithm for Phase-type Queueing Networks (Work in
Progress Paper). In Companion of the 15th ACM/SPEC International Con-
ference on Performance Engineering (ICPE ’24 Companion), May 7–11, 2024,
London, United Kingdom. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3629527.3651431

1 INTRODUCTION
In software engineering, the stochastic model is a useful tool for
analyzing the uncertainty and variability of application workloads.
These models offer a way to capture randomness in user behav-
iors, system loads, and operational environments. By integrating

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651431

stochastic principles, software engineers can perform nuanced anal-
yses, ranging from system performance and reliability assessments
to optimal resource allocation and risk management.

In particular, queueing network models are well-suited to the
above aims, helping to analyze the stochastic flow of tasks and data
within distributed software systems. By simulating the behavior of
resources and the interconnections between different services and
components, queueing network models enable a granular analysis
of system performance metrics such as response time, throughput,
and resource utilization. This level of detail is crucial to accurately
predict the behavior of the system under varying load conditions,
which is often influenced by stochastic user demands. Furthermore,
queueing networks provide insights into potential bottlenecks and
resource contention issues, guiding engineers toward targeted opti-
mizations and sizing.

Real workloads often deviate from exponential distributions,
yet solution methods for multi-class non-exponential queueing
networks are limited. In particular, existing methods may not ef-
fectively model phase-type (PH) inter-arrival and service times, es-
pecially under multiple job classes for which first-come first-serve
(FCFS) stations typically do not admit a product-form solution.
Using PH models in queueing networks can be beneficial, given
that recent work has shown that they can closely fit distributions
that are often difficult to represent in a Markovian setting, such as
distributions with bounded support [10].

The Queueing Network Analyser (QNA) [13] is a well-known
method for non-exponential multiclass queueing networks, focus-
ing on open systems. At the same time, closed and mixed queueing
networks also have wide applications such as in layered queueing
network analysis. Yet, we notice that for closed queueing networks
the matrix analytic method (MAM) [12] commonly used for queue-
ing systems with non-exponential arrivals and service is rarely
applied, and even for mixed models a complete theory leverag-
ing MAM is missing. Existing works focus on open models and
single-class workloads, e.g. [4, 8, 9]. Multiclass interpolation meth-
ods exist, such as the hybrid diffusion-G/G/k methods proposed in
[3], however, such methods also do not leverage MAM. Given that
MAM is one of the most sophisticated and complete approaches
to analyzing non-exponential workloads, we believe that further
investigation into the potential of these methods in the context of
multiclass queueing networks is warranted. Therefore, in this paper,
we introduce a new algorithm, called Matrix Network Analyzer
(MNA), which replaces the Langenbach-Belz approximation used
in QNA with a MAM solution technique for MMAP/PH/1 nodes [7],
allowing us to solve multiple classes queueing networks with FCFS

34

https://doi.org/10.1145/3629527.3651431
https://doi.org/10.1145/3629527.3651431
https://doi.org/10.1145/3629527.3651431

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Zhuoyuan Li and Giuliano Casale

queues with PH service time. In various test cases, MNA provides a
more accurate result than QNA. Moreover, MNA is shown to extend
to closed queueing networks.

In all cases, we find that MNA compares favorably to QNA in the
open queueing network model under low SCV of service time and
interarrival time and also delivers high accuracy in closed networks,
where results are instead compared to discrete-event simulation.We
find in particular that the majority of the models enjoy under MNA
a small relative approximation error within a 5 percent margin.

In this paper, Section 2 reviews related work and background,
Section 3 details the new method, Section 4 presents the experi-
mental results, Section 5 presents a real case example and Section
6 gives conclusions.

2 BACKGROUND
2.1 Queueing Network Models
A single-class open queueing network consists of a set of𝑀 service
nodes (or queues), indexed by 𝑖 = 1, 2, . . . , 𝑀 , where customers
or jobs arrive from outside the network, receive service at one
or more nodes, and then leave the network. A closed queueing
network similarly consists of a set of 𝑀 interconnected service
nodes (or queues), indexed by, but has a fixed number of customers
𝑁 , circulating within the network. Unlike open queueing networks,
there is no arrival from or departure to the outside. The following
components characterize the behavior of a network:

• Arrival Process: arrivals to node 𝑖 follow a stochastic process,
with rate 𝜆𝑖 .

• Service Process at Each Node: the service times at each node 𝑖
are random variables. The service discipline (e.g., FCFS also
affects performance.

• Routing Matrix: a routing matrix 𝑃 = [𝑝𝑖 𝑗] of size 𝑀 × 𝑀

defines the probability 𝑝𝑖 𝑗 that a customer, upon completing
service at node 𝑖 , will proceed to node 𝑗 . For an open network,
there is also a probability 𝑝𝑖0 for a customer to leave the
network after being served at node 𝑖 .

A multi-class queueing network is similar to a single-class queueing
network in terms of network elements, but they have 𝑟 different
customers or jobs classes, indexed by 𝑛 = 1, 2, . . . , 𝑟 and different
classes of customers or jobs may have different arrival processes,
service processes, and routing matrices.

2.2 Markovian Arrival Process (MAP)
In a PH distribution, events occur upon transitions into an absorbing
state, whereas in a Markovian arrival process (MAP), the events
may be generated by any specific transition between states. Such
transitions are referred to as apparent transitions, while those that
do not lead to an arrival event are termed hidden transitions.

MAPs may be specified by a matrix pair that is 𝐷0 = [𝐶𝑖, 𝑗] and
𝐷1 = [𝐷𝑖, 𝑗]. 𝐷0 contains all the hidden transitions, while 𝐷1 is for
the apparent transitions. [2]The generator matrix of the underlying
continuous-timeMarkov chain (CTMC) of this MAP is:𝑄 = 𝐷0+𝐷1.

The steady-state solution 𝜋 for this CTMC can be calculated
using the global balance equations. The steady-state event arrival
rate 𝜆 is then: 𝜆 = 𝜋𝐷11, where 1 = (1,1,..,1,1)

Algorithm 1 MMAP superposition algorithm
1: 𝐷0 = 𝐴0 ⊕ 𝐵0
2: for 𝑖 = 1; 𝑖 ≤ 𝑚; 𝑖 + + do
3: 𝐷𝑖 = 𝐴𝑖 ⊕ 0𝑏×𝑏
4: end for
5: for 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + + do
6: 𝐷𝑖+𝑚 = 𝐵𝑖 ⊕ 0𝑎×𝑎
7: end for

2.3 Phase-type Renewal Process
A PH renewal process is an arrival process, where the interarrival
time is an independent and identical PH distribution. The renewal
process of a PH, of which the initial probability is 𝛼 and the sub-
generator is𝑇 , can be considered as aMAP, where an arrival event is
generated when the embedded Markov chain of this PH transitions
into the absorbing state and then immediately transitions to an
initial state according to the initial probability 𝛼 . Thus the 𝐷0 and
𝐷1 of the corresponding MAP is 𝐷0 = 𝑇 and 𝐷1 = −𝑇1𝛼 , where 1
is a column vector with the same number of rows with 𝑇 , of which
all the element is 1.

2.4 Marked Markovian Arrival Process (MMAP)
The marked Markovian Arrival Process is used to model the ar-
rival process of multiple classes where the arrival process of each
class is a MAP. An MMAP modeling the arrival process of 𝑛 classes
can be specified by 𝑛 + 1 matrics that is 𝐷0, 𝐷1, ..., 𝐷𝑛+1. 𝐷0 con-
tains all the hidden transitions, and 𝐷𝑖 contains the transitions
generating a arrival event of class 𝑖 . Using Kronecker sums of
the MAP arrival streams that model inter-arrival times of indi-
vidual classes, an MMAP is readily produced to describe the super-
position of the arrival streams [5]; Given two MMAPs modeling
the arrival process of𝑚 classes and 𝑛 classes respectively, which
can be specified by 𝐴0, 𝐴1, ..., 𝐴𝑚 and 𝐵0, 𝐵1, ..., 𝐵𝑛 , the superposi-
tion of these two MMAPs is also an MMAP, which can be used to
model the overall arrival process of these𝑚 +𝑛 classes, specified by
𝐷0, 𝐷1, ..., 𝐷𝑚+𝑛 . Suppose𝐴0, 𝐴1, ..., 𝐴𝑚 are squares matrices of size
𝑎, and 𝐵0, 𝐵1, ..., 𝐵𝑛 are squares matrices of size𝑏. The superposition
method is shown in Algorithm 1, where ⊕ stands for Kronecker
sum and 0𝑏×𝑏 stands for a 𝑏 × 𝑏 matrix with all the elements being
0.

3 MNA: A NOVEL HYBRID APPROACH
3.1 MNA for Open Models
MNA is a novel approach for open queueing networks that inte-
grates QNA, PH fitting, MMAP superposition, and the MAM. This
method follows the same network decomposition principle as QNA
but relies on the recent developments in MAM to approximate indi-
vidual nodes. MNA begins by solving first and second-order traffic
equations to determine the mean and the Squared Coefficient of
Variation (SCV) of the interarrival times at each node. The notations
used below are all listed in Table 1. The first-order traffic equations

35

Matrix Network Analyzer: a New Decomposition Algorithm for Phase-typeQueueing Networks
(Work in Progress Paper) ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

are:

𝜆𝑖,𝑟 = 𝜆0𝑖,𝑟 +
𝑁∑︁
𝑗=1

𝜆 𝑗,𝑟𝑝 𝑗𝑖,𝑟 , (1)

𝜆𝑖 =

𝑅∑︁
𝑟=1

𝜆𝑖,𝑟 , (2)

𝜆𝑖 𝑗,𝑟 = 𝜆𝑖,𝑟𝑝𝑖 𝑗,𝑟 , (3)

After solving these equations, one can obtain all the means of inter-
arrival times for each class at all nodes. Thus, the utilization can be
calculated as:

𝜌𝑖,𝑟 =
𝜆𝑖,𝑟

𝑚𝑖𝜇𝑖,𝑟
, (4)

𝜌𝑖 =

𝑅∑︁
𝑟=1

𝜌𝑖,𝑟 , (5)

𝜇𝑖 =
𝜆𝑖

𝜌𝑖
, (6)

Then, the second-order traffic equations are:

𝐶2
𝑆𝑖

= −1 +
𝑅∑︁
𝑟=1

𝜆𝑖,𝑟

𝜆𝑖
(𝜇𝑖

𝑚𝑖𝜇𝑖,𝑟
)2 (𝐶2

𝑆𝑖,𝑟
+ 1) (7)

𝐶2
𝐴𝑖,𝑗

=
1
𝜆𝑖, 𝑗

𝑁∑︁
𝑗=0

𝐶2
𝑗𝑖,𝑟𝜆 𝑗,𝑟𝑝 𝑗𝑖,𝑟 (8)

𝐶2
𝐴𝑖

=
1
𝜆𝑖

𝑅∑︁
𝑟=1

𝐶2
𝐴𝑖,𝑗

𝜆𝑖, 𝑗 (9)

𝐶2
𝐷𝑖

= 1 +
𝜌2
𝑖
(𝐶2

𝑆𝑖
− 1)

√
𝑚𝑖

+ (1 − 𝜌2
𝑖) (𝐶

2
𝐴𝑖

− 1) (10)

𝐶2
𝑖 𝑗,𝑟 = 1 + 𝑝𝑖 𝑗,𝑟 (𝐶2

𝐷𝑖
− 1) (11)

Upon solving the second-order traffic equations, the means and
SCVs of inter-arrival times for each class at all nodes are obtained.
The above equations are from QNA for the multi-class open model.
[6]

Subsequently, each node is addressed individually. QNA solves
the network node-by-node by using the Langenbach-Belz approxi-
mation:

𝛼𝑚𝑖
=

𝜌
𝑚𝑖
𝑖

+𝜌𝑖
2 , if 𝜌𝑖 > 0.7,

𝜌
𝑚𝑖+1

2
𝑖

, if 𝜌𝑖 < 0.7,
(12)

𝑊𝑖𝑞 ≈
𝛼𝑚𝑖

𝜇𝑖

1
1 − 𝜌𝑖

𝐶2
𝐴𝑖

+𝐶2
𝑆𝑖

2
, (13)

𝐿𝑖,𝑟 =
𝜆𝑖,𝑟

𝜇𝑖,𝑟
+ 𝜆𝑖,𝑟𝑊𝑖𝑞 . (14)

Instead, for each node, a three-moment matching algorithm [1]
is first applied to fit the mean and SCV of interarrival times, and
then use the corresponding PH renewal process as a MAP of this
class to this node. Next, we superpose these MAPs to produce an

Table 1: Notaitons and descriptions of MNA

Notation Description
𝜆𝑖 𝑗,𝑟 Mean arrival rate of class 𝑟 customers from node 𝑖 to

node 𝑗

𝜆𝑖,𝑟 Mean arrival (departure) rate of class 𝑟 customers to
(from) node 𝑖

𝜆𝑖 Mean aggregate arrival (departure) rate to (from) node
𝑗

𝜇𝑖,𝑟 Mean service rate of class 𝑟 customers at node 𝑖
𝜇𝑖 Mean aggregate service rate at node 𝑖
𝜌𝑖, 𝑗 Utilization of node 𝑖 due to customers of class 𝑟
𝜌𝑖 Utilization of node 𝑖
𝑚𝑖 Numbers of servers of node 𝑖
𝐶2
𝑖 𝑗,𝑟

SCV of time between two consecutive class 𝑟 customers
going from node 𝑖 to node 𝑗

𝐶2
𝐴𝑖,𝑟

SCV of interarrival time for class 𝑟 to node 𝑖
𝐶2
𝐴𝑖

Aggregate SCV of interarrival time to node 𝑖
𝐶2
𝐷𝑖

Aggregate SCV of node 𝑖 inter-departure times
𝐶2
𝑆𝑖

Aggregate SCV of service time of node i
𝐶2
𝑆𝑖,𝑟

SCV of service time for customer class r at node i
𝑝𝑖 𝑗,𝑟 Routing probability of Class r from node 𝑖 to 𝑗

𝑁 Numbers of queueing nodes
𝑅 Numbers of classes
𝑄𝑖,𝑟 Queue length of customer class r at node i
𝑛𝑟 Numbers of jobs for class r.

MMAP as the overall arrival process to this node. Then, every sin-
gle queue in the network is solved as a MMAP[R]/PH[R]/1/FCFS
queue, allowing to account for class arrival cross-correlations. In-
deed, while the superposition of Poisson processes is Poisson, the
superposition even of renewal (i.i.d.) processes can produce non-
renewal processes (non-i.i.d.) [11], thus the MMAP representation
helps us to capture interarrival time covariances introduces in this
fashion. He [7] proposes a matrix analytic method for calculating
the margin distributions of the queue length of different classes in
an MMAP[R]/PH[R]/1/FCFS queue. Finally, the mean queue length
of each class can be calculated according to its margin distribution.
Combining the utilization acquired in the previous traffic equation,
other metrics of this node can be calculated.

3.2 MNA for Closed Models
The MNA method for closed queueing networks is shown in Algo-
rithm 2.

Initialization (Lines 1-4): 𝜆𝑖,𝑟 is the arrival rate of class r to node
i, while 𝜇𝑖,𝑟 is the service rate of class r to node i. These lines set
the upper bound of the arrival rate of class r to the reference node
equal to the bottleneck service rate of this class.

Initial Guess (Lines 5-7): 𝜆 is a vector contains the guessed ar-
rival rates of all the job classes to the reference node, namely
𝜆 = (𝜆1,1, 𝜆1,2, ...). In this first iteration, an initial guess is made
that the arrival rate of class r to the reference node is equal to the
bottleneck service rate of this class.

36

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Zhuoyuan Li and Giuliano Casale

Algorithm 2 MNA for closed queueing networks

1: for 𝑟 = 1; 𝑟 ≤ 𝑅; 𝑟 + + do
2: 𝜆UB1,𝑟 = min 𝜇𝑖,𝑟

3: 𝜆LB1,𝑟 = 0
4: end for
5: for 𝑖𝑡 = 1; 𝑖𝑡 < it_max; 𝑖𝑡 + + do
6: if 𝑖𝑡 == 1 then
7: 𝝀 = 𝝀UB

8: else
9: if (max𝑖 (𝑄𝑁𝑟 − 𝑛𝑟) < threshold) then
10: break
11: else
12: 𝑟∗ = arg max𝑟

(
𝑄𝑁𝑟 −𝑛𝑟
𝑄𝑁𝑟

)
13: if (𝑄𝑁𝑟 ∗ > 𝑛𝑟 ∗) then
14: 𝜆UB1,𝑟 ∗ = 𝜆1,𝑟 ∗

15: else
16: 𝜆LB1,𝑟 ∗ = 𝜆1,𝑟 ∗

17: end if
18: end if
19: 𝝀 = (𝝀UB + 𝝀LB)/2
20: end if
21: Solve the network under arrival rate of 𝜆,

using MNA algorithm for open queueing networks
22: 𝑄𝑁𝑟 =

∑𝑁
𝑖=1 𝑄𝑖,𝑟

23: end for

Arrival Rate Adjustment (Lines 8-20): This step are performing
a fixed point iteration, making the guessed arrival rate converge
to the real arrival rate. 𝑄𝑁𝑟 is the sum of the queueing length of
class r, and 𝑛𝑟 is the population of job class 𝑟 in this network. The
iteration ends if the difference between𝑄𝑁𝑟 and 𝑛𝑟 is small enough
for every job class r. Otherwise, MNA adjusts the arrival rate of
the class, which has the largest population relative error. If 𝑄𝑁𝑟 is
larger than 𝑛𝑟 , then we set the upper bound of the arrival rate of
this class to the guessed value, otherwise, we set the lower bound to
the guessed value. MNA uses the average value of the upper bound
and lower bound as the new guessed value in the next iteration.

Network Analysis (Line 21-22): Using the guessed arrival rate,
the closed queueing network can be solved as an open queueing
network. In each iteration, a method very similar to MNA for the
open queueing network is called to evaluate the current state of the
network given the current arrival rates𝝀. The only difference is that,
when solving closed models, after getting the margin distribution
of the queue length of class 𝑟 in a node, instead of directly using
the mean of this distribution, the mean queue length of this class is
calculated by

∑𝑛𝑟
𝑖=1

𝑃 (𝑥=𝑖)𝑖∑𝑛𝑟
𝑘=1 𝑃 (𝑥=𝑘)

, where 𝑃 (𝑥 = 𝑖) is the probability
of this node having a queue length of 𝑖 . After achieving the queue
length of class 𝑟 at each node, the total population of this class,
namely 𝑄𝑁𝑟 , can be calculated by the sum of queue lengths at all
the nodes. The outcome of this analysis feeds into the next iteration
for further adjustment.

In summary, this algorithm initially guesses the arrival rate of
the reference node, transforming the closed queueing network into
an open queueing network, then applies a fixed point iteration,

Figure 1: A feedback loop open queueing network

Table 2: Performance of MNA for single-class open queueing
network

node mean ARE models within 5% ARE
queue 1 0.0201 951/1000
queue 2 0.0242 908/1000
overall 0.0221 871/1000

which adapts the rates based on the network performance in each
iteration, aiming to achieve a balance between the actual and desired
populations in each class.

4 NUMERICAL EVALUATION OF MNA
In this chapter, the improvements of MNA will be shown through
a selection of experimental cases, highlighting its higher accuracy
compared to QNA. These experiments are conducted with assis-
tance from LINE, a Matlab toolbox created by the QORE lab at
Imperial College London. LINE is designed for resolving complex
queueing network models using various algorithms or simulations.
[3]

4.1 Model Design
To facilitate a comparative evaluation of the performance between
QNA and MNA, we have designed a benchmark using an open
feedback queuing network with a feedback loop. As depicted in
Figure 1, this network comprises several key elements: a source
with an arrival rate 𝜆, and two FCFS queues with individual service
rates 𝜇1 and 𝜇2, respectively.

Jobs generated by the source initially enter Queue 1. After being
serviced in Queue 1, they are transferred to Queue 2. Upon com-
pletion of service in Queue 2, each job has a probability of 0.5 of
proceeding directly to a sink. Conversely, there is a probability 0.5
that the job will be re-routed back to Queue 1.

4.2 Single-class Open Queueing Networks
Consider the following example and its numerical result in Table
2 & Figure 2: the interarrival time, and the service time of node
1 and node 2 are all PH distributed. the mean interarrival time is
generated by a random variable uniformly distributed between 40
and 45, the mean service time of node 1 is generated by a uniform
distribution between 5 and 8, and the mean service time of node 2
is generated by a uniform distribution between 3 and 6. The SCVs
for interarrival time and service time of node 1 and node 2 are all
generated by a uniform distribution a uniform distribution between
0.01 and 0.8. Through the random selection of 1000 instances, these
conditions are examined empirically.

In the experimental analysis, it is observed in Table 2 that 90
percent of the results obtained from MNA exhibited an Absolute

37

Matrix Network Analyzer: a New Decomposition Algorithm for Phase-typeQueueing Networks
(Work in Progress Paper) ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 2: MAE for single-class open queueing networks

Table 3: Interarrival time parameters for multi-class open
queueing network test

class mean SCV
1 𝑈 (40, 50) 1/4
2 𝑈 (52, 57) 1/5

Table 4: Service time parameter for multi-class open queue-
ing network test

node class mean SCV
1 1 𝑈 (2, 5) 1/6
1 2 𝑈 (2, 5) 1/7
2 1 𝑈 (3, 6) 1/9
2 2 𝑈 (3, 5) 1/2

Relative Error (ARE) within the 5 percent threshold. Additionally,
MNA provides a better result for both node 1 and node 2 than
QNA. This is evidenced by the lower Mean Absolute Errors (MAE)
observed for MNA in Figure 2.

4.3 Multiclass Open Queueing Networks
Considering the following example which uses the same network
routing as the last example but has multiple job classes. The in-
terarrival time, and the service time are all phase-type distributed.
The means and SCVs are generated as shown in the table 3 and
4 where all the means follow uniform distributions and SCVs are
fixed values. For this example, without loss of generality, we set
SCV as a fixed value. This is because randomly generated values
may include some irrational numbers, which may lead to a MAP
with extremely large state space which increases the execution
time.

As is shown in Table 5 and Figure 3, MNA demonstrates high
accuracy for multi-class scenarios. Approximately 95% of the sam-
ples exhibit an ARE within a 5% margin. When compared to QNA,

Table 5: Performance of MNA for multi-class queueing net-
work

node and class mean ARE models within 5% ARE
queue 1, class 1 0.0115 993/1000
queue 2, class 1 0.0220 932/1000
queue 1, class 2 0.0201 985/1000
queue 2, class 2 0.0256 891/1000
overall 0.0198 947/1000

Figure 3: MAE for multi-class open queueing network

Table 6: Performance of MNA for single-class closed models

node Mean ARE models within 5% ARE
queue 1 0.0247 942/1000
queue 2 0.0161 967/1000
overall 0.0204 951/1000

MNA offers more accurate results. While there are instances where
MNA does not perform as well as QNA for specific classes at certain
nodes, it consistently outperforms QNA for the whole system.

4.4 Closed Queueing Networks
Consider this example: a closed queueing network with 3 nodes
and 1 class. The first node is a delay node, and the other two are
FCFS queueing nodes. The interarrival time, and the service time
are all phase-type distributed. The service time of the delay node
has a mean of 𝜇, where 𝜇 follows a uniform distribution 𝑈 (1, 3),
and the SCV is 4. The service time of the first FCFS node has a
mean of 𝜇, where 𝜇 follows a uniform distribution 𝑈 (2, 4), and the
SCV is 4. The service time of the second FCFS node has a mean of
𝜇, where 𝜇 follows a uniform distribution 𝑈 (1, 4), and the SCV is
4. The number of jobs is 4, and the jobs follow a circular routing,
namely from the delay node to the first FCFS node, then to the
Second FCFS node, and finally back to the delay node.

38

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Zhuoyuan Li and Giuliano Casale

Figure 4: Routing for class 1

Figure 5: Routing for class 2

As is shown in Table 6, there is only a 2 percent mean relative
error between the result of MNA and simulation. 95% of the samples
exhibit an ARE within a 5% margin.

5 APPLICATION AND EXAMPLE
We model as a queueing network a three-tier e-commerce system
consisting of the following components: Web Server : the first point
of contact is a web server that handles initial customer requests. Ap-
plication Servers: once the web server processes the initial request,
it forwards the customer to one of the three available application
servers, depending on their specific needs. Database Server : each
application server is connected to a central database server respon-
sible for data access.

The system serves two different classes of customers. Upon vis-
iting the website, customers first arrive at the web server. The web
server evaluates their needs and routes them to the most appropri-
ate application server for further processing. Once the application
server completes its tasks, it interacts with the database server
for data storage or retrieval. After being served by the database
server, customers have two options: they may continue using the
website, in which case they are sent back to the application server
for additional services. Alternatively, they may choose to leave the
system.

The routing probability of class 1 and class 2 are shown in Figure
4 and Figure 5 respectively. The interarrival time, and the service
time are all phase-type distributed. The means of interarrival time
of class 1 and class 2 are 4 and 5 respectively, and the SCVs of

Table 7: Service time parameters for real case example

node classes mean SCV
Application 1 1,2 0.5 1/10
Application 2 1 1 1/10
Application 2 2 0.3 1/10
Application 3 1, 2 0.5 1/10
Database 1 0.3 1/10
Database 2 0.5 1/10

interarrival time are all 1/10. The means and SCVs of the service
time are generated as shown in Table 7. For this example, QNA
provides a result with a relative error of 8.6 percent while MNA
provides a more accurate result with a relative error of 1.5 percent.

6 CONCLUSION
In this paper, we have proposed MNA, a new algorithm for solving
multiclass PH queueing networks that leverages the matrix-analytic
method. The method has been shown to improve the accuracy of
the class QNA algorithm.

In future work, we seek to integrate additional features into
MNA. In particular, the method should be extended to incorporate
functionalities such as self-loops, class-switching, and mixed work-
loads. A comparison with gradient-based methods to seek the fixed
point would also be beneficial.

Additionally, throughput calculation for closedmulti-class queue-
ing networks may face challenges due to its use of fixed iterations,
which may not converge. A more efficient and accurate method,
perhaps based on gradient search, may be needed.

REFERENCES
[1] Andrea Bobbio, Andras Horvath, and M. Telek. 2005. Matching Three Moments

with Minimal Acyclic Phase Type Distributions. Stochastic Models 21 (01 2005),
303–326. https://doi.org/10.1081/STM-200056210

[2] Peter Buchholz, Jan Kriege, and Iryna Felko. 2014. Input modeling with phase-type
distributions and Markov models: theory and applications. Springer.

[3] Giuliano Casale. 2021. Integrated performance evaluation of extended queueing
network models with line. In Proceedings of the Winter Simulation Conference
(Orlando, Florida) (WSC ’20). IEEE Press, 2377–2388.

[4] Giuliano Casale and Peter Harrison. 2012. A class of tractable models for run-
time performance evaluation. In Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering. 63–74.

[5] Giuliano Casale, Andrea Sansottera, and Paolo Cremonesi. 2016. Compact
Markov-modulated models for multiclass trace fitting. European Journal of Oper-
ational Research 255, 3 (2016), 822–833. https://doi.org/10.1016/j.ejor.2016.06.005

[6] Natarajan Gautam. 2012. Analysis of queues: methods and applications. CRC
press.

[7] Qiming He. 2012. Analysis of a continuous time SM [K]/PH [K]/1/FCFS queue:
Age process, sojourn times, and queue lengths. Journal of Systems Science and
Complexity 25 (2012), 133–155.

[8] Armin Heindl. 2001. Decomposition of general tandem queueing networks with
MMPP input. Performance Evaluation 44, 1-4 (2001), 5–23.

[9] András Horváth, Gábor Horváth, and Miklós Telek. 2010. A joint moments based
analysis of networks of MAP/MAP/1 queues. Performance Evaluation 67, 9 (2010),
759–778.

[10] A Horváth and E Vicario. 2023. Construction of phase type distributions by Bern-
stein exponentials. In European Workshop on Performance Engineering. Springer,
201–215.

[11] MF Neuts. 1989. Structured Stochastic Matrices of M/G/1 Type and Their Appli-
cations. Marcel Dekker (1989).

[12] Marcel F Neuts. 1994. Matrix-geometric solutions in stochastic models: an algorith-
mic approach. Courier Corporation.

[13] Ward Whitt. 1983. The queueing network analyzer. The bell system technical
journal 62, 9 (1983), 2779–2815.

39

https://doi.org/10.1081/STM-200056210
https://doi.org/10.1016/j.ejor.2016.06.005

Towards Efficient Diagnosis of Performance Bottlenecks in
Microservice-Based Applications (Work In Progress paper)

Adel Belkhiri
École Polytechnique de Montréal

Montreal, Canada
adel.belkhiri@polymtl.ca

Maroua Ben Attia
Humanitas Solutions
Montreal, Canada

maroua@humanitas.io

Felipe Gohring de Magalhaes
École Polytechnique de Montréal

Montreal, Canada
felipe.gohring-de-magalhaes@polymtl.ca

Gabriela Nicolescu
École Polytechnique de Montréal

Montreal, Canada
gabriela.nicolescu@polymtl.ca

ABSTRACT
Microservices have been a cornerstone for building scalable, flexible,
and robust applications, thereby enabling service providers to en-
hance their systems’ resilience and fault tolerance. However, adopt-
ing this architecture has often led to many challenges, particularly
when pinpointing performance bottlenecks and diagnosing their
underlying causes. Various tools have been developed to bridge
this gap and facilitate comprehensive observability in microservice
ecosystems. While these tools are effective at detecting latency-
related anomalies, they often fall short of isolating the root causes
of these problems. In this paper, we present a novel method for
identifying and analyzing performance anomalies in microservice-
based applications by leveraging cross-layer tracing techniques.
Our method uniquely integrates system resource metrics—such
as CPU, disk, and network consumption—with each user request,
providing a multi-dimensional view for diagnosing performance
issues. Through the use of sequential pattern mining, this method
effectively isolates aberrant execution behaviors and helps identify
their root causes. Our experimental evaluations demonstrate its
efficiency in diagnosing a wide range of performance anomalies.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Microservices, Performance analysis, Software tracing, Distributed
systems
ACM Reference Format:
Adel Belkhiri, Maroua Ben Attia, Felipe Gohring de Magalhaes, and Gabriela
Nicolescu. 2024. Towards Efficient Diagnosis of Performance Bottlenecks in
Microservice-Based Applications (Work In Progress paper). In Companion
of the 15th ACM/SPEC Conference on Performance Engineering (ICPE ’24

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3651432

Companion), May 7–11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3629527.3651432

1 INTRODUCTION
Microservices have emerged as a paradigm of choice for cloud-
based applications, thanks to their scalability and flexibility. Unlike
the monolithic architecture which encompasses all functionalities
within a single codebase, microservices break down applications
into a set of autonomous, self-contained, and single-purpose ser-
vices. These services operate independently and communicate via
well-defined interfaces and lightweight APIs (e.g., RESTful APIs).
Such modularity enables agile scaling and promotes polyglot pro-
gramming, allowing services to be developed in the languages
and frameworks best suited for their tasks. Nevertheless, the com-
partmentalization of services often introduces challenges, partic-
ularly in debugging performance bottlenecks. In a microservice
environment, the processing of user requests often requires coordi-
nated actions frommultiple services. These intricate interdependen-
cies among microservices create a complex chain of dependencies,
where a performance bottleneck in one service can trigger cascad-
ing effects that compromise the efficiency of the entire application.
Identifying the culprit service and isolating the root causes of perfor-
mance degradation within such a decentralized architecture proves
to be a complex endeavor.

Distributed tracing [11, 15, 17, 25, 29] is a powerful method for
monitoring user requests as they move through the various compo-
nents of a distributed application. It tracks the end-to-end execution
of user requests through the insertion of unique identifiers into
requests and the propagation of metadata between processes and
system components. Hence, this method provides a comprehensive
view of each request’s end-to-end execution, shedding light on its
life cycle from initiation to completion. A "trace" represents the
journey of a single request, documenting the sequence of opera-
tions it undergoes [4]. Within a trace, individual work units are
captured as "spans," each corresponding to an action (e.g., a function
call, database query, or instruction blocks) executed by a service
or component. Spans are nested within traces to illustrate the hi-
erarchical relationships between different operations, offering a
detailed and structured view of how a request is processed across
multiple services. While distributed tracing effectively captures the
flow and timing of requests, it falls short of pinpointing the root
causes of unexpected latencies. The reason is that it only collects

40

https://doi.org/10.1145/3629527.3651432
https://doi.org/10.1145/3629527.3651432

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom. Adel Belkhiri, Maroua Ben Attia, Felipe Gohring de Magalhaes, and Gabriela Nicolescu

high-level information. This limitation is especially pronounced
when unexpected delays stem from operating system-level resource
contention, such as waiting for CPU, disk, network, or lock avail-
ability.

To address this limitation, some efforts have attempted to enrich
traces generated through distributed tracing with application- and
kernel-level logs, aiming to identify slow code paths, contention for
resources, and load imbalances [3, 26]. However, these approaches
often fail at detecting and diagnosing transient and short-lived per-
formance problems. Another approach involves leveraging vertical
context propagation to inject application-level events into kernel
traces [2, 4]. This provides a granular understanding of system be-
havior but comes at the cost of additional complexity and significant
overhead. Additionally, several statistical and machine-learning
methods have been explored for analyzing the performance of
distributed applications [5, 10, 16, 18, 21, 24, 28]. While these meth-
ods offer powerful analytical capabilities, they come with many
limitations, such as low detection accuracy and computational inef-
ficiency. In short, although the proposed approaches offer insights
into different types of performance problems, they mostly struggle
to accurately identify the root causes of these issues.

In this paper, we propose a novel approach for identifying perfor-
mance problems in microservice applications and uncovering their
underlying causes. Based on this approach, we implement a cross-
layer analysis enabling the characterization of request executions.
Additionally, we leverage a combination of distributed and software
tracing techniques to capture both kernel- and application-level
events. We use a small subset of kernel events to conduct fine-
grained critical path analysis of service threads, and application-
level events to delimit the spans of operations involved in request
processing. By utilizing a sequential pattern mining technique, we
extract sequences of thread states that characterize the behavior
within each request category. Using these normative patterns as
a basis, we identify anomalous request executions. Anomalies are
flagged when the observed behavior diverges significantly from the
established patterns.

The rest of the paper is organized as follows. Section 2 intro-
duces our approach and elaborates on the design details of the
implemented framework. Section 3 evaluates the effectiveness of
our framework in practical scenarios through an illustrative use
case. It also assesses the overhead it induces and discusses avenues
for potential improvements. Section 4 reviews relevant works in the
field that have informed our research. Finally, Section 5 concludes
this paper and outlines directions for future work.

2 PROPOSED SOLUTION
The framework we developed to implement this approach is specif-
ically designed for seamless integration with distributed tracing
infrastructures supporting OpenTelemetry (OTel) [6]. OTel is an
open-source initiative that provides a comprehensive suite of APIs,
libraries, agents, and instrumentation designed to enhance observ-
ability in distributed applications. Its main goal is to provide devel-
opers with a unified way to collect distributed traces and metrics
through instrumentation. The vendor-neutral design of OTel makes
it compatible with a wide range of distributed tracers, including but
not limited to Jaeger [15] and Zipkin [29]. Consequently, this design

consideration greatly simplifies the integration of our framework
into existing systems.

Our framework aims to detect performance issues inmicroservice-
based applications and uncover their root causes through offline
analysis. To pinpoint performance anomalies, our framework re-
quires two separate sets of trace data - referred to as the ’baseline’
and ’test’ datasets. The baseline dataset is used to generate a basis
for modeling the software’s normal behavior, while the test dataset
is evaluated against this baseline to identify any deviation or ab-
normality. Fig. 1 depicts the architecture of our framework and
outlines its key operations. These elements will be discussed in
greater details in the following sections.

2.1 Capturing Execution Traces
Our approach uses cross-layer tracing to collect fine-grained data
that characterizes resource consumption per request. Therefore,
to avoid the overhead associated with vertical context propaga-
tion and the need to modify the application source code, we chose
to instrument OTel libraries using the Linux Trace Toolkit Next
Generation (LTTng) [7]. LTTng is a high-throughput tracer for
Linux-based systems that is designed for low-overhead tracing of
applications at kernel and user-space levels. The instrumentation
we added to OTel aims to emit userspace events each time a service
starts or finishes the processing of a request. Hence, we inserted tra-
cepoints into the API methods responsible for starting and ending
spans. For example, to gather data from C++-based microservices,
we instrumented the Tracer class’s StartSpan() and end() methods
within the opentelemetry-cpp library. We extended our instrumen-
tation to multiple OTel libraries, as a microservice application may
consist of services developed in various programming languages.
Our analysis requires also gathering specific kernel events to con-
struct critical paths for request executions. The Linux kernel comes
with hundreds of tracepoints, allowing us to capture needed events
without additional instrumentation. A description of a subset of
leveraged kernel events is provided in Table 1.

2.2 Classification of Traces
After collecting execution traces, our framework starts analyzing
them to identify potential performance anomalies. The analysis
is based on the hypothesis that operations in traces of the same
type should exhibit similar performance characteristics when pro-
cessed by the same services. Therefore, categorizing traces based
on their types is critical. We consider traces to be of the same type
if they present the same workflow. A trace workflow outlines the
order in which operations and requests are executed within in-
dividual processes and across the various services that compose
a microservice-based application. Our framework recreates trace
workflows by generating tree structures from the operation names
exported via the userspace events mentioned earlier. The tree’s root
node is labeled with the name of the initiating request, which is
also known as the root span. The remaining nodes are labeled with
the names of their respective requests/operations. Unique iden-
tifiers for tasks performed by services are formulated by pairing
the "service_name" with the "operation_name". After building the
workflow trees, we use a hash function to generate an identifier for
the trace type that captures both the labels of the nodes and their

41

Towards Efficient Diagnosis of Performance Bottlenecks in Microservice-Based Applications ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom.

Microservice 1

...

Host Machine 1

M
ic

ro
se

rv
ic

e
m

Trace

Lttng-modules

Host Machine
n

...
Thread State Extraction

Anomaly Detection and
Diagnosis

Patterns Identification

Traces Aggregation

Trace

Anomaly Detection
 System

Application

OTel SDK

Liblttng-ust

Figure 1: The operation of our framework is based on collecting kernel-level events and leveraging an instrumented version of
OTel to add information about the start and end of spans to the kernel trace

Table 1: A subset of the kernel events required for our analysis

Tracepoint Description

sched_switch Signals that a new thread has taken over from a previously active thread on a CPU.

sched_wakeup Triggered when a thread, previously in a blocked state, is now ready to execute.

softirq_entry/exit Indicates the start/end of a software interrupt handler’s execution.

irq_handler_entry/exit Indicates the start/end of a hardware interrupt handler’s execution.

timer_expire_entry/exit Indicates the start/end of a timer interrupt’s execution.

sched_process_fork Fires when a new process is created by the kernel.

relative positions within the tree structure. Hence, traces whose
workflows produce identical type identifiers are classified in the
same category.

2.3 Extraction of Thread States
Our second hypothesis is that when processing operations of the
same type, the service threads will follow a consistent sequence
of states. For example, let us consider a basic authentication ser-
vice and its thread states during operation. When a login request
is received, the service initially validates the provided username
and password against predefined criteria (state: running). It then
retrieves the associated hashed password from a disk (or a data-
base), keyed by the username (state: blocked for disk). After that,
the service compares the stored hashed password with the hashed
version of the received password (state: running). Finally, the out-
come of this comparison is transmitted back to the originating
service (state: blocked for network). Therefore, it is reasonable to
assume that the service thread will follow the same sequence of
states when processing future requests. If it deviates from the ex-
pected sequence, either there is something wrong with its behavior
or other unknown factors at play. This unexpected behavior could
potentially reflect performance issues like contention for resources,
defective hardware, or slow functions.

To ascertain the states through which operations progress during
their execution, our framework identifies the critical path of the
subsequent service threads. In software engineering, the "critical

path" refers to the sequence of dependencies that inherently limit
the speed at which a thread can be completed [27]. Threads rely
on hardware and software resources for execution. Their hardware
dependencies include but are not limited to the need for CPU time,
disk access, or network bandwidth. As for the software dependen-
cies, it may involve waiting for data from other threads or requiring
certain locks or semaphores to be available for synchronization.
Practitioners often use critical path analysis to assess software re-
source bottlenecks and gain insight into a process’s interactions
with system resources and other processes.

Based on the algorithm proposed in [12], we developed an anal-
ysis in Trace Compass [9] to extract the critical path of services’
threads and obtain their states during operations’ execution. We
converted operations execution into a text-based representation,
wherein each unique thread state is encoded as a distinct letter of
the alphabet. For example, the "Running" state is represented by the
letter ’R’, the state "blocked for Disk" is represented by ’D’, the state
"blocked for Network" is denoted by ’N’, and the state "blocked for
Timer" is denoted by ’T’. It is worth noting that our analysis is based
on 8 thread states as we excluded some states that are not indica-
tive of application behavior (e.g., the ’Interrupted’ and ’Preempted’
states). In addition, we introduced an extra state, symbolized by the
letter ’Z’, to represent the execution of sub-operations. Our frame-
work leverages this state to achieve accurate anomaly detection as
the conducted analysis is guided by the operations hierarchy (see
Fig. 2).

42

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom. Adel Belkhiri, Maroua Ben Attia, Felipe Gohring de Magalhaes, and Gabriela Nicolescu

R R R N RThread
States D T

Span D
TraceID 1

R RNSpan B
TraceID 1

R RZ

DR RSpan C
TraceID 1

start_span end_span

R Z R T ZR RSpan A
TraceID 1

1 2 3

1 2 1

1

Figure 2: Thread states are transposed to corresponding spans
and sub-spans. Spans’ intervals are highlighted with a bold
grey line underneath it

2.4 Frequent Pattern Mining
Establishing a baseline for what is considered normal behavior
while processing operations is crucial for detecting performance
bottlenecks and anomalies. Our approach focuses on identifying
recurring patterns in thread execution states during these periods.
We achieve this through sequential pattern mining, a technique
specifically designed to uncover recurring subsequences within a
set of sequences. As we can observe in Fig. 3, these subsequences
correspond to frequent sequences of execution states. We assess the
relevance of discovered state subsequences based on their lengths
and frequency of occurrence.

Sequential pattern mining is not limited to our context but finds
broad applications in various areas like financial market prediction,
and text analysis. It is widely used to identify frequently occurring
ordered events or subsequences in various types of datasets. For-
mally speaking, let 𝐷 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} be a set of sequences, where
each sequence 𝑠𝑖 is an ordered list of items ⟨𝑎1, 𝑎2, . . . , 𝑎𝑚⟩. An
itemset 𝑋 is said to be a "sequential pattern" if it appears in at least
minsup number of sequences in 𝐷 , where minsup is a predefined
minimum support threshold. On the other hand, a sequence 𝑠 =

⟨𝑎1, 𝑎2, . . . , 𝑎𝑚⟩ is said to "contain" an itemset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 }
if there exists a subsequence ⟨𝑎𝑖1 , 𝑎𝑖2 , . . . , 𝑎𝑖𝑘 ⟩ such that 𝑎𝑖 𝑗 = 𝑥 𝑗 for
all 𝑗 from 1 to 𝑘 . The aim is to find all such itemsets 𝑋 that satisfy
the minimum support condition in the given dataset 𝐷 .

Our approach is based on the implementation of the algorithm
proposed in [20] to identify all closed sequential patterns of thread
states that are present in the dataset. A closed sequential pattern
can be defined as a sequential pattern that is not a strict subset of
any other pattern with identical support. This algorithm further
allows us to impose constraints on the gaps between states, thereby
offering a more flexible way to mine recurring sequential states.
The minimal support value required for identifying patterns is a
user-defined parameter, but we recommend setting it at 95% or
higher. Setting this parameter at a high value allows prioritizing
patterns that are more common in the dataset and filtering out in-
frequent ones. This would improve the effectiveness of our anomaly
detection analysis and ensure its scalability for larger datasets.

Baseline Dataset
(Req. Type X)

Test Dataset
(Req. Type X)

R T R F R T

R N R F R T R N

Normal

Anomalous

D R T R F R N R

TRT R F

T R F RU

Common Pattern

....

R

R

R R

R N

Figure 3: Sequential pattern mining is used to extract execu-
tion state patterns from same-type trace operations.

2.5 Performance Anomaly Diagnosis
Our methodology, as we explained in the previous section, relies on
extracting from the baseline dataset patterns that encode the ser-
vice runtime behavior during operations execution. This involves
clustering similar traces based on their type identifiers. Then, crit-
ical path analysis is used to extract, for each operation, threads’
execution states as illustrated in Fig. 2. Moreover, the execution of
each operation is divided into intervals based on the occurrence
of the ’Z’ state. Thus, the number of intervals is equal to the num-
ber of sub-operations plus one. For instance, in Fig. 2, Span A is
divided into three intervals, Span B into two, and Span C and Span
D each into a single interval. Subsequently, we apply sequential
pattern mining to identify patterns in thread states within these
intervals, and we compute the minimum and maximum latencies
for each state encompassed by these patterns. These latency thresh-
olds are established using the three-sigma rule, thereby enriching
the pattern states with mean and standard deviation information.

The second step in our methodology is the evaluation of the test
dataset to ascertain whether its operations are normal or anomalous.
For each trace in this set, we identify its type and extract the thread
states occurring while executing its operations. We also determine
the states that correspond to the operation intervals and require
validation. By comparing the generated trace type identifiers with
type identifiers in the baseline dataset, we determine the frequent
state patterns that must be validated against the state sequences
in each operation interval. Therefore, for every operation interval,
we check if the observed state sequence matches the expected
pattern. If this is the case, we check whether the states of the
sequence matching the pattern are within the identified limits.
This is done through a bottom-up approach, where sub-spans are
evaluated before their parent spans. If a discrepancy is found during
this verification process, the operation in question is flagged as
anomalous, triggering a more detailed investigation to pinpoint the
cause of the deviation. Furthermore, this hierarchical evaluation
serves as a structured way to address potential issues at the granular
level of sub-spans and execution intervals, which simplifies isolating
and resolving performance problems.

43

Towards Efficient Diagnosis of Performance Bottlenecks in Microservice-Based Applications ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom.

3 EVALUATION AND DISCUSSION
To demonstrate the effectiveness of our approach in diagnosing
performance anomalies in microservice applications, we leverage
"Bank-of-Sirius," an HTTP-enabled web application that emulates a
banking system [23]. This application allows users to create bank ac-
counts and execute financial transactions. We chose Bank-of-Sirius
for our evaluation because it comes pre-instrumented with OTel
and features a diverse architecture, comprising nine microservices
implemented in Python, Java, and C (Fig. 4).

proxy
(nginx)

frontend

userservice

contacts

ledger-writer

balance-reader

transaction-
history

accounts-db
(postgres)

ledger-db
(postgres)

User

HTTP

P

P

P J

J

J

C

C

C

C C

P Python
J Java

Figure 4: Bank-of-sirius Architecture

3.1 Use case
In this case study, we allocated one virtual machine (VM) to host
the Java-based services and the ledger-db service, and another VM
for the remaining services. Each service was containerized using
Docker to ensure isolated execution environments. We then devel-
oped and executed a benchmark script simulating the activities of
100 concurrent users. Each user interacts with the frontend service
through a specific sequence of HTTP requests: a "/login" request,
followed by a "/home" request, and lastly a "/logout" request. It is
important to note that the "/home" request is responsible for loading
the user’s home page, which displays profile information, account
balance, and transaction history. Accomplishing this requires the
frontend service tomake sub-requests to the contacts, balance-reader,
and transaction-history services. We traced the benchmark execu-
tion and used our framework to establish the sequences of thread
states involved in the processing of the "/login", "/home", and "/l-
ogout" requests. This experiment was repeated tenfold at various
time intervals to create a baseline dataset representing application
normal performance.

To create our test datasets, we conducted two separate interac-
tions with our target application. For the first, we emulated typical
user behavior: logging in, visiting the homepage, and logging out. In
the second interaction, we altered the configuration of the contacts
service by changing the type of Gunicorn workers from synchronous
to gThread. This is a notable change given that all Python-based ser-
vices in Bank-of-Sirius are Flask applications serviced by Gunicorn
servers. Following this modification, we duplicated the initial user

behavior. Both interactions were traced, allowing us to capture and
compile requests’ state sequences into two distinct test datasets.

To identify potential anomalies within the test datasets, our
framework scrutinized the captured state sequences for consistency
with the established patterns from the baseline dataset. The analy-
sis revealed no anomalies in the first dataset; however, it flagged
irregularities in the "contacts" service state sequences in the second
dataset. Specifically, we observed that the latencies of this service’s
spans were unexpectedly lower, and there was a recurrent absence
of the "N" (Network) states across numerous spans. This aligns with
the variation in Gunicorn operations observed when employing
the Sync and gThread models, as illustrated in Fig. 5. Gunicorn
uses a pre-fork worker model where a master process manages a
set of worker processes dedicated to handling client requests. In
the Sync model, each worker handles connections and executes
requests one at a time, leading to a simple but less concurrent
workflow. Conversely, in the gThread model, each worker pools
connections, spawns multiple threads, and distributes tasks across
them to efficiently handle simultaneous requests. That explains
why the latencies of requests in the latter configuration were lower
and the ’N’ states were missing from the sequence of states related
to the contact service.

3.2 Discussion
In this section, we delve into the intricacies of state pattern recog-
nition and its implications for our anomaly detection mechanism.
A notable observation was the presence of repetitive pairs of states
within the identified patterns, suggestive of specific activities like
prolonged network communication or disk read operations (e.g.,
R-T-R-D-R-D-R-D-R). These repetitive sequences, while indicative
of certain behaviors, posed a limitation in the versatility of our
pattern-matching algorithm. To enhance our framework’s adapt-
ability and precision, we have introduced a transformative step
that condenses these repetitive pairs into regular expressions when
their occurrence is frequent (e.g., R-T-(R-D)+-R). This refinement
not only streamlines the pattern detection process but also enriches
our framework’s ability to discern more complex behaviors while
simplifying the representation of state sequences.

Additionally, we encountered scenarios where the latencies asso-
ciated with certain states displayed substantial variability, challeng-
ing our framework’s ability to discern normative from anomalous
behavior. For instance, the ’Running’ state in a computationally
intensive operation, such as factorial computation, can exhibit sig-
nificant latency fluctuations based on the input magnitude. To
address this, we propose the analysis of the latency distributions,
particularly for operations marked by a high coefficient of variation.
This strategy involves the use of call stack profilers to add a finer
granularity to our analysis by accounting for function calls as sub-
spans. This approach allows us to reclassify requests from certain
types based on the unique footprint of the executed function calls
and their parameters. It would also enable a more tailored detection
process that accounts for the distinctive nature of each operation
within our microservice architecture.

44

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom. Adel Belkhiri, Maroua Ben Attia, Felipe Gohring de Magalhaes, and Gabriela Nicolescu

Spans

(a)

Spans

(b)

Legend: Blocked for Network Blocked for TimerPreemptedRunning Blocked for Disk

Figure 5: Critical paths of a single Gunicorn worker in two configurations: Sync (a) and gThread (b). In the Sync configuration,
the worker manages both communication and task processing, reflected in running and network states. In contrast, gThread
configuration involves the worker handling communication while task processing is distributed among its threads

3.3 Overhead Analysis
Minimizing tracing overhead is essential to prevent skewed re-
sults. Excessive overhead may alter the system’s normal operation,
making the tracing solution impractical for use in production envi-
ronments. Therefore, to evaluate the overhead incurred by tracing,
we conducted performance benchmarks on the Bank-of-Sirius ap-
plication both with tracing enabled and disabled. We subjected
this application to varying workloads and observed its response
times. For these tests, we employed Locust [13], an open-source
load testing utility, to simulate clients issuing requests at different
rates. These clients issue different types of requests to provide a
comprehensive view of the system’s performance under load. The
benchmarking was carried out on a machine equipped with 16
GB of RAM and an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz.
The software environment consisted of Ubuntu 22.04, featuring the
5.15.0-60 kernel version, LTTng 2.12 for tracing, and Docker 24.0.5
for containerization.

The outcomes of our investigation are presented in Fig 6. The
latter illustrates the application’s response time to "/home" re-
quests—identified as the most resource-intensive requests. Within
our test environment, the application under test achieves a peak
throughput of 45 requests per second. The graph indicates that
the activation of the required tracepoints introduces a negligible
performance impact, with tracing causing only a 2 to 4% increase in
response time. Interestingly, our benchmark’s results also show a
slight improvement in the application’s response time with tracing
enabled at a rate of 5 requests per second. Under identical con-
ditions, this improvement would be unexpected. Nevertheless, a
degree of fluctuation is inherent in operating system operations
due to many factors such as the scheduling of system processes,
and memory page faults. Given that the overhead from tracing a rel-
atively small number of events is almost imperceptible, it becomes
challenging to measure and can be smaller than the natural variabil-
ity of the operating system’s performance. In short, our overhead
analysis shows that tracing Bank-of-Sirius introduces a marginal
increase in its response times, thus confirming the suitability of our
framework for production environments.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s)

Request per second

No tracing
Kernel+UST tracing

Figure 6: Bank-of-Sirius’s response time to "/home" requests
with tracing disabled and enabled

4 RELATEDWORK
There is extensive prior work on monitoring and debugging per-
formance problems in distributed and microservice-based appli-
cations. Most of it is based on the use of distributed tracing for
collecting monitoring data from a distributed system. Distributed
tracing indeed provides a broad overview of end-to-end request
processing in microservice-based applications. Nonetheless, the
information it produces is insufficient to pinpoint the causes of
detected latency issues. Many strategies were hence proposed to
enrich the span-based traces with data collected from application-
and kernel-level logs and tracepoints [3, 26]. For example, authors
in [3, 26] proposed an automated instrumentation framework that
runs alongside the distributed tracing infrastructure. Their frame-
work combines distributed tracing and variance-based control logic
to explore at runtime where logs/tracepoints need to be enabled to
effectively help diagnose performance problems. The main limita-
tion of the proposed framework is its incapacity to provide value
in diagnosing transient and short-lived performance problems.

On the other hand, various cross-layer tracing techniques have
been used in literature to enhance the understanding of distributed

45

Towards Efficient Diagnosis of Performance Bottlenecks in Microservice-Based Applications ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom.

applications behaviors [1, 2, 4, 19]. For example, authors. in [2]
inject application-level events into kernel traces by executing a
series of innocuous system calls for each high-level event of interest
(e.g., the start and end of an RPC call). These system calls serve as
synchronization points in the trace to merge high-level and low-
level events. Also, in [4], Belkhiri et al. relied on vertical context
propagation to inject high-level request identifiers into the kernel.
The weakness of this approach is that it poses scalability challenges
as it requires a system call each time the target application starts
or completes the processing of a request. There are also numerous
attempts to diagnose performance anomalies by applying statistics,
graph theory, and trace comparison techniques on collected traces
[8, 14, 22]. For instance, Huang et al. in [14] leverage the structure
within the distributed traces to group similar traces and provide
detailed statistics at each level of the trace hierarchy. Their tool
can assist practitioners in identifying the relevant operations to
focus on when debugging but cannot identify the cause of the issue
automatically.

5 CONCLUSION
Microservices often complicate the debugging of unexpected la-
tencies in application operations and pinpointing their root causes.
This paper addresses this issue by proposing an innovative approach
for diagnosing performance anomalies in microservice applications.
Our approach leverages cross-layer tracing to enhance the gran-
ularity of observability, providing a multi-dimensional view that
correlates system resource metrics with user requests. The use of
sequential pattern mining enables the isolation of anomalous be-
havior patterns and facilitates the identification of their root causes.
Our evaluations have not only confirmed the efficacy of our frame-
work in identifying performance anomalies but also demonstrated
its operational efficiency by maintaining minimal overhead.

As distributed systems evolve, diagnosing performance grows
increasingly complex. Our contribution represents a step forward in
mitigating this challenge by equipping developers and system oper-
ators with a tool capable of identifying and diagnosing performance
issues without invasive instrumentation or prohibitive performance
penalties. We expect that our findings will incite further research
into optimizing distributed tracing infrastructures and developing
even more sophisticated analysis techniques. Future work could
explore the potential for real-time anomaly detection and auto-
mated remediation, which would enhance further the resilience
and reliability of microservice-based applications.

REFERENCES
[1] Marcelo Amaral, Tatsuhiro Chiba, Scott Trent, Takeshi Yoshimura, and Sun-

yanan Choochotkaew. 2022. MicroLens: A Performance Analysis Framework
for Microservices Using Hidden Metrics With BPF. 2022 IEEE 15th International
Conference on Cloud Computing (CLOUD) 00 (2022), 230–240.

[2] Dan Ardelean, Amer Diwan, and Chandra Erdman. 2018. Performance Analysis of
Cloud Applications. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), Vol. 00. USENIX Association, Renton, WA, 405–417.

[3] Emre Ates, Lily Sturmann, Mert Toslali, Orran Krieger, Richard Megginson,
Ayse K. Coskun, and Raja R. Sambasivan. 2019. An automated, cross-layer
instrumentation framework for diagnosing performance problems in distributed
applications. Proceedings of the ACM Symposium on Cloud Computing (2019),
165–170.

[4] Adel Belkhiri, Ahmad Shahnejat Bushehri, Felipe Gohring de Magalhaes, and
Gabriela Nicolescu. 2023. Transparent Trace Annotation for Performance Debug-
ging in Microservice-oriented Systems (Work In Progress Paper). International

Conference on Performance Engineering (ACM/SPEC) (2023), 25–32.
[5] Yang Cai, Biao Han, Jinshu Su, and Xiaoyan Wang. 2021. TraceModel: An Au-

tomatic Anomaly Detection and Root Cause Localization Framework for Mi-
croservice Systems. 2021 17th International Conference on Mobility, Sensing and
Networking (MSN) 00 (2021), 512–519.

[6] CNCF. 2023. OpenTelemetry: high-quality, ubiquitous, and portable telemetry to
enable effective observability. https://opentelemetry.io/

[7] Mathieu Desnoyers and Michel R Dagenais. 2006. The lttng tracer: A low im-
pact performance and behavior monitor for gnu/linux. In OLS (Ottawa Linux
Symposium), Vol. 2006. Citeseer, 209–224.

[8] Prem Devanbu, Myra Cohen, Tao Xie, and Liangfei Su. 2020. Graph-based trace
analysis for microservice architecture understanding and problem diagnosis.
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (2020).

[9] Ericsson. 2023. Trace Compass. http://tracecompass.org/
[10] Dan Feng, Steffen Becker, Nikolas Herbst, Philipp Leitner, Zheng Papadopoulos,

Hyunseok Chang, Sarit Mukherjee, and Eric Eide. 2022. LongTale: Toward
Automatic Performance Anomaly Explanation in Microservices. International
Conference on Performance Engineering (ACM/SPEC) (2022), 5–16.

[11] Rodrigo Fonseca, George Porter, Randy H. Katz, and Scott Shenker. 2007. X-
Trace: A Pervasive Network Tracing Framework. In 4th USENIX Symposium on
Networked Systems Design & Implementation (NSDI 07). USENIX Association,
Cambridge, MA.

[12] Francis Giraldeau and Michel Dagenais. 2015. Wait Analysis of Distributed
Systems Using Kernel Tracing. IEEE Transactions on Parallel and Distributed
Systems 27, 8 (2015), 2450–2461.

[13] JonatanHeyman, JoakimHamrén, Carl Byström, andHugoHeyman. 2023. Locust:
An open-source load testing tool. https://locust.io/

[14] Lexiang Huang and Timothy Zhu. 2021. tprof: Performance profiling via struc-
tural aggregation and automated analysis of distributed systems traces. Proceed-
ings of the ACM Symposium on Cloud Computing (2021), 76–91.

[15] Jaegertracing.io. 2023. Jaeger: Open Source, End-to-End Distributed Tracing.
http://jaegertracing.io

[16] Madeline Janecek, Naser Ezzati-Jivan, and Seyed Vahid Azhari. 2021. Container
Workload Characterization ThroughHost System Tracing. 2021 IEEE International
Conference on Cloud Engineering (IC2E) 00 (2021), 9–19.

[17] Jonathan Kaldor, JonathanMace, and Yee Jiun Song. 2017. Canopy: An End-to-End
Performance Tracing And Analysis System. Proceedings of the 26th Symposium
on Operating Systems Principles (2017), 34–50.

[18] Iman Kohyarnejadfard, Daniel Aloise, Seyed Vahid Azhari, and Michel R. Dage-
nais. 2022. Anomaly detection in microservice environments using distributed
tracing data analysis and NLP. Journal of Cloud Computing 11, 1 (2022), 25.

[19] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R Lyu. 2023.
Eadro: An End-to-End Troubleshooting Framework for Microservices on Multi-
source Data. arXiv (2023). arXiv:2302.05092

[20] Chun Li and Jianyong Wang. 2008. Efficiently Mining Closed Subsequences with
Gap Constraints. Proceedings of the 2008 SIAM International Conference on Data
Mining (2008), 313–322.

[21] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang,
Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, and Dan Pei. 2020. Unsupervised
Detection of Microservice Trace Anomalies through Service-Level Deep Bayesian
Networks. 2020 IEEE 31st International Symposium on Software Reliability Engi-
neering (ISSRE) 00 (2020), 48–58.

[22] Lun Meng, Feng Ji, Yao Sun, and Tao Wang. 2021. Detecting anomalies in
microservices with execution trace comparison. Future Generation Computer
Systems 116 (2021), 291–301.

[23] Inc. NGINX. 2023. Bank of Sirius. https://github.com/nginxinc/bank-of-sirius
[24] Tim Sherwood, Emery Berger, Christos Kozyrakis, Yu Gan, Mingyu Liang, Sundar

Dev, David Lo, and Christina Delimitrou. 2021. Sage: practical and scalable ML-
driven performance debugging in microservices. Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (2021), 135–151.

[25] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper,
a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. Google,
Inc.

[26] Mert Toslali, Emre Ates, Alex Ellis, Zhaoqi Zhang, Darby Huye, Lan Liu, Saman-
tha Puterman, Ayse K. Coskun, and Raja R. Sambasivan. 2021. Automating
instrumentation choices for performance problems in distributed applications
with VAIF. Proceedings of the ACM Symposium on Cloud Computing (2021), 61–75.

[27] Dean M. Tullsen and Brad Calder. 1998. Computing along the critical path. Tech-
nical Report. Technical report, University of California, San Diego.

[28] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek Parwal,
Timothy Sherwood, and Milind Chabbi. 2022. CRISP: Critical Path Analysis
of Large-Scale Microservice Architectures. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 655—672.

[29] Zipkin.io. 2022. Zipkin. https://zipkin.io

46

https://opentelemetry.io/
http://tracecompass.org/
https://locust.io/
http://jaegertracing.io
https://arxiv.org/abs/2302.05092
https://github.com/nginxinc/bank-of-sirius
https://zipkin.io

DMBench: Load Testing and Benchmarking Tool for Data
Migration

Fares Hamouda
York University

North York, Canada
faresham@yorku.ca

Marios Fokaefs
York University

North York, Canada
fokaefs@yorku.ca

Dariusz Jania
IBM

Kraków, Poland
dariusz.jania@pl.ibm.com

ABSTRACT
Data migration refers to the set of tasks around transferring data
over a network between two systems, either homogeneous or het-
erogeneous, and the potential reformatting of this data. Combined
with large volumes of data, resource constraints and variety in
data models and formats, data migration can be critical for enter-
prises, as it can consume a significant amount of time, incur high
costs, and pose a significant risk if not executed correctly. The
ability to accurately and effectively predict these challenges and
plan for proper resource, time and budget allocation is vital for the
proper execution of data migration. In this work, we introduce the
concept of load testing and benchmarking for data migration to
allow decision-makers for higher efficiency and effectiveness when
planning for such tasks. Our framework aims for extensibility and
customizability to enable the execution of a greater variety of tests.
Here, we present a prototype architecture, a roadmap of how the
development of such a platform should proceed and a simple case
study of how it can be used in practice.

CCS CONCEPTS
• General and reference → Experimentation; • Computer
systems organization → Cloud computing; • Information
systems → Cloud based storage; Database performance eval-
uation.

KEYWORDS
data migration; big data; benchmarking; load testing; software per-
formance; data integrity; data transfer
ACM Reference Format:
Fares Hamouda, Marios Fokaefs, and Dariusz Jania. 2024. DMBench: Load
Testing and Benchmarking Tool for Data Migration. In Companion of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
Companion ’24), May 7–11, 2024, London, United Kingdom. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3629527.3653663

1 INTRODUCTION
Technological advancements often drive large-scale migrations of
software and data systems to new platforms, presenting challenges

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3653663

in data transfer. The volume of enterprise data, ranging from ter-
abytes to petabytes, strains networks and increases the risk of errors.
Additionally, diverse target systems may necessitate changes in
migration strategies. In a business context, data migration is viewed
as a maintenance task that requires resources and careful planning
to minimize disruption to regular business operations.

To tackle the planning and resource challenges, our prototype
architecture presents a flexible testing platform. It enables swift
and adaptable experimentation to systematically assess various mi-
gration scenarios and configurations, yielding comprehensive data
for informed decisions. Adding to its value, this framework extends
its utility to the execution of migration experiments by simulating
multiple production workloads on the data source machine. This
approach enables a comprehensive assessment of how the workload
on the data source machine influences the performance and relia-
bility of the data migration process. Additionally, the framework
allows for an investigation into the reciprocal impact—how the mi-
gration process affects production workloads and performance on
the data source. We maintain that this prototype’s inherent flexibil-
ity can readily accommodate such complex scenarios, positioning
it not only as a benchmarking tool but also as a versatile resource
for in-depth migration experimentation and analysis.

In this work, we outline the main components of the prototype
architecture while highlighting essential non-functional require-
ments crucial for platform design. We assert that the prototype’s
inherent flexibility allows for the accommodation of more complex
migration scenarios and configurations. Furthermore, we envision
this platform evolving beyond its benchmarking capabilities to
serve as a dynamic tool for data collection, decision-making, or
even as the foundation for a dynamically adaptive migration strat-
egy.

2 RELATEDWORK
Data migration has mainly been studied in the context of mi-
gration to the cloud [6, 9, 15]. Some studies investigate meth-
ods for validating data migration to ensure data accuracy post-
migration. These approaches include comparing data sets migrated
using different protocols, validating migration based on comparison
data, and employing techniques such as checksums or key-data
pairs [7, 10, 11, 16]. Additionally, research on optimizing the mi-
gration process focuses on minimizing testing costs, customizing
migration problems with specific constraints, and proposing stream-
lined algorithms [2, 4, 5, 8]. Besides practitioners, our platform can
also support this research by allowing testing of novel validation
and optimization techniques. Subramani et al. [13] propose a theo-
retical algorithm to optimize data migration in order to minimize

47

https://doi.org/10.1145/3629527.3653663
https://doi.org/10.1145/3629527.3653663

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Fares Hamouda, Marios Fokaefs, & Dariusz Jania

testing on the application side. However, they do not discuss any
method or tool for testing the actual migration.

3 DMBENCH ARCHITECTURE AND
IMPLEMENTATION

DMBench is designed to be primarily functional, usable and portable,
but also flexible and extensible. To this end, it consists of multiple
semi-independent modules with distinct roles that can be easily
configured individually or as a whole, and can be replaced by alter-
native implementations with ease. The use of Docker containers
makes the platform easy to deploy and redeploy at will and on
demand. Next, we provide more details about the properties and
relations between these modules.

3.1 Functional and Non-Functional
Requirements

The primary objective of DMBench is to allow testers and decision-
makers to design and execute migration experiments as efficiently
and as effectively as possible. Such a platform should allow for
easy configuration of different experiments, fast deployment and
execution of the experiment and fully automated and comprehen-
sive presentation of the results. In principle, the platform should
enable testers to execute as many “what-if” scenarios as possible to
compare many alternatives or confirm many hypotheses. In prac-
tice, the platform guides the tester to prepare an environment to
send data from one machine to another (potentially remote) with
different types of configurations, and then monitors each part of
the process.

DMBench has been designed according to a set of principles on
the functional and non-functional requirements of a data migration
testing tool, as described below.

Functional Requirements:
• Easy setup: The setup for a migration task refers to all steps
relevant to preparing the source and target machines, the
migration engine, any metering apparatus (e.g., logging or
monitoring) along with respective databases to save results,
and the controller of the migration test or experiment. Setup
can be a time-consuming step, especially when it is not auto-
mated. The ability to quickly complete the setup and make
it easy to share between experiments is vital to the ability of
testing multiple scenarios and configurations.

• Easy configuration: Numerous parts of the platform and of
an experiment need to be configurable to allow for extensive
control to the tester. If the configuration is complex, incon-
sistent or generally lacking, it may render experimentation
results unusable.

• Convenient and complete access to results: For any
benchmark to be useful, it needs to provide the results in
a convenient way to enable further analysis and interpre-
tation. While this can include reports with visualizations
and descriptive statistics, it is important to also return all
raw measurements and results in a format that can be easily
digested by an analysis software.

Non-functional Requirements.

• Usability: The user of the tool is expected to have some
basic understanding of data migration and potentially of the
source and target systems, and the data to be transferred.
Besides that, the tools should hide as many details about the
experimentation infrastructure as possible and expose any
configuration or input points through a clear and easy-to-
use interface. The proposed benchmark follows a simplified
approach, allowing users to initiate experiments with a few
straightforward commands after the environment is set up
and configured. The objective is to streamline the process,
ensuring ease of use while maintaining simplicity.

• Extensibility: The benchmark as a software framework.
Through the configuration files, the user can provide outside
input to the framework and provide any migration engine
she wants to test by dockerizing it following our process. In
addition, all other modules, including logging and monitor-
ing, can be replaced by what the user desires, as long as they
can be deployed on Docker. Besides, the “frozen spots” of
the framework, i.e., the abstract components or the compo-
nents that the user cannot override, dictate the flow of the
experiment.

• Accuracy and Reliability: When configuring an experi-
ment, the user has the possibility to request for each experi-
ment to be executed a given number of times. By repeating
the exact same experiment multiple times and averaging over
the results of the iterations, we can ensure that any source
of variability is excluded, and the results are accurate and
reliable. In many analyses, it is required to perform statistical
testing to confirm or reject our initial hypothesis. By repeat-
ing the experiments multiple times, we make it possible to
run such tests with high confidence. No matter the num-
ber of repetitions, experiments in DMBench are executed
deterministically and any variations originates from the en-
vironment or the use case and not from the tool. Through
complete access to the results, this is verifiable by the tester.

3.2 Architecture
Figure 1 shows the main components of DMBench, which are de-
scribed in detail next.

• Migration Engine: Central to the framework, the Migration
Engine serves as the focal point for all bench-marking activi-
ties, but is primarily the module responsible for transferring
data from the source to the target. All other components
within the framework are designed to closely monitor and
assess the performance of the engine. Users are afforded the
flexibility to select any migration engine of their preference
for bench-marking purposes. Whether the chosen engine
operates within a singular service architecture or spans mul-
tiple services, the only prerequisite is the dockerization of
the selected engine. The framework seamlessly manages the
intricacies of the bench-marking process, offering a stream-
lined and user-friendly experience.

• Data Source: This component serves as the starting point
for the Migration Engine to transfer data from here to a
designated target machine. DMBench requires only an IP
address and appropriate credentials to connect to the Data

48

DMBench: Load Testing and Benchmarking Tool for Data Migration ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

Figure 1: The general architecture of DMBench.

Source machine, but the specific deployment method (vir-
tual machine, physical server, container) is irrelevant to the
platform.

• Data Target: This component is the destination for data
transferred by the Migration Engine from the source ma-
chine. Similar to the sources, only an IP address and connec-
tion credentials are necessary.

• Controller: Responsible for orchestrating all experiments
under consistent conditions, the Controller configures the
migration engine for each experiment with varying param-
eters. It initiates and oversees the execution of the migra-
tion process, monitoring the engine’s performance through
recording and analysis of migration logs. Simultaneously,
the Controller tracks resource consumption by deploying
cAdvisor [14]and node-exporter [12] on the migration in-
frastructure.

• Metrics & Logs Databases: DMBench uses two databases
for the monitored data. The first, a time series database
based on Prometheus [1], aggregates resource consumption
data collected from cAdvisor [14]. The second database, a
MongoDB [3] instance, serves as the repository for all log data
generated during the experiments. These databases work in
tandem, with Prometheus [1] focusing on resource metrics
and the second database storing all logs from both the frame-
work and the migration engine, it ensures comprehensive
and organized storage of experiment results.

• Logs reporter: Comprising two integral components, the
Logs Reporter ensures a robust and organized handling of ex-
periment logs. The first component involves a Kafka cluster,
serving as the repository for all logs. Both the Controller and
the Migration Engine publish their logs to Kafka, with a ded-
icated consumer responsible for retrieving and temporarily
storing these logs in local files.
The second component is the parser, which not only ex-
tracts data from the logs but also transforms it into a human-
readable format. The parsed information is then exported
into CSV files before being permanently stored in a NoSQL
database, asmentioned above. This dual-component approach

ensures a seamless and efficient process for managing, inter-
preting, and extracting insights from the experiment logs.

In our framework, the configuration is specified in a config.ini
format, which is parsed within the framework. The framework
ensures that the config.ini file is available in a specified path within
the Docker container where the migration engine is deployed. The
engine then reads the config.ini file to run the experiment based
on the provided values. While this approach has been tested with
our engine and the DB2 migration engine using a simple Python
script to read and execute the configuration, it’s important to high-
light that the specifics of handling the configuration may vary
depending on the engine being used. Therefore, users are responsi-
ble for implementing the necessary scripts or procedures to ensure
compatibility with their chosen engine. For detailed config.ini expla-
nations, including section meanings and purposes, visit the GitHub
repository1, these details are found in the controller configuration
section.

4 CURRENT IMPLEMENTATION STATE
DMBench can presently accommodate: a) a proprietary default
migration engine, designed for migrating files from a source to a
target machine, b) a MySQL database migration engine, where
the database is first dumped into a file and subsequently migrated
using our default migration engine, and c) the IBM DB2 migra-
tion engine, which is discussed below. To facilitate the adoption
of DMBench, comprehensive guidelines on its utilization and fur-
ther development are meticulously documented and available in a
GitHub repository2. These guidelines provide users with step-by-
step instructions and best practices, ensuring a smooth and efficient
migration process.

In addition to the various migration engines, the framework
supports a number of different migration scenarios in terms of size
and format of data: a) Exploring multiple compression techniques
(e.g., GZIP, LZ4) or migrating data over multiple streams, to opti-
mize migration engine configurations. b)The framework enables
the assessment of migration engine limitations, such as maximum
stream capacity or data volume, by incrementally increasing param-
eters until system constraints are reached. c) A key feature of the
framework is its capability to compare multiple migration engines
using predefined datasets, allowing for a comparative analysis of
their performance characteristics during the migration process.

4.1 Case Study: IBM DB2 Migration
One practical use case in our framework focuses on migrating data
between two IBM Db2 databases. This migration is facilitated by
IBM’s dedicated migration service, initially containerized using
Docker. Following the guidelines detailed in the documentation of
our GitHub repository, we establish the required environment. Fur-
thermore, the Controller is configured based on the specifications
provided in the documentation.

(1) Ensuring the requisite machines are set up and accessible,
we’ve verified the readiness of both the source and target
machines, which are IBM Db2 databases.

1https://github.com/yorku-ease/DataMigrationBenchmarkingTool?tab=readme-ov-
file#configuration
2https://github.com/yorku-ease/DataMigrationBenchmarkingTool

49

https://github.com/yorku-ease/DataMigrationBenchmarkingTool?tab=readme-ov-file#configuration
https://github.com/yorku-ease/DataMigrationBenchmarkingTool?tab=readme-ov-file#configuration
https://github.com/yorku-ease/DataMigrationBenchmarkingTool

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Fares Hamouda, Marios Fokaefs, & Dariusz Jania

(2) In the configuration phase, we focused on configuring vari-
ous components of the framework. Notably, the configura-
tion of the Controller is detailed in the Table 1.

(3) Subsequently, the experiment was executed following the
steps outlined in the documentation, and the results were ob-
tained and stored in both MongoDB [3] and Prometheus [1].

Key Value
Section : targetServer

host 192.168.122.52
username db2inst1
password password
port 50000
type db2

Section : sourceServer
host 192.168.122.28
username db2inst1
password password
port 50000

Section : KafkaCluster
host 192.168.122.145
port 9092
performanceBenchmarkTopic performanceBenchmark
migrationEngineTopicName migrationEngine
frameworktopicname framework

Section : migrationEnvironment
migrationEngineDockerImage fareshamouda/d-

b2migrationservice
loggingId
numberofexperiments 1

Section : experiment
compress NO,GZIP,LZ4
maxStreams 3
sourceDatabasetoTargetDatabase sample=>testdb
tables DEPARTMENT

Table 1: Configuration parameters passed to the controller
for the IBM Db2 case study.

5 FUTURE DEVELOPMENT
The primary aim of the benchmark is to generate data for decision-
making and to enhance understanding of migration tasks and sys-
tems. In this context, DMBench will be used to accumulate a signifi-
cant data and knowledge base on the performance of data migration
tools and tasks under a large variety of migration scenarios. This
database will then be used to develop performance models, enabling
simulations and faster decision-making. In addition, DMBench will
be extended to support more migration engines to allow for com-
parisons and effective choice making for practitioners.

6 CONCLUSION
DMBench is a flexible framework for testing the performance of
data migration engines. Through systematic setup, configuration,
and execution, the framework proves its adaptability to diverse

migration scenarios. Leveraging Docker technology and robust log-
ging, it efficiently captures performance benchmarks and resource
consumption data.

50

DMBench: Load Testing and Benchmarking Tool for Data Migration ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Julius Volz and Björn Rabenstein and Matt Bostock. 2012. Prometheus : an open-

source monitoring and alerting toolkit. SoundCloud. https://prometheus.io/
[2] Eric Anderson, Joe Hall, Jason Hartline, Michael Hobbs, Anna R. Karlin, Jared

Saia, Ram Swaminathan, and John Wilkes. 2001. An Experimental Study of Data
Migration Algorithms. In Algorithm Engineering, Gerth Stølting Brodal, Daniele
Frigioni, and Alberto Marchetti-Spaccamela (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 145–158.

[3] Dwight Merriman, Eliot Horowitz, and Kevin Ryan. 2007. MongoDB: an open-
source, document-oriented NoSQL database. DoubleClick. https://www.mongodb.
com/

[4] M Elamparithi and V Anuratha. 2015. A Review on Database Migration Strategies,
Techniques and Tools. World Journal of Computer Application and Technology 3,
3 (2015), 41–48.

[5] Zhao JF. and Zhou JT. 2014. Strategies and Methods for Cloud Migration. Inter-
national Journal of Automation and Computing 11 (2014), 143–152.

[6] Kevin Kline, Denis McDowell, Dustin Dorsey, and Matt Gordon. 2022. Moving
Your Data to the Cloud. In Pro Database Migration to Azure: Data Modernization
for the Enterprise. Springer, Berlin, Germany, 263–283.

[7] TN Manjunath, Ravindra S Hegadi, and HS Mohan. 2011. Automated data valida-
tion for data migration security. International Journal of Computer Applications
30, 6 (2011), 41–46.

[8] Johny Morris. 2012. Practical data migration. BCS, The Chartered Institute,
London, United Kingdom.

[9] Stephen Orban. 6. Strategies for Migrating Applications to the Cloud. Medium.
Library Catalog: medium. com 6 (6).

[10] PR Devale P Paygude. 2013. Automated Data Validation Testing Tool for Data Mi-
gration Quality Assurance. International Journal of Modern Engineering Research
(IJMER) 3 (2013), 599–603.

[11] Priyanka Paygude and PR Devale. 2013. Automation of data validation testing
for QA in the project of DB migration. International Journal of Computer Science
3, 2 (2013), 15–22.

[12] Prometheus community. [n. d.]. Node Exporter: a software component used in
conjunction with Prometheus for monitoring Linux and UNIX system. https:
//github.com/prometheus/node_exporter

[13] K. Subramani, Bugra Caskurlu, and Alvaro Velasquez. 2019. Minimization of
Testing Costs in Capacity-Constrained Database Migration. In Algorithmic As-
pects of Cloud Computing, Yann Disser and Vassilios S. Verykios (Eds.). Springer
International Publishing, Cham, 1–12.

[14] Google Core Team. 2014. cAdvisor: an open-source container monitoring and
performance analysis tool. Google. https://github.com/google/cadvisor

[15] Jinesh Varia. 2010. Migrating your existing applications to the aws cloud. A
Phase-driven Approach to Cloud Migration (2010), 1–23.

[16] Bin Wei and Tennyson X Chen. 2014. Verifying Data Migration Correctness: The
Checksum Principle. RTI Press, United States.

51

https://prometheus.io/
https://www.mongodb.com/
https://www.mongodb.com/
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/google/cadvisor

STIGS: Spatio-Temporal Interference Graph Simulator for
Self-Configurable Multi-Tenant Cloud Systems

Iqra Zafar∗
Hasso Plattner Institute
University of Potsdam
iqra.zafar@hpi.de

Christian Medeiros Adriano
Hasso Plattner Institute
University of Potsdam

christian.adriano@hpi.de

Holger Giese†
Hasso Plattner Institute
University of Potsdam
holger.giese@hpi.de

ABSTRACT
The finer-granularity of microservices facilitate their evolution and
deployment on shared resources. However, resource concurrency
creates elusive interdependencies, which can cause complex inter-
ference patterns to propagate in the form of performance anomalies
across distinct applications. Meanwhile, the existing methods for
Anomaly Detection (AD) and Root-Cause Analysis (RCA) are con-
founded by this phenomenon of interference because they operate
within single call-graphs. To bridge this gap, we develop a graph
formalism (Spatio-Temporal Interference Graph - STIG) to express
interference patterns and an artifact to simulate their dynamics.
Our simulator contributes to the study and mitigation of interfer-
ence patterns as a performance phenomenon that emerges from
regular resource consumption anomalies.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures;

KEYWORDS
Microservices, Anomaly Propagation, Interference, Multi-tenant
Cloud Systems, Self-Configuration
ACM Reference Format:
Iqra Zafar, Christian Medeiros Adriano, and Holger Giese. 2024. STIGS:
Spatio-Temporal Interference Graph Simulator for Self-Configurable Multi-
Tenant Cloud Systems. In Companion of the 15th ACM/SPEC International
Conference on Performance Engineering (ICPE Companion ’24), May 7–11,
2024, London, United Kingdom. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3629527.3653664

1 INTRODUCTION
In the ever-evolving landscape of cloud computing, microservices
have emerged as a dominant architectural style, enabling more flexi-
ble and scalable applications. This style relies on a finer-granularity
of functions and more radical resource sharing among different ap-
plications. However, this strategy increases overall system complex-
ity by adding elusive interdependencies among microservices [6]
from distinct applications.
∗ACM Member
†IEEE and ACM Member

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3653664

Definition 1.1. Interference happens when two services that
have no logical dependency (caller-callee relation) compete for the
same resource (compute, memory, I/O) to the extent that they affect
each other’s performance (e.g., throughput, latency) [9].

Contrary to the caller-callee relations [5], in application call-
graphs and abstract syntax trees, these new interference-enabling
interdependencies are more elusive because their presence and
flow of direction are not deterministic. Instead, interdependen-
cies might appear and disappear according to the non-stationary
patterns of the applications’ usage and the work of load balanc-
ing or self-configurable service placement mechanisms. Therefore,
cross-application services interference confounds the outcome of
traditional microservice diagnostic methods like Anomaly Detec-
tion (AD) and Root-Cause Analysis (RCA) [4, 11], as these methods
rely on stable and predictable call-graph dependencies [5].

While self-configuration solutions can dynamically adapt to
changes in the application usage [3], multi-tenant systems require
more involved approaches [10]. For that, various interference mit-
igation (IM) methods have been developed - originally, for virtu-
alized cloud environments [9] and, lately, for microservices [1, 7].
Nonetheless, there are still at least two obstacles that prevent ex-
isting IM methods from reducing confounding in AD and RCA ap-
proaches: (1) limited number of covered services (four as in [1, 12]),
and (2) reliance on metrics that are agnostic to the interdependen-
cies across applications. These methods measure interference w.r.t.
sensitivity (the susceptibility of a service to be influenced by other
services) and contention (the service consumption demand on a
resource, e.g., CPU) between service pairs, but they are oblivious
of the many-to-many relationship nature of interference.

Conversely, our approach overcomes these limitations by for-
mulating the interference phenomenon as a spatio-temporal graph.
Our corresponding simulation helps mitigate the probability and
impact of the interference phenomenon by de-confounding the
diagnostics from the AD, RCA, and IM methods, hence, render-
ing these methods more effective for complex multi-tenant cloud
systems [1, 12]. We contribute with (1) a formalism to capture
interference patterns as spatio-temporal graphs (STIG), (2) a simu-
lator called STIGS (Figure 2) for generating interference patterns,
and (3) a practical evaluation with three popular microservice
benchmarks (Bookinfo1, TeaStore2 and SockShop3).

Definition 1.2. Spatio-Temporal Interference Graph (STIG)
is denoted as G = (𝑉 , 𝐸, 𝑋𝑣 (𝑡) , 𝑋𝑒 (𝑡)), where𝑉 are nodes represent-
ing services, 𝐸 are directed edges representing interference between

1Bookinfo:https://github.com/nocalhost/bookinfo
2Tea-Store: https://github.com/DaGeRe/TeaStore
3SockShop: https://microservices-demo.github.io/

52

https://orcid.org/0000-0002-7754-6082
https://orcid.org/0000-0003-2588-9937
https://orcid.org/0000-0002-4723-730X
https://doi.org/10.1145/3629527.3653664
https://doi.org/10.1145/3629527.3653664
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3653664

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Iqra Zafar, Christian Medeiros Adriano, & Holger Giese

services across applications, 𝑋𝑣 (𝑡) are the time-varying node fea-
tures (e.g., resource per service), and 𝑋𝑒 (𝑡) the edge features (e.g.,
interference probability).

2 INTERFERENCE ANOMALY SCENARIO
As an example, assume three e-commerce applications having 14
microservices (shown in Figure 1) deployed on the same server (ei-
ther host1, host2) each with a CPU of 4 cores and 10 GB of memory.
The occurrence of a sudden surge of 100% in users during a flash
sales event could subsequently cause an increase in the demand for
these applications, e.g., from 60% to 90% CPU and memory usage
from 5GB to 10GB. As the services compete for shared resources,
the increased load could induce a low response time, e.g., 1000ms
from the original 100ms among the resource-sharing services. This,
in turn, could evolve to more severe problems like intermittent or
permanent failures. Because anomalies jump across the applica-
tions’ borders, one cannot rely on the individual call-graphs and
performance metrics. To address this situation, the STIG model
captures the dependencies originating both from the call-graph and
the deployment graph (e.g., service placement configuration).

Figure 1: Knowledge Deployment Graph. Nodes colors for
distinct applications (shops) and maroon/red color for host
nodes. The dashed arrows for hosting service relationships
and the solid arrows for caller-callee relationships.

3 STIG SIMULATOR
3.1 Design and Architecture
The workflow of the STIGS depicted in Figure 2 represents a struc-
tured approach to modeling and analyzing interference in multi-
node applications, which we detail next. The task Define Multi-
Node Application generates the dependency graphs from the
system architecture (System Archi.xml) and the deployment config-
uration (Deployment config.yaml). Based on that, we Instantiate
the Semantic Model Template to extract distinct interference-
enabling paths. The Graph Generator combines the set of distinct
paths and the multi-tenant setup (Deployment config.yaml) to gen-
erate (1) a knowledge deployment graph (e.g. Figure 1) and (2)
the time-annotated call-graphs, which serve as ground truth for
the STIG generation process. The Impacted Pair Generator task
identifies the candidate pairs of service nodes with the potential
for mutual interference. The Interference Probability Calcula-
tor estimates the likelihood of interference by taking into account
both the execution timings and their history of service anomalies.
Finally, one or multiple instances of the STIG (e.g. Figure 3) are
generated to represent distinct likelihood scenarios of anomalies
induced by interference between services across applications. If at

Figure 2: STIG Simulator Workflow

least one STIG was generated, the workflow ends and the simulator
proceeds to Graph Display, where the STIG set is made available
for analysis. We provided detailed instructions on how to install
the STIG Simulator which is available for download on Zenodo4
and Github5.

3.2 Algorithms
To investigate the interference phenomenon, we identify the source
and corresponding impact of the interference through the proposed
algorithms. In Algorithm 1, we computed query predicate stack that
acts as sources and targets of interference, respectively, from the
Knowledge Deployment Graph (kgraph) and particular host node
(Host1 in Figure 1). These stack computations depend on the execu-
tion order of calls at the specific host (line 5 and 10). The source
of interference on one or more targets services is capture as a prob-
ability measure proportionate to the magnitude of shared resources
within a time window. Consequently, longer time intervals and
higher resource utilization entail higher probability of interference
(computed by the Algorithm 2). This involves generating a list of
the impacted node pairs (sourceStack and the targetStack) based on
their execution overlapping times. The algorithm first sorts these
stacks by their execution start time (line 2) and matches the current

4Zenodo repository: https://zenodo.org/records/10610874
5https://github.com/christianadriano/STIGS-Artifact

53

STIGS: Spatio-Temporal Interference Graph Simulator for Self-Configurable
Multi-Tenant Cloud Systems ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

source node and the target nodes list given their execution time
conditions (lines 3-10). The probability of interference is derived
for each source node (curSource) and their respective overlapping
target nodes (curTargetList), also factoring-in their levels of shared
resource usage. With that, we can estimate the interference proba-
bilities for the STIG (line 12 by calling Algorithm 3). This involves
computing for each source node (curSource) the list of target nodes
(curTargetList) and their corresponding execution time overlap, as
well as the magnitude of the resource usage shared with each source
and target nodes (lines 3-6). The resulting list of impacted pairs is
then returned by Algorithm 2 (line 15).

Algorithm 1 Compute Query Predicate Stack

1: procedure generateQPstack(kgraph, host, filepath)
2: arch = get.architecture.callgraph(kgraph)
3: deploy = get.deploy.callgraph(kgraph)
4: if file at filepath exists then
5: exeOrders = Load data from filepath
6: else
7: exeOrders = createTempgraph(arch, filepath)
8: end if
9: serPaths = getDistPaths(archi)
10: nodes.at.host = List all nodes deployed on host
11: exe.orders= exe orders in nodes at host
12: Initialize Query.Predicate.stack as an empty list
13: for each 𝑒𝑥𝑒.𝑜𝑟𝑑𝑒𝑟 in 𝑒𝑥𝑒.𝑜𝑟𝑑𝑒𝑟𝑠.𝑎𝑡 .ℎ𝑜𝑠𝑡 do
14: Get index of first service path in 𝑠𝑒𝑟𝑃𝑎𝑡ℎ𝑠

15: end for
16: for each 𝑠𝑒𝑟 in 𝑒𝑥𝑒.𝑜𝑟𝑑𝑒𝑟𝑠 do
17: Create 𝑠𝑡𝑎𝑐𝑘.𝑒𝑛𝑡𝑟𝑦 with service details
18: if 𝑠𝑒𝑟 on same path of service in 𝑒𝑥𝑒.𝑜𝑟𝑑𝑒𝑟𝑠 then
19: Add stack.entry to query
20: else
21: Add stack.entry to predicate
22: end if
23: end for
24: Update start time for each entry in query and predicate lists
25: Add a dictionary with query and predicate to

𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒.𝑠𝑡𝑎𝑐𝑘𝑠

26: return 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒.𝑠𝑡𝑎𝑐𝑘𝑠

27: end procedure

Using this information, we can construct Spatio-Temporal Inter-
ference Graphs (STIGs) as described in Algorithms 1,2 and 3. The
STIG, as seen in Figure 3, consists of nodes as services, solid edges
as service calls within the same application, and the dotted edges
standing for interference paths. The weights on the interference
edges can be initialized with prior probabilities based on tempo-
ral execution overlap across application services sharing the same
resource (worker-node).

4 EVALUATION CASE STUDY
We deploy three popular benchmarks (BookShop, TeaShop, and
SockShop) on a Kubernetes cluster and generate traces by injecting
requests (10 to 1000) to their front webpages. Traces are collected
based on the following Table 1 configurations. The "Number of

Algorithm 2 Compute List of Impacted Pairs

1: procedure ImpactedPairList(sourceStk, targetStk)
2: Sort both input sets by start of execution
3: while 𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑡𝑘 is not empty do
4: Pop 𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒 from 𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑡𝑘

5: while endTime of 𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒 > starting.time.target at
head of 𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑘 do

6: Pop 𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 from 𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑘

7: Put 𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 into 𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑖𝑠𝑡
8: if endingTime of 𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒 is < ending time of

𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 then
9: Set starting time of 𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 to endingTime of

𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒

10: Push it back to stack
11: end if
12: Append ComputeSTIGProb (𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒 ,

𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑖𝑠𝑡) to 𝑟𝑒𝑠𝑢𝑙𝑡𝐿𝑖𝑠𝑡
13: end while
14: end while
15: return 𝑟𝑒𝑠𝑢𝑙𝑡𝐿𝑖𝑠𝑡

16: end procedure

Algorithm 3 Compute STIG Interference Probability Edges

1: procedure ComputeSTIGProb(curSource,curTargetList)
2: 𝑡𝑜𝑡𝑎𝑙𝑆𝑜𝑢𝑟𝑐𝑒𝑇=𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒.𝑒𝑛𝑑𝑇𝑖𝑚𝑒-𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒.𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

3: for each node in 𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑖𝑠𝑡 do
4: 𝑡𝑜𝑡𝑎𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑇=min(𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 .𝑒𝑛𝑑𝑇𝑖𝑚𝑒 ,

𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒.𝑒𝑛𝑑𝑇𝑖𝑚𝑒)-𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 .𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

5: 𝑐𝑢𝑟𝑀𝑎𝑔=𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒.𝑟𝑒𝑠𝑈𝑠𝑎𝑔𝑒+𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 .𝑟𝑒𝑠𝑈𝑠𝑎𝑔𝑒

6: return {source, target, prob, mag}=𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒 ,
𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 , 𝑡𝑜𝑡𝑎𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑇 / 𝑡𝑜𝑡𝑎𝑙𝑆𝑜𝑢𝑟𝑐𝑒𝑇 , 𝑐𝑢𝑟𝑀𝑎𝑔

7: end for
8: end procedure

Figure 3: Spatio-Temporal-Interference-Graph. (STIG). Nodes
are services, solid edges are calls within one application, and
the dotted edges are interference paths

54

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Iqra Zafar, Christian Medeiros Adriano, & Holger Giese

Figure 4: Structural Dependency Matrix: consolidates the
averages of interference across a STIG set.

Requests" column shows how many requests are made in each
configuration. This starts at 10 requests in config1 and increases
progressively, reaching up to 1000 requests in config11. The "Rate"
of request is every 1 min. These generated traces will help in our
analysis in combination with STIGs. Traces dataset is available at
simulator’s Github repository.

Table 1: Configuration of Traces Generation

Config of Requests Rate

config1 10 every 1 min
config2 20 every 1 min
config3 30 every 1 min

...
config10 800 every 1 min
config11 1000 every 1 min

4.1 STIG Analysis
To visualize the cause-effect phenomenon on generated STIGs, we
extracted only the source and target pairs of the front-end service
based on the maximum interference effect and obtained all asso-
ciated source and target pairs. As a reference, Figure 4 shows a
structural dependency matrix (SDM [2]) representing the interfer-
ence probabilities (STIG edges) between source and target services
(STIG nodes) of SockShop and TeaShop, where the darker colors
represent higher probability. In the SDM, the front-end-M1:shop1
shows the highest probability (1.0) of being interfered with by front-
end-M2:shop2, which stems from the assumed determinism of these
services starting simultaneously. Conversely, as the effect of inter-
ference propagates, there is a lower interference probability, which
reflects smaller execution overlap between downstream services.

4.2 Reconfiguration Plan
The reconfiguration plan involves ranking the services with respect
to the highest probability of necessity and sufficiency of being the

culprit of the anomaly induced by interference. Because interference
happens both ways, the plan can attribute source and target to
anomalous services in either side of an interference association. For
this, we monitored and collected traces from shops (Table 1) and
performed probabilistic analysis on them. Probability of Necessity
(PN) consists of the chance that an effect (anomaly) on a target node
(𝑌 = 1, i.e.,𝑌) is caused (interfered) by an anomaly on a source node
(𝑋 = 1, i.e.,𝑋), given that there is a history of absence of anomaly on
the target node (𝑌 = 0, i.e., 𝑌 ′) and there is an absence of anomaly
on the source node (𝑋 = 0 or 𝑋 ′). Formally, from Pearl [8], PN(Y,X)
= P(Y,X|Y’,X’). The Probability of Sufficiency (PS) is the reverse case
PS(Y,X) = P(Y’,X’|Y,X), while the probability of both Necessity and
Sufficiency (PNS) is the weighted average PNS(Y,X) = P(X,Y)PN(Y,X)
+ P(X’,Y’)PS(Y,X). Among the various approaches to compute these
probabilities, we adopted the formulations in [8] (section 19.3.3) that
assume causal exogeneity6 and monotonicity7. The formulations
are the following PNS = P(Y|X) - P(Y|X’), PN = PNS / P(Y|X), and PS
= PNS / [1 - P(Y|X’)]. The results in Table 2 show that PN is more
than two orders of magnitude higher than PS and PNS. This means
that one can focus primarily on tackling the necessary sources of
the induced anomaly, i.e., product-page and reviews. To mitigate
the interference-induced anomalies on teastore-webui, one could
reconfigure the deployment graph in a way that this microservice is
placed on aworker-nodewhere there are no instances of the product-
page and reviews microservices. Meanwhile, the STIG simulated
data also informs us that the other anomalies (e.g., on (teastore-auth
and teastore-image services) are not induced by an interference.
For these cases, the solution is to add more resources (compute,
memory) to their corresponding worker-nodes. For more details, an
analysis is available under the artifact Github repository data/traces
folder8.

Table 2: Results for two interfering service pairs𝑎

Item Pair 1 Pair 2

𝑋 product-page reviews
𝑌 teastore-webui teastore-webui

𝑃𝑁 8.40% 24.97%
𝑃𝑆 0.05% 0.05%
𝑃𝑁𝑆 0.05% 0.05%

𝑎 The only services with anomalies in BookShop are product-page and reviews,
whereas in TeaShop only the teastore-webui, teastore-auth, and teastore-image have
anomalies. However, there were only two pairs of services with joint probabilities
𝑃 (𝑌,𝑋) > 0 (shown in the table).

5 CONCLUSION AND FUTUREWORK
We presented a novel approach to the problem of service interference in multi-tenant
microservice architectures, where concurrency over shared resources induces the prop-
agation of elusive anomaly patterns. Our formalism and simulator are a contribution
to the study of interference anomalies and the mitigation of this complex emergent
phenomenon. The artifact components and the interference simulation can be easily
extended to new performance anomaly scenarios. In future work, we plan to study
the scalability and latency of the simulator within larger and more heterogeneous
deployments.

6Exogeneity = no hidden confounders beyond the detected anomalies
7Monotonicity of the causal effects, i.e., anomalies cannot cancel each other.
8Analysis Details: https://github.com/christianadriano/STIGS-
Artifact/blob/main/data/traces/excel-filtered-combined-services-anomalies.xlsx

55

STIGS: Spatio-Temporal Interference Graph Simulator for Self-Configurable
Multi-Tenant Cloud Systems ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Madhura Adeppady, Paolo Giaccone, Holger Karl, and Carla Fabiana Chiasserini.

2023. Reducing Microservices Interference and Deployment Time in Resource-
constrained Cloud Systems. IEEE Transactions on Network and Service Manage-
ment (2023). https://doi.org/10.1109/TNSM.2023.3235710

[2] Tyson R Browning. 2015. Design structure matrix extensions and innovations: a
survey and new opportunities. IEEE Transactions on engineering management 63,
1 (2015), 27–52.

[3] Vincent Bushong, Amr S. Abdelfattah, Abdullah A. Maruf, Dipta Das, Austin
Lehman, Eric Jaroszewski, Michael Coffey, Tomas Cerny, Karel Frajtak, Pavel
Tisnovsky, and Miroslav Bures. 2021. On Microservice Analysis and Architecture
Evolution: A Systematic Mapping Study. Applied Sciences 11, 17 (2021). https:
//doi.org/10.3390/app11177856

[4] Shenghui Gu, Guoping Rong, Tian Ren, He Zhang, Haifeng Shen, Yongda Yu,
Xian Li, Jian Ouyang, and Chunan Chen. 2023. TrinityRCL: Multi-Granular and
Code-Level Root Cause Localization Using Multiple Types of Telemetry Data in
Microservice Systems. IEEE Transactions on Software Engineering (2023).

[5] Devki Nandan Jha, Saurabh Garg, Prem Prakash Jayaraman, Rajkumar Buyya,
Zheng Li, and Rajiv Ranjan. 2018. A holistic evaluation of docker containers
for interfering microservices. In 2018 IEEE International Conference on Services
Computing (SCC). IEEE, 33–40.

[6] Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. 2018. Architectural princi-
ples for cloud software. ACM Transactions on Internet Technology (TOIT) 18, 2

(2018), 1–23.
[7] Yicheng Pan, Meng Ma, Xinrui Jiang, and Ping Wang. 2021. Faster, deeper,

easier: crowdsourcing diagnosis of microservice kernel failure from user space.
In 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
646–657.

[8] Judea Pearl. 2022. Probabilities of causation: three counterfactual interpretations
and their identification. In Probabilistic and Causal Inference: The Works of Judea
Pearl. 317–372.

[9] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh, and Calton
Pu. 2010. Understanding performance interference of I/O workload in virtualized
cloud environments. In 2010 IEEE 3rd international conference on cloud computing.
51–58. https://doi.org/10.1109/CLOUD.2010.65

[10] Miguel G Xavier, Kassiano J Matteussi, Fabian Lorenzo, and Cesar AF De Rose.
2016. Understanding performance interference in multi-tenant cloud databases
and web applications. In 2016 IEEE international conference on big data (big data).
IEEE, 2847–2852.

[11] Ruyue Xin, Peng Chen, and Zhiming Zhao. 2023. Causalrca: Causal inference
based precise fine-grained root cause localization for microservice applications.
J. of Systems and Software (2023).

[12] Chaobing Zeng, Fangming Liu, Shutong Chen, Weixiang Jiang, and Miao Li.
2018. Demystifying the Performance Interference of Co-Located Virtual Network
Functions. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.
765–773. https://doi.org/10.1109/INFOCOM.2018.8486246

56

https://doi.org/10.1109/TNSM.2023.3235710
https://doi.org/10.3390/app11177856
https://doi.org/10.3390/app11177856
https://doi.org/10.1109/CLOUD.2010.65
https://doi.org/10.1109/INFOCOM.2018.8486246

KubePlaybook: A Repository of Ansible Playbooks for
Kubernetes Auto-Remediation with LLMs

Komal Sarda∗
York University

Toronto, Ontario, Canada
komal253@yorku.ca

Zakeya Namrud∗
York University

Toronto, Ontario, Canada
zakeya10@yorku.ca

Marin Litoiu
York University

Toronto, Ontario, Canada
mlitoiu@yorku.ca

Larisa Shwartz
IBM T. J. Watson Research Center
Yorktown Heights, New York, USA

lshwart@us.ibm.com

Ian Watts
IBM Canada Lab

Markham, Ontario, Canada
ifwatts@ca.ibm.com

ABSTRACT
In the evolving landscape of software development and system op-
erations, the demand for automating traditionally manual tasks has
surged. Continuous operation and minimal downtimes highlight
the need for automated detection and remediation of runtime anom-
alies. Ansible, known for its scalable features, including high-level
abstraction and modularity, stands out as a reliable solution for
managing complex systems securely. The challenge lies in creat-
ing an on-the-spot Ansible solution for dynamic auto-remediation,
requiring a substantial dataset for in-context tuning of large lan-
guage models (LLMs). Our research introduces KubePlaybook, a
curated dataset with 130 natural language prompts for generat-
ing automation-focused remediation code scripts. After rigorous
manual testing, the generated code achieved an impressive 98.86%
accuracy rate, affirming the solution’s reliability and performance
in addressing dynamic auto-remediation complexities.
CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; Natu-
ral language processing; • Information systems → Informa-
tion systems applications.
KEYWORDS
Kubernetes, Ansible Playbook, LLMs, GPT-4, Auto-remediation,
Microservices.
ACM Reference Format:
Komal Sarda, Zakeya Namrud, Marin Litoiu, Larisa Shwartz, and Ian Watts.
2024. KubePlaybook: A Repository of Ansible Playbooks for Kubernetes
Auto-Remediation with LLMs. In Companion of the 15th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE Companion ’24), May
7–11, 2024, London, United Kingdom.https://doi.org/10.1145/3629527.3653665
∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3653665

1 INTRODUCTION
In the dynamic software development landscape, the adoption of
microservices has transformed scalability, flexibility, and agility
[33, 39]. Kubernetes (K8s) [22], a key orchestration tool, plays a cru-
cial role in managing microservices at scale, providing features like
auto-scaling and self-healing [3]. For smaller production settings
and local environments, MicroK8s, a lightweight K8s distribution,
proves valuable [20]. It includes all essential components of a full
K8s distribution, such as the API server, kubelet, and kubectl [21].
Kubectl, a vital command-line tool, simplifies the management and
interaction with K8s clusters, enabling users to deploy applications,
scale resources, create pods, and manage various K8s objects.
Despite advancements in autonomic and adaptive computing
[18, 35], many cloud services and applications still encounter
failures, necessitating manual intervention. Additionally, the
decentralized nature of microservices introduces complexity in
detecting and resolving root-cause incidents [2, 16].
In microservices environments, automation plays a pivotal role
in addressing complex issues swiftly [19]. AI-driven approaches
have been integrated into IT operations (AIOps) particularly
in self-healing processes using data-driven AI for automating
incident life cycles [43]. However, challenges persist in manually
creating remediation scripts, often relying on poorly organized
troubleshooting guides [17]. For on-call engineers (OCEs) dealing
with diverse anomalies across numerous services, the lack
of organized guides can be time-consuming [2]. Anomalies,
presenting differently or sharing traits across services, along with
unique configuration settings, require meticulous attention. Minor
script errors can lead to significant discrepancies, emphasizing
the need for effective remediation scripts to expedite incident
mitigation [18].
In response to these challenges, some researchers have turned
to leveraging pre-trained Large Language Models (LLMs) to
automatically generate remediation scripts based on identified root
causes, a methodology successfully applied in various use cases
[4, 5, 40]. Notable LLMs like CodeBert [7], Codex [5], LLaMa [38],
GPT-Neo, GPT-NeoX [42], and GPT-4 [32] demonstrate promise
for code generation tasks. While these techniques have been
extensively applied in general-purpose programming languages,
their adoption in IT domain-specific languages, particularly YAML,
has received less attention. YAML files play a crucial role in
defining and configuring key aspects of IT infrastructure [30]. In

57

https://doi.org/10.1145/3629527.3653665
https://doi.org/10.1145/3629527.3653665

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Komal Sarda, Zakeya Namrud, Marin Litoiu, Larisa Shwartz, & Ian Watts

specific IT domains, such as those utilizing Ansible-YAML [12] to
manage infrastructure, the integration of LLMs can streamline
incident response. Companies leverage Ansible playbooks in
conjunction with K8s to design intelligent, automated responses to
root cause alerts, reducing the burden of routine firefighting tasks
on on-call engineers (OCEs).
While progress has been made in leveraging LLMs to generate
Ansible playbooks, the focus has predominantly been on en-
hancing productivity for existing users, with an emphasis on
code completion rather than the creation of entirely new code.
A critical requirement emerges for specialized Ansible playbook
generation LLMs tailored for auto-remediation, functioning as
an AI assistant for OCEs [19]. To address challenges related to
the cost and maintenance of traditional LLMs, researchers are
turning to the few-shot learning capabilities of LLMs [17, 37]. This
approach enables incident-specific code generation with minimal
examples, eliminating the need for extensive parameter tuning.
However, the effectiveness of these models is hindered by the lack
of open-source, high-quality prompts and playbook corpora [31].
To bridge this gap, we aim to create the KubePlaybook dataset,
dedicated to Ansible playbooks in the context of IT automation
and anomaly resolution within cloud-native environments. This
dataset is crucial for enhancing the few-shot learning capabilities
of LLMs, enabling them to autonomously generate more Ansible
Playbooks for auto-remediation throughout the incident life cycle.
Addressing these challenges brings us closer to realizing a fully
autonomous AIOps environment.
Contribution: This paper introduces KubePlaybook, publicly
accessible through a GitHub repository1, a dataset featuring 130
Ansible playbooks accompanied by natural language (NL) prompts
designed for code generation. NL prompts, serving as queries
or descriptions, instruct LLMs to generate task-specific code.
While the details about LLMs and prompts are not extensively
covered due to page limitations, each NL prompt in KubePlaybook
describes a root cause along with the operator’s query input.
Our evaluation process meticulously assesses the effectiveness
of NL prompts in generating appropriate Ansible playbooks.
Following this, we evaluate the functionality of each playbook by
applying them to a sample microservices application to ensure
their efficacy. The paper is structured as follows: Section 2 details
dataset collection, generation, and description. Section 3 presents
an experimental evaluation and results discussion. Subsequently,
Section 4 deliberates on our work, highlighting challenges. Section
5 reviews relevant literature, and Section 6 provides conclusion
and outlines future research directions.

2 KUBEPLAYBOOK FRAMEWORK
2.1 Data Collection & Generation
The development of the KubePlaybook repository employs a struc-
tured process as shown in Figure 1. We initially collect K8s Ansible
playbooks from GitHub [9] and Galaxy [8], along with kubectl shell
commands and real-time faults. Leveraging Ansible for systemman-
agement, which is more scalable than traditional shell commands
[14, 27], addresses automation challenges. To automate Ansible
1https://github.com/K8sPlayBook/KubePlaybook

Select 10 kubectl commands for few-shot learning and rest 120 for evaluation of
structured prompt template and instruction tuned GPT-4

10

Scrapping Kubectl
commands Real-time faults

Root-cause parameters,
operator’s solution

to incident

Manual curation and fixing of
NL prompts to get valid

ansible responses

GPT-4
Few-shot dataset
with valid Ansible
playbook and
corresponding
NL prompts

Evaluate
manually

GitHub and Galaxy
scrapped codes

120

Structured prompt template

Evaluate
manually

Instruction-tuned
GPT-4

KubePlaybook

Figure 1: Overview of Building the Dataset

playbook creation for kubectl commands and faults, a playbooks
generation approach using GPT-4 is adopted. An incident remedia-
tion dataset is built using root cause alerts and operator input as
prompts. Few-shot learning on GPT-4 is applied to streamline the
process, following a method adapted by many researchers [17, 37].
Initiating with 10 random kubectl commands, each is transformed
into an Ansible playbook using purpose-specific prompts. The gen-
erated playbook, serving as the auto-remediation script, undergoes
testing and manual examination. Adjustments are made to prompts
until the desired Ansible-based remediation playbooks is obtained.
A robust prompt template is integrated into KubePlaybook along
with corresponding playbooks, and the few-shot learning dataset is
updated for deployment with GPT-4. This iterative process is consis-
tently applied to the initial 10 commands, tuning the GPT-4 model
with newly generated samples. Careful adjustments are made to
both prompts and playbooks, ensuring the creation of precise and
context-sensitive playbooks tailored for incident resolution. Having
generated and validated 10 structured prompt templates for auto-
remediation in microservices, the same prompt structure is applied
to the remaining 120 samples. The tuned GPT-4 model generates
playbooks for the entire dataset, ensuring a efficient approach to
incident resolution in the microservices environment.

2.2 Composition of NL Prompts
To translate Kubectl commands and address real-time faults into
valid Ansible playbook, it is crucial to construct well-defined
prompts that provide detailed information for the AI model.
This process involves crafting precise instructions to guide the
model in automatically resolving issues within microservices
architectures [30, 41]. Microservices architectures consist of
multiple independent services, and the initial step involves
specifying precise targets, such as host names, pod names, and
deployment names, in prompts for LLM-driven remediation based

58

KubePlaybook: A Repository of Ansible Playbooks for Kubernetes Auto-Remediation with LLMs ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

on root-cause alerts. Various anomaly detection models [34] and
multimodal root-cause models [23, 24] are available to identify this
information. This approach enables playbook to focus on specific
services, minimizing disruptions to others. The next step is to
define the desired automation actions, such as adjusting resources,
restarting services, or implementing fixes for specific events. This
action instructs the LLMs to generate Ansible playbook based
on root-cause actions. This information can be derived directly
from a root-cause mitigation recommendation model [2] or from
operators. An example of our structured prompt and Ansible code is
depicted in Figure 2. We selected smallest possible playbook for the
example. This prompt incorporates placeholders like <Host_Name>,
<Name_space>, and <Deployment_name> as indicators for inserting
concrete values or variables, streamlining the management of
deployments within a microservices framework. Additionally,
the provided prompt serves as a guide for those involved in
developing prompt templates using LLMs, demonstrating how
to structure prompts to facilitate the automated generation of
Ansible playbooks for addressing issues within microservices
architectures. For practical application, placeholders should be
replaced with actual values, and the resulting Ansible playbook
must be customized to meet the unique requirements of the specific
microservices environment and deployment details.

Figure 2: Sample of NL prompt & its corresponding Ansible
playbook generated using GPT-4.

2.3 KubePlaybook Description
The KubePlaybook dataset comprises NL prompts and Ansible play-
books, manifested as text and YAML files, respectively, aligning
with targeted K8s commands. Our repository, outlined in Table 1,
encompasses 130 Ansible playbooks categorized into three main
classes, each featuring pairs of playbooks and corresponding NL
prompts. According to Table 1, 62.3% of the playbooks focus on
essential K8s commands, 19.2% are sourced from Ansible Galaxy
and GitHub, and 18.5% are specifically designed for addressing
chaos-engineered operational faults [26]. This categorization high-
lights the diverse nature of the playbooks in our dataset, covering

aspects such as cluster management, real-time fault resolution, and
external contributions. Our objective extends beyond constructing
an Ansible playbook; we aim to extract meaningful NL prompts
from each code. The repository mirrors the categorization format in
directories for clarity and ease of navigation. As depicted in Figure
2, defining a placeholder in the prompt generates Ansible code that
extracts target deployment details and applies the ‘kubectl’ com-
mand to the specified service. Notably, our dataset has no external
package dependencies; it utilizes the latest versions of Ansible and
Kubernetes.

Table 1: Repository Overview Description

Categories List of Ansible Playbooks & Prompts

Generated Ansible
playbook using LLMs
Essential & common
for (configuration &

deployment)

Cluster Management (6), Daemonsets
(6), Deployments (6), Events (5), Image
name (1), Jobs (3), Logs (8), Namespaces
(6), Nodes (11), Pods (10), ReplicaSets (3),
Replication (2), Secrets (4), Service Ac-
counts (3), Services (4), StatefulSet (3)

62.3%

Ansible playbooks
from Galaxy &

GitHub
Collection of K8s tasks (25) 19.2%

Real-time faults

DNS errors (1), DNS fault (1), Node I/O
stress (1), Pod API latency (1), Overrides
the header values of API requests (1),
Node memory hog (1), Resources over-
load (2), Operational Error (4), Connec-
tion refused (6), Access denied (1), Lo-
gin failure (1), Process crash (1), System
stuck (1)

18.5%

3 EXPERIMENTAL SETUP & EVALUATION
3.1 Experiment Configuration
To guarantee the reliability and efficiency of Ansible playbooks
generated using GPT-4, a thorough evaluation process precedes
their production deployment. Our evaluation involved testing the
efficacy of the dataset to adapt few-shot learning on LLMs. We
utilized 10 samples for few-shot learning on GPT-4 and conducted
evaluations on 120 samples. We utilized the GPT-4 model, specif-
ically opting for the gpt-4-1106 [36]-preview version-recognized
as the latest and most proficient model for code comprehension
from OpenAI. Testing occurred on a t2.2xlarge EC2 instance with
Ubuntu, installing Robot-shop [1] and QoTD [11]. We validated
both syntactic correctness and functional soundness during this
crucial phase, focusing on the effectiveness of automated deploy-
ment. Hyperparameter tuning for GPT-4 was tailored to our needs,
utilizing maximum output length with 10 samples for few-shot data,
optimizing within token count limits. After iterative experimenta-
tion, optimal hyperparameters-temperature [10] at 0.6 and Top-P
[10] at (1.0)-were chosen to fine-tune the model’s performance for
precise YAML configurations from NL instructions. This meticu-
lous testing and tuning ensure robust Ansible playbooks, ready for
seamless deployment in real-world production environments.

3.2 Evaluation Methodology
We performed manual testing on each Ansible playbook on our
setup to ensure successful execution. The Average Correctness (AC)

59

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Komal Sarda, Zakeya Namrud, Marin Litoiu, Larisa Shwartz, & Ian Watts

metric was employed for evaluation, focusing on the precision of
individual code blocks or sub-tasks within Ansible playbooks. These
sub-tasks, crucial units in Ansible, encompass actions like package
installations, service configurations, or file transfers, influencing
the overall playbook accuracy. The ACmetric is defined by Equation
1, evaluating the accuracy of generated Ansible playbooks. For each
Ansible playbook code (APC), AC computes the accuracy per task
by comparing the correctly executed tasks (C) to the total tasks (n)
in that APC . The accuracy ratios of all tasks across all APCs are
summed, providing an aggregate view of performance. The final AC
value represents the average of these task accuracy ratios, obtained
by dividing the sum by the total number ofAPCs (m). This nuanced
approach offers insights into the quality of individual code blocks
beyond a binary overall judgment.

AC =

∑m
j=1(Cj/Nj ∗ 100)

m
∗ 100 (1)

We refrained from utilizing other lexical metrics such as BLEU-4
[28] or semantic metrics like BERTScore[28] due to the unavailabil-
ity of ground truth. Table 2 presents the performance metrics, high-
lighting GPT-4’s exceptional accuracy in generating Ansible play-
book. With a 98.86% accuracy rate for code pertaining to Kubectl
commands. Additionally, when assessed against 24 real-time faults,
GPT-4 achieved a 92.36% accuracy rate. This stands in stark contrast
to a 60% accuracy rate for identical tasks performed by humans.

Table 2: Evaluation of Ansible playbooks

Task Source Accuracy

Kubectl command 98.86%
Code was written by a human from GitHub 60%

Real-time fault 92.36%

4 DISCUSSION & CHALLENGES
To foster operator trust in automated code generation for
expediting incident resolution, a large, real-world dataset is
crucial for fine-tuning models. Towards this, our dataset serves
as a valuable starting point. We devised a specific pattern for
constructing prompts using operator inputs, recognizing the
potential variations across industries. The evaluation involved
testing prompt construction and Ansible playbook generation on
e-commerce microservice applications like robot-shop and QoTD
using Kubectl. However, it’s important to note that these results
may not universally apply to different microservice applications
and tools. Additionally, while the GPT-4 were instruction-tuned
and evaluated to generate a specific dataset, variations in results
and accuracy may occur for different datasets. Rigorous manual
tweaking and testing were performed to ensure the reliability of
each playbook on our setup.

5 RELATEDWORK & APPLICATION
Benchmark datasets have become crucial for advancing applied AI
research, particularly as the demand for evaluating models across
diverse applications grows. Among the key contributions to this
area, Hendrycks et al.[13] pioneered the assessment of large trans-
former language models in competitive programming with the in-
troduction of the APPS dataset, featuring 10,000 coding competition

problems. The CodeXGLUE [25] and CodeSearchNet [15] datasets
further extend the toolset for researchers with tasks ranging from
code summarization to code translation, and offering professional
annotations for NL queries across several programming languages.
However, Ansible was not considered. 20-MAD [6] is a dataset that
links the commit and issue data of the Mozilla and Apache projects.
Our work distinguishes itself by focusing on the generation of Ansi-
ble playbooks, a niche not covered by the aforementioned datasets
that primarily utilize NL for code generation. Although the work of
Ahmed et al.[2] is closely related through its use of LLMs for text
generation, our emphasis remains on code generation. Moreover,
unlike the Andromeda [29], which provides an overview of the
Ansible Galaxy ecosystem, our dataset is specifically tailored for
training LLMs with generated and scraped Ansible playbooks along
with their associated prompts. To our knowledge, KubePlaybook
is the starting point for K8s-based Ansible playbook benchmark
dataset crafted using LLMs. Aimed at auto-remediation microser-
vices, it sets a new precedent for employing LLM-generated datasets
in practical applications. Table 3 outlines the distinctions between
the current cutting-edge research initiatives and our methodology.
This includes the employment of LLMs for the generation of the
Ansible playbook, the automation of code scraping techniques, the
detailed generation of report descriptions, and the careful crafting
involved in prompt engineering.

Table 3: Comparison between state-of-the-art research
and our approach.

References LLMs
usage

Scraped
repositories

Ansible
playbook

NL
prompts

Paper [2] ✗ ✓ ✗ ✓

Paper [5] ✗ ✓ ✗ ✗

Paper [6] ✗ ✓ ✗ ✗

Paper [13] ✓ ✗ ✗ ✗

Paper [15] ✓ ✓ ✗ ✗

Paper [25] ✓ ✗ ✗ ✗

Paper [29] ✗ ✓ ✓ ✗

Our Dataset ✓ ✓ ✓ ✓

6 CONCLUSION & FUTURE DIRECTIONS
In conclusion, while the application of AI, especially LLMs, in au-
tomating IT operations holds promise for self-healing mechanisms,
challenges persist in applying these advancements to IT-centric lan-
guages like YAML. The introduction of the KubePlaybook dataset,
comprising 130 NL prompts and Ansible playbooks, represents a
significant step towards addressing this gap. It facilitates the con-
textual learning of LLMs to generate Ansible-YAML scripts for
automated remediation tasks, a pivotal development for advancing
IT automation in cloud-native environments. It is poised to enhance
incident response in the dynamic realm of IT operations. Future
research may focus on augmenting playbook quality by incorpo-
rating more real-time fault data examples. The manual creation
of corresponding NL prompts for each script, a meticulous and
time-consuming process, motivates us to explore automatic prompt
generation for auto-remediation tasks in microservices environ-
ments. Additionally, investigating the performance and adaptability
of different LLMs for playbook generation presents a potential area
of exploration.

60

KubePlaybook: A Repository of Ansible Playbooks for Kubernetes Auto-Remediation with LLMs ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

REFERENCES
[1] 1steveww et al. 2023. Robot Shop is a sample microservice application. Retrieved

Mar 6, 2023 from https://github.com/instana/robot-shop
[2] Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmermann, Xuchao

Zhang, and Saravan Rajmohan. 2023. Recommending Root-Cause and Mitiga-
tion Steps for Cloud Incidents using Large Language Models. arXiv preprint
arXiv:2301.03797 (2023).

[3] Meriem Azaiez and Walid Chainbi. 2016. A multi-agent system architecture for
self-healing cloud infrastructure. In Proceedings of the International Conference
on Internet of things and Cloud Computing. 1–6.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[6] Maëlick Claes andMika VMäntylä. 2020. 20-MAD: 20 years of issues and commits
of Mozilla and Apache development. In Proceedings of the 17th International
Conference on Mining Software Repositories. 503–507.

[7] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[8] Ansible Galaxy. 2024. Ansible Galaxy. Retrieved Jan 30, 2024 from https:
//galaxy.ansible.com/ui/collections/

[9] GitHub. 2024. GitHub. Retrieved Jan 30, 2024 from https://github.com/
[10] Fabian Gloeckle, Baptiste Roziere, Amaury Hayat, and Gabriel Synnaeve. 2023.

Temperature-scaled large language models for Lean proofstep prediction. In The
3rd Workshop on Mathematical Reasoning and AI at NeurIPS’23.

[11] Red Hat. 2023. QoTD. Retrieved Oct 11, 2023 from https://github.com/redhat-
developer-demos/qotd.git

[12] Red Hat. 2023. Red Hat Ansible Automation Platform. Retrieved Nov 27, 2023
from https://www.redhat.com/en/technologies/management/ansible

[13] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. 2021. Mea-
suring coding challenge competence with apps. arXiv preprint arXiv:2105.09938
(2021).

[14] Eric Horton and Chris Parnin. 2022. Dozer: migrating shell commands to an-
sible modules via execution profiling and synthesis. In Proceedings of the 44th
International Conference on Software Engineering: Software Engineering in Practice.
147–148.

[15] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[16] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al. 2020. How to mitigate
the incident? an effective troubleshooting guide recommendation technique for
online service systems. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1410–1420.

[17] Yuxuan Jiang, Chaoyun Zhang, Shilin He, Zhihao Yang, Minghua Ma, Si Qin,
Yu Kang, Yingnong Dang, Saravan Rajmohan, Qingwei Lin, et al. 2023. Xpert:
Empowering Incident Management with Query Recommendations via Large
Language Models. arXiv preprint arXiv:2312.11988 (2023).

[18] Cornel Klein, Reiner Schmid, Christian Leuxner, Wassiou Sitou, and Bernd Span-
felner. 2008. A survey of context adaptation in autonomic computing. In Fourth
International Conference on Autonomic and Autonomous Systems (ICAS’08). IEEE,
106–111.

[19] Sarda Komal, Namrud Zakeya, Rouf Raphael, Ahuja Harit, Rasolroveicy Mo-
hammadreza, Litoiu Marin, Shwartz Larisa, and Watts Ian. 2023. ADARMA
Auto-Detection and Auto-Remediation of Microservice Anomalies by Leveraging
Large LanguageModels. In Proceedings of the 33rd Annual International Conference
on Computer Science and Software Engineering. 200–205.

[20] Heiko Koziolek and Nafise Eskandani. 2023. Lightweight Kubernetes Distri-
butions: A Performance Comparison of MicroK8s, k3s, k0s, and Microshift. In
Proceedings of the 2023 ACM/SPEC International Conference on Performance Engi-
neering. 17–29.

[21] Kubectl. 2024. Kubectl. Retrieved Jan 30, 2024 from https://kubernetes.io/docs/
reference/kubectl/

[22] Kubernetes. 2024. Kubernetes. Retrieved Jan 30, 2024 from https://kubernetes.io/
[23] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang,

Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, et al. 2021. Practical root cause
localization for microservice systems via trace analysis. In 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS). IEEE, 1–10.

[24] Fred Lin, Keyur Muzumdar, Nikolay Pavlovich Laptev, Mihai-Valentin Curelea,
Seunghak Lee, and Sriram Sankar. 2020. Fast dimensional analysis for root cause
investigation in a large-scale service environment. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 4, 2 (2020), 1–23.

[25] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664 (2021).

[26] Sehrish Malik, Moeen Ali Naqvi, and Leon Moonen. 2023. CHESS: A Framework
for Evaluation of Self-adaptive Systems based on Chaos Engineering. arXiv
preprint arXiv:2303.07283 (2023).

[27] Pavel Masek, Martin Stusek, Jan Krejci, Krystof Zeman, Jiri Pokorny, and Marek
Kudlacek. 2018. Unleashing full potential of ansible framework: University labs
administration. In 2018 22nd conference of open innovations association (FRUCT).
IEEE, 144–150.

[28] Nabor C Mendonça, Pooyan Jamshidi, David Garlan, and Claus Pahl. 2019. De-
veloping self-adaptive microservice systems: Challenges and directions. IEEE
Software 38, 2 (2019), 70–79.

[29] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2021. Andromeda:
A dataset of Ansible Galaxy roles and their evolution. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, 580–584.

[30] Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas Dupuis, Burn Lewis, Sahil
Suneja, Atin Sood, Ganesh Nalawade, Matt Jones, Alessandro Morari, et al. 2023.
Automated Code generation for Information Technology Tasks in YAML through
Large Language Models. arXiv preprint arXiv:2305.02783 (2023).

[31] Laria Reynolds and KyleMcDonell. 2021. Prompt programming for large language
models: Beyond the few-shot paradigm. In Extended Abstracts of the 2021 CHI
Conference on Human Factors in Computing Systems. 1–7.

[32] Katharine Sanderson. 2023. GPT-4 is here: what scientists think. Nature 615,
7954 (2023), 773.

[33] Komal Sarda. 2023. Leveraging Large Language Models for Auto-remediation in
Microservices Architecture. In 2023 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems Companion (ACSOS-C). IEEE, 16–18.

[34] Jacopo Soldani and Antonio Brogi. 2022. Anomaly detection and failure root cause
analysis in (micro) service-based cloud applications: A survey. ACM Computing
Surveys (CSUR) 55, 3 (2022), 1–39.

[35] Roy Sterritt, Manish Parashar, Huaglory Tianfield, and Rainer Unland. 2005. A
concise introduction to autonomic computing. Advanced engineering informatics
19, 3 (2005), 181–187.

[36] Kaiming Tao, Zachary A Osman, Philip L Tzou, Soo-Yon Rhee, Vineet Ahluwalia,
and Robert W Shafer. 2024. GPT-4 Performance on Querying Scientific Publica-
tions: Reproducibility, Accuracy, and Impact of an Instruction Sheet. (2024).

[37] Catherine Tony, Markus Mutas, Nicolás E Díaz Ferreyra, and Riccardo Scandari-
ato. 2023. LLMSecEval: A Dataset of Natural Language Prompts for Security
Evaluations. arXiv preprint arXiv:2303.09384 (2023).

[38] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[39] Hulya Vural, Murat Koyuncu, and Sinem Guney. 2017. A systematic literature
review on microservices. In Computational Science and Its Applications–ICCSA
2017: 17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part
VI 17. Springer, 203–217.

[40] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903 (2022).

[41] JulesWhite, Quchen Fu, SamHays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt
pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382 (2023).

[42] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1–10.

[43] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early detection of configuration errors to reduce
failure damage. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 619–634.

61

https://github.com/instana/robot-shop
https://galaxy.ansible.com/ui/collections/
https://galaxy.ansible.com/ui/collections/
https://github.com/
https://github.com/redhat-developer-demos/qotd.git
https://github.com/redhat-developer-demos/qotd.git
https://www.redhat.com/en/technologies/management/ansible
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/

Efficient Unsupervised Latency Culprit Ranking in Distributed
Traces with GNN and Critical Path Analysis
Mahsa Panahandeh

Electrical and Computer Engineering department,
University of Alberta

Edmonton, Alberta, Canada
panahand@ualberta.ca

Naser Ezzati-Jivan
Department of Computer Science, Brock University

St. Catharines, Ontario, Canada
nezzatijivan@brocku.ca

Abdelwahab Hamou-Lhadj
Department of Electrical and Computer Engineering,

Concordia University
Montreal, Quebec, Canada

wahab.hamou-lhadj@concordia.ca

James Miller
Department of Electrical and Computer Engineering,

University of Alberta, Canada
Edmonton, Alberta, Canada

jimm@ualberta.ca

ABSTRACT
Microservices offer the benefits of scalable flexibility and rapid
deployment, making them a preferred architecture in today’s IT
industry. However, their dynamic nature increases their susceptibil-
ity to failures, highlighting the need for effective troubleshooting
strategies. Current methods for pinpointing issues in microser-
vices often depend on impractical supervision or rest on unrealistic
assumptions. We propose a novel approach using graph unsuper-
vised neural networks and critical path analysis to address these
limitations. Our experiments on four open-source microservice
benchmarks show significant results, with top-1 accuracy rang-
ing from 86.4% to 96%, over 6% enhancement compared to existing
methods. Moreover, our approach reduces training time by 5.6 times
compared to similar works on the same datasets.

CCS CONCEPTS
• Software and its engineering → Software defect analysis; •
Computer systems organization → Reliability.

KEYWORDS
Culprit identification, Graph neural Network, Critical path analysis,
Distributed traces, FIRM dataset

ACM Reference Format:
Mahsa Panahandeh, Naser Ezzati-Jivan, AbdelwahabHamou-Lhadj, and James
Miller. 2024. Efficient Unsupervised Latency Culprit Ranking in Distributed
Traces with GNN and Critical Path Analysis . In Companion of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE ’24
Companion), May 7–11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3629527.3651841

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3651841

1 INTRODUCTION
Microservice architecture is becoming increasingly popular among
various systems architectures due to its fast delivery, scalability,
and independence. However, managing quality in microservice
applications remains a significant challenge [5, 6, 10]. This challenge
involves the need to set suitable alert thresholds and filters to alert
developers to issues promptly, without overwhelming them with
extraneous data [6]. Hassan et al. [5] and Jamshidi et al.[6] advocate
that machine learning could significantly mitigate these challenges.
As a result, numerous trace-based methods employing machine
learning techniques have been developed to quickly identify and
address issues as they emerge [8, 10, 12]. However, these methods
face challenges, primarily due to idealistic assumptions or relying
on supervision methods, reducing their effectiveness and practical
applicability [10].

Numerous studies [8, 14, 16, 19] have employed supervised ma-
chine learning models for anomaly detection and predicting root
causes in microservices. These approaches heavily depend on la-
belled datasets, which can be costly to acquire [7]. Furthermore,
they require comprehensive coverage of all possible fault types to
accurately differentiate between anomaly propagation paths. Yet,
some of these studies do not incorporate request types or fault
types in their approach, and they may also lack this information,
e.g., [16].

Although certain studies [11, 12, 16] overlook the variability in
anomaly propagation patterns, other researchworks [10, 14] empha-
sise the crucial importance of considering this variability to enhance
anomaly detection and analysis. For example, FIRM [14] emphasizes
how latency anomalies may propagate differently across scenar-
ios, even for identical request types. To investigate variations of
anomaly propagation paths, FIRM [14] proposes studying critical
paths in request executions. It employs a supervised classification
approach, which still makes it rely on labelled datasets including
both normal and abnormal requests of different execution paths.
Moreover, FIRM [14] assumes that the longest service on a critical
path contributes most to the total latency. However, our experi-
ments show that this assumption does not always hold because
individual services can show a wide variance in latency, even under
normal conditions.

62

https://orcid.org/0000-0002-6369-8982
https://doi.org/10.1145/3629527.3651841
https://doi.org/10.1145/3629527.3651841

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Mahsa Panahandeh, Naser Ezzati-Jivan, Abdelwahab Hamou-Lhadj, and James Miller

Addressing the need for distinguishing between anomaly prop-
agation paths as well as breaking the need for having a labelled
dataset, Li et al.[10] propose a trace analysis approach based on
studying historical data of service invocations. Although Li et al.
study[10] outperforms other unsupervised methods, it may not
be optimal for microservice systems handling extensive requests
involving numerous services. The issue arises from their method
requiring feature selection for each service invocation within a
real-time window, which can result in significant time consump-
tion. Additionally, the effectiveness of Li et al.’s approach[10] might
be compromised in scenarios with a scarce number of normal or
abnormal traces, or when the test window includes a limited range
of request types.

To overcome these limitations, we developed an unsupervised
method that integrates the analysis of critical paths for enhanced
culprit prioritization. Our approach starts with establishing a base-
line model using the application of graph neural networks (GNN),
which learns the expected latency distributions across all services
and their interdependencies, effectively mirroring the system’s
anticipated behaviour. This model is then used for anomaly detec-
tion at the granularity of individual requests. To narrow down the
context of latency propagation and identify culprits, we study ab-
normal requests against normal requests, sharing the same critical
path. Our method involves clustering historical requests based on
their critical paths, thereby creating distinct profiles for each path.
Within these profiles, we detail vectors for each service that capture
the service’s distribution within the critical path. By comparing the
observed latency of services in abnormal paths to their standard
distributions outlined in the profiles, we effectively isolate and iden-
tify the culprits. Services exhibiting greater deviation from their
expected distribution are ranked as more suspicious culprits.

To enhance the efficiency of our method compared to existing
approaches, We design our GNN model with the assumption that
the service invocations graph is static. By this assumption, we ef-
fectively reduce the complexity associated with dynamic network
models, leading to increased efficiency. To prevent missing any
update in service invocations, we propose periodic evolutionary
updates as an alternative to ensure the model stays in sync with any
changes. Additionally, we integrate a feature sampling technique
from services across various layers in our GNNmodel. This strategy
ensures the capture of critical information from services within
the GNN, maintaining the model’s scalability and efficiency, partic-
ularly when dealing with extensive service invocation or service
dependency graphs.

Our experiments conducted on four benchmark systems in dif-
ferent sizes and complexity demonstrate that our approach has an
accuracy of 86.4%-96% and outperforms similar methods [16] by
over 6% while also enhancing the training time by a factor of 5.6.
Our main contributions can be summarized as follows:

• Proposing an unsupervised GNN model, eliminating the
requirement for labelled datasets which can be expensive to
obtain in practice.

• Integration of our latency detection methodology with criti-
cal path analysis, refining the focus on potential culprits and
enhancing the efficiency of culprit prediction.

• Refinement of the GNNmodel to tackle scalability challenges
inherent in large service invocations or service dependency
graphs, as well as improving time efficiency during both
training and testing phases.

2 BACKGROUND SUMMARY
Critical Path Analysis involves identifying the longest duration
path in a request’s journey through a distributed system, which can
be complex due to mixed synchronous and asynchronous commu-
nications. Distributed tracing helps trace these paths by collecting
detailed request flow data [1, 14].

Culprit Identification focuses on pinpointing the service or
component causing latency anomalies. While ’culprit’ refers to the
direct cause of performance slowdowns, ’root cause’ delves into the
underlying issue. This work prioritizes culprit ranking in abnormal
request paths as a step towards root cause analysis [9].

3 METHOD DESIGN
Our approach introduces an end-to-end latency anomaly detection
and culprit ranking framework, which comprises three primary
phases: I) Data Preparation, II) Anomaly Detection, and III) Culprit
Ranking, as detailed in the subsequent subsections.

3.1 Data Preparation
Our approach takes two main inputs: historical data representing
the expected behaviour of the system and interdependencies be-
tween services. This data is collected from telemetry data provided
by any distributed traces monitoring tool. We ensure our data en-
compasses a wide range of requests, each with a unique execution
path. Each request is collected as a trace that can be defined by a
feature vector that details the latency of services (spans) involved
in the request:

𝑉𝑅0 = [𝑙1, 𝑙2, ..., 𝑙𝑛], (1)

Here, n is the number of services in request 𝑅0 and 𝑙 is the latency
value for each service. The historical data comprises numerous
such feature vectors. To ensure consistency across the data, we
normalize all latency values. Then, we determine the critical path
for each request using the method outlined in the literature [14],
and accordingly cluster the data based on critical paths. For each
cluster, we create a profile that encapsulates the distribution of
latencies, including mean and standard deviation, for each service
within the critical path. Such a standardized approach allows for a
comprehensive comparison of service performance across various
service paths.

Figure 1 presents latency distributions for a service (10-contact)
in a ticket-booking benchmark [20]. On the left, it shows the la-
tency distribution across all requests in historical data, while on the
right, latency distributions across different critical paths are shown.
The distribution of data across clusters facilitates a more accurate
discernment of patterns. Such clarity is especially beneficial for data
lacking obvious service relationships or evident request clustering
patterns, as observed in our experiments about the dataset used
in this study, where no clustering algorithm, such as k-means or
hierarchical clustering, yields meaningful clusters. This limitation
makes some existing methods [13, 18] inappropriate for such data.

63

Efficient Unsupervised Latency Culprit Ranking in Distributed Traces with GNN and Critical Path Analysis ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 1: The latency distribution of a service across all exe-
cution paths (left) compared to within critical paths (right).

The second input that our approach takes is interdependencies
between services such as service invocations, as we believe that
these interdependencies primarily govern the propagation of be-
haviour across the services. This data can be inferred from depen-
dency graphs provided by distributed trace tools or by studying the
microservice system itself.

3.2 Anomaly detection
Utilizing the advanced pattern recognition capabilities of deep
graph neural networks (GNNs) for structured data analysis, we
use a GNN model to establish a baseline for anomaly detection.
Our model is constructed based on interdependencies patterns and
distribution of latencies, collected from historical data. First, we
generate a directed acyclic graph G= (V,E) from service interde-
pendencies, where V represents the set of nodes corresponding to
services and E represents the set of edges representing service invo-
cations. The direction of each edge specifies the propagation path of
behaviour through services. Each node is associated with a feature
array that encapsulates the corresponding latency values from all
request feature vectors (𝑉𝑅 vectors) in historical data. To enhance
the efficiency of our model compared to existing works [8, 16], we
consider the following considerations.

Firstly, we initially assume a static structure for the directed
acyclic graph to enhance the GNN’s training efficiency and scal-
ability. This assumption is pivotal for managing large call graphs
and complex service interaction patterns. To adapt to changes in
service invocations, we introduce periodic model updates, allowing
our system to reflect changes over time without compromising the
initial efficiency gains.

Secondly, we implement batch processing, enabling simultane-
ous analysis of multiple graphs, each with unique structures and
sizes. This diversity is essential in training our model to recognize
a wide array of connectivity patterns. Our adaptation employs a
neighbourhood sampling strategy, where a fixed-size subset of a
node’s neighbours is selected for feature aggregation. This method
addresses challenges related to variable connectivity and scales ef-
fectively for large graphs. Each layer aggregates information from
a node’s immediate neighbours and subsequent layers aggregate
information at increasingly larger distances from the target node.
This iterative process ensures that even with sampling, information

from the broader neighbourhood can influence the node’s repre-
sentation, albeit indirectly. We mitigate potential data loss from
sampling by designing our model to aggregate features across lay-
ers. Unlike traditional methods that depend on separate embeddings
for each node to produce features, our design consolidates feature
generation across the network.

We adopted the GraphSAGE model [4], to construct our model
according to these considerations. Our model comprises two graph
convolutional layers. The initial layer transforms the features of
a node and its neighbours, aggregated through a mean function,
into a dimensional hidden space, for abstract representation. The
second layer then projects these hidden representations back to the
original feature dimensions. This unsupervised learning architec-
ture is adept at encoding and decoding node features, capturing
both structural and feature-based graph information to generalize
well to unseen nodes or entirely new graphs.

The model’s operation during each message-passing iteration is
mathematically described as follows:

𝐻
(𝑙+1)
𝑣 = 𝜎

(
𝑊 (𝑙) ·MEAN

(
{𝐻 (𝑙)

𝑣 } ∪ {𝐻 (𝑙)
𝑢 ,∀𝑢 ∈ N (𝑣)}

))
(2)

where 𝐻 (𝑙)
𝑣 is the feature vector of node 𝑣 at layer 𝑙 ,𝑊 (𝑙) is the

weight matrix for layer 𝑙 , 𝜎 denotes a non-linear activation func-
tion (e.g., ReLU), and N(𝑣) includes the neighbours of node 𝑣 . Our
optimization goal is to minimize the mean squared error (MSE)
between the original node features (𝑋) and their reconstructed
counterparts (𝑋) after processing through the GraphSAGE layers.
The optimization goal is succinctly captured by:

Minimize L = MSE(𝑋,𝑋) (3)

Here, 𝑋 represents the model’s input (the original node features),
and 𝑋 denotes the output (the reconstructed node features).

To detect anomalies using the trained modes, we convert a test
trace into a format that aligns with the request feature vector struc-
ture previously outlined.We use ourmodel (𝑓) alongwith adjacency
information encapsulated in the graph (𝐸) to reconstruct the test
request feature vector 𝑋 as 𝑋 = 𝑓 (𝑋, 𝐸). Anomalies are identified
by comparing the loss between the original and reconstructed vec-
tors against a threshold, i.e.,𝑀𝑆𝐸 (𝑋,𝑋) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . In this paper,
we set the threshold at 0.1.

3.3 Culprit Ranking
After detecting an anomaly, we proceed with the Culprit Ranking
step by comparing the abnormal test request’s feature vector with
similar requests from historical data. Our experiments indicate that
narrowing these comparisons to critical paths is more efficient.
Critical paths encompass services that drive the latency issue in a
request, making them a priority for identifying the culprit.

We first, compute the critical path within the test request. Then,
we match it with the same critical path cluster in historical data.
From this match, we extract the cluster profile that provides de-
tailed insights into the distribution of each service along the critical
path. For each service within the test critical path, we hypothesize
it is a potential culprit. Then, we use the service distribution details
extracted from the critical path profile to choose an appropriate
statistical simulation technique, as advised by Forbes [2]. Through

64

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Mahsa Panahandeh, Naser Ezzati-Jivan, Abdelwahab Hamou-Lhadj, and James Miller

parameter estimation, we generate a new latency value for the ser-
vice that aligns with its distribution. This value replaces the original
one in the test vector, and anomaly detection is performed on this
manipulated request vector. If the model identifies the manipulated
vector as normal, our hypothesis is validated, and the service is
added to the list of culprits; otherwise, it’s discarded. Culprits are
subsequently ranked based on their deviation from their respective
normal distributions.

During the validation of our model, we discovered that checking
services individually as potential culprits aids in identifying indirect
anomaly propagation paths. We call frequently affected services by
a true root cause, evenwhen there are no direct invocations between
them, "indirect dependency". Figure 2-A, shows direct dependencies,
i.e., service invocations, as well as indirect dependencies for the
hotel reservation benchmark system. This representation assists in
understanding anomaly propagation paths and can be integrated
into our model to improve accuracy by accommodating unknown
service dependencies.

4 EXPERIMENTS AND EVALUATION
We evaluate our approach on a dataset including four microser-
vice benchmarks provided by Qiu et al.[15] as part of the FIRM
research project[14]. These benchmarks cover social networking,
hotel reservations, media services, and ticket booking systems. The
dataset includes traces representing normal system behaviour, with
latency data for all services, which we treat as our historical dataset.
Additionally, there are labelled files for each benchmark system,
containing traces collected during anomalies in labelled services,
treated as test requests for evaluating our approach. The dataset
also includes covered execution paths of collected requests, illustrat-
ing the interdependency patterns within each benchmark system.

Figure 2: A: Direct and indirect anomaly propagation paths,
B: Confusion metrics for benchmark systems

The performed exploratory data analysis (EDA) on the data, com-
bined with in-depth studies and collaborative consultations with
the FIRM authors, reveals that each sample in this dataset isn’t
simply a raw trace, but rather an aggregation of collected requests
spanning the system’s execution paths within a 1-minute time win-
dow. Each sample provides all services’ average latency time for
handling various requests within this window. Despite being aggre-
gated from numerous requests, there is consistency in workload and
covered execution paths for each sample. Therefore, each sample
can be treated as a trace covering all services and execution paths,

Benchmarks ACC Top-1 Top-3 Top-5
Social-network (MSE=0.005) 87% 83% 86.2% 87%
hotel-reservation (MSE=0.001) 95.4% 94.7% 95.4% 95.4%
media-service (MSE=0.007) 86.4% 85% 86.4% 86.4%
ticket-booking (MSE=0.001) 96% 94.3% 96% 96%

Table 1: Culprit localization results for different benchmarks

as commonly done in the literature [16, 17]. Consequently, within
this pre-processed dataset, the critical path of each sample (trace)
is a system critical path and can be computed as the execution path
with the maximum latency among all other execution paths.

In our study, we constructed datasets comprising 60% training
data, with an additional 20% set aside for both validation and testing
of our model. To assess the efficacy of the culprit ranking, we em-
ployed the same sampling rate used in prior literature [16], selecting
20% of labelled files.

4.1 Results
We conduct evaluations for anomaly detection and culprit ranking
separately. Figure 2-B, shows averaged results of precision, recall,
and F-1 score metrics [3] across all benchmarks. This visualization
illustrates the performance of our model in classifying anomalies
for various classification threshold values. Based on our findings,
we observed that setting the anomaly classification threshold lower
than 0.1 results in a decrease in precision. Conversely, for larger
threshold values, there is a decrease in recall while precision re-
mains stable. Therefore, we opted to set the threshold at 0.1 to strike
a balance in the performance of our model.

To evaluate the effectiveness of our approach in identifying the
true culprit, we employ two key metrics: the overall percentage of
accurately identified true culprits (referred to as "ACC") and the Top-
k metric, which measures the likelihood of ranking the true culprit
within the top k locations among all ranked identified culprits.
Table 1 displays the performance results for each benchmark. The
numerical values provided alongside the name of each benchmark
indicate the average loss value incurred by our trained model for
that particular benchmark. Our experiments across four case studies
indicate that the true culprit is accurately identified in 86.4% to
96% of cases, and is also ranked within the first five culprits in
83% to 94.7% of cases. Our investigation unveiled that having a
balanced representation of requests related to various critical paths
in the historical data significantly enhances the ability to distinguish
between service distributions of the test and historical critical paths
which leads to higher accuracy in our analysis.

In comparison with existing works, we create a dataset with
a similar train-test split ratio used by B-MEG [16], that proposes
a supervised GNN for the same dataset. We conducted multiple
iterations of experiments and reported the average result. Our ex-
periments yielded accuracy improvements of approximately 3-8%,
along with a reduction in time complexity to over one-fifth of the
model training. Due to the need for adjustments in B-MEG, we were
unable to compare execution times for processing test requests in
the current paper. However, we compared two variations of our
approach: v1 solely utilises the main request path in culprit identi-
fication, and v2 incorporates the critical paths to narrow down the

65

Efficient Unsupervised Latency Culprit Ranking in Distributed Traces with GNN and Critical Path Analysis ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

test request context. Our results demonstrated that v2 significantly
improves processing time for identifying the culprits in different
benchmarks from 1.5-13 seconds in v1 to 0.8-8.3 seconds, marking a
58.33% enhancement on average. Figure 3 summarises the average
performance of two versions of our approach against Somashekar
et al. work [16].

Despite improvements in v2 of our approach, occasional slight
accuracy decreases were observed, although accuracy increased
for ticket-booking and social-network benchmarks. Further inves-
tigation of our dataset revealed that the stated computed critical
path method for this dataset may overshadow the true culprit. This
happens for systems with sparse connectivity and shorter request
paths since they have limited service diversity in different execution
paths. Therefore, the computed critical path can be affected if the
true culprit exhibits a relatively small latency distribution range
compared to other services.

Figure 3: Comparison of two different versions of our ap-
proach with B-MEG

5 CONCLUSION
In this paper, we propose an efficient unsupervised GNN model
integrated with critical path analysis for culprit ranking in microser-
vice architectures. Our approach eliminates the need for labelled
datasets, incorporates critical path analysis for efficient culprit de-
tection, and introduces enhancements for the scalability and speed
of the GNN model. Conducted experiments on four benchmarks
our model achieves an accuracy in culprit identification ranging
from 86.4% to 96%, representing a notable improvement of over 6%
compared to existing methods. Furthermore, our approach reduces
training time by 5.6 times compared to similar works. Additionally,
leveraging critical path analysis results in a 58.33% enhancement
in culprit identification speed. Looking ahead, we aim to refine our
methodology through additional experiments aimed at broadening
its applicability and improving detection capabilities.
The scripts of our model are accessible via the following link:
https://anonymous.4open.science/r/ICPE2024-4281/v2.py.

REFERENCES
[1] Brian Eaton, Jeff Stewart, Jon Tedesco, andN. Cihan Tas. 2022. Distributed Latency

Profiling through Critical Path Tracing: CPT can provide actionable and precise
latency analysis. Queue 20, 1 (mar 2022), 40–79. https://doi.org/10.1145/3526967

[2] Catherine Forbes, Merran Evans, Nicholas Hastings, and Brian Peacock. 2011.
Statistical distributions. John Wiley & Sons.

[3] Cyril Goutte and Eric Gaussier. 2005. A probabilistic interpretation of precision,
recall and F-score, with implication for evaluation. In European conference on
information retrieval. Springer, 345–359.

[4] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[5] Ahmed Hassan and Tamilselvan Arjunan. 2024. A Comparative Study of Deep
Neural Networks and Support Vector Machines for Unsupervised Anomaly De-
tection in Cloud Computing Environments. Quarterly Journal of Emerging Tech-
nologies and Innovations 9, 1 (2024), 15–24.

[6] Pooyan Jamshidi, Claus Pahl, Nabor C Mendonça, James Lewis, and Stefan Tilkov.
2018. Microservices: The journey so far and challenges ahead. IEEE Software 35,
3 (2018), 24–35.

[7] Iman Kohyarnejadfard, Daniel Aloise, Michel R Dagenais, and Mahsa Shakeri.
2021. A framework for detecting system performance anomalies using tracing
data analysis. Entropy 23, 8 (2021), 1011.

[8] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R Lyu. 2023.
Eadro: An End-to-End Troubleshooting Framework for Microservices on Multi-
source Data. arXiv preprint arXiv:2302.05092 (2023).

[9] Richard Li, Min Du, Zheng Wang, Hyunseok Chang, Sarit Mukherjee, and Eric
Eide. 2022. LongTale: Toward Automatic Performance Anomaly Explanation in
Microservices. In Proceedings of the 2022 ACM/SPEC on International Conference
on Performance Engineering. 5–16.

[10] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang,
Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, et al. 2021. Practical root cause
localization for microservice systems via trace analysis. In 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS). IEEE, 1–10.

[11] JinJin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint per-
formance issues with causal graphs in micro-service environments. In Service-
Oriented Computing: 16th International Conference, ICSOC 2018, Hangzhou, China,
November 12-15, 2018, Proceedings 16. Springer, 3–20.

[12] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang,
Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, et al. 2020. Unsupervised
detection of microservice trace anomalies through service-level deep bayesian
networks. In 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 48–58.

[13] Mahsa Panahandeh, Abdelwahab Hamou-Lhadj, Mohammad Hamdaqa, and
James Miller. 2024. ServiceAnomaly: An anomaly detection approach in mi-
croservices using distributed traces and profiling metrics. Journal of Systems and
Software 209 (2024), 111917.

[14] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Ravis-
hankar K Iyer. 2020. {FIRM}: An intelligent fine-grained resource management
framework for {SLO-Oriented} microservices. In 14th USENIX symposium on
operating systems design and implementation (OSDI 20). 805–825.

[15] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Rav-
ishankar K. Iyer. 2020. Pre-processed Tracing Data for Popular Microservice
Benchmarks. https://doi.org/10.13012/B2IDB-6738796_V1

[16] Gagan Somashekar, Anurag Dutt, Rohith Vaddavalli, Sai Bhargav Varanasi, and
Anshul Gandhi. 2022. B-MEG: Bottlenecked-microservices extraction using graph
neural networks. In Companion of the 2022 ACM/SPEC International Conference
on Performance Engineering. 7–11.

[17] G Somashekar, A Suresh, S Tyagi, V Dhyani, K Donkada, A Pradhan, and A
Gandhi. 2022. Reducing the Tail Latency of Microservices Applications via Opti-
mal Configuration Tuning. In 2022 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS). IEEE, 111–120.

[18] Guangba Yu, Zicheng Huang, and Pengfei Chen. 2023. TraceRank: Abnormal
service localization with dis-aggregated end-to-end tracing data in cloud native
systems. Journal of Software: Evolution and Process 35, 10 (2023), e2413.

[19] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and
Chuan He. 2019. Latent error prediction and fault localization for microservice
applications by learning from system trace logs. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 683–694.

[20] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun
Zhao. 2018. Benchmarking microservice systems for software engineering re-
search. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings. 323–324.

66

https://doi.org/10.1145/3526967
https://doi.org/10.13012/B2IDB-6738796_V1

Network Analysis of Microservices: A Case Study on Alibaba
Production Clusters

Ghazal Khodabandeh
Brock University

St. Catharines, Ontario, Canada
gkhodobandeh@brocku.ca

Alireza Ezaz
Brock University

St. Catharines, Ontario, Canada
sezaz@brocku.ca

Naser Ezzati-Jivan
Brock University

St. Catharines, Ontario, Canada
nezzatijivan@brocku.ca

ABSTRACT
Having an observation of the microservices connections complexi-
ties within a service is essential for system management and opti-
mization. In this study, we analyzed a dataset of microservice traces
from Alibaba’s production clusters, segmenting call graphs based
on services. Using a community detection model, we uncovered the
connections between microservices within each service by finding
collaborative patterns and dependencies. Expanding our analysis,
we identified similarities among service graphs using clustering
techniques. These findings provide detailed insights for system op-
timization and decision-making, offering a roadmap for using the
constructed runtime microservices network behavior to improve
overall system efficiency and performance.

CCS CONCEPTS
• Computing methodologies → Classification and regression
trees; • Applied computing → Service-oriented architectures.

KEYWORDS
Service, Microservice, Community Detection, Graph.
ACM Reference Format:
Ghazal Khodabandeh, Alireza Ezaz, and Naser Ezzati-Jivan. 2024. Network
Analysis of Microservices: A Case Study on Alibaba Production Clusters . In
Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3629527.3651842

1 INTRODUCTION
On the topic of microservices architecture, challenges come from
the relationships microservices and services have with each other.
A service is a self-contained unit of functionality within a software
system. Microservices inside a service have relations with each
other to make that service function. Also, services can communicate
with each other through well-defined interfaces. This will cause
complexities in deployment, scaling, and monitoring in a multi-
service framework. Each microservice has distinct functions for
user handling, business logic, and backend operations. This format
of application is different andmore complicated than the monolithic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3651842

application architecture[2]. To address these challenges we should
have a deep and wide insight into this kind of system.

Despite extensive research on microservices [2, 7, 11], the appli-
cation of social network analysis in large-scale industrial settings is
uncommon. This oversight is significant in environments needing
detailed analysis of microservices interactions. Our study addresses
this gap by exploring these interactions within a major industrial
context, aiming to enhance system performance and reliability
through novel insights and methodologies.

To highlight the dynamics within microservices relationships,
our study relies on a dataset containing over 260 million records of
call requests across twenty thousand distinct microservices. Col-
lected from Alibaba’s production clusters within a one-hour time
frame1, these records span a network of ten thousand bare-metal
nodes [9]. This dataset serves as raw data for our study to find the
relations of microservices categorization within individual services
and extracting similarities between service’s call graphs.

Our theoretical framework draws on social network analysis
(SNA) to examine microservices architectures, utilizing methods
to analyze relationships among interacting units and understand
the complex web of service interactions. By employing community
detection algorithms, and graph similarity techniques, we identify
closely interconnected groups of microservices and categorize the
relationships between different services. This approach allows us
to uncover patterns of collaboration and dependency within mi-
croservices networks, offering insights into system optimization
and performance enhancement in industrial contexts.

The main contribution of this paper is the application of social
network analysis techniques to analyze the complex interactions
within microservices architectures at an industrial scale. We employ
community detection algorithms and graph similarity measures
to reveal patterns of microservice interconnections. This method
enhances our understanding of microservices dynamics, offering a
framework for improving system design, performance, and fault
tolerance. Our research provides actionable insights for system
managers and developers, aiming to improve software architectures’
resilience and efficiency in real-world applications.

2 RELATEDWORKS AND BACKGROUND
Exploring the architecture of services and microservices, along with
discovering patterns and new observations, can help in different
aspects of system application. Studies [3, 10] have explored the
structural complexities of microservices, employing graph-based
techniques to map the complex web of service interactions. Gaidels
et al. [6] emphasizes the significance of employing graph-based

1https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-
v2022

67

https://orcid.org/0009-0001-4587-1876
https://orcid.org/0009-0001-4156-2750
https://orcid.org/0000-0003-1435-6297
https://doi.org/10.1145/3629527.3651842
https://doi.org/10.1145/3629527.3651842
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Ghazal Khodabandeh, Alireza Ezaz, and Naser Ezzati-Jivan.

techniques in system analysis. Similarly, S. Luo’s examination of the
same dataset [8] indicates that identifying similarities within service
call graphs can offer valuable insights into the characterization of
microservice dependencies and their runtime performance.

These investigations underscore the potential of network analy-
sis in identifying performance bottlenecks and optimizing service
orchestration. Furthermore, study [5] highlights the significance of
community detection in uncovering latent patterns within microser-
vices networks, suggesting that such methodologies can facilitate a
deeper understanding of service dependencies and interactions.

Community detection, a fundamental challenge in network anal-
ysis, involves categorizing nodes into distinct groups based on
connections, typically focusing on structural aspects [4]. The Lou-
vain method is an algorithm for identifying aggregate connected
groups of nodes within a graph. Its primary strength lies in its
ability to reveal the underlying modular structure within a net-
work, emphasizing that nodes within the same module share more
connections with each other than with nodes outside the module.

Building upon these foundations, our research introduces a novel
approach by integrating community detection with clustering algo-
rithms to analyze microservices at an industrial scale. Our study
leverages the Louvain method for community detection and the
K-means algorithm for clustering, aiming to provide actionable
insights into microservices categorization and the optimization of
service call graphs.

Figure 1: Our system design diagram

3 METHODOLOGY
In this section, we explain our methodology, outlined through three
sequential steps as depicted in Figure 1. The main idea is to analyze
the relationships among microservices within a singular service
architecture by applying the community detection methods as well
as analysing the similarities by clustering service graphs, which is
the graphs of the microservices inside a unique service.

We start this process by making an accurate dataset for our
methodology. This initial phase involves the gathering and prepa-
ration of data, ensuring its preparation and conducting subsequent
analysis. In the second step, we apply a community detection al-
gorithm to the prepared data. This critical phase plays a key role
in categorizing each microservice within a given service into its
designated community class, exposing the interconnections. The
algorithm identifies patterns and relationships, providing a struc-
tured framework for understanding the complexweb of associations
among microservices.

In the last step, we apply a method that involves an examination
of similarities within various service graphs. To find these simi-
larities, we use a clustering method on different service graphs to
group them. By analyzing these clusters, we gain insights into the
dynamics of different services. Having the results of the second
and third steps together can give us an internal observation of the
whole system.

3.1 Network Construction
In the present investigation, the Alibaba production clusters data
was employed; however, it is necessary to apply preprocessing to
construct the network we needed for the rest of our methodology.
Our investigation centered on a 1-hour snapshot of this dataset,
consisting of over 260 million records and involving more than
28,000 microservices. As depicted in Figure1, this stage includes
three sub-steps: preprocessing, filtering, and generating call graphs.
Within this phase, the raw data serves as input, and the resulting
output consists of graph datasets suitable for the application of
community detection and graph similarity methods.

In the preprocessing step, we reduced the unnecessary attributes
in the raw data and kept just three columns, focusing on the specific
data points crucial for our analysis. We will do this reduction due
to the efficiency we will gain from our method with this modified
dataset as it would make the methods functioning faster and eas-
ier. The resulting dataset included ’um’ and ’dm’ representing the
’upper microservice’ and ’down-stream microservice’ in the call
request, serving as the foundation for constructing call graph nodes
and edges. The ’service’ attribute was also retained, providing valu-
able information for generating the call graph of each service. Rows
containing attributes with unacceptable values were omitted.

Following the preprocessing phase, we organize datasets for each
service independently by implementing data filtering based on the
’service’ attribute. Considering the vast size of our dataset, we opted
to focus on a representative sample of all services. As services with a
higher number of call requests have a more complex and interesting
call graph, we applied a filter to include only service call graphs
with a minimum of 50 call requests and randomly selected 300 of
them for further analysis.

Following the filtering step, we obtained 300 dataframes, each
representing a call graph for a unique service. Within these service
datasets, individual rows contain the names of two microservices,
with one calling the other on a specific service. Each microservice
is treated as a node in the call graph, and if two nodes are present
in a single row, a connection is established, resulting in an edge
between the corresponding microservice nodes in the call graph.
These output datasets facilitate an analysis of the interconnections
and dependencies within each service.

3.2 Community Detection
Utilizing the provided call graph dataset, the subsequent step in-
volves creating community classes and assigning each microservice
of a service to the appropriate community class. Community detec-
tion methods are mainly designed to recognize groups or commu-
nities within a network, focusing on the patterns of connections
between nodes. In our case, the goal is to demonstrate the rela-
tionships between nodes based on their services, we applied the

68

Network Analysis of Microservices: A Case Study on Alibaba Production Clusters ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 2: Community classes on a service call graph

community detection method to each service dataset. This process
facilitated the identification and categorization of microservices
into distinct community classes.

As shown in Table 1, different community detection methods
were available for application. To identify the most suitable ap-
proach for our dataset, we conducted an evaluation using a sam-
ple exceeding 13 million records from the main dataset. The four
methods employed for evaluation included the Greedy Modularity
method, the Louvain method, the Info-map method, and the Label-
propagation method. The assessment was based on key metrics,
namely the Coverage, Modularity score, and Silhouette score. Cov-
erage measures the comprehensiveness of community detection
methods. In this study, all of the chosen methods have a coverage
metric of 1. Modularity score measures the quality of identified com-
munity structure. The Silhouette Score, on the other hand, evaluates
the cohesion and separation of clusters. These metrics collectively
enable an evaluation of the efficacy and quality of community de-
tection algorithms in network analysis. The detailed results of this
evaluation are presented in Table 1.

Methods Silhouette Score Modularity Score
Greedy Modularity 0.65 0.60
Louvain 0.71 0.67
Info-map 0.58 0.61
Label-propagation 0.63 0.58

Table 1: Evaluation scores for different methods.

As evident in Table 1, the Louvain method has a better perfor-
mance compared to the other methods under consideration. The
Louvain method serves as a robust technique for detecting commu-
nities or clusters in complex networks. Its primary goal is revealing
the underlying modular structure within a network, emphasizing
that nodes within the same module share more connections with
each other than with nodes outside the module. As microservices
architectures often involve numerous interconnected components,
the Louvain method’s scalability becomes crucial in handling large-
scale networks. Recognized as an enhanced version of the Greedy
Modularity algorithm, the Louvain method utilizes a random seed
as the foundation for its calculations. To ensure consistent results
across different code iterations, we opted to fix the random seed
value. To determine the optimal random seed, we systematically
varied the seed value from 0 to 1000, selecting the value that yielded

the highest Modularity score based on our evaluation criteria. This
approach ensured stability and reliability in our community detec-
tion results.

To achieve the final results, we applied the Louvain algorithm
to the refined dataset obtained in the previous step. The output
consists of community classes for each service graph, and Figure
2 displays graphical representations for one selected service call
graph. In this plot, nodes represent microservices, and the color
of each node signifies its assigned community class. In this pic-
ture, nodes in close proximity often share the same community
class, reflecting the method’s ability to capture patterns in net-
work connections. The color-coded representation facilitates the
clear identification of distinct community classes within each ser-
vice graph. Furthermore, the number of callings between nodes
emerges as an essential factor influencing node assignments, pro-
viding insights into complex network dynamics and inter-service
dependencies captured by the Louvain method.

3.3 Graph Similarity
Building on the previous steps about how microservices relate
to each other inside a service, exploring similar service graphs
can provide another viewpoint into the entire system. We applied
the K-means method to a bunch of service datasets to pinpoint
service graphs with similar characteristics. The K-means algorithm
uses distinctive features from each graph and then organizes them
into ’k’ clusters based on these features. This approach helps the
categorization of service graphs, providing a deep understanding of
the system’s diverse patterns and structures. K-Means can handle
large datasets and is computationally efficient, making it scalable for
systems with a significant number of services. Also, microservices
communication patterns may not follow a strict shape, and K-Means
can be robust in identifying clusters with irregular shapes. So, in
general, this method brings us well to our intended goals for this
study.

Within this study, our approach involves clustering graphs based
on their structure. Specifically, we extract nodes and edges from
each graph, considering them as features important for the clus-
tering process. An additional challenge is in determining the most
suitable value for ’k’ in this dataset. To address this, we employed
the Elbow method [1], which involves testing various values of ’k’
within the K-meansmethod and plotting the distribution. Analyzing
the plot obtained from the Elbow method, we identified a distinct
bend or "elbow," and based on this observation, we determined that
setting ’k’ to 5 yielded optimal results for our dataset.

Following the execution of K-means on the dataset, we obtained
5 clusters, each including a certain number of graphs. Due to space
constraints, we present four out of the five clusters identified in
our analysis in Figure 3. To assess the effectiveness of this method,
we utilized the Silhouette score. The Silhouette score obtained for
our method was 0.6141, indicating a desirable performance for this
type of clustering.

As the conclusion of our efforts, the final results yield a series of
graphs, providing enhanced insights into the diverse services within
the system and their respective structures. In Figure 3, services are
organized into distinct clusters based on their overall structure. As
a sample, graphs ’3a’ and ’3b’ form one cluster, ’3c’ and ’3d’ another,

69

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Ghazal Khodabandeh, Alireza Ezaz, and Naser Ezzati-Jivan.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Similarity Clusters on Service Graphs

’3e’ and ’3f’ a third, and ’3g’ and ’3h’ constitute a fourth cluster.
This analysis contributes to a deeper understanding of the actual
runtime configurations present in the system’s services. The source
codes of the implementations are available from our anonymized
GitHub repository 2.

4 DISCUSSION
Upon applying community detection to the randomly selected 300
services, we observed instances where certain services contained
only two microservices. In these cases, both microservices would
be assigned to the same community class. However, as the service
graph complexity increased, there would be more microservices
and community classes, and finding a strong connection among
microservices within the same class would be worth more. As you
can observe in Figure 3, more complex graphs, will cause a height-
ened frequency of calls and more direct communication between
microservices within a class. By identifying these relationships, we
can pinpoint areas of latency or bottlenecks in the system. In case
of issues, detecting the faulty microservice and its collaborators
becomes more feasible. Additionally, this knowledge enables ef-
fective isolation of issues, preventing them from affecting other
parts of the system. A clear understanding of how different mi-
croservices interact during development and debugging is essential.
Developers require insights into data flow, dependencies, and com-
munication protocols between microservices to write effective code
and troubleshoot efficiently.

In this study, we pursued the identification of similar service
graphs based on their microservice connections. This approach
provides several advantages for system management and decision-
making. One such benefit is evident in resource allocation and
2https://github.com/ghazalkhb/ICPE2024_DataChallenge

scaling, where similar services often exhibit comparable patterns in
resource usage and demand. Efficient resource allocation becomes
possible by recognizing these similarities. Performance benchmark-
ing is another advantage, allowing for comparisons of microservice
relations and performance metrics among similar services. This
benchmarking process helps us continually improve and make ser-
vices work better in the whole system. Importantly, this perspective
enhances decision-making by highlighting the similarities among
services, playing a critical role in strategic considerations for the
system’s development.

5 CONCLUSIONS AND FUTUREWORK
We conducted an analysis of the relationships and communications
among microservices within a service, as well as the similarities
between different services. This achievement was realized through
the application of community detection on microservices within
a service, followed by clustering the resulting service graphs. The
outcomes of this investigation provide numerous advantages for
system performance and management.

While the current study focused on existing attributes, the inclu-
sion of additional attributes for each node or service could further
enhance our insights. Future works could involve incorporating
response times for each connection, offering a more delicate un-
derstanding of the system’s dynamics. Furthermore, scaling up
the study to a larger dataset would provide a broader observa-
tion of system functionality. Another avenue for exploration is the
examination of additional methods for community detection and
clustering algorithms or even the combination of multiple methods.
Integrating machine learning techniques to predict future dynamic
network behaviors and community formations represents another
promising direction.

70

https://github.com/ghazalkhb/ICPE2024_DataChallenge

Network Analysis of Microservices: A Case Study on Alibaba Production Clusters ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Purnima Bholowalia andArvind Kumar. 2014. EBK-means: A clustering technique

based on elbow method and k-means in WSN. International Journal of Computer
Applications 105, 9 (2014).

[2] Grzegorz Blinowski, Anna Ojdowska, and Adam Przybyłek. 2022. Monolithic
vs. Microservice Architecture: A Performance and Scalability Evaluation. IEEE
Access 10 (2022), 20357–20374. https://doi.org/10.1109/ACCESS.2022.3152803

[3] Álvaro Brandón, Marc Solé, Alberto Huélamo, David Solans, María S Pérez,
and Victor Muntés-Mulero. 2020. Graph-based root cause analysis for service-
oriented and microservice architectures. Journal of Systems and Software 159
(2020), 110432.

[4] Petr Chunaev. 2020. Community detection in node-attributed social networks: a
survey. Computer Science Review 37 (2020), 100286.

[5] Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Xiaomin
Wu, Meng Zhang, Qingjun Chen, Xin Gao, Xuedong Gao, et al. 2023. Trace-
Diag: Adaptive, Interpretable, and Efficient Root Cause Analysis on Large-Scale
Microservice Systems. In Proceedings of the 31st ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering.
1762–1773.

[6] Edgars Gaidels and Marite Kirikova. 2020. Service dependency graph analysis
in microservice architecture. In Perspectives in Business Informatics Research:

19th International Conference on Business Informatics Research, BIR 2020, Vienna,
Austria, September 21–23, 2020, Proceedings 19. Springer, 128–139.

[7] Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang, Zhihao Shan,
Jinfeng Shen, and Muhammad Ali Babar. 2021. Understanding and addressing
quality attributes of microservices architecture: A Systematic literature review.
Information and Software Technology 131 (2021), 106449. https://doi.org/10.1016/
j.infsof.2020.106449

[8] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing microservice de-
pendency and performance: Alibaba trace analysis. In Proceedings of the ACM
Symposium on Cloud Computing. 412–426.

[9] Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Guodong Yang,
and Chengzhong Xu. 2022. The power of prediction: microservice auto scaling
via workload learning. In Proceedings of the 13th Symposium on Cloud Computing
(San Francisco, California) (SoCC ’22). Association for Computing Machinery,
New York, NY, USA, 355–369. https://doi.org/10.1145/3542929.3563477

[10] Vinay Raj and Ravichandra Sadam. 2021. Evaluation of SOA-based web services
and microservices architecture using complexity metrics. SN Computer Science 2
(2021), 1–10.

[11] Victor Velepucha and Pamela Flores. 2023. A survey onmicroservices architecture:
Principles, patterns and migration challenges. IEEE Access (2023).

71

https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/10.1145/3542929.3563477

Unveiling Temporal Performance Deviation: Leveraging
Clustering in Microservices Performance Analysis
André Bauer

University of Chicago
Chicago, United States

Timo Dittus
University of Würzburg
Würzburg, Germany

Martin Straesser
University of Würzburg
Würzburg, Germany

Alok Kamatar
University of Chicago
Chicago, United States

Matt Baughman
University of Chicago
Chicago, United States

Lukas Beierlieb
University of Würzburg
Würzburg, Germany

Marius Hadry
University of Würzburg
Würzburg, Germany

Daniel Grillmeyer
University of Würzburg
Würzburg, Germany

Yannik Lubas
University of Würzburg
Würzburg, Germany

Samuel Kounev
University of Würzburg
Würzburg, Germany

Ian Foster
Argonne National Laboratory

Lemont, United States

Kyle Chard
University of Chicago
Chicago, United States

ABSTRACT
As the market for cloud computing continues to grow, an increasing
number of users are deploying applications as microservices. The
shift introduces unique challenges in identifying and addressing
performance issues, particularly within large and complex infras-
tructures. To address this challenge, we propose a methodology
that unveils temporal performance deviations in microservices by
clustering containers based on their performance characteristics
at different time intervals. Showcasing our methodology on the
Alibaba dataset, we found both stable and dynamic performance pat-
terns, providing a valuable tool for enhancing overall performance
and reliability in modern application landscapes.

CCS CONCEPTS
• General and reference → Performance; Measurement.

KEYWORDS
Temporal Analysis, Clustering, Performance Analysis, Performance
Deviation, Microservices, Data Challenge
ACM Reference Format:
André Bauer, Timo Dittus, Martin Straesser, Alok Kamatar, Matt Baughman,
Lukas Beierlieb, Marius Hadry, Daniel Grillmeyer, Yannik Lubas, Samuel
Kounev, Ian Foster, and Kyle Chard. 2024. Unveiling Temporal Performance
Deviation: Leveraging Clustering in Microservices Performance Analysis. In
Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3629527.3651843

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651843

1 INTRODUCTION
As enterprises increasingly transform their applications into mi-
croservices and deploy them in cloud environments [3], the or-
chestration of hundreds of these microservices becomes crucial in
shaping the performance and reliability of applications. The com-
plexity of this endeavor is illustrated, for example, by Alibaba’s
production infrastructure, which contains more than 28,000 mi-
croservices and 400,000 containers [6]. Consequently, managing
such a large number of microservices and containers is a major
challenge, particularly when potential performance degradations
or failures should be detected. In this context, fine-grained perfor-
mance analysis and monitoring becomes a daunting task.

To facilitate the performance monitoring of microservices, we
propose a methodology to reveal the temporal performance devia-
tions of microservices. The overarching concept involves clustering
microservice containers according to their performance attributes at
different time periods. By analyzing these temporal clusters, we can
pinpoint deviations in performance behavior. In other words, over
time, microservice containers1 may shift between clusters, enabling
the identification of containers that exhibit notable performance
deviations. For example, if a certain percentage of microservice
containers exhibit such variations, this could be the trigger to in-
vestigate why that particular microservice is behaving differently,
ultimately helping to ensure the overall performance and reliability
of the system. With the temporal dimension, these insights could
be mapped to possible root causes (e.g., abnormal user behavior at
runtime or an application update that degraded the performance).

We utilized the Alibaba dataset [6], which contains runtime in-
formation of microservices and the underlying hardware, to gain
valuable insights and showcase our methodology. Our investiga-
tion2 showed that the performance of some microservices remains
stable the whole time, while others change their performance sig-
nificantly.

1A container serves as an instance of a microservice.
2The analysis is available at CodeOcean https://doi.org/10.24433/CO.6129510.v1.

72

https://doi.org/10.1145/3629527.3651843
https://doi.org/10.1145/3629527.3651843
https://doi.org/10.24433/CO.6129510.v1

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom André Bauer et al.

The remainder of this paper is structured as follows: In Section 2,
we provide information on the analyzed dataset, clustering, and
related work. In Section 3, we present our methodology. In Section 4,
we investigate the dataset and the performance of our methods. In
Section 5, we conclude the paper.

2 BACKGROUND
2.1 Dataset Description
Luo et al. [6] released the Alibaba dataset used in this paper. The
dataset includes detailed runtime metrics derived from microser-
vices operating in Alibaba’s production infrastructure. Collected
over 13 days in 2022 from the Alibaba Cloud, these traces are cat-
egorized into four parts: Node, which captures bare-metal node
runtime information; MSResource, responsible for documenting
CPU and memory utilization of containers from different microser-
vices; MSRTMCR, providing details on microservice call rate and
response time; and MSCallGraph, encompassing call graphs among
microservices across multiple clusters. The dataset covers over
400,000 bare-metal nodes, 28,000 microservices, and 470,000 con-
tainers. Our approach specifically concentrates on the information
gathered by MSResource.

2.2 K-Means & Silhouette Coefficient
K-means [5, 7] is a clustering algorithm used in machine learning
and data analysis. It aims to partition a dataset into 𝑘 distinct,
non-overlapping subgroups (clusters) based on the similarity of
data points. The algorithm iteratively assigns each data point to
the cluster with the nearest centroid (i.e., geometric center) and
updates the centroids accordingly. One challenge in k-means is
determining the optimal number of clusters 𝑘 for a given dataset.

The silhouette coefficient is a metric that quantifies how well-
separated the clusters are. Essentially, it measures the similarity of
an object to its own cluster (cohesion) as opposed to other clusters
(separation). It ranges from -1 to 1, with higher values indicating
better-defined clusters. A silhouette coefficient close to 1 suggests
that data points within a cluster are more similar to each other than
to those in other clusters. This metric is valuable for assessing the
quality of clustering results and guiding the choice of an optimal
number of clusters in the k-means algorithm.

2.3 Other Applied Methods
Principal Component Analysis (PCA) [8] is a dimensionality reduc-
tion technique. The primary goal of PCA is to transform high-
dimensional data into a lower-dimensional representation, cap-
turing the most significant variations in the original dataset. It
identifies the principal components, orthogonal axes along which
the data exhibits maximum variance.

A Decision Tree [2] is an intuitive and powerful tool in machine
learning and data analysis commonly employed for classification
and regression tasks. These hierarchical structures recursively split
the dataset into subsets based on the most informative features,
resulting in a tree-like model of decisions. The tree evaluates a spe-
cific feature at each internal node, choosing the split that optimally
separates the data. The process continues until the creation of leaf
nodes, each representing a distinct class or a numerical value.

2.4 Related Work
To the best of our knowledge, there are few publicly accessible trace
datasets from production systems made available and investigated.
For instance, Azure explored and released a serverless dataset con-
taining function invocation and execution times in 2019 [9]. In a
more recent study, Azure presented a similar dataset [10]. A further
example is the dataset utilized in this paper, released by Alibaba [6],
containing runtime metrics of microservices. In another study [1],
a scientific serverless dataset was investigated and released, en-
compassing function invocations, characteristics of functions, and
function execution times. Meta also released and investigated a
dataset [4], containing topology and call information of their mi-
croservices. In contrast to these works, we do not release a dataset
but utilize the aforementioned Alibaba dataset to explore the tem-
poral behavior deviation of the microservices.

3 APPROACH
3.1 High-Level Idea
To examine the temporal performance deviation of microservices,
we partition the Alibaba dataset into discrete time intervals. Within
each dataset segment, we capture the performance attributes of
individual microservice containers, enabling comparison across
distinct time periods. Please note that the dataset comprises diverse
microservices, each implemented with various deployed containers.
To accomplish this, we employ clustering and compute an initial
cluster based on the first temporal segment. We then assign each
microservice container to a cluster based on its performance charac-
teristics. Subsequently, for each segment, we reassign microservices
containers to clusters. This methodology enables identification of
microservices whose containers exhibit significant performance
deviations, as reflected by switching clusters. For our comparative
analysis (see Section 4), we have chosen a time interval of one hour,
thus dividing the Alibaba dataset into hourly segments. However,
it is important to note that this interval can be adjusted as needed
to offer a more refined or broader resolution.

3.2 Performance Characteristics Extraction
To cluster the different microservices containers, information from
each time interval has to be extracted. Within a given dataset seg-
ment, we identify all containers operating during this specific time
frame. Subsequently, for each container, we collect CPU and mem-
ory utilization data, as well as the normalized runtime (i.e., the
actual runtime within this interval divided by the length of the inter-
val). The CPU and memory utilization data are then aggregated into
statistical summaries, including the mean, standard deviation, and
quartiles (minimum, 25th percentile, median, 75th percentile, and
maximum). Finally, these aggregated performance metrics, along
with the runtime information, are utilized for the clustering.

3.3 Performance Clustering
To cluster the containers from microservices according to their per-
formance characteristics, we employ the k-means algorithm and the
elbowmethod to determine the optimal number𝑘 of clusters. Specif-
ically, we applied clustering for 𝑘 ∈ {2, 3, . . . , 10}∪ {25, 50, 100} and

73

Unveiling Temporal Performance Deviation: Leveraging Clustering in Microservices Performance Analysis ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

utilized the silhouette coefficient to determine the optimal value
for 𝑘 which is 5.

Figure 1 illustrates the decision-making process of k-means. The
depicted decision tree is truncated and is, therefore, only an approx-
imation of the clustering. For instance, all microservice containers
with a mean memory utilization of less than 0.29 were grouped
into Cluster 3. Another illustration is Cluster 1, encompassing mi-
croservice containers with a mean memory utilization greater than
or equal to 0.29 but less than 0.54 and a mean CPU utilization less
than 0.31. The rules for the remaining clusters are more intricate.
Please note that the presented values are derived from the hourly
aggregation. Specifically, the initial split in the decision tree checks
whether a microservice container encountered an average memory
consumption higher than 0.54 during the hour.

 < 0.54

 >= 0.29

 < 0.31

 >= 0.71

 < 0.28

 >= 0.72

 >= 0.093

 < 0.25

 >= 0.7

 >= 0.15

 >= 0.54

 < 0.29

 >= 0.31

 < 0.71

 >= 0.28

 < 0.72

 < 0.093

 >= 0.25

 < 0.7

 < 0.15

Mem_Mean

Mem_Mean

CPU_Mean

1 4 3

Mem_Mean

CPU_Mean

Mem_Medi

0

CPU_Mean

0 2 4

CPU_Mean

Mem_Mean

CPU_Mean

0 2 2 4

Figure 1: Explanation of the clustering.

3.4 Possible Extensions and Discussion
Our methodology is designed to work on the CPU and memory
utilization to keep the approach generic—that is, supporting any
application. To tailor it to a specific use case, one could incorporate
application-level information such as the read/write rate to/from a
database, the length of the queue, the number of active threads, etc.
Please remember that values must be normalized between 0 and 1
to ensure that the value range of each feature for the clustering is
equal. Of course, the aggregation time can be set to any arbitrary
time to offer a more refined or broader resolution and does not have
to be exactly one hour. Additionally, our initial findings indicate
that k-means outperformed hierarchical and density-based cluster-
ing methods on the Alibaba dataset. However, it is important to
acknowledge that the effectiveness of these clustering algorithms
may vary depending on the dataset or input being utilized.

4 EXPLORATION OF THE DATASET
4.1 Data Selection
Given the extensive size of the dataset, we carefully chose different
points in time from the first, second, and final days to thoroughly

examine microservices’ performance deviation. In detail, our anal-
ysis encompassed the first hour of the first day (denoted as d0h0
to match Alibaba’s syntax). Subsequently, we investigated the sec-
ond hour to capture immediate changes (referred to as d0h1). For
a greater temporal span, we delved into the 13th hour (referred
to as d0h12) to assess performance half a day later. Additionally,
we examined the first hour of the second day to compare perfor-
mance a full day later (named as d1h0). Finally, we extended the
investigation to the last hour of the last available day (labeled as
d?h23).

Although the dataset covers 13 days, the download script pro-
vided by Alibaba aborts after the dataset part with the number 1008.
Considering the file naming convention, the file corresponds to the
last hour of day 3. However, upon inspecting the timestamps of
the last downloaded file, they fall within the final hour of day 21.
In essence, we lack clarity on the date to which this file pertains.
Consequently, we assign the label d?h23 to denote the uncertainty
regarding the date.

Table 1: Overview of the number of microservices and their
containers at selected points in time.

d0h0 d0h1 d0h12 d1h0 d?h23

#unique MS 28,164 28,167 28,173 28,013 27,707
#MS containers 467,822 467,004 472,320 480,646 447,353

An overview of the number of individual microservices and the
total number of containers at the selected points in time is listed in
Table 1. The quantity of unique microservices and their containers
fluctuates between different time points. For example, comparing
d0h0 and d?h23, the dataset reveals a decrease of 457 microservices
and 20,469 containers. Moreover, the number of shared unique mi-
croservices (see Table 2) stands at 28,161, 28,143, 27,834, and 27,650
between d0h0 and d0h1, d0h0 and d0h12, and so forth, respectively.

4.2 Clustering the Dataset
To assess the effectiveness of the microservice clustering, we ana-
lyzed all 28,164 microservices, examining the distribution of their
containers across clusters. Notably, 22,873 microservices demon-
strated a homogeneous distribution, with all containers residing
within a single cluster, while 5,291 exhibited a distribution across
multiple clusters.

In addition to quantitative analysis, we employed visualizations
to evaluate the clustering quality of microservice containers. Em-
ploying PCA to reduce the dimensionality, we plotted the clustered
containers on two principal axes, as depicted in Figure 2. This
approach revealed five distinct areas, each representing a cluster.
While most microservice containers aligned with their respective
clusters, a few outliers were observed, such as the three blue dots
in the golden area. Overall, we are confident in the clustering’s abil-
ity to distinguish and classify various microservices’ performance
behavior accurately.

4.3 Temporal Performance Deviation
To investigate the temporal performance deviation of the microser-
vices, we compare the shift of microservice containers between

74

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom André Bauer et al.

0

1

−1 0 1
PCA Component 2

P
C

A
 C

om
po

ne
nt

 3 Cluster

0

1

2

3

4

Figure 2: Visualization of the clustering.

clusters over the selected periods in time. To this end, we only
consider containers that exist across all periods in time.

4

3

2

1

0

4
3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

d0h0 d0h1 d0h12 d1h0 d?h23

Cluster

0

1

2

3

4

Figure 3: Visualization of the temporal performance devia-
tion through the shift of microservices between clusters over
time. The color of each flow represents the initial cluster.

We start with a visual assessment in Figure 3, where the color of
the flows represents the cluster the microservice containers origi-
nate from—that is, from the initial cluster derived from d0h0. Over
time, a noticeable evolution occurs in the number of containers
within each cluster, as illustrated by the varying heights of boxes la-
beled with their respective cluster IDs. The most substantial change
is observed in Cluster 4. While the container count remains rela-
tively stable (50,806, 57,486, 56,374) for d0h0, d1h0, and d?h23, it
undergoes a drastic reduction from d0h0 to d0h1 (28,908) and sub-
sequently quadruples from d0h1 to d0h12 (112,913). In contrast,
Cluster 3 exhibits the slightest deviation, with nearly all contain-
ers persisting within this cluster throughout the entire duration,
visually depicted by the blue flow, which almost has no forks. In

numerical terms, out of the initial 20,056 containers clustered into
Cluster 3, 18,101 containers remain within this cluster during the
selected time points. That is, these containers do not experience a
significant change in their temporal performance behavior.

In addition to the visual analysis, we employ a descriptive inves-
tigation listed in Table 2. Initially, we explore the diminishing count
of unique microservices and containers shared with the initial time
point (i.e., d0h0), indicating potential changes in the functionality
of Alibaba’s production infrastructure over time. At the same time,
the performance changes, evident in the decreasing number of mi-
croservices maintaining their cluster distribution, that is, containers
remaining in the same clusters across selected time points, with
percentages of 91%, 80%, 72%, and 71% from d0h1 to d?h23. The
change is further illustrated by the percentage of microservices
where all containers change their clusters, which stands at 1%, 4%,
8%, and 9%. When comparing pairwise performance deviations, the
most prevalent pairs, ranked by decreasing similarity, are (d0h0,
d0h1), (d0h0, d1h0), (d0h0, d?h23), and (d1h0, d?h23).

Table 2: Overview of the temporal performance deviation.
The clusters were derived based on d0h0, that is, Rows 3–7
are computed based on this initial clustering.

d0h1 d0h12 d1h0 d?h23

#shared MS with d0h0 28,160 28,132 27,537 27,132
#shared MS containers
with d0h0

466,745 465,422 428,036 404,762

#MS kept cluster distri-
bution

25,511 22,592 19,936 19,139

#MS containers stayed
in same cluster

432,408 365,330 345,957 326,242

#MS changed cluster dis-
tribution

2,649 5,540 7,601 7,993

#MS containers changed
cluster

34,337 100,092 82,079 78,520

#MS where all contain-
ers changed cluster

226 1,056 2,318 2,552

5 CONCLUSION
Our proposed methodology for monitoring the temporal perfor-
mance deviations of microservices offers a valuable solution to the
challenging task of managing large-scale microservice deployments.
This enables lightweight identification of containers with notable
performance variations, which can subsequently undergo in-depth
investigation through more intricate analyses to guarantee the over-
all performance and reliability of the system. We revealed stable
and dynamically changing performance patterns while applying
our methodology to the Alibaba dataset.

ACKNOWLEDGEMENT
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 510552229. This work was
partially supported by NSF 2004894 and Argonne National Labora-
tory under U.S. Department of Energy under Contract DE-AC02-
06CH11357.

75

Unveiling Temporal Performance Deviation: Leveraging Clustering in Microservices Performance Analysis ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] André Bauer, Haochen Pan, Ryan Chard, Yadu Babuji, Josh Bryan, Devesh Ti-

wari, Ian Foster, and Kyle Chard. 2024. The Globus Compute Dataset: An Open
Function-as-a-Service Dataset From the Edge to the Cloud. Future Generation
Computer Systems 153 (4 2024), 558–574. https://doi.org/10.1016/j.future.2023.12.
007

[2] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. 1984. Classifi-
cation and Regression Trees. Chapman and Hall/CRC.

[3] European Statistical Office (Eurostat). 2021. Cloud computing - statistics on
the use by enterprises. https://ec.europa.eu/eurostat/statistics-explained/index.
php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises Retrieved
October 13, 2022.

[4] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan. 2023. Lifting the veil onMeta’s
microservice architecture: Analyses of topology and request workflows. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). USENIX Association,
Boston, MA, 419–432. https://www.usenix.org/conference/atc23/presentation/
huye

[5] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[6] Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Guodong Yang,
and Chengzhong Xu. 2022. The Power of Prediction: Microservice Auto Scal-
ing via Workload Learning. In Proceedings of the ACM Symposium on Cloud
Computing.

[7] James MacQueen. 1967. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[8] Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin philosophical magazine and journal of
science 2, 11 (1901), 559–572.

[9] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference. USENIX Association, 205–218.

[10] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh El-
nikety, Christina Delimitrou, and Ricardo Bianchini. 2021. Faster and Cheaper
Serverless Computing on Harvested Resources. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Ger-
many) (SOSP ’21). Association for Computing Machinery, New York, NY, USA,
724–739. https://doi.org/10.1145/3477132.3483580

76

https://doi.org/10.1016/j.future.2023.12.007
https://doi.org/10.1016/j.future.2023.12.007
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises
https://www.usenix.org/conference/atc23/presentation/huye
https://www.usenix.org/conference/atc23/presentation/huye
https://doi.org/10.1145/3477132.3483580

Grammar-Based Anomaly Detection of Microservice Systems
Execution Traces

Andrea D’Angelo
andrea.dangelo6@graduate.univaq.it

DISIM Department
University of L’Aquila

L’Aquila, Italy

Giordano d’Aloisio
giordano.daloisio@graduate.univaq.it

DISIM Department
University of L’Aquila

L’Aquila, Italy

ABSTRACT
Microservice architectures are a widely adopted architectural pat-
tern for large-scale applications. Given the large adoption of these
systems, several works have been proposed to detect performance
anomalies starting from analysing the execution traces. However,
most of the proposed approaches rely on machine learning (ML) al-
gorithms to detect anomalies. While MLmethods may be effective in
detecting anomalies, the training and deployment of these systems
as been shown to be less efficient in terms of time, computational
resources, and energy required.

In this paper, we propose a novel approach based on Context-free
grammar for anomaly detection of microservice systems execution
traces. We employ the SAX encoding to transform execution traces
into strings. Then, we select strings encoding anomalies, and for
each possible anomaly, we build a Context-free grammar using the
Sequitur grammar induction algorithm. We test our approach on
two real-world datasets and compare it with a Logistic Regression
classifier. We show how our approach is more effective in terms of
training time of ∼15 seconds with a minimum loss in effectiveness
of ∼5% compared to the Logistic Regression baseline.

CCS CONCEPTS
• Software and its engineering → Software performance; For-
mal language definitions; •Theory of computation→Grammars
and context-free languages.

KEYWORDS
Anomaly Detection,Execution Traces,Context-free Grammar,Micro
Service System

ACM Reference Format:
Andrea D’Angelo and Giordano d’Aloisio. 2024. Grammar-Based Anomaly
Detection of Microservice Systems Execution Traces. In Companion of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
’24 Companion), May 7–11, 2024, London, United Kingdom. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3629527.3651844

1 INTRODUCTION
Microservice architecture is nowadays one of the most adopted
architectural patterns to develop large-scale systems (like Netflix,

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651844

Amazon, Facebook, and others) [1]. In general, a microservice sys-
tem can be represented as a network of individually deployed sys-
tems, each one devoted to a single specific task (i.e., a microservice).
By interacting with each other, the different microservices allow
the completion of more complex tasks for the end user. Given the
wide adoption of this architectural style, several studies have been
conducted to tackle performance anomalies of these kinds of sys-
tems. In particular, anomaly detection of microservice systems is
a widely addressed topic in the literature [26]. However, most of
the methods proposed employ machine learning (ML) algorithms
to address this task. While the adoption of these approaches can
be effective in terms of anomaly detection, the training and deploy-
ing of ML methods is generally not efficient in terms of required
training time, computational resources, and energy consumption
[11, 18, 21].

In this work, we move towards a more energy-efficient anomaly
detection in microservice systems execution traces by presenting
an innovative approach based on formal Context-Free grammar.
We employ SAX encoding [25] to transform execution traces into
strings, and then infer a grammar from the set of strings that en-
code anomalies. The constructed grammar functions as an anomaly
detector, enabling the encoding and membership check of any new
measurement. We present a first implementation using Sequitur
[22] for grammar induction. We compare the training time and
effectiveness scores of our approach against Logistic Regression.
Results show that the grammar-based approach achieves compara-
ble effectiveness while requiring significantly less time for training.

The remainder of the paper is structured as follows: in Section
2 we discuss some related works; Section 3 presents in detail the
proposed approach; Section 4 shows the experimental evaluation
we conducted to assess the efficiency (in terms of required time)
and effectiveness of our approach; finally Section 5 presents some
future works and concludes the paper.

2 RELATEDWORKS
The problem of performance analysis, and in particular, anomaly
detection in the performances of microservice systems, has been
widely studied by the literature [26].

Among all the proposed approaches, we observe how most of
them employ ML techniques. For instance, Bensal et al. proposed
DeCaf, a system for automated diagnosis and triaging of KPI is-
sues using service logs [4]. The proposed approach uses machine
learning along with pattern mining to help service owners automat-
ically root cause and triage performance issues. Similarly, Du et al.
presented a system for anomaly detection in the performances of
container-based microservice systems [10]. The proposed approach

77

https://orcid.org/0000-0002-0577-2494
https://orcid.org/0000-0001-7388-890X
https://doi.org/10.1145/3629527.3651844
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3651844

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Andrea D’Angelo & Giordano d’Aloisio.

consists of a monitoring module that collects the performance data
of containers, a data processing module based on machine learning
models and a fault injection module integrated for training these
models. An approach employing several ML algorithms is the one
proposed by Jin et al. [14]. The authors perform two different anom-
aly detection analyses in their work: invocation chain anomaly
analysis based on robust principal component analysis and a single
indicator anomaly detection algorithm. The single indicator anom-
aly detection algorithm comprises an Isolation Forest algorithm,
a One-Class Support Vector Machine algorithm, a Local Outlier
Factor algorithm, and the 3𝜎 principle. Finally, Wu et al. employed
a Deep Learning model for performance diagnosis in cloud-based
microservice systems [29]. All the described approaches employ
ML techniques, which may be effective but also require high com-
putational resources and time for their training [21]. Moreover, ML
models are often black-box or challenging to interpret [8].

A different approach for anomaly detection in microservice sys-
tems is the one proposed by Traini et al. [28]. In their work, the
authors proposed a search-based approach for diagnosing perfor-
mance issues in service-based systems. In our work, we move to-
wards the same direction of not employing ML-based techniques
to identify anomalies in the performances of microservice systems.
In particular, we first transform each execution trace (i.e., a se-
quence of response times of remote calls to different microservices)
into a string using the Symbolic Aggregate Approximation (SAX)
encoding [25], which is a well-established technique for anomaly
detection [6, 13]. Next, we employ a context-free-grammar-based
approach to identify if the string representation of the execution
trace contains an anomaly or not.

3 METHODOLOGY
In this section, we formally define our methodology for grammar-
based anomaly detection. Figure 1 depicts the methodology in all
its components. We first detail the methodology for Grammar Con-
struction, then move onto the process of Membership Testing.

Dataset D of
response times SAX Encoding Dataset D' of

strings
Grammar
Induction

Grammar Construction

New record Context-Free
Grammar

SAX Encoding

Membership
testing

Figure 1: The proposed methodology involves a one-time
grammar construction process. Then, each new record un-
dergoes membership checking against the grammar.

3.1 Grammar Construction
We first focus on the one-time process of Grammar Construction.
Starting from dataset D of response times, we define the SAX Encod-
ing as the function 𝑆𝐴𝑋 : R𝑛 → Σ𝑛 , where Σ represents a predeter-
mined set of characters. SAX takes a set of real numbers 𝑖 as input
and maps them to a string of characters 𝑠 such that |𝑖 | = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠).
By encoding all the response times in dataset D with SAX encoding,
we obtain a dataset D’ of labelled strings. From D’ we select the
execution traces (i.e., set of response times) showing anomalies.
Then, for each anomaly category𝐴, we apply a Grammar induction
algorithm to the execution traces having that specific anomaly 𝐴,
to obtain a Context-Free Grammar 𝐺 = (𝑉 ,𝑇 , 𝑃, 𝑆), where V is the
set of non-terminal symbols, T is the set of terminal symbols, P is
the set of productions and S is the starting symbol. The grammar
G must have the following properties:

(1) 𝑇 = Σ
(2) 𝐿(𝐺) = {𝑆𝐴𝑋 (𝑖) | 𝑖 is labeled as an anomaly}
The first property ensures that the set of terminal symbols recog-

nized by the grammar is the same as the set of characters obtained
via SAX encoding. For this reason, the domain-specific choice of Σ
for SAX Encoding plays an important role in the resulting grammar.
A Σ encompassing numerous characters enhances the precision of
anomaly detection, yet it may lead to an unwarranted increase in
the size of the grammar. Conversely, a Σ comprising only a few
characters may not adequately discern subtle anomalies.

The second property fixes the language generated from G as the
set of strings obtained via Sax Encoding and labelled as anomalies
in the starting dataset D. Note that the second property does not
imply that only those strings must be employed to build the gram-
mar. Several grammar induction algorithms also consider negative
examples as an aid to build the resulting grammar.

The grammar G was chosen to be Context-Free as it is able
to represent intrinsic links inside of the string that is useful in
our context. In instances where a microservice relies on several
others, anomalies in their response times may be interconnected. It
is crucial that the chosen grammar can accurately deduce that an
elevated response time for one microservice could be contingent
on another. Achieving this level of inference is not feasible with
Regular Grammars or Regex, making the use of a Context-Free
Grammar essential.

3.2 Membership Testing
Once the grammar G is built from the grammar induction algorithm,
it effectively functions as a model for anomaly detection. We can
now test new sets of real numbers for anomalies. When a new
execution trace 𝑗 arrives, it must be processed with the same SAX
function used for grammar construction. Then:

• if 𝑆𝐴𝑋 (𝑗) ∈ 𝐿(𝐺), j contains an anomaly.
• if 𝑆𝐴𝑋 (𝑗) ∉ 𝐿(𝐺), there is no anomaly.

The process of understanding if a string is part of the language
generated by a grammar is known as Membership checking. Several
Python libraries provide convenient methods for this task (e.g.,
NLTK [5]).

78

Grammar-Based Anomaly Detection of Microservice Systems Execution Traces ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

0

1 3

d

105

170 170

a a a a c cb
Figure 2: Parse tree generated when checking the member-
ship of a string that includes an anomaly in our grammar.
The final two microservices exhibit values above the typical
range, impacting the overall response time (initial character).

0 -> 1 'b' 3
1 -> 'd' 105
105 -> 170 170
170 -> 'a' 'a'
170 -> 'a' 'a'
3 -> 'c' 'c'

Listing 1: Grammar productions involved in the membership
checking of string "daaaabcc".

Whenever a string appears to be part of a grammar, the mem-
bership check also produces a parse tree of productions starting
from the initial symbol of the grammar S to the given string. For
instance, listing 1 depicts the necessary productions to derivate the
string "daaaabcc" (which contains an anomaly) from the starting
symbol of our grammar. The derivation can also be represented in
a visually intuitive way by generating a parse tree. For instance,
Figure 2 portrays a parse tree generated when the aforementioned
string is processed by our grammar. The parse tree provides a visual
representation that aids in understanding the precise locations of
anomalies within the string. By examining the tree structure, we
can easily pinpoint the specific steps and grammar productions
leading to the anomalous elements.

4 EVALUATION
In this section, we describe the experimental evaluation conducted
to assess the efficiency and effectiveness of our approach. In par-
ticular, we aim to answer the following two research questions
(RQ):
RQ1. How much time does the proposed approach require to con-

struct a grammar compared to the training time of standard
ML methods?

RQ2. How effective is the proposed approach in detecting anom-
alies compared to standard ML methods?

In both experiments, we employ a Logistic Regression (LogReg)
classifier [19] as a baseline. We have chosen this method among
the possible classification approaches because it natively supports
multi-class classification (i.e., classification problems where the
number of possible values of the label is higher than two [2])
and because it usually achieves a good trade-off between predic-
tion’s effectiveness and training time compared to other classifica-
tion models [17]. We adopted the implementation provided by the
scikit-learn Python library [23].

Concerning our approach, we employ the Sequitur algorithm
[22] for the grammar induction phase shown in figure 1. Sequitur is
an algorithm that allows the generation of context-free grammars
starting from a sequence of strings by replacing repeated phrases
with a grammatical rule that generates the phrase. It repeats this
process recursively until all the strings are examined.

As a use case, we employ the dataset provided by Traini et al. in
[28]1. The dataset comprises 560 CSV files containing pre-processed
execution traces (i.e., series of response times of remote procedure
calls to different microservices) with injected anomalies originating
from two open-source microservices systems: Train-Ticket [16]
and E-Shopper2. Each scenario features two possible anomalies,
identified by the anomaly column.

In the following, we describe how we addressed RQ1. Next, we
detail the answer to RQ2. The complete replication package of the
experiment is available in Zenodo [9].

4.1 Addressing RQ1
The first research question focuses on the amount of time required
by the proposed approach to generate context-free grammars com-
pared to the amount of time needed for the LogReg classifier to
train on a specific dataset. To answer this question, we computed
the grammar construction and training times twenty times to avoid
possible measurement biases. It is worth noticing how the gram-
mar construction phase encompasses both the SAX encoding of
the dataset and the grammar induction, as shown in figure 1. This
experiment has been executed on a DELL XPS 13 2019 with an Intel
i7 processor, 16 GB of RAM and Windows 11 operating system.

Table 1: Comparison of means and standard deviation of Lo-
gistic Regression training and Grammar Construction times
in seconds.

E-Shopper Train-Ticket

Grammar 5.848 ± 0.506 7.724 ± 0.309
LogReg 18.833 ± 2.933 21.556 ± 2.863

Table 1 presents the mean and standard deviation of LogReg
training time and grammar construction time for both E-Shopper
and Train-Ticket datasets. As can be seen, our approach requires
∼13 seconds less to construct a grammar compared to the training
time of the LogReg classifier for the E-Shopper use case and ∼14
less for the Train-Ticket use case. In addition, we note how the

1https://github.com/SpencerLabAQ/icpe-data-challenge-delag
2https://github.com/SEALABQualityGroup/E-Shopper

79

https://github.com/SpencerLabAQ/icpe-data-challenge-delag
https://github.com/SEALABQualityGroup/E-Shopper

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Andrea D’Angelo & Giordano d’Aloisio.

grammar construction time has less variability compared to the
training time of the model.

Answer to RQ1
Our proposed approach requires a time to construct a gram-
mar that is ∼13 seconds lower compared to the training
time of a LogReg classifier for the E-Shopper use case and
∼14 seconds lower for the Train-Ticket use case. Moreover,
the time required to build the grammar is almost constant
over different runs.

4.2 Addressing RQ2
The second research question focuses on the effectiveness of our
proposed approach in detecting anomalies compared to a LogReg
classifier. To answer this question, we used our approach to detect
the anomalies on both E-Shopper and Train Ticket datasets and
compared their effectiveness with the LogReg baseline. More in
detail, for each dataset, we perform a train-test split and use 80%
of the data to build the grammar/train the LogReg model, and we
predict anomalies on the remaining 20%. We employ accuracy [24],
precision, and recall [7] scores as effectiveness metrics. Concerning
the setting of hyper-parameters, for LogReg, we used the default
ones provided by the scikit-learn library. Instead, the only hyper-
parameter required by our approach is the number of bins used
by the SAX encoder algorithm [25], which we set to 5. We tested
different values of this parameter and found that 5 achieves the
highest effectiveness in both use cases.

E-Shopper Train Ticket
Dataset

0.0

0.2

0.4

0.6

0.8

Sc
or

e

Metric = Accuracy

E-Shopper Train Ticket
Dataset

Metric = Precision

E-Shopper Train Ticket
Dataset

Metric = Recall

Approach
LogReg Grammar

Figure 3: Comparison of accuracy, precision and recall scores
of Logistic Regression and our grammar-based approach.

Figure 3 reports the accuracy, precision and recall scores for
E-Shopper and Train Ticket use cases. The blue bar shows the
results achieved by LogReg while the orange bar displays the results
achieved by our grammar-based approach. As can be seen, our
approach has an effectiveness that is almost comparable to the
one achieved by the LogReg model, with a difference of, at most,
10% in the precision score for the Train Ticket dataset. However,
we also observe how, in general, the LogReg classifier has a lower
effectiveness in the Train Ticket dataset, meaning that the anomaly
patterns are less evident in this use case.

Answer to RQ2
Our approach has an effectiveness that is almost compara-
ble to the one achieved by a LogReg classifier, with a delta
of at most 10% in a use case with less evident anomaly
patterns.

4.3 Discussion
The performed experiments showed how our proposed approach
achieves a higher efficiency in terms of time required to construct
the grammar, with a little cost in terms of prediction effectiveness
compared to a Logistic Regression classifier. However, it is worth
noticing how the efficiency and effectiveness of our approach are
also related to the algorithms employed for SAX encoding and gram-
mar induction. Concerning the SAX encoding, in this preliminary
work, we employ an implementation of the classical algorithm pro-
posed in [25]. However, other versions of the algorithm have been
proposed in the literature that may better detect the differences in
anomaly execution traces [20, 27, 30].

The same can be said for the grammar induction algorithm. In
this work, we employ the Sequitur algorithm which is one of the
most adopted algorithms for grammar induction. However, the
grammars generated by this algorithm are often too large and not
optimal. Finding the minimum grammar representing a specific
language is known to be an NP-complete problem [12]. Neverthe-
less, some works have been proposed in the last years that try to
achieve this task [3, 15].

5 CONCLUSION AND FUTUREWORK
In this paper, we introduced an innovative method for anomaly
detection utilizing Context-free Grammar, serving as an alterna-
tive to Machine Learning techniques. We formally outlined our
methodology and introduced an initial implementation using a
naive grammar induction algorithm. We then presented prelimi-
nary results, which demonstrated comparable effectiveness to Lo-
gistic Regression with minimal training time requirements. The
presented methodology is adaptable and can be easily tuned based
on domain-specific parameters. In addition, the grammar induction
algorithm can be interchangeable based on specific needs. Future
work avenues include exploring more sophisticated SAX encoding
algorithms like the ones proposed in [20, 27, 30], along with an au-
tomatic approach for the selection of Σ. Next, we plan to investigate
other grammar induction algorithms like ARVADA [15], which can
produce more readable and shorter context-free grammars. Another
possible approach would be the hand-crafting of regular expres-
sions or grammars by domain experts. Our methodology can also be
easily expanded to account for explainability needs. By construct-
ing the parse tree of a given string, we can easily visualize where
the anomaly happened and what microservices it encompassed.

ACKNOWLEDGMENTS
Part of the numerical simulations have been realized on the Linux
HPC cluster Caliban of the High-Performance Computing Labo-
ratory of the Department of Information Engineering, Computer
Science and Mathematics (DISIM) at the University of L’Aquila.

80

Grammar-Based Anomaly Detection of Microservice Systems Execution Traces ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A systematic mapping

study in microservice architecture. In 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA). IEEE, 44–51.

[2] Mohamed Aly. 2005. Survey on multiclass classification methods. Neural Netw
19, 1 (2005), 9. Publisher: Citeseer.

[3] Mohammad Rifat Arefin, Suraj Shetiya, Zili Wang, and Christoph Csall-
ner. 2024. Fast Deterministic Black-box Context-free Grammar Inference.
arXiv:2308.06163 [cs.SE]

[4] Chetan Bansal, Sundararajan Renganathan, Ashima Asudani, Olivier Midy, and
Mathru Janakiraman. 2020. DeCaf: diagnosing and triaging performance issues
in large-scale cloud services. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Practice (Seoul, South
Korea) (ICSE-SEIP ’20). Association for Computing Machinery, New York, NY,
USA, 201–210. https://doi.org/10.1145/3377813.3381353

[5] Steven Bird. 2006. NLTK: the natural language toolkit. In Proceedings of the
COLING/ACL 2006 Interactive Presentation Sessions. 69–72.

[6] Konstantinos Bountrogiannis, George Tzagkarakis, and Panagiotis Tsakalides.
2021. Anomaly Detection for Symbolic Time Series Representations of Reduced
Dimensionality. In 2020 28th European Signal Processing Conference (EUSIPCO).
2398–2402. https://doi.org/10.23919/Eusipco47968.2020.9287474

[7] Michael Buckland and Fredric Gey. 1994. The relationship between recall and
precision. Journal of the American society for information science 45, 1 (1994),
12–19. Publisher: Wiley Online Library.

[8] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. 2019. Machine
learning interpretability: A survey on methods and metrics. Electronics 8, 8
(2019), 832.

[9] Andrea D’Angelo and Giordano d’Aloisio. 2024. Grammar-Based Anomaly De-
tection of Microservice Systems Execution Traces Replication Package. https:
//doi.org/10.5281/zenodo.10806012

[10] Qingfeng Du, Tiandi Xie, and Yu He. 2018. Anomaly detection and diagnosis
for container-based microservices with performance monitoring. In Algorithms
and Architectures for Parallel Processing: 18th International Conference, ICA3PP
2018, Guangzhou, China, November 15-17, 2018, Proceedings, Part IV 18. Springer,
560–572.

[11] Raphael Fischer, Matthias Jakobs, Sascha Mücke, and Katharina Morik. 2022. A
Unified Framework for Assessing Energy Efficiency of Machine Learning. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, 39–54.

[12] E Mark Gold. 1978. Complexity of automaton identification from given data.
Information and Control 37, 3 (1978), 302–320. https://doi.org/10.1016/S0019-
9958(78)90562-4

[13] Fabio Guigou, Pierre Collet, and Pierre Parrend. 2019. SCHEDA: Lightweight
euclidean-like heuristics for anomaly detection in periodic time series. Applied
Soft Computing 82 (2019), 105594. https://doi.org/10.1016/j.asoc.2019.105594

[14] Mingxu Jin, Aoran Lv, Yuanpeng Zhu, Zijiang Wen, Yubin Zhong, Zexin Zhao,
Jiang Wu, Hejie Li, Hanheng He, and Fengyi Chen. 2020. An Anomaly Detection
Algorithm for Microservice Architecture Based on Robust Principal Component
Analysis. IEEE Access 8 (2020), 226397–226408. https://doi.org/10.1109/ACCESS.
2020.3044610

[15] Neil Kulkarni, Caroline Lemieux, and Koushik Sen. 2021. Learning Highly Recur-
sive Input Grammars. In 2021 36th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). 456–467. https://doi.org/10.1109/ASE51524.

2021.9678879
[16] Bowen Li, Xin Peng, Qilin Xiang, HanzhangWang, Tao Xie, Jun Sun, and Xuanzhe

Liu. 2022. Enjoy your observability: an industrial survey of microservice tracing
and analysis. Empirical Software Engineering 27 (2022), 1–28.

[17] Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. 2000. A Comparison of Pre-
diction Accuracy, Complexity, and Training Time of Thirty-Three Old and
New Classification Algorithms. Machine Learning 40, 3 (Sept. 2000), 203–228.
https://doi.org/10.1023/A:1007608224229

[18] Francesca Marzi, Giordano d’Aloisio, Antinisca Di Marco, and Giovanni Stilo.
2023. Towards a Prediction of Machine Learning Training Time to Support
Continuous Learning Systems Development. arXiv preprint arXiv:2309.11226
(2023).

[19] Scott Menard. 2002. Applied logistic regression analysis. Vol. 106. Sage.
[20] Muhammad Marwan Muhammad Fuad. 2012. Genetic algorithms-based sym-

bolic aggregate approximation. In Data Warehousing and Knowledge Discovery:
14th International Conference, DaWaK 2012, Vienna, Austria, September 3-6, 2012.
Proceedings 14. Springer, 105–116.

[21] Nadia Nahar, Haoran Zhang, Grace Lewis, Shurui Zhou, and Christian Kästner.
2023. A Meta-Summary of Challenges in Building Products with ML Components
– Collecting Experiences from 4758+ Practitioners. https://doi.org/10.48550/
arXiv.2304.00078 arXiv:2304.00078 [cs].

[22] Craig GNevill-Manning and IanHWitten. 1997. Identifying hierarchical structure
in sequences: A linear-time algorithm. Journal of Artificial Intelligence Research 7
(1997), 67–82.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[24] G.H. Rosenfield and K. Fitzpatrick-Lins. 1986. A coefficient of agreement as
a measure of thematic classification accuracy. Photogrammetric Engineering
and Remote Sensing 52, 2 (1986), 223–227. http://pubs.er.usgs.gov/publication/
70014667

[25] Hagit Shatkay and Stanley B Zdonik. 1996. Approximate queries and repre-
sentations for large data sequences. In Proceedings of the Twelfth International
Conference on Data Engineering. IEEE, 536–545.

[26] Jacopo Soldani and Antonio Brogi. 2022. Anomaly Detection and Failure Root
Cause Analysis in (Micro) Service-Based Cloud Applications: A Survey. ACM
Comput. Surv. 55, 3, Article 59 (feb 2022), 39 pages. https://doi.org/10.1145/
3501297

[27] Youqiang Sun, Jiuyong Li, Jixue Liu, Bingyu Sun, and Christopher Chow. 2014.
An improvement of symbolic aggregate approximation distance measure for time
series. Neurocomputing 138 (2014), 189–198.

[28] Luca Traini and Vittorio Cortellessa. 2023. DeLag: Using Multi-Objective Opti-
mization to Enhance the Detection of Latency Degradation Patterns in Service-
Based Systems. IEEE Transactions on Software Engineering 49, 6 (2023), 3554–3580.
https://doi.org/10.1109/TSE.2023.3266041

[29] Li Wu, Jasmin Bogatinovski, Sasho Nedelkoski, Johan Tordsson, and Odej Kao.
2020. Performance diagnosis in cloud microservices using deep learning. In
International Conference on Service-Oriented Computing. Springer, 85–96.

[30] Yufeng Yu, Yuelong Zhu, DingshengWan, Huan Liu, and Qun Zhao. 2019. A novel
symbolic aggregate approximation for time series. In Proceedings of the 13th Inter-
national Conference on Ubiquitous Information Management and Communication
(IMCOM) 2019 13. Springer, 805–822.

81

https://arxiv.org/abs/2308.06163
https://doi.org/10.1145/3377813.3381353
https://doi.org/10.23919/Eusipco47968.2020.9287474
https://doi.org/10.5281/zenodo.10806012
https://doi.org/10.5281/zenodo.10806012
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/j.asoc.2019.105594
https://doi.org/10.1109/ACCESS.2020.3044610
https://doi.org/10.1109/ACCESS.2020.3044610
https://doi.org/10.1109/ASE51524.2021.9678879
https://doi.org/10.1109/ASE51524.2021.9678879
https://doi.org/10.1023/A:1007608224229
https://doi.org/10.48550/arXiv.2304.00078
https://doi.org/10.48550/arXiv.2304.00078
http://pubs.er.usgs.gov/publication/70014667
http://pubs.er.usgs.gov/publication/70014667
https://doi.org/10.1145/3501297
https://doi.org/10.1145/3501297
https://doi.org/10.1109/TSE.2023.3266041

Analyzing Performance Variability in Alibaba’s Microservice
Architecture: A Critical-Path-Based Perspective

Alireza Ezaz
Brock University

St. Catharines, Ontario, Canada
sezaz@brocku.ca

Ghazal Khodabandeh
Brock University

St. Catharines, Ontario, Canada
gkhodobandeh@brocku.ca

Naser Ezzati-Jivan
Brock University

St. Catharines, Ontario, Canada
nezzatijivan@brocku.ca

ABSTRACT
In large-scale microservice architectures, such as those utilized by
Alibaba, identifying and addressing performance bottlenecks is a
significant challenge due to the complicated interactions between
thousands of services. To navigate this challenge, we have devel-
oped a critical-path-based technique aimed at analyzing microser-
vice interactions within these complex systems. This technique
facilitates the identification of critical nodes where service requests
experience the longest delays. Our contribution is the discovery
of performance variability in service interactions’ response times
within these critical paths, and pinpointing specific interactions
within the system that show a high degree of performance vari-
ability. This improves the ability to detect service performance
issues and their root causes allowing for dynamic adjustment in
data collection detail, and targets critical interactions for adaptive
monitoring.

CCS CONCEPTS
• General and reference→ Performance; • Software and its
engineering→ Software maintenance tools; •Applied computing
→ Service-oriented architectures.

KEYWORDS
Microservice Architecture, Performance Bottlenecks, Critical Path,
Response Time Variability, Adaptive Tracing
ACM Reference Format:
Alireza Ezaz, Ghazal Khodabandeh, and Naser Ezzati-Jivan. 2024. Analyzing
Performance Variability in Alibaba’s Microservice Architecture: A Critical-
Path-Based Perspective. In Companion of the 15th ACM/SPEC International
Conference on Performance Engineering (ICPE ’24 Companion), May 7–11,
2024, London, United Kingdom. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3629527.3651845

1 INTRODUCTION
Distributed tracing is crucial for tracking how applications perform
across a system, ensuring that operations are smooth and reliable.
Unlike tools that focus on individual components, distributed trac-
ing monitors entire requests as they traverse various parts of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3651845

system architecture, from a user’s click to data storage in a database
[9]. This monitoring plays an important role in identifying where
issues begin, spotting any behavior that does not align with the ex-
pected operation of the system, detecting deviations in performance
and finally enhancing the system’s overall effectiveness.

However, the challenge intensifies when managing large-scale
microservice-based applications like those at Alibaba, Uber, and
Amazon, where thousands of services are constantly interacting.
The complexity of these systems increases by complicated depen-
dencies among services, the large number of monitoring metrics
(e.g., Netflix exposes 2 million metrics and Uber exposes 500 mil-
lion metrics [10]), and frequent updates, all alongside the extensive
data produced by distributed tracing [11]. These factors make it
particularly difficult to diagnose performance issues and pinpoint
their root causes. To effectively manage these challenges, accurate
detection of performance issues and clever analysis are essential.

Recent studies such as [6, 7, 12] have highlighted advancements
in microservices monitoring and analysis, employing scalable, real-
time frameworks and delving into microservice dependencies and
performance. These contributions emphasize the utility of machine
learning in predicting usage patterns and the importance of un-
derstanding microservice dependencies for improved performance
analysis. However, a critical gap remains in the analysis of perfor-
mance variability across microservices as those approaches often
overlook the insights that can be gained from this analysis across
different system components.

This is where we take performance variation analysis into ac-
count. By looking at how performance values fluctuate, we can find
patterns or issues that point to the root of the problems. Consider
a scenario in which a single microservice is involved in handling
(a part of) three requests within a span of three minutes, but its
latency varies significantly for each request. The first request is
processed in just 1 millisecond, the second takes longer, at 30 mil-
liseconds, and the third request experiences a substantial delay,
requiring 500 milliseconds to complete. Such a notable difference in
the service time of the same microservice, known as performance
variability, if persistent across numerous interactions, is a red flag
that indicates a potential problem warranting further investigation.

Building on this idea, our contribution is conducting a deeper
analysis of the concept of performance variability in a large-scale
microservice architecture. In our proposed technique, we begin
with extracting critical paths from the trace dataset. A critical path
is defined as a sequence of service interactions where requests
experience the longest delays. After extracting critical paths from
the requests, we group them into categories based on how similar
they are to each other. For each group of requests sharing the same
critical path, our technique focuses on extracting microservice

82

https://orcid.org/0009-0001-4156-2750
https://orcid.org/0009-0001-4587-1876
https://orcid.org/0000-0003-1435-6297
https://doi.org/10.1145/3629527.3651845
https://doi.org/10.1145/3629527.3651845
https://doi.org/10.1145/3629527.3651845

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Alireza Ezaz, Ghazal Khodabandeh and Naser Ezzati-Jivan.

interactions within these paths. It involves collecting response
times for each interaction from the caller (upper) microservice to
the callee (downstream) service over fixed time intervals. Then
we calculate average response times and their variance for these
interactions. By examining the collected data, our technique aims to
identify abnormally high or low response time variations. This step
is crucial for pinpointing specific microservices that deviate from
expected performance norms, suggesting potential areas of concern.
Such analysis uncovers deeper issues, from resource constraints to
inefficient microservice executions, offering a refined approach to
diagnosing and optimizing microservice issues.

2 RELATEDWORK
Past efforts introduce various frameworks and techniques for mon-
itoring microservice architecture and analysis of dependencies by
creating call graphs and evaluating them for anomaly detection,
root cause analysis, and further system optimization. However,
they often overlook the insights that can be gained from perfor-
mance variability analysis. Luo et al. [6] present a comprehensive
study of large-scale microservice deployments in AliBaba’s pro-
duction clusters, focusing on the structural properties of microser-
vice call graphs and call dependencies. It also offers an in-depth
characterization of microservice runtime performance, providing
insights into scheduling and resource management. Barham et al.
[3] introduce Magpie, a tool designed to model and analyze system
workloads by capturing resource consumption and control paths of
requests in a system. It features an approach for detailed workload
characterization without requiring modifications to the system,
enabling accurate performance analysis and debugging. Similarly,
Thalheim et al. [10] designed Sieve to derive actionable insights
from monitored metrics in distributed systems. Sieve features a
metrics reduction framework and a metrics dependency extractor,
which together help in filtering out unimportant metrics and infer-
ring metrics dependencies, thereby enhancing the management of
microservices-based applications analysis. Other studies combine
machine learning techniques with their designed frameworks to
find interesting results in microservice systems. chen et al. [4] in-
troduce a deep learning approach to automate fault diagnosis with
high precision, to detect faults, and identify root causes effectively.
In another study, Janecek et al. [5] introduced a framework for
detecting performance anomalies in software systems through the
analysis of system-level trace data by employing critical path anal-
ysis and machine learning clustering. Nevertheless, these studies
focus on anomaly detection and system monitoring, bypassing an
in-depth exploration of performance variability and its implications
for system optimization.

3 METHODOLOGY
Building upon the foundational work of Ates et al. [2] and Samba-
sivan et al. [8], our methodology leverages the premise that perfor-
mance variation is indicative of unknown system behaviors and that
requests following similar workflows are expected to yield similar
runtime footprints. Our study utilizes data from Alibaba’s produc-
tion clusters1 [1], focusing specifically on the first one hour of the

1https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-
v2022

dataset. This initial period encompasses traces across nearly twenty
thousand microservices, offering a concise yet significant observa-
tion window. The data includes service IDs within the call graph,
performance metrics such as response time, and the relationships
between upstream (caller) and downstream (callee) microservices,
preparing the basis for our analysis.

Our proposed methodology, as shown in Fig 1, involves data pre-
processing, critical path extraction, performance variation analysis
within the critical paths, and visualization tools. Our developed tool
and scripts used in this methodology are available online at 2. In
the subsequent sections, we will elaborate on each step separately.

3.1 Data Collection and Preprocessing
As shown in stage (1) of Fig 1, our method begins with the extraction
and preprocessing of the trace data. The preprocessing phase is
important for ensuring data integrity and usability. The following
steps outline our preprocessing approach:

(1) Dataset Cleaning: We cleaned the dataset by removing
entries with invalid or non-numeric values for response
times.

(2) Invalid Trace ID Removal: We identified and excluded
records associated with invalid response time values by iso-
lating unique trace IDs corresponding to these records.

(3) Null Value Handling: Further cleaning involved discarding
records containing any empty fields.

(4) Unnecessary Features Removal: We also removed un-
necessary features to focus the dataset on essential metrics
relevant to our study such as timestamp, trace ID, um (upper
microservice), dm (downstream microservice), rt (response
time of dm to um).

3.2 Critical Path Extraction
Following the preprocessing of Alibaba’s microservice interaction
data, our methodology advances to stage (2) in Fig 1; extraction of
critical paths. The extraction process is detailed as follows:

(1) Critical Path Identification:
At this stage, we identify each request in AliBaba’s trace
dataset by filtering unique trace IDs. For each request, records
are sorted by timestamp to establish the sequence of inter-
actions. The ’endtime’ for each interaction is calculated by
adding its response time to its timestamp. The interaction
with the longest ’endtime’ signifies the end of the critical
path. Tracing back from this endpoint, the sequence of ser-
vices involved in the critical path, from upstream to down-
stream, is determined.

(2) Grouping Requests Based on Critical Path Similarity:
Under the assumption that requests with similar workflows
should yield similar performance metrics [2], our designed
technique groups requests sharing an exact similar critical
path.

By focusing on these critical paths extracted , we aim to identify
the key areas where performance optimization efforts should be
concentrated.

2https://github.com/Alireza-Ezaz/Analyzing-Performance-Variability-in-Alibaba-s-
Microservice-Architecture

83

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022
https://github.com/Alireza-Ezaz/Analyzing-Performance-Variability-in-Alibaba-s-Microservice-Architecture
https://github.com/Alireza-Ezaz/Analyzing-Performance-Variability-in-Alibaba-s-Microservice-Architecture

Analyzing Performance Variability in Alibaba’s Microservice Architecture: A Critical-Path-Based Perspective ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 1: The Architecture of Our Proposed Technique

3.3 Performance Variation Analysis
Moving on to stage (3) in Fig 1, we investigate the performance
variation within each group of requests with the same critical path.
We then focus on how each specific microservice involved in the
path, exhibit variability in its response times.

3.3.1 Collecting Average Response Time and Standard deviation for
each critical interaction. For groups of requests following the same
critical path, our method records the response times of each mi-
crosservice interaction within these paths. This is done over twenty
3-minutes intervals creating a 1-hour observation window. After
collecting these response times, it calculates the average response
times and standard deviations, for each of the interactions, aiming
to further localize the performance issue into a specific critical
interaction in the next step.

3.3.2 Performance Variation Analysis and Localizing the Sources
of Variation. As the core of our contribution, We analyze the vari-
ability in response times for each interaction within the extracted
critical paths. Having the average and standard deviation for each
interaction from the previous step, the average provides a baseline
of expected performance, while the standard deviation reveals the
extent of variability, offering insights into the consistency of the
corresponding microservice’s response. This dual metric approach
enables a more granular understanding of performance variations,
uncovering more details about microservice interactions. High vari-
ability (a large standard deviation compared to the average response
time) suggests potential areas of concern, signaling that the per-
formance of certain interactions (critical interactions) within the
critical path is inconsistent and the problem can be localized to
those specific critical interactions. This inconsistencymay be indica-
tive of deeper issues such as network latency, resource contention,
or issues in service dependencies, which could adversely affect the
overall system performance.

3.4 Visualization and Insight Generation
For further analysis in stage (4) of Fig 1, we plot the average re-
sponse times and standard deviations across predetermined three-
minute intervals, highlighting interactions that exhibit significant
variability. These plots are helpful in pinpointing areas of instabil-
ity, suggesting where further optimization and investigation are

necessary. For each interaction characterized by high variability
(our criteria for ’high’—selects interactions where the standard de-
viation exceeds ten times the mean response time), we generate
dual-axis plots that represent the average response times against
the occurrence counts over the intervals. At the end, we generate a
report summarizing insights, including the number of unique traces
examined, the variety of critical paths identified, and interactions
with notable performance variability. This summary, alongside de-
tailed statistics and visualizations, is compiled into user-friendly
formats, ensuring that the insights are accessible to stakeholders
involved in system development and optimization.

4 ANALYSIS AND DISCUSSION
Our investigation into the performance variation within Alibaba’s
microservice architecture led to the extraction of 91,704 unique crit-
ical paths from a 1-hour interval dataset of 40,062,862 requests, each
distinguished by a unique trace ID. Of these, 1,891 microservice in-
teractions within critical paths exhibited a noticeably high variance
in performance. Our analysis has unfolded insightful patterns of
response time variability. Delving into the data, we have presented
twelve selected plots in Fig 2, each uncovering a critical interaction
within the corresponding critical path. Our analysis is based on
interactions grouped into four general patterns, characterized by
abnormal fluctuations within at least one three-minute interval in
an hour.

The analysis of data through our technique is visually repre-
sented in Fig 2, where the x-axis segments the observation window
into 3-minute intervals. Green bars graphically depict the aver-
age response time per interval, with numerical standard deviation
values indicated above, offering a clear view of performance fluctu-
ations. The blue line complements this by illustrating interaction
counts, and black error bars extend from each green bar to represent
the range of response time variability, providing an overview of the
interaction’s performance variability. The presence of error bars
extending into negative values does not imply negative response
times; they simply show that the lower range of variability falls
below the mean due to the subtraction of the standard deviation
from the average. Interaction counts should be interpreted with
reference to the right y-axis, and average response times should be
related to the left y-axis.

84

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Alireza Ezaz, Ghazal Khodabandeh and Naser Ezzati-Jivan.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: Performance Variability Analysis for Different Critical Interactions within Corresponding Critical Paths

Among the patterns observed, one notable scenario in Figures 2a,
2b, 2c, and 2d showcased some periods where the interaction count,
average response time, and the variation in response time were
simultaneously high. This indicates a potential overload scenario,
suggesting the system was handling a higher volume of requests

Conversely, we also identified intervals like the first 30 min-
utes of Fig 2e where, despite a high number of interactions, the
average response time and standard deviations remained stable,
hinting at the system’s ability to efficiently manage load without
compromising on performance consistency.

Another pattern such as 36-39 minute interval in Fig 2a, 45-48
minute interval in Fig 2e, 0-3 minute interval in Fig 2f, 30-33 minute
interval in Fig 2g, and 0-3 minute interval in Fig 2h, highlighted
through our analysis was the occurrence of intervals where an
increase in the average response time was accompanied by sub-
stantial variability, despite a lower interaction count compared to
peak periods. This indicates that factors other than the volume of
interactions, such as resource allocation or network issues, could
be impacting performance.

Furthermore, we observed a critical interaction in 45-48 minute
interval in Fig 2i where the average response time either decreased
or remained low, yet the variability in response times increased.
This suggests a growing inconsistency in how requests are pro-
cessed, with some being completed swiftly while others face delays,
leading to an unpredictable performance landscape.

In Figures 2j, 2k, and 2l we see a combination of the above scenar-
ios of system performance previously discussed, each highlighting
different ways that performance can vary under various conditions.

Its analysis emphasizes the complex nature of performance issues,
showing how different factors can impact the system’s effective-
ness and dependability. By analyzing these figures, we get a deeper
insight into the system’s behavior, which helps identify specific
areas (critical interactions) that could benefit from optimization or
further detailed study.

Overall, our results indicate that our approach provides a tar-
geted method for monitoring and diagnosing the system’s behavior
and directs developers toward potential points of optimization,
thereby mitigating system failures or inefficiencies. It also identifies
critical interactions with high performance variation as prime can-
didates that can be considered for adaptive tracing and monitoring.

5 CONCLUSIONS AND FUTUREWORK
We analyzed performance variations within Alibaba’s microservice
architecture, focusing on identifying critical paths and analyzing
response time variability. Our findings emphasize the complexity
of managing performance in microservice architectures and the
importance of continuous monitoring and analysis to identify and
address bottlenecks.

Future work will extend this analysis by incorporating additional
performance metrics such as CPU and memory utilization, apply-
ing machine learning algorithms to predict potential performance
bottlenecks, and enhancing trace grouping techniques to efficiently
manage and analyze large datasets. These efforts aim to improve the
understanding and management of system performance, leading to
more robust and efficient microservice architectures.

85

Analyzing Performance Variability in Alibaba’s Microservice Architecture: A Critical-Path-Based Perspective ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Alibaba Group. 2022. Alibaba Cluster Data - Cluster Trace of Mi-

croservices. https://github.com/alibaba/clusterdata/tree/master/cluster-trace-
microservices-v2022. Accessed: YYYY-MM-DD.

[2] Emre Ates, Lily Sturmann, Mert Toslali, Orran Krieger, Richard Megginson,
Ayse K Coskun, and Raja R Sambasivan. 2019. An automated, cross-layer in-
strumentation framework for diagnosing performance problems in distributed
applications. In Proceedings of the ACM Symposium on Cloud Computing. 165–170.

[3] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004. Using
Magpie for request extraction and workload modelling.. In OSDI, Vol. 4. 18–18.

[4] Hao Chen, Kegang Wei, An Li, Tao Wang, and Wenbo Zhang. 2021. Trace-based
intelligent fault diagnosis for microservices with deep learning. In 2021 IEEE
45th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE,
884–893.

[5] Madeline Janecek, Naser Ezzati-Jivan, and Seyed Vahid Azhari. 2021. Container
workload characterization through host system tracing. In 2021 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 9–19.

[6] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing microservice de-
pendency and performance: Alibaba trace analysis. In Proceedings of the ACM

Symposium on Cloud Computing. 412–426.
[7] Barakat Saman. 2017. Monitoring and analysis of microservices performance.

Journal of Computer Science and Control Systems 10, 1 (2017), 19.
[8] Raja R Sambasivan and Gregory R Ganger. 2012. Automated diagnosis without

predictability is a recipe for failure. In 4th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 12).

[9] Yuri Shkuro. 2019. Mastering Distributed Tracing: Analyzing performance in
microservices and complex systems. Packt Publishing Ltd.

[10] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia,
Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer. 2017. Sieve:
Actionable insights from monitored metrics in distributed systems. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference. 14–27.

[11] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. Microrca: Root cause
localization of performance issues in microservices. In NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 1–9.

[12] Cathy H Zhang and M Omair Shafiq. 2022. A Real-time, Scalable Monitoring and
User Analytics Solution for Microservices-based Software Applications. In 2022
IEEE International Conference on Big Data (Big Data). IEEE, 6125–6134.

86

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022

LLaMPS: Large Language Models Placement System
Likhith Bandamudi

TCS Research
likhith.bandamudi1@tcs.com

Ravi Kumar Singh
TCS Research

ravik.singh2@tcs.com

Shruti Kunde
TCS Research

shruti.kunde@tcs.com

Mayank Mishra
TCS Research

mishra.m@tcs.com

Rekha Singhal
TCS Research

rekha.singhal@tcs.com

ABSTRACT
The rapid expansion of Large Language Models (LLMs) presents
significant challenges in efficient deployment for inference tasks,
primarily due to their substantial memory and computational re-
source requirements. Many enterprises possess a variety of comput-
ing resources—servers, VMs, PCs, laptops—that cannot individually
host a complete LLM. Collectively, however, these resources may
be adequate for even the most demanding LLMs.

We introduce LLaMPS, a novel tool, designed to optimally distrib-
ute blocks 1 of LLMs across available computing resources within
an enterprise. LLaMPS leverages the unused capacities of these
machines, allowing for the decentralized hosting of LLMs. This tool
enables users to contribute their machine’s resources to a shared
pool, facilitating others within the network to access and utilize
these resources for inference tasks. At its core, LLaMPS employs a
sophisticated distributed framework to allocate transformer blocks
of LLMs across various servers. In cases where a model is pre-
deployed, users can directly access inference results (GUI and API).
Our tool has undergone extensive testing with several open-source
LLMs, including BLOOM-560m, BLOOM-3b, BLOOM-7b1, Falcon-
40b, and LLaMA-70b. It is currently implemented in a real-world
enterprise network setting, demonstrating its practical applicability
and effectiveness.

CCS CONCEPTS
• Computing methodologies → Distributed AI Tool.

KEYWORDS
LLMs, Distributed Inference, Optimal block placement
ACM Reference Format:
Likhith Bandamudi, Ravi Kumar Singh, Shruti Kunde, Mayank Mishra,
and Rekha Singhal. 2024. LLaMPS: Large Language Models Placement
System. In Companion of the 15th ACM/SPEC International Conference on
Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3629527.3651404
1Large Language models contain multiple transformer blocks which can be distributed
across machines.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651404

1 INTRODUCTION
Large Language Models (LLMs) have become pervasive and now
play a crucial role in business operations by facilitating customer
interactions and offering recommendations. As the LLMs continue
to grow in complexity, their size expands proportionally (with an
increase in parameters), necessitating increased computational ca-
pacity and memory to ensure optimal functional behavior. This is
a significant challenge for businesses with limited computational
resources, particularly in enterprises where numerous individual
devices/resources may lack the capability to independently host an
entire LLM. However, a viable alternative emerges as businesses

Figure 1: User interface of LLaMPS
consider leveraging the collective capabilities of multiple computers
resembling a collaborative effort to handle substantial workloads.
This approach explores the concept of "leftover" capacity within
large enterprises, where individual devices/resources may not pos-
sess the capability to independently host an LLM. By distributing
the computational load across multiple machines throughout an
enterprise, businesses can effectively utilize their leftover capacity,
enabling the deployment of LLMs in a distributed manner. This
innovative approach introduces new possibilities for inference and
other downstream tasks.

There exist some works in the literature such as Petals, Deep-
Speed, and Zero Inference which facilitate distributed inference.
However, none of them explore the prospect of utilizing leftover
capacity already available in an enterprise to deploy LLMs. Also,
they do not optimally distribute transformer blocks such that the
number of clients served, are maximized; or that multiple LLMs
can be optimally deployed using available capacity. We proposed
the OPA Optimal Placement Algorithm (details in [1]). We have
built a tool, LLaMPS, which facilitates the optimal placement of
transformer blocks on distributed resources in an enterprise-wide
network. LLaMPS utilizes Petals as the underlying distributed frame-
work in its current implementation. However, it is agnostic to the
underlying framework and is not bound by it. LLaMPS has the
following features:

87

https://doi.org/10.1145/3629527.3651404
https://doi.org/10.1145/3629527.3651404
https://doi.org/10.1145/3629527.3651404

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Likhith Bandamudi, Ravi Kumar Singh, Shruti Kunde, Mayank Mishra, Rekha Singhal

• Leftover resource utilization: Enables collaborative shar-
ing of leftover capacity across multiple devices within the
enterprise.

• Optimal block distribution: Ensures optimal distribution
of transformer blocks on an enterprise-wide scale, using OPA
(optimal placement algorithm).

• Multi-Client and Multi-model support: Supports multi-
ple client requests concurrently. Enables loading of blocks
associated with multiple LLMs on a single resource, thus
optimizing overall resource usage in the enterprise.

• Cost optimization:LLaMPS distributes LLM across multiple
devices, utilizing leftover resources, reducing the need for
expensive hosting.

LLaMPS is a tool that adopts a client-server architecture, de-
veloped in Python, and utilizes the underlying open-source Petals
distributed framework. It has a web-based interface, featuring a
user-friendly Streamlit-built GUI. LLaMPS is adaptable and offers
flexibility to support future alternative distributed frameworks.

Figure 2: LLaMPS Architecture

2 LLAMPS ARCHITECTURE
We now discuss the architecture of LLaMPS depicted in Figure 2.

The user interacts with the LLaMPS tool via the user interface
(Figure 1). The Contributor Module enables the user to share
or contribute leftover capacity of his device with the distributed
network. If the user chooses to contribute, the IP address and server
information (available memory and cores) of the device are provided
to theAdmin. If not, it implies that the user only wishes to perform
an Inference task.

Available ServersModule enables displaying a list of resources
that are available on the network, along with their IP addresses,
available memory, and cores on the UI. This information is then
sent to the admin.

The Block Placement Module then kicks off the OPA (Optimal
block Placement Algorithm) which takes input all info about the
available servers and creates a plan for block placement. The plan
outlines a list of selected servers (from the available servers) and
the distribution of blocks to be loaded on each server for efficient
resource utilization. Additional details of OPA can be found in our
paper [1].

The Deployment Module deploys the blocks on the servers
as per the plan. For example, Blocks (0:12) are loaded on Server 1;
Blocks (12:24) are loaded on Server 2, and so on. Once the blocks

are deployed, the user can start using the deployed model for the
inference task. The user inputs text and initiates the Inference
process.
In the client, a route is formed based on the sequence of blocks
deployed on multiple servers, and the inference runs across these
servers. The inference output from the blocks is then converted
into a human-readable form and the output is then transmitted to
the user interface.

3 USE CASE
Figure 1 depicts the user interface of the LLaMPS tool. The user
will input the model name and the number of parameters of the
model. The number of blocks corresponding to the model will be
automatically displayed. The user may choose to contribute or
share his device’s leftover resources or perform inference without
sharing any resources. Upon clicking the Available Servers button,
the list of available servers will be displayed. The user then clicks
the Optimal Placement Algorithm button which creates a plan for
optimal distribution of blocks. The blocks are deployed by clicking
the Deploy button. Once the deployment is complete, the user can
then perform inference as displayed in the right pane.

Assume that an enterprise has the following list of available
servers s1<155, 8>, s2<113.5, 8>, s3<83.5,2>, s4<83.5,4>, and s5<83.5,8>.
The first value in the tuple represents the available leftover memory
in GBs and the second value represents the number of available
cores. The user wants to deploy the LLama2 70b model, which
comprises 80 transformer blocks. The size of LLaMA2 is approx-
imately 300GB including overheads. No single server within the
enterprise can host the entire LLama2 model. By leveraging the
combined memory capacities of multiple servers, the OPA algo-
rithm of LLaMPS creates a plan for deployment. Servers s1, s2, and
s5 are selected taking into account available memory and cores and
will host transformer blocks 0-34, 35-60, and 61-79 respectively.

During an inference cycle, the client management(step 7a in
Figure 2) tokenizes the input. The tokenized input is then relayed
to server s1, where it traverses the allocated transformer blocks.
The intermediate output is sequentially passed to server s2 and
subsequent servers until it has traversed all the transformer blocks.
The final output from the last server in the sequence is transmitted
back to the client(step 8 in Figure 2), where the required output is
generated.

4 CONCLUSION AND FUTUREWORK
LLaMPS is instrumental in addressing the challenges associated
with deploying LLMs on limited computational resources. It achieves
this by efficiently distributing the computational workload of LLMs
across multiple machines, using the OPA algorithm. OPA not only
optimizes the utilization of residual computing power but also man-
ages the dynamically varying leftover memory and compute re-
sources optimally. We plan to enhance the capability of the LLaMPS
tool by extending it for optimal utilization of enterprise cloud re-
sources when deploying LLMs.

REFERENCES
[1] Ravi Kumar Singh, Likhit Bandamudi, Shruti Kunde, Mayank Mishra, and Rekha

Singhal. 2024. Leftovers for LlaMA. In International Conference on Performance
Engineering(accepted). ICPE.

88

Into the Fire: Delving into Kubernetes Performance and Scale
with Kube-burner

Sai Sindhur Malleni
Red Hat, Inc.

Bengaluru, India
smalleni@redhat.com

Raul Sevilla Canavate
Red Hat, Inc.
Madrid, Spain

rsevilla@redhat.com

Vishnu Challa
Red Hat, Inc.

Raleigh, US, NC
vchalla@redhat.com

ABSTRACT
This paper introduces Kube-burner1, an open-source tool for orches-
trating performance and scalability testing of Kubernetes2, with
the ability to operate seamlessly across different distributions. We
discuss its importance in the cloud native landscape, features and
capabilities and delve into its architecture and usage. Additionally,
we also present a case study on performance benchmarking using
Kube-burner and subsequent analysis to demonstrate its value.

KEYWORDS
kubernetes, benchmark, workload, pods, containers, metrics, per-
formance testing, scale testing, openshift
ACM Reference Format:
Sai Sindhur Malleni, Raul Sevilla Canavate, and Vishnu Challa. 2024. Into
the Fire: Delving into Kubernetes Performance and Scale with Kube-burner.
In Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3629527.3651405

1 INTRODUCTION
Microservices deployed as containers have become the prominent
way of building and delivering software [3]. This rise in adoption of
container technologies as well as microservices based architectures
has elevated the importance of container orchestration engines
like Kubernetes in empowering modern application development
and delivery. In that sense, Kubernetes serves as the fundamental
building block of cloud native infrastructure.

As cloud native is all about building, deploying and managing
applications at scale, the performance and scale of the underlying
Kubernetes platform is of essence. Kube-burner, with its versatile
capabilities in scaling, creating, deleting, and patching Kubernetes
resources as per user defined scenarios, along with its ability to col-
lect and index metrics from the monitoring system and benchmark
results plays a crucial role in illuminating the previously obscure
aspects of Kubernetes performance. Furthermore, its custom mea-
surements and alerting features notify users when Key Performance
Indicators (KPIs) indicate that Service Level Objectives (SLOs) have
been breached, adding an extra layer of insight.
1https://github.com/kube-burner/kube-burner
2https://kubernetes.io

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651405

2 ARCHITECTURE
Kube-burner is a CLI based tool written in Golang3 that provides
three major classes of functionality: benchmark orchestration
- creating, deleting and patching Kubernetes resources at scale;
measurements - detailed metrics obtained with the help of the
Kubernetes API, among others, such as how long it takes for a
pod to go from scheduling to ready (also known as podLatency)
and observability - the ability to collect metrics about the Ku-
bernetes platform under load by scraping a user defined set of
metrics from the Prometheus4 monitoring stack and index them
along with the benchmark results into a long term storage like
the local File system of the host from which kube-burner is run or
an Elasticsearch5/OpenSearch6 endpoint for subsequent retrieval,
visualization and comparison. Kube-burner is also capable of ex-
tracting certain metadata that defines the configuration of the Ku-
bernetes platform and appending that to the benchmark result data
to facilitate regression testing and comparisons between different
configurations such as Container Storage Interface (CSI) and Con-
tainer Network Interface (CNI) plugins or different distributions of
Kubernetes that have very nuanced differences as has been done
in some past work [1] [2] albeit using different tools. The resource
creation, deletion and patching functionality is implemented us-
ing client-go, while the Prometheus and Elasticsearch/OpenSearch
clients as well as the metadata collection is implemented as part of
a common library called go-commons that is imported as a module.
The objects created by Kube-burner are rendered using the default
Golang’s template library.

3 BENCHMARK ORCHESTRATION
Kube-burner is available as a binary that can run on Linux, Win-
dows or Darwin based systems across a wide range of CPU ar-
chitectures including x86_64 and arm64. Kube-burner in its most
common usage is invoked by passing a YAML based configuration
file to the executable on the CLI. The configuration file contains
certain global configuration options such as the endpoints of the
Elasticsearch/OpenSearch indexer followed by a list of jobs, with
each job having its own set of supported parameters. Each job
could create, delete or patch objects at a rate defined by the QPS
and Burst parameters within the job. An example job would be
one that creates several deployment objects per namespace across
several namespaces (determined by the jobIterations parameter) and
through each deployment creates multiple pods.

Ready-made benchmarks that mimic production workloads are
also available txo users to run directly instead of defining their
3https://go.dev
4https://prometheus.io
5https://www.elastic.co
6https://opensearch.org

89

https://doi.org/10.1145/3629527.3651405
https://github.com/kube-burner/kube-burner
https://kubernetes.io
https://doi.org/10.1145/3629527.3651405
https://go.dev
https://prometheus.io
https://www.elastic.co
https://opensearch.org

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Sai Sindhur Malleni, Raul Sevilla Canavate, and Vishnu Challa

Figure 1: Kube-burner workflow

configuration file, providing a trade-off between flexibility and ease
of use.

4 OBSERVABILITY
Performing a benchmark using Kube-burner is relatively simple.
However, it is sometimes necessary to analyze and be able to re-
act to some KPIs in order to validate a benchmark. That is why
Kube-burner ships metric-collection and alerting systems based on
Prometheus expressions. As stated earlier, Kube-burner is capable of
connecting to the Prometheus stack running on the Kubernetes plat-
form and extracting metrics pertaining to the platform’s response
to the benchmark load. The extracted metrics are then indexed to
the configured indexer, either the local File system on the host run-
ning kube-burner or an Elasticsearch/OpenSearch endpoint for long
term storage, retrieval and further integration with tools capable
of graphing data such as Grafana7. The metrics collection feature
is configured through a file referenced by the metrics-profile flag,
which can point to a local path or URL of a YAML-formatted file con-
taining a list of the Prometheus expressions that Kube-burner will
perform one by one after all the jobs are finished. Kube-burner also
includes an alerting feature that is capable of evaluating Prometheus
expressions in order to fire and index alerts based on user-specified
Prometheus expressions. These alerts could be used to indicate
anomalies found in certain Key Performance Indicators.

5 MEASUREMENTS
Not all of the data that is capable of providing insights into the
performance of the platform during the course of a benchmark run
and facilitating debugging once a potential bottleneck has been
found can be obtained from the Prometheus stack running on the
Kubernetes cluster. For example, there are no readily available
metrics in Prometheus to quantify the performance of the platform
in terms of the time taken to schedule and run pods during periods
of heavy churn on the cluster. Furthermore, there is a need to be
able to gather Golang profiling data correlating to the benchmark
run from the Kubernetes infrastructure pods such as the API server
or etcd. Pprof is another supported custom measurement in Kube-
burner which helps the user gather profiling information to further
assist advanced debugging. In total, Kube-burner supports three
custom measurements during a benchmark run: podLatency - for
measuring the time it takes for pods to go from scheduling to ready
and further reporting quantiles across the entire set of pods created
7https://grafana.com

as part of the benchmark, vmiLatency - similar to podLatency
but for virtual machine instances running on Kubernetes through
KubeVirt and pprof - for collecting Golang profiling information
from Kubernetes infrastructure pods as well as user applications.

6 CASE STUDY
As part of continuous testing we undertake at Red Hat to estab-
lish the performance and scale leadership of OpenShift (Red Hat’s
enterprise grade Kubernetes distribution), we use Kube-burner ex-
tensively to quantify the performance of every release. A relevant
recent use case of Kube-burner has been its role in validating the
performance and scalability requirements of a CNI plugin in Open-
Shift (OVNKubernetes) before transitioning to General Availability
(GA) and replacing the previous one (OpenShiftSDN) as the default.
Workloads and metrics provided by Kube-burner were crucial to
detect the different bottlenecks this plugin had. For example, one of
these metrics, podLatency, , can provide deep insights into several
aspects of a CNI plugin’s performance, scalability and efficiency.
We used the 99th percentile from the quantiles reported by the
podLatency metric to summarize the time taken for the different
pod lifecycle stages, starting from their creation and ending up in
a ready status, which includes the network setup of the pods. All
of this was done during a benchmark that spins up thousands of
pods across the cluster. As can be seen from the figure below, the
4.14 release of OpenShift showed improved scalability by being
performant at larger cluster sizes.

Figure 2: Measurements from Kube-burner graphed to quan-
tify performance improvements compared to previous re-
lease

REFERENCES
[1] Heiko Koziolek and Nafise Eskandani. 2023. Lightweight kubernetes distri-

butions: a performance comparison of microk8s, k3s, k0s, and microshift. In
ACM/SPEC International Conference on Performance Engineering (ICPE ’23),
Coimbra, Portugal. ACM, New York, NY, USA. https://doi.org/10.1145/3578244.3
583737.

[2] Foutse Khomh Mohab Aly and Soumaya Yacout. 2018. Kubernetes or openshift?
which technology best suits eclipse hono iot deployments. In 11th Conference
on Service-Oriented Computing and Applications (SOCA). IEEE, 113–120. https:
//doi.org/10.1109/SOCA.2018.00024.

[3] Olaf Zimmermann. 2017. Microservices tenets. Computer Science-Research and
Development, 32, 3-4, (July 2017), 301–310. https://doi.org/10.1007/s00450-016-0
337-0.

90

https://grafana.com
https://doi.org/10.1145/3578244.3583737
https://doi.org/10.1145/3578244.3583737
https://doi.org/10.1109/SOCA.2018.00024
https://doi.org/10.1109/SOCA.2018.00024
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

SuperArch: Optimal Architecture Design for Cloud Deployment
Kuldeep Singh

TCS, India
k.singh13@tcs.com

Chetan Phalak
TCS, India

chetan1.phalak@tcs.com

Dheeraj Chahal
TCS, India

d.chahal@tcs.com

Shruti Kunde
TCS, India

shruti.kunde@tcs.com

Rekha Singhal
TCS, India

rekha.singhal@tcs.com

ABSTRACT
The success of application migration to cloud depends on multiple
factors such as achieving expected performance, optimal cost on
deployment, data security etc. The application migration process
starts with the architecture design, mapping technical and business
specifications to the appropriate services in cloud. However, cloud
vendors offer numerous services for each service type and require-
ment. The onus of selecting the optimal service from the pool lies
with the user. Identifying an optimal service for a specific compo-
nent or application requirement is a daunting task and necessitates
a deep understanding of each cloud service offered.

This paper introduces SuperArch, a supervised architecture de-
sign tool designed to facilitate optimal selection and configuration
of cloud services. We propose utilization of Large Language Models
(LLM) for extracting information from user requirements and speci-
fications, aiding in optimal selection of cloud services. Additionally,
SuperArch maps workloads to the cloud services to generate opti-
mal configurations of the cloud service and estimate performance
and cost of the entire architecture.

CCS CONCEPTS
• General and reference → Performance; Estimation.

KEYWORDS
Performance and cost estimation, cloud deployment
ACM Reference Format:
Kuldeep Singh, Chetan Phalak, Dheeraj Chahal, Shruti Kunde, and Rekha
Singhal. 2024. SuperArch: Optimal Architecture Design for Cloud Deploy-
ment. In Companion of the 15th ACM/SPEC International Conference on
Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3629527.3651406

1 INTRODUCTION
Creating a resilient and efficient cloud-based system requires a
delicate equilibrium among factors such as performance, cost, com-
pliance, security, and user-specific requirements. Navigating the
vast and ever-evolving design space encompassing various cloud
services, new hardware, and multi-cloud deployments poses a sig-
nificant challenge for the user. User-provided technical and business
requirements may be fulfilled by multiple services from a cloud ven-
dor. For example, an AWS database requirement can be served with

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651406

Tool Cost Guided
design Performance *

All
vendors
supported

* LLM
support

Selected
services

End-to-
end

Selected
services

End-to-
end

Holori [6] P N N N N Y N
Diagrams.net [4] N N N N N Y P
Cloudskew [3] N N N N N Y N
Cloudcraft [2] P P N N N N N
Hava.io [5] Y Y N N N Y N

Lucidchart [7] Y Y N N N Y Y
Brainboard [1] Y Y N N N Y N
SuperArch Y Y Y Y Y P Y

Table 1: Comparison of SuperArch with cloud architecture
design tools

Amazon RDS, DynamoDB, Amazon Neptune, or Amazon Aurora.
In order to design an optimal architecture for complex user require-
ments, a conventional approach is based on manually exploiting
abilities and experiences of cloud architects and iterative designs.
Fortunately, the advent of state-of-the-art LLMs [8] presents an
opportunity to find the optimal cloud-based services and their con-
figuration that form the foundation of end-to-end architectures.
Currently, the tools available in the market are not fully leveraging
the capabilities of Large Language Models (LLMs) to automatically
suggest high-performance and cost-effective optimal cloud architec-
tures. This deficiency frequently results in the creation of inefficient
designs, leading to lower performance and inaccurate cost estimates,
ultimately causing cost escalations. Moreover, the hardware and
software components provided by these cloud services can be con-
figured in various ways influencing their performance and cost. A
crucial factor in choosing the right cloud service and configuring
it appropriately, is the anticipated workload, which is defined by
factors such as expected number of users, size of data etc.

Figure 1: An example AWS cloud architecture design for IoT
application using SuperArch

Most of the existing architecture design tool (see Table 1) do not
map current as well as futuristic workloads to the cloud services
in an architecture design often resulting in an inaccurate perfor-
mance and cost estimation results in cost escalation and hence
cloud repatriation.

91

https://doi.org/10.1145/3629527.3651406
https://doi.org/10.1145/3629527.3651406
https://doi.org/10.1145/3629527.3651406

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Kuldeep Singh, Chetan Phalak, Dheeraj Chahal, Shruti Kunde, & Rekha Singhal

(a) (b) (c)

Figure 2: (a) Use of LLaMA for automated architecture design based on user specifications. (b) Cloud deployment cost estimation
for AWS S3 service. (c) RAG design for finding architecture patterns from user specifications and vendor documents

This work aims to address these challenges and contribute to the
development of a more nuanced approach to cloud-based system
design using a tool called SuperArch (see Figure 1).

2 FEATURES OF SUPERARCH
Major contributions of our tool are as follows :

• Leveraging Language Models: The tool utilizes LLM to au-
tomatically identify and recommend cloud services based on
capabilities, features, and system requirements. Additionally,
it identifies optimal cloud services by recognizing architec-
ture patterns in user’s technical and business specifications.
The tool automatically parses cloud services and their con-
nections to draw architecture on the canvas as depicted in
Figure 2(a).

• Dynamic Architecture Modification: The architecture
generated by the LLM is editable which enables iterative
modification of the architecture, allowing users to change
and compare components at each step, for instance if user
wants to compare RDS and DynamoDB it can be done within
a few clicks.

• Cost and Performance Estimation: A repository of per-
formance benchmarking data from various sources is main-
tained for popular cloud services such as storage, databases,
VMs of various configurations, etc. Also, baseline cost num-
bers with associated parameters (geography, cost/hour, con-
figuration etc.) are retrieved using cost calculators provided
by vendors. This data is used in conjunction with workload
data available in the user specification document to calcu-
late end-to-end performance and cost of the architecture as
illustrated in Figure 2(b).

• User-Friendly Interface andmulti-cloud support: Offers
an intuitive and user-friendly interface for seamless interac-
tion, and also simplifies the architecture design process by
recommending next optimal cloud service and configuration
at each step in the design process.

• Iterative Refinement: Allows iterative refinement of the
architecture based on user feedback, ensuring collaborative
efforts between the tool’s capabilities and user domain ex-
pertise. Tool provides features to save and load versions of
the architecture.

• Domain Based Templates: The tool offers domain-specific
templates, tailoring designs to applications of various indus-
tries or fields. Users can easily access and utilize pre-designed
templates relevant to their application domain, streamlin-
ing the designing process and ensuring a professional and
industry-appropriate architecture for their application.

3 USE CASE
Figure 1 shows an AWS architecture for an IoT application using Su-
perArch. User specifications for the application requires streaming
on-premise data to cloud for storage, model training, performing
analytics and sending results back to the user. The architecture is
generated using LLM and supervised design functionalities provid-
ing assistance to architects in making optimal choices for cloud
components from a vast array of available options.

4 CONCLUSION AND FUTUREWORK
We proposed the SuperArch tool that utilizes the capabilities of
Large Language Models (LLMs) for optimal cloud architecture de-
sign. Furthermore, we presented a methodology for estimating the
performance and cost of architectures by mapping workloads to
the cloud. The current implementation of C-Arch employs LLaMA.
We are currently in the process of incorporating a Retrieval Aug-
mented Generation (RAG) pipeline using ChatGPT-4 2(c), aiming
to enhance the capabilities of Large Language Models (LLMs) with
relevant cloud service information sourced from the internet.

REFERENCES
[1] Brainboard. [n. d.]. The cloud is your canvas. Accessed Jan. 22, 2024. https:

//www.brainboard.co/
[2] Cloudcraft. [n. d.]. Visualize your cloud architecture like a Pro. Accessed Jan. 22,

2024. https://www.cloudcraft.co/
[3] Cloudskew. [n. d.]. Online Diagram, Flowchart Maker. Accessed Jan. 22, 2024.

https://www.cloudskew.com/
[4] Diagrams.net(Draw.io). [n. d.]. Flowchart Maker Online Diagram Software. Ac-

cessed Jan. 22, 2024. https://app.diagrams.net/
[5] Hava.io. [n. d.]. Automated Cloud Diagrams in Minutes. Accessed Jan. 22, 2024.

https://www.hava.io/
[6] Holori. [n. d.]. Cloud cost platform with infrastructure visibility. Accessed Jan. 22,

2024. https://holori.com/
[7] Lucidchart. [n. d.]. Diagram your people, processes, and systems. Accessed Jan.

22, 2024. https://www.lucidchart.com/pages/
[8] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

92

https://www.brainboard.co/
https://www.brainboard.co/
https://www.cloudcraft.co/
https://www.cloudskew.com/
https://app.diagrams.net/
https://www.hava.io/
https://holori.com/
https://www.lucidchart.com/pages/
https://arxiv.org/abs/2302.13971

AIPerf’24: 2nd International Workshop on Artificial Intelligence
for Performance Modeling, Prediction, and Control
Emilio Incerto

emilio.incerto@imtlucca.it
IMT School for Advanced Studies

Lucca
Lucca, Italy

Marin Litoiu
mlitoiu@yorku.ca

Lassonde School of Engineering, York
University,
Canada

Daniele Masti
daniele.masti@imtlucca.it

IMT School for Advanced Studies
Lucca

Lucca, Italy

Figure 1: 2st Workshop on Artificial Intelligence for Performance Modeling, Prediction, and Control

CCS CONCEPTS
• Software and its engineering → Software performance; •
Computing methodologies → Control methods; Machine
learning.

KEYWORDS
Software Performance, Control Theory, Artificial Intelligence

ACM Reference Format:
Emilio Incerto, Marin Litoiu, and Daniele Masti. 2024. AIPerf’24: 2nd In-
ternational Workshop on Artificial Intelligence for Performance Modeling,
Prediction, and Control. In Companion of the 15th ACM/SPEC Conference
on Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/
3629527.3651433

1 WORKSHOP CHAIRS’ WELCOME
We are pleased to welcome you to the 2024 ACM Workshop on Arti-
ficial Intelligence for Performance Modeling, Prediction, and Control
– AIPerf’24.

In its second edition, AIPerf intends to foster the usage of AI
(such as probabilistic methods, machine learning, and deep learn-
ing) to control, model, and predict the performance of computer
systems. The relevance of these topics reflects current and future
trends toward exploiting AI-based approaches to deal with com-
plex, large, and interconnected systems. Despite AI and ML being

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom.
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651433

widely adopted techniques to investigate several mainstream do-
mains, their usage for performance modeling and evaluation is
still limited, and their benefit to the performance engineering field
remains unclear. AIPerf proposes a meeting venue to promote the
dissemination of research works that use or study AI techniques
for quantitative analysis of modern ICT systems and to engage
academics and practitioners of this field. The workshop focuses
on presenting experiences and results of applying AI/ML-based
techniques to performance-related problems, as well as sharing per-
formance datasets and benchmarks with the community to facilitate
the development of new and more accurate learning procedures.

Remarkably, for this edition, recognizing the strong correlation
between the topics, AIPerf is combined with the 1st Workshop
on Performance Optimization in the LLM World. We believe that
this fusion could offer mutual benefits to the audiences of both
workshops, stimulating paper dissemination and fostering fruitful
collaborations.

Putting together AIPerf’24 was a team effort. We first thank
the authors and the invited speakers for providing the content of
the program. We are grateful to the program committee and the
senior program committee, who worked very hard to review papers
and provide authors’ feedback. Finally, we thank the LLM World
organizing committee for their help and availability in organizing
this joint edition collaboratively and to the ICPE’24 organizers
for sponsoring AIPerf in its community. We hope that you will
find this program interesting and thought-provoking and that the
symposium will provide you with a valuable opportunity to share
ideas with other researchers and practitioners from institutions
around the world.

93

https://orcid.org/0000-0003-0383-920X
https://doi.org/10.1145/3629527.3651433
https://doi.org/10.1145/3629527.3651433
https://doi.org/10.1145/3629527.3651433

Benchmarking in the Datacenter (BID): Expanding to the Cloud
Wei-Chen Lin

wl14928@bristol.ac.uk
University of Bristol

Bristol, UK

Jens Domke
jens.domke@riken.jp

RIKEN Center for Computational Science
Kobe, Japan

ABSTRACT
Welcome to the 2024 5th International Workshop on Benchmark-
ing in the Data Centre: Expanding to the Cloud (BID ’24), hosted at
Imperial College London as a workshop track of the International
Conference on Performance Engineering (ICPE’24).

The past few years have been remarkably exciting for the cloud
computing domain. We are witnessing groundbreaking develop-
ments in AI architectures, new AI/ML methodologies, and the sig-
nificant expansion of newer CPU architectures such as AArch64
and RISC-V. These innovations not only redefine the capabilities
and efficiency of cloud-based services but also open new avenues
of research on how we can attain the best possible performance in
the cloud.

BID ’24 is dedicated to advancing the field of high-performance
computing (HPC) benchmarking, extending its application from
traditional academic settings to industry and the cloud. This evolu-
tion prompts a reassessment of user education concerning HPC’s
advantages, optimal selection of computational resources for spe-
cific workloads, and the considerations surrounding cost and en-
vironmental impact. Our discussions will encompass several key
areas: privacy issues in commercial HPC environments, emerging
cloud architectures, comprehensive workflows for effective bench-
marking, and theoretical approaches to performance analysis. Ad-
ditionally, this year’s workshop will delve into the unique chal-
lenges presented by AI/ML workloads in cloud settings.

The success of BID ’24 is made possible by the contributions of
numerous individuals and organizations. We extend our gratitude
to all authors and presenters who have submitted their work for
discussion. A special thank you goes to the members of the Tech-
nical Committee for their invaluable support and diligent reviews.
We also appreciate the hospitality and support from our hosts in
London, UK, who have provided an excellent venue for our work-
shop.

Ultimately, the essence of BID ’24 is shaped by its participants.
We thank all authors, speakers, and attendees for enriching this
workshop with their insights and presence. We hope you find the
discussions stimulating, the networking fruitful, and your time in
London memorable.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651434

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; • Computer systems organization→ Cloud comput-
ing; Heterogeneous (hybrid) systems.

KEYWORDS
HPC; benchmarking; cloud computing; confidential computing; AI/ML
workflow
ACM Reference Format:
Wei-Chen Lin and Jens Domke. 2024. Benchmarking in the Datacenter
(BID): Expanding to the Cloud . In Companion of the 15th ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE Companion ’24),
May 7–11, 2024, London, United Kingdom.ACM, New York, NY, USA, 1 page.
https://doi.org/10.1145/3629527.3651434

94

https://doi.org/10.1145/3629527.3651434
https://doi.org/10.1145/3629527.3651434

GraphSys-2024:
2nd Workshop on Serverless, Extreme-Scale, and Sustainable

Graph Processing Systems
Chairs’ Welcome

Alexandru Iosup
a.iosup@vu.nl

VU University of Amsterdam
Amsterdam, The Netherlands

Radu Prodan
radu.prodan@aau.at

Alpen-Adria-Universität Klagenfurt
Klagenfurt, Austria

Ana-Lucia Varbanescu
a.l.varbanescu@utwente.nl

University of Twente
Enschede, The Netherlands

Welcome!
It is our great pleasure to welcome you to GraphSys’24, the 2nd
edition of the ACM/SPEC Workshop on Serverless, Extreme-Scale, and
Sustainable Graph Processing Systems. This is a returning workshop,
where we continue to facilitate the exchange of ideas and expertise
in the broad field of high-performance large-scale graph processing.

Graphs and GraphSys
The use, interoperability, and analytical exploitation of graph data
are essential for modern digital economies. Today, thousands of
computational methods (algorithms) and findable, accessible, in-
teroperable, and reusable (FAIR) graph datasets exist. However,
current computational capabilities lag when faced with the com-
plex workflows involved in graph processing, the extreme scale
of existing graph datasets, and the need to consider sustainability
metrics in graph-processing operations. Needs are emerging for
graph-processing platforms to provide multilingual information
processing and reasoning based on the massive graph represen-
tation of extreme data in the form of general graphs, knowledge
graphs, and property graphs. Because graph workloads and graph
datasets are strongly irregular, and involve one or several big data
“Vs” (e.g., volume, velocity, variability, vicissitude), the community
needs to reconsider traditional approaches in performance analysis
and modeling, system architectures and techniques, serverless and
“as a service” operation, real-world and simulation-driven experi-
mentation, etc., and provide new tools and instruments to address
emerging challenges in graph processing.
Graphs or linked data are crucial to innovation, competition, and
prosperity and establish a strategic investment in technical process-
ing and ecosystem enablers. Graphs are universal abstractions that
capture, combine, model, analyze, and process knowledge about
real and digital worlds into actionable insights through item repre-
sentation and interconnectedness. For societally relevant problems,
graphs are extreme data that require further technological inno-
vations to meet the needs of the European data economy. Digital
graphs help pursue the United Nations Sustainable Development

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651435

Goals (UN SDG) by enabling better value chains, products, and ser-
vices for more profitable or green investments in the financial sector
and deriving trustworthy insight for creating sustainable commu-
nities. All science, engineering, industry, economy, and society-
at-large domains can leverage graph data for unique analysis and
insight, but only if graph processing becomes easy to use, fast,
scalable, and sustainable.
GraphSys is a cross-disciplinary meeting venue focusing on state-
of-the-art and the emerging (future) graph processing systems. We
invite experts and trainees in the field, across academia, industry,
governance, and society, to share experience and expertise leading
to a shared body of knowledge, to formulate together a vision for
the field, and to engage with the topics to foster new approaches,
techniques, and solutions.

Technical content
In this second edition, the workshop received 10 submissions from
which, after peer review, it accepted six full papers for publication.
Topics include graph sampling characterization, new models for
pipeline/streaming computation on graphs, and using graphs for
thermal modeling in HPC centers, telemetry data analysis, and
improvements in collition detection for autonomous vehicle driving.
We are sure this mix of topics will be reflected in a lively workshop,
from presentations to discussions. We are looking forward to it!
We further invited the other four submissions to submit a work-in-
progress short papers. Three teams have accepted our invitation,
and thus the workshop will feature three short, work-in-progress
talks on creating massive knowledge graphs, state-of-the-art in
serverless workflow management, and graph-sampling algorithms.
Last, but not least, we are happy to welcome two invited speakers to
our workshop. Dr. Johannes Langguth (SIMULA, Norway) will talk
about Graph Algorithms on Emerging Tile-Centric Accelerators. Dr.
Gabor Szarnyas from the LDBC (Linked Data Benchmark Council,
The Netherlands) will talk about Linked Data Benchmark Council:
12 years of fostering competition in the graph processing space.

Thanks and Acknowledgments
This year’s GraphSys is the result of the collaboration of many
people, authors, reviewers, and the organizing committee. Thank
you!We further thank the ICPE 2024 Program andWorkshopChairs,
for their active support. We could not have done this without you!
The GraphSys workshop is technically sponsored by the Graph-
Massivizer project funded by the Horizon Europe research and
innovation program of the EuropeanUnion for the period 2024-2026,

95

https://orcid.org/0000-0001-8030-9398
https://orcid.org/orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-4932-1900
https://doi.org/10.1145/3629527.3651435

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Alexandru Iosup, Radu Prodan, and Ana-Lucia Varbanescu

which studies and aims to develop a high-performance, scalable,
gender-neutral, secure, and sustainable platform for massive graph
processing.

Concluding remarks
We aim to continue to align GraphSys with the Standard Perfor-
mance Evaluation Corporation (SPEC)’s Research Groups (RG), and,

in particular, the RG Cloud Group that is taking a broad approach,
relevant for both academia and industry, to cloud benchmarking,
quantitative evaluation, and experimental analysis.
We hope GraphSys will continue its growth towards a focused
yearly series, aiming to develop the topic of large scale high perfor-
mance, sustainable graph processing, and around it a community
of knowledge and practice.

96

Linked Data Benchmark Council: 12 years of fostering
competition in the graph processing space

Gábor Szárnyas
gabor.szarnyas@ldbcouncil.org
Linked Data Benchmark Council

The Netherlands

ABSTRACT
The Linked Data Benchmark Council (LDBC) was originally cre-
ated in 2012 as part of a European Union-funded project of the
same name. Its original goal was to design standard benchmarks
for graph processing and to facilitate competition among vendors
to drive innovation in the field. 12 years later, the LDBC organiza-
tion has 20+ member organizations (including database, hardware,
and cloud vendors) and has five standard benchmark workloads,
with frequent audit requests from vendors. Moreover, LDBC ex-
tended its scope behind benchmarking to cover graph schemas
and graph query languages, and has a liaison arrangement with
the ISO SQL/GQL standards committee. In this talk, I will reflect
on the LDBC’s organizational history, goals, and main technical
achievements.

ACM Reference Format:
Gábor Szárnyas. 2024. Linked Data Benchmark Council: 12 years of foster-
ing competition in the graph processing space. In Companion of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE ’24
Companion), May 7–11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 1 page. https://doi.org/10.1145/3629527.3652889

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652889

97

https://doi.org/10.1145/3629527.3652889
https://doi.org/10.1145/3629527.3652889

GraphMa: Towards new Models for Pipeline-Oriented
Computation on Graphs

Daniel Thilo Schroeder
SINTEF
Norway

daniel.t.schroeder@sintef.no

Tobias Herb
Germany

tobias.herb@gmx.de

Brian Elvesæter
SINTEF
Norway

brian.elvesater@sintef.no

Dumitru Roman
SINTEF
Norway

dumitru.roman@sintef.no

ABSTRACT
This paper presents GraphMa, a framework aimed at enhancing
pipeline-oriented computation for graph processing. GraphMa inte-
grates the principles of pipeline computation with graph processing
methodologies to provide a structured approach for analyzing and
processing graph data. The framework defines a series of compu-
tational abstractions, including computation as type, higher-order
traversal, and directed data-transfer, which collectively facilitate
the decomposition of graph operations into modular functions.
These functions can be composed into pipelines, supporting the
systematic development of graph algorithms. For this paper, our
focus lies in particular on the capability to implement the well-
established computational models for graph processing within the
proposed framework. In addition, the paper discusses the design of
GraphMa, its computational models, and the implementation de-
tails that illustrate the framework’s application to graph processing
tasks.

CCS CONCEPTS
• Computer systems organization → Pipeline computing.

KEYWORDS
Graph processing, Pipeline-oriented computation, Graph data, Graph
operations

ACM Reference Format:
Daniel Thilo Schroeder, Tobias Herb, Brian Elvesæter, and Dumitru Roman.
2024. GraphMa: Towards new Models for Pipeline-Oriented Computation
on Graphs. In Companion of the 15th ACM/SPEC International Conference
on Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3629527.3652894

Tobias Herb and Daniel Thilo Schroeder contributed equally.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652894

1 INTRODUCTION
Graphs, with their intricate structures and complex relationships,
are an integral part of the world around us, playing a key role in
various domains ranging from social networks to biological systems.
Historically, graph processing has been fundamental in applications
such as network analysis, e.g. shortest path computation [12, 22],
for mapping services [5], analysis of social networks [13, 21] or
even feature extraction [17]. These traditional uses have paved the
way for more advanced applications.

In recent times, we have witnessed the emergence of graph pro-
cessing in areas like recommendation systems [3, 4, 7, 20], fraud
detection [11], and complex interaction mapping in bioinformat-
ics. Moreover, the increasing availability and collection of large
datasets have significantly influenced the size and complexity of
graphs [16]. These large-scale graphs present unique challenges
and opportunities for processing and analysis.

In response to these challenges, distributed graph processing has
gained prominence [2]. This shift from traditional, localized graph
processing to distributed methods addresses the need for scalability
and efficiency in handling vast and more and more complex graph
structures. Frameworks like ApacheGiraph [10], Google’s Pregel [9]
or the Apache TinkerPop [14] project have been instrumental in
this transition. They offer powerful, general-purpose solutions for
distributed graph processing, enabling easier implementation of
algorithms tailored to specific graph-related problems.

Building upon the foundational aspects of graph processing,
the application of concepts like immutability or modularity, well-
known in functional programming, offer a promising approach for
constructing graph processing pipelines. The congruence between
these concepts and graph processing is rooted in several advantages,
which are particularly beneficial for handling the challenges posed
by graph data.

In this context, modularity is the decomposition of complex prob-
lems into smaller, reusable functions. This approach mirrors the
inductive nature of many graph algorithms and processing work-
flows, where operations are independent yet interrelated. In graph
processing, this translates to the ability to encapsulate operations
like traversal, filtering, and transformation into discrete functions,
which can then be composed to addressmore complex graph-related
problems. Such modularity not only fosters code reusability but
also simplifies the process of constructing and maintaining graph

98

https://doi.org/10.1145/3629527.3652894
https://doi.org/10.1145/3629527.3652894
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652894

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Daniel Thilo Schroeder, Tobias Herb, Brian Elvesæter, and Dumitru Roman

algorithms and even beyond, the composition of a multitude of
graph algorithms.

Graph processing, especially when dealing with large datasets,
can greatly benefit from parallel and concurrent execution. Reduc-
ing or eliminating sharedmutable states, simplifies themanagement
and reasoning of parallelism and concurrency. This is crucial for
optimizing the performance of graph algorithms, allowing them to
handle the computational demands of large-scale graph analysis.
The immutability and stateless nature embedded in the concepts of
functional programming make it inherently suited for these tasks.

In this paper, we outline the fundamental principles that underlay
our concept for pipeline-oriented computation in general. Building
on this we propose and discuss GraphMa, a collection of ideas and
preliminary implementations extending the ideas around general
pipeline-oriented computation towards graph processing. For this
paper our focus lies in particular on the capability to implement
the well-established computational models for graph processing
(see Section 2) within the proposed framework (see Section 3).

2 BACKGROUND: COMPUTATIONAL MODELS
FOR GRAPH PROCESSING

The landscape of graph processing is rich and varied, encompass-
ing a range of computational units and models each designed to
optimize different aspects of graph analysis. At the heart of these
models is the goal to efficiently process and analyze data struc-
tured in graphs. Based on [2] we would like to exercise an overview
of the primary computational models that have shaped modern
graph processing, highlighting their foundations, operations, and
the challenges they address.

• Vertex-Centric (TLAV)Model: Pioneered byGoogle’s Pregel [9]
and further extended by Apache Giraph [1], the Vertex-
Centric model places the vertex at the center of computation.
In this model, each vertex independently executes the same
function, processing incoming information, potentially up-
dating its state, and then communicating with other vertices
through its edges. This approach allows for high levels of
parallelism as each vertex operates in isolation, yet collabo-
ratively contributes to the graph’s overall computation.

• Superstep Paradigm: This executionmodel, integral to Vertex-
Centric processing, organizes computation into a series of
global steps known as supersteps. During a superstep, ver-
tices concurrently execute a specified function, after which
they engage in communication by sending messages to ver-
tices that will be active in the subsequent superstep. This
synchronized execution and communication phase structure
not only facilitates easier reasoning about the computational
process and thus simplifies the programming of distributed
graph algorithms. The paradigm is briefly described in [2].
We also recommend read [19] and [9].

• Scatter-Gather Model: This model splits the process of mes-
sage handling into two distinct phases: scattering, where
vertices send out messages, and gathering, where messages
are collected and state updates are aggregated. By clearly
distinguishing between these phases, the Scatter-Gather
model [18] provides a structured approach to handling vertex

communication, facilitating more organized data processing
flows.

• Gather-Apply-Scatter Model: Introduced by PowerGraph [6]
adresses the challenge of computational load imbalance, es-
pecially in graphs with power-law distributions, the Gather-
Apply-Scattermodel decomposes vertex operations into three
phases: gather information from neighboring vertices, apply
a function to update the vertex’s state, and scatter results to
influence neighboring vertices in the next cycle.

• Edge-Centric Model: Offering a different perspective, the
Edge-Centricmodel [15] focuses computation on graph edges
rather than vertices. This model, exemplified by X-Stream
and Chaos, is particularly effective in scenarios where edge-
based computations are predominant. This model optimizes
the use of secondary storage and network communication,
making it suitable for processing very large graphs that do
not fit into memory.

• Sub-graph-Centric Model: By concentrating on sub-graphs,
either partition-centric within a physical partition or neigh-
bourhood-centric allowing for shared state updates, this
model [8] aims to reduce communication overheads. This
approach is especially beneficial in distributed environments
where minimizing inter-node communication can signifi-
cantly enhance performance.

• MEGA Model: Specifically designed for machine learning
applications on graphs, the MEGA model introduced by
Tux2 [23] focuses on edge-level computations with functions
such as Exchange, Apply, and Global Sync. These functions
facilitate detailed manipulation of graph structure and val-
ues, supporting sophisticated machine learning algorithms
on graph data.

3 A CONCEPTUAL FRAMEWORK TO
PIPELINE-ORIENTED COMPUTATION

This section presents a comprehensive overview of our novel com-
putation model designed for pipeline-oriented data processing in
general. It is only in Section 4 when we discuss how to apply this
framework as the basis to implement computational models for
graph processing. Our proposed model integrates functional pro-
gramming paradigms with object-oriented design principles to
create a versatile framework capable of addressing complex data
processing requirements. It is structured around a series of inter-
connected layers, each contributing to a cohesive and flexible archi-
tecture that facilitates the development of data processing pipelines.
These layers include Computation as Type, Higher-order Traversal
Abstraction, Directed Value-Transfer Protocol, Operator Model, and
finally the Pipeline Abstraction. We begin to introduce the first
Layer Computation as Type.

3.1 Computation as Type
The foundation of our model is the concept of Computation as Type,
which posits computation units as first-class entities encapsulated
by a Compute interface. This interface is defined as a function ac-
cepting a value of type T and performing operations, potentially

99

GraphMa: Towards new Models for Pipeline-Oriented Computation on Graphs ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

with side effects. This foundational abstraction underpins the archi-
tecture for creating pipeline stages, enabling data processing that
is both type-safe and modular.

3.2 Higher-order Traversal Abstraction
The second layer, Higher-order Traversal Abstraction is the compo-
nent designed to oversee data access and processing in an abstract
manner. It outlines the methods for navigating through different
data sources, thereby enabling versatile and effective data manipu-
lation. In this section, we explore the fundamental elements of this
abstraction, detailing their organizational framework and how they
interact.

3.2.1 Structural Composition and Behavioral Interaction.

Higher-order Traversal Primitives: At the core of our Traversal
Abstraction are the higher-order traversal primitives, which are
instrumental in defining the manner in which data is accessed and
iterated over. These primitives are characterized by their ability to
abstract away the specifics of data sources and access mechanisms,
providing a unified interface for data traversal. Key characteristics
include:

• Sequential Access: An abstraction layer that decouples the tra-
versal mechanism from the data source’s physical represen-
tation while allowing for sequential access to data, enabling
iteration over data sources like containers, IO channels, or
generator functions.

• Computation Integration: An important feature is the inte-
gration with first-order computation units, allowing tra-
versed values to be processed in a seamless and flexible
manner. This is achieved through second-order functions
that pass each traversed value to a specified computation
unit (Compute<T>).

• Traversal Strategies:
– Single-step Traversal (TryNext): Processes data one item
at a time, affording precise control over the iteration and
enabling fine-grained data manipulation.

– Bulk Traversal (ForNext): Optimizes data processing by
handling batches of data, streamlining the traversal pro-
cess and improving efficiency.

– Continuation-controlled Bulk Traversal (WhileNext): Intro-
duces a continuation-passing style for bulk processing,
offering dynamic control over the traversal logic based on
runtime conditions. This strategy is particularly notable
for its use of the Continuation interface, which provides
a mechanism for halting or altering the course of compu-
tation in response to specific criteria.

Traverser Abstraction in a nutshell:

• Computation Carrier : The Traverser emerges as the central
figure in this abstraction, acting as the carrier for the com-
putation across data sets. It encapsulates the higher-order
traversal primitives, serving as the execution context for
data processing operations.

• Unified Control Flow Patterns: By housing different traver-
sal strategies within a coherent framework, the Traverser
harmonizes flexibility with control. It offers a spectrum of

control flow patterns, from granular, step-by-step data pro-
cessing to more coarse-grained, bulk handling techniques.

• Seamless Interaction and Modularity: The delineation of tra-
versal strategies into distinct components not only clari-
fies the traversal abstraction but also enhances the system’s
modularity. This separation allows for the extension and cus-
tomization of traversal behaviors to accommodate specific
processing requirements, fostering reusability and adaptabil-
ity.

• Foundation for Advanced Data Processing: The integration
of traversal primitives within a unified Traverser environ-
ment provides a robust foundation for implementing so-
phisticated data processing strategies. This design carefully
balances the need for complex control flowmechanisms with
the desire for a clear, modular architectural structure.

By abstracting the intricacies of data traversal and offering a
suite of customizable traversal strategies, the Traverser layer stands
as a cornerstone of the proposed computation model. It exemplifies
the framework’s capacity to facilitate advanced data manipulation
techniques.

3.3 Directed Data-Transfer Protocol
We introduce a refined conceptual model for pipeline-oriented
computation, anchored by the Directed Value-Transfer Protocol.
This model emphasizes the seamless management and transfer of
data across computational stages, aligning with the principles of
functional programming and type-centric design philosophies. Our
model is distinguished by its lifecycle-aware architecture and the
explicit delineation of data producer and consumer roles, facilitating
a structured yet flexible approach to constructing computation
pipelines.

3.3.1 Architectural Foundations. At the heart of our model lies the
Compute<T> interface, a fundamental abstraction representing a
unit of computation. It encapsulates the notion that computations
are first-class entities, capable of accepting input and executing
operations in a type-safe manner. Building upon this, our design
introduces a hierarchical structure aimed at enhancing data transfer
efficiency and lifecycle management:

• Lifecycle Integration: The Transfer.Lifecycle interface in-
troduces a dual-phase lifecycle management protocol with
open() and close() methods. This protocol ensures the
acquisition and release of resources are handled gracefully,
enhancing the robustness of the computation chain.

• Role-Specific Abstractions: Our model defines two important
interfaces, Transfer.Port<T> and Transfer.Pipe<T>, to
represent the roles of data producers and consumers, re-
spectively. This distinction not only clarifies the data flow
directionality, but also enriches the model with the capability
to handle complex data processing scenarios.

3.3.2 Operational Dynamics. TheDirected Value-Transfer Protocol
underpins an interaction framework:

• Managed Data Flow: The explicit lifecycle management em-
bedded within the data transfer interfaces ensures that each
stage of the computation pipeline is initialized and termi-
nated appropriately, promoting efficient resource utilization.

100

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Daniel Thilo Schroeder, Tobias Herb, Brian Elvesæter, and Dumitru Roman

• Directed Transfer Mechanism: By segregating data transfer
roles into Port and Pipe, our model ensures a clear and effi-
cient directionality of data flow. This segregation allows for
the optimization of data transmission mechanisms, catering
to both synchronous and asynchronous processing needs.

• Flexible Computation Chains: The extension of Pipe<T> to
potentially act as both consumer and producer underscores
the model’s versatility. It supports the construction of in-
tricate multi-stage processing pipelines, enabling data to
be transformed progressively through successive computa-
tional units.

3.3.3 Computational Chain Composition. A key feature of our
model is the LazyChain<I,O> interface, which symbolizes the essence
of pipeline-oriented computation through the contravariant compo-
sition of computation units. This interface facilitates the dynamic
assembly of computational stages, allowing for the efficient trans-
formation and transfer of data across the pipeline:

• Enhanced Modularity: The LazyChain interface exemplifies
the model’s commitment to modular and reusable design
principles. It allows for the flexible chaining of computational
units, ensuring that complex data processing tasks can be
decomposed into manageable, composable segments.

The Directed Value-Transfer Protocol, as conceptualized in our
pipeline-oriented computation model, represents a sophisticated
framework for data processing. It marries the principles of lifecycle
management, type safety, and functional programming to offer a ro-
bust and flexible solution for constructing complex computational
pipelines. Through this model, we aim to provide a scalable and
efficient framework for addressing the diverse challenges of mod-
ern data processing tasks, reaffirming the potential of functional
patterns in the realm of object-oriented programming languages
like Java.

3.4 Operator Model
The Operator Model represents the quintessential fifth layer within
our innovative pipeline-oriented computational framework, metic-
ulously crafted to underpin the construction and orchestration of
data processing pipelines. This model introduces a sophisticated
suite of computational constructs, pivotal for the lifecycle man-
agement of operators and the nuanced handling of their states,
thereby facilitating a broad spectrum of data processing operations.
Herein, we integrate and refine the abstract conceptualization of the
Operator Model, emphasizing its core constructs, their structural
interplay, and the pivotal role of terminal operators in concluding
data processing tasks.

3.4.1 Core Constructs and Structural Composition.

Operator Protocol. The Operator<T> abstraction stands as the
cornerstone of the Operator Model, extending Transfer.Lifecycle to
underscore its essential role in managing the lifecycle and state of
operations within pipelines. This interface is instrumental for:

• State Management: It allows for the encapsulation of stateful
computations, enabling operators to maintain and manipu-
late local state through the localState() method.

Transducer. The Transducer<I, O> abstraction, serving as the
backbone for intermediate operators, embodies the transforma-
tional logic necessary for processing and relaying data through
various stages of the pipeline. Its design is focused on:

• Transformation and Lazy Computation: Facilitating the lazy
transformation of data, thus acting as a critical bridge in the
data flow across the pipeline.

Materializer. The Materializer<T> abstraction plays a crucial
role in state materialization, especially in managing the transition
of data states within pipelines through chunked buffers, enhancing
the efficiency and organization of data processing workflows.

Terminal Operators. Terminal operators, categorized into Com-
plete Terminal Operators and Partial Terminal Operators, mark the
culmination of the pipeline’s data processing journey. They are
distinguished by their evaluation strategies:

• Complete Terminal Operators process the entirety of input
data, embodying exhaustive data analysis or transformation.

• Partial Terminal Operators facilitate early termination of pro-
cessing based on specific conditions, optimizing performance
through lazy evaluation and early termination strategies.

3.4.2 Interaction Dynamics and Evaluation Strategies.

• Lifecycle and StateManagement: The OperatorModel ensures
meticulous lifecycle management across all operator types,
harmonizing state management and data transformation
processes. This integration is vital for the seamless flow and
transformation of data across the pipeline.

• Flexible Terminal Evaluation: The differentiation in termi-
nal operator strategies enhances the model’s adaptability,
allowing for both exhaustive data processing and efficient,
condition-based evaluations. This flexibility ensures opti-
mal performance and resource utilization, catering to a wide
range of computational requirements.

The Operator Model emerges as a comprehensive and modular
framework for pipeline construction, characterized by its advanced
management of operator lifecycle, state, and terminal evaluation
strategies. Through its well-structured abstractions—from trans-
ducers and materializers to the nuanced categorization of terminal
operators—it lays a versatile and extensible foundation for domain-
specific data processing operations. This model not only encapsu-
lates the core principles of pipeline-oriented computation but also
fosters adaptability and efficiency, ensuring its applicability across
diverse data processing scenarios.

3.5 Pipeline Abstraction
The Pipeline abstraction is a pivotal construct within the novel
pipeline-oriented computational model, representing the overar-
ching framework that orchestrates the structured and stateful pro-
cessing of data. This abstraction serves as a high-level blueprint
for defining data processing flows, encapsulating the complexities
of data transformation and transmission. The design principles
underlying the Pipeline model prioritize modularity, flexibility,
and clarity in constructing computational logic, thereby offering
a robust platform for implementing sophisticated data processing
mechanisms.

101

GraphMa: Towards new Models for Pipeline-Oriented Computation on Graphs ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

3.5.1 Overview of Pipeline Components.

• Stage: A Stagewithin the pipeline signifies a discrete pro-
cessing unit, tasked with receiving input values, applying
a specified operation, and producing output for the subse-
quent stage. It embodies the core functional element of the
pipeline, enabling the definition and execution of transfor-
mation operations in a type-safe manner.

• State: The State component encapsulates stateful logic for
data materialization, transforming or accumulating data as it
traverses the pipeline. This aspect of the pipeline architecture
facilitates the implementation of complex data processing se-
mantics, allowing for the dynamic evolution of computation
based on the flow of data.

• Sink: Serving as the terminal point of the pipeline, the Sink
is responsible for consuming all processed data to produce
a final outcome or effectuate a side operation. It marks the
culmination of the pipeline’s computational process, transi-
tioning the abstract pipeline description into an actionable
computation through the evaluation operator.

3.5.2 Structural Composition. The pipeline is conceptually struc-
tured as a series of computation steps, organized as LazyChain
instances and interconnected via Transfer.Pipe objects. These
steps converge at an Operator.Terminal, where the computed
data is either transformed into a result or utilized to perform a side
effect. The recursive type parameterization of the Pipeline inter-
face ensures type safety across the processing stages, facilitating
the seamless chaining of operations.

3.5.3 Interaction and Evaluation Strategies. The pipeline model
embraces the principle of "laziness," deferring computations until
absolutely necessary. This design choice enables the efficient as-
sembly of an execution plan that outlines the data transformation
process, from the source through to the sink. The plan encapsu-
lates the requisite parameters for executing computations at each
stage, culminating in a pipeline sink where the evaluation operator
resides.

The evaluation operator, embodied by the Evaluator, allows for
the implementation of various evaluation strategies:

• Eager Evaluation: Immediate execution of computations upon
their invocation.

• Lazy Evaluation: Deferral of computations until required,
encapsulated within a ’thunk’ to capture the deferred com-
putation.

• Memoized Evaluation: Computations are performed upon
first access, with results cached for future reference.

This flexible evaluation framework, referred to as the ’Flow-
Machine’, grants granular control over the computation flow, en-
hancing resource utilization and potentially improving execution
speed and memory efficiency depending on the use case scenario.

The Pipeline abstraction forms the crux of a sophisticated com-
putational model designed to facilitate the structured and stateful
processing of data. Through its modular composition, the pipeline
model enables the construction of complex data processing flows
with ease, offering a comprehensive framework for the implemen-
tation of diverse computational logic. This abstraction not only
simplifies the development of data processing applications but also

enriches the computational model with a flexible and powerful
mechanism for data transformation and evaluation.

4 IMPLEMENTATION OF COMPUTATIONAL
MODELS FOR GRAPH PROCESSING IN
GRAPHMA

In this section we propose approaches on how to embed graph
computation models into the higher-order pipeline model.

4.1 Vertex-Centric Embedding
Embedding the Vertex-Centric Computation Model (TLAV) into the
higher-order pipeline model could leverage the strengths of both
models to efficiently process graph-based data.

Below we give a concise overview of how this integration is
currently structured and operates.

4.1.1 Structural Composition.

(1) Compute<T>for Vertex Operations: Vertices are encap-
sulated as Compute<Vertex> instances, where each vertex
acts as an independent computational unit with its own state.
This aligns with the Computation as Type principle, allowing
vertices to process data and messages in a type-safe manner.

(2) Traversal as Message Passing: The Higher-order Traver-
sal Abstraction is adapted to facilitate message passing be-
tween vertices. Each vertex employs traversal primitives to
send and receive messages, abstracting the communication
mechanism and ensuring flexibility in message dissemina-
tion strategies.

(3) Directed Data-Transfer for Supersteps: The Directed
Data-Transfer Protocol orchestrates the execution of super-
steps. A Transfer.Pipe<Message> interface manages the
asynchronous delivery of messages between supersteps, en-
suring that messages sent in one superstep are correctly
queued for processing in the next.

(4) Operator Model for Vertex Execution Logic: The Op-
erator Model is extended to define vertex execution logic
within supersteps. Operator<Vertex> interfaces manage
state transitions and message processing, supporting the
iterative nature of vertex-centric computations.

(5) Pipeline Abstraction for Graph Processing Flows: The
entire graph processing logic is encapsulated within a
Pipeline<Graph> abstraction, orchestrating the flow of com-
putation across supersteps. This pipeline integrates stages
for message passing, vertex state updates, and global con-
vergence checks.

4.1.2 Behavioral Interaction.

(1) Iterative Pipeline Stages: Each superstep is represented
as a stage in the pipeline, with vertices operating in parallel
to process incoming messages and update their states. The
pipeline dynamically adapts to the iterative nature of the
vertex-centric model, allowing for repeated execution of
stages until a global stopping condition is met.

(2) DynamicMessageRouting: The pipeline utilizes theHigher-
order Traversal Abstraction to dynamically route messages

102

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Daniel Thilo Schroeder, Tobias Herb, Brian Elvesæter, and Dumitru Roman

between vertices. This enables efficient scatter-gather opera-
tions, optimizing the distribution and collection of messages
across the graph.

(3) Stateful Computation and Lifecycle Management: The
Directed Data-Transfer Protocol and Operator Model jointly
manage the lifecycle of vertex computations. They ensure
that vertex states are correctly initialized, updated, and final-
ized across supersteps, maintaining consistency and robust-
ness in the computation.

(4) Flexible Evaluation Strategies: The Pipeline Abstraction
supports flexible evaluation strategies for vertex-centric com-
putations, allowing for both eager and lazy execution of
supersteps. This flexibility aids in optimizing performance
based on the specific characteristics of the graph and the
computational workload.

(5) Adaptation to Vertex-Centric Variations: The pipeline
model’s modular design allows for easy adaptation to dif-
ferent vertex-centric variations (bulk synchronous parallel,
asynchronous, edge-centric, mixed-mode). Specific compo-
nents of the pipeline (e.g., message routing, state manage-
ment) can be customized to reflect the desired computational
semantics and performance characteristics.

4.1.3 Summary. By integrating the Vertex-Centric Computation
Model within the higher-order pipeline model, this approach pro-
vides a structured yet flexible platform for graph processing.

It combines the modularity, type safety, and functional program-
ming strengths of the pipeline-oriented model with the intuitive,
scalable, and vertex-focused computation of the vertex-centric
model.

This integration not only enhances the expressiveness and ef-
ficiency of graph processing tasks but also leverages the parallel
execution capabilities inherent in distributed computing environ-
ments.

4.2 Edge-Centric Embedding
Embedding the Edge-Centric Computation Model (TLAE) into the
higher-order pipeline model involves focusing on the relationships
and interactions between vertices, with edges acting as the primary
conduits of computation and communication.

Below we give a concise overview of how such an integration
could be structured and operate.

4.2.1 Structural Composition.

(1) Compute<Edge>for Edge Operations: Edges are repre-
sented as Compute<Edge> instances, where each edge acts as
an independent computational unit capable of accessing and
modifying the data of its connected vertices as well as its own
properties. This encapsulation aligns with the Computation
as Type principle, facilitating type-safe edge operations.

(2) Directed Data-Transfer for Edge-Vertex Communica-
tion: A Transfer.Pipe<Message> interface is utilized for
edge-to-vertex message passing, managing the asynchro-
nous exchange of messages. This supports direct communi-
cation between edges and vertices, allowing edges to send
messages that influence vertex state and behavior.

(3) Operator Model for Edge Execution Logic: The Operator
Model is adapted to define the logic of edge computations
within supersteps. Operator<Edge> interfaces handle the
processing tasks of edges, including state transitions based
on both edge properties and received vertex messages.

(4) Pipeline Abstraction for Edge-Centric Flows: The graph
processing logic, focusing on edge interactions, is encapsu-
lated within a Pipeline<Edge> abstraction. This pipeline
manages the stages of edge computation, message passing,
and the integration of edge-induced vertex updates.

4.2.2 Behavioral Interaction.

(1) Iterative Pipeline Stages for Edges: Supersteps are repre-
sented as stages in the pipeline, with edges performing com-
putation and message passing in parallel. This approach fa-
cilitates the autonomous operation of edges, allowing for the
iterative processing of edge and vertex interactions across
supersteps.

(2) Dynamic Edge-to-Vertex Message Routing: Utilizing the
Directed Data-Transfer Protocol, the pipeline dynamically
routes messages from edges to their connected vertices. This
mechanism is crucial for enabling edges to influence vertex
state and initiate vertex-level computations based on edge-
centric logic.

(3) Stateful Edge Computation and Lifecycle Management:
The integration of the Operator Model with the Directed
Data-Transfer Protocol ensures that edge states are cor-
rectly managed throughout the computation lifecycle. This
includes initialization, state updates based on incoming mes-
sages, and finalization, maintaining robustness and consis-
tency in edge-centric computations.

(4) Flexible Evaluation Strategies for Edge-Centric Oper-
ations: The Pipeline Abstraction supports both eager and
lazy execution strategies for edge-centric computations. This
flexibility allows for performance optimization based on the
graph’s characteristics and the computational workload, en-
hancing the efficiency of edge-centric processing.

(5) Adaptation to Edge-Centric Variations: The modular de-
sign of the model facilitates easy adaptation to different edge-
centric variations (pure edge-centric, vertex-augmented, hy-
brid). Specific pipeline components (e.g., message routing,
edge computation logic) can be tailored to reflect the compu-
tational semantics and performance characteristics desired
for each variation.

4.2.3 Summary. By embedding the Edge-Centric Computation
Model within the higher-order pipeline model, this approach offers
a structured platform for focusing on edge-based interactions and
data flows in graph processing.

It leverages the modularity, type safety, and functional program-
ming benefits of the pipeline-oriented model, along with the di-
rect communication and computation capabilities inherent in edge-
centric approaches.

This integration not only provides a powerful tool for address-
ing problems where edge relationships are paramount but also
enhances the flexibility and performance of graph processing tasks
in distributed computing environments.

103

GraphMa: Towards new Models for Pipeline-Oriented Computation on Graphs ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

4.3 Sub-Graph-Centric Embedding
Embedding the Sub-Graph-Centric Computation Model (TLAG)
into the pipeline-oriented computation model focuses on leverag-
ing cohesive groups within the graph structure, enhancing com-
putational efficiency and expressiveness. This integration aims to
exploit the locality and reduce communication needs by treating
subgraphs as primary computational units.

Below we explain how such an integration could be structured
and operate.

4.3.1 Structural Composition.

(1) Compute<SubGraph>for SubgraphOperations: Subgraphs
are encapsulated as Compute<SubGraph> instances, treating
each subgraph as an independent computational unit. This
approach aligns with the Computation as Type principle,
facilitating type-safe operations on subgraph data, including
both its internal structure and interconnections.

(2) Directed Data-Transfer for Subgraph Communication:
Utilizing the Transfer.Pipe<Message> interface, themodel
manages asynchronous message passing between subgraphs.
This enables subgraphs to communicate, exchanging infor-
mation and updates in a manner that respects the locality of
data and computations.

(3) Operator Model for Subgraph Execution Logic: The Op-
erator Model adapts to define subgraph-level computations.
Operator<SubGraph> interfaces are responsible for execut-
ing computations that consider the subgraph’s entire struc-
tural and relational context, supporting iterative execution
patterns for dynamic state updates.

(4) Pipeline Abstraction for Subgraph-Centric Processing:
The graph processing logic, centered around subgraph com-
putations, is encapsulated within a Pipeline<SubGraph>
abstraction. This pipeline coordinates the stages of subgraph
computation, communication, and integration of updates
across the larger graph structure.

4.3.2 Behavioral Interaction.

(1) Iterative Pipeline Stages for Subgraphs: Each pipeline
stage corresponds to a superstep in the subgraph-centric
computation, allowing subgraphs to process information
and interact in parallel. This iterative approach facilitates
the dynamic exchange of information and updates across
subgraphs, maintaining the model’s emphasis on locality
and reduced communication overhead.

(2) Dynamic Subgraph-to-Subgraph Communication: The
pipeline uses the Directed Data-Transfer Protocol to enable
efficient and localized message passing between subgraphs.
This setup is crucial for maintaining data locality and reduc-
ing communication overhead, particularly for algorithms
that benefit from intensive local interactions.

(3) Stateful Subgraph Computation and Lifecycle Manage-
ment: Integrating the Operator Model with the Directed
Data-Transfer Protocol ensures that subgraph computations
are managed effectively throughout their lifecycle. This in-
cludes initialization, iterative processing based on structural
and relational context, and finalization, ensuring consistency
and robustness in subgraph-centric computations.

(4) Flexible Evaluation Strategies for Subgraph-Centric
Operations: The Pipeline Abstraction supports various eval-
uation strategies, including eager and lazy execution, tailored
to the computational needs of subgraph-centric processing.
This flexibility allows for optimization of performance based
on the graph’s structure and the computational workload,
enhancing the efficiency of processing within and across
subgraphs.

(5) Adaptation to Subgraph-Centric Variations: Themodel’s
modular design facilitates easy adaptation to different sub-
graph-centric variations (TLAG, graph-centric, neighbour-
hood-centric, hybrid). Specific pipeline components can be
customized to reflect the computational semantics and per-
formance characteristics desired for each variation, ensuring
that the approach is tailored to the specific requirements of
the problem at hand.

4.3.3 Summary. By embedding the Sub-Graph-Centric Computa-
tion Model within the higher-order pipeline model, this approach
offers a structured yet flexible platform for focusing on computa-
tions within cohesive subgraph units.

It leverages the strengths of the pipeline-oriented model – mod-
ularity, type safety, and functional programming benefits – along
with the enhanced locality, reduced communication needs, and
expressiveness of the subgraph-centric approach.

This integration not only provides a powerful mechanism for
addressing graph processing challenges that benefit from subgraph-
level focus but also enriches the computational model with ad-
vanced capabilities for handling complex patterns and relationships
in large-scale graph data.

5 CONCLUSION
In this paper, we introduced GraphMa, a collection of ideas and
preliminary implementations extending the ideas around general
pipeline-oriented computation towards graph processing. We ar-
gued that GraphMa’s architecture, which merges pipeline com-
putation principles with graph processing techniques, provides a
structured method for constructing and executing graph algorithms.
Through the introduction of computational abstractions such as
computation as type, higher-order traversal abstraction, and di-
rected data-transfer protocol, GraphMa enables the decomposition
of complex graph operations into modular, composable functions.

Furthermore, we have qualitatively explored the potential inte-
gration of well-established computational models for graph pro-
cessing within the GraphMa framework. This exploration has high-
lighted the framework’s inherent flexibility and the theoretical
effectiveness of such an integration. By detailing how these com-
putational models could align with GraphMa’s pipeline-oriented
architecture, we have shed light on the framework’s potential to
facilitate and enhance the development and execution of graph
processing tasks.

Looking ahead, we anticipate that GraphMa will serve as a valu-
able tool for researchers and practitioners in the field of graph
processing, offering a scalable and modular approach to algorithm
development. Future work will involve extending GraphMa’s capa-
bilities, exploring its application to a broader range of graph pro-
cessing scenarios, and evaluating its performance in comparison

104

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Daniel Thilo Schroeder, Tobias Herb, Brian Elvesæter, and Dumitru Roman

to existing frameworks. Our goal is to continue refining GraphMa,
ensuring that it remains a robust and adaptable framework capable
of addressing the evolving challenges in graph processing.

ACKNOWLEDGMENT
This work has been funded by the Graph-Massivizer project, which
receives funding from the Horizon Europe research and innova-
tion program of the European Union under grant agreement No
101093202.

REFERENCES
[1] Avery Ching. 2013. Scaling apache giraph to a trillion edges.
[2] Miguel E Coimbra, Alexandre P Francisco, and Luís Veiga. 2021. An analysis of

the graph processing landscape. journal of Big Data 8, 1 (2021), 1–41.
[3] Xiaohui Cui, Xiaolong Qu, Dongmei Li, Yu Yang, Yuxun Li, and Xiaoping Zhang.

2023. MKGCN: Multi-Modal Knowledge Graph Convolutional Network for Music
Recommender Systems. Electronics 12, 12 (2023), 2688.

[4] Leyan Deng, Defu Lian, Chenwang Wu, and Enhong Chen. 2022. Graph Con-
volution Network based Recommender Systems: Learning Guarantee and Item
Mixture Powered Strategy. Advances in Neural Information Processing Systems 35
(2022), 3900–3912.

[5] Lau Nguyen Dinh. 2024. The MapReduce based approach to improve the all-
pair shortest path computation. International Journal of Advanced Science and
Computer Applications 3, 1 (2024), 55–64.

[6] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In 10th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, Chandu Thekkath and Amin
Vahdat (Eds.). USENIX Association, Hollywood, CA, USA, 17–30. https://www.
usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

[7] Elvin Isufi, Matteo Pocchiari, and Alan Hanjalic. 2021. Accuracy-diversity trade-
off in recommender systems via graph convolutions. Information Processing &
Management 58, 2 (2021), 102459.

[8] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. 2017. High-level programming
abstractions for distributed graph processing. IEEE Transactions on Knowledge
and Data Engineering 30, 2 (2017), 305–324.

[9] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010,
Ahmed K. Elmagarmid and Divyakant Agrawal (Eds.). ACM, Indianapolis, IN,
USA, 135–146. https://doi.org/10.1145/1807167.1807184

[10] ClaudioMartella, Roman Shaposhnik, Dionysios Logothetis, and Steve Harenberg.
2015. Practical Graph Analytics with Apache Giraph (1 ed.). Vol. 1. Apress, Berkeley,
CA, Berkeley, CA. XIX, 315 pages. https://doi.org/10.1007/978-1-4842-1251-6

[11] Tahereh Pourhabibi, Kok-Leong Ong, Booi H Kam, and Yee Ling Boo. 2020. Fraud
detection: A systematic literature review of graph-based anomaly detection
approaches. Decision Support Systems 133 (2020), 113303.

[12] Yu-Xuan Qiu, Dong Wen, Lu Qin, Wentao Li, Ronghua Li, and Ying Zhang. 2022.
Efficient Shortest Path Counting on Large Road Networks. Proc. VLDB Endow.
15, 10 (2022), 2098–2110. https://doi.org/10.14778/3547305.3547315

[13] Louise Quick, Paul Wilkinson, and David Hardcastle. 2012. Using Pregel-like
Large Scale Graph Processing Frameworks for Social Network Analysis. In Inter-
national Conference on Advances in Social Networks Analysis andMining, ASONAM
2012, Istanbul, Turkey, 26-29 August 2012. IEEE Computer Society, Istanbul, Turkey,
457–463. https://doi.org/10.1109/ASONAM.2012.254

[14] Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages, Pittsburgh, PA, USA, October 25-30, 2015, James Cheney and Thomas
Neumann (Eds.). ACM, Pittsburgh, PA, USA, 1–10. https://doi.org/10.1145/
2815072.2815073

[15] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: edge-
centric graph processing using streaming partitions. In ACM SIGOPS 24th Sympo-
sium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, November
3-6, 2013, Michael Kaminsky and Mike Dahlin (Eds.). ACM, Farmington, PA, USA,
472–488. https://doi.org/10.1145/2517349.2522740

[16] Daniel Thilo Schroeder, Johannes Langguth, Luk Burchard, Konstantin Pogorelov,
and Pedro G Lind. 2022. The connectivity network underlying the German’s
Twittersphere: a testbed for investigating information spreading phenomena.
Scientific reports 12, 1 (2022), 4085.

[17] Daniel Thilo Schroeder, Kevin Styp-Rekowski, Florian Schmidt, Alexander Acker,
and Odej Kao. 2019. Graph-based Feature Selection Filter Utilizing Maximal
Cliques. In Sixth International Conference on Social Networks Analysis, Man-
agement and Security, SNAMS 2019, Granada, Spain, October 22-25, 2019, Mo-
hammad A. Alsmirat and Yaser Jararweh (Eds.). IEEE, Granada, Spain, 297–302.
https://doi.org/10.1109/SNAMS.2019.8931841

[18] Philip Stutz, Abraham Bernstein, and William W. Cohen. 2010. Signal/Collect:
Graph Algorithms for the (Semantic) Web. In The Semantic Web - ISWC 2010 - 9th
International Semantic Web Conference, ISWC 2010, Shanghai, China, November
7-11, 2010, Revised Selected Papers, Part I (Lecture Notes in Computer Science,
Vol. 6496), Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei
Zhang, Jeff Z. Pan, Ian Horrocks, and Birte Glimm (Eds.). Springer, Shanghai,
China, 764–780. https://doi.org/10.1007/978-3-642-17746-0_48

[19] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103–111.

[20] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. RippleNet: Propagating User Preferences on the Knowledge
Graph for Recommender Systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018, Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh
Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk
Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang (Eds.). ACM,
Torino, Italy, 417–426. https://doi.org/10.1145/3269206.3271739

[21] Tian Wang, Hamid Krim, and Yannis Viniotis. 2013. A generalized Markov graph
model: Application to social network analysis. IEEE Journal of Selected Topics in
Signal Processing 7, 2 (2013), 318–332.

[22] Ye Wang, Qing Wang, Henning Koehler, and Yu Lin. 2021. Query-by-Sketch:
Scaling Shortest Path Graph Queries on Very Large Networks. In SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM,
Virtual Event, 1946–1958. https://doi.org/10.1145/3448016.3452826

[23] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming Wu,
Wei Li, and Lidong Zhou. 2017. Tux2: Distributed Graph Computation for Ma-
chine Learning. In 14th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, Aditya Akella
and Jon Howell (Eds.). USENIX Association, Boston, MA, USA, 669–682. https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/xiao

105

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1007/978-1-4842-1251-6
https://doi.org/10.14778/3547305.3547315
https://doi.org/10.1109/ASONAM.2012.254
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1109/SNAMS.2019.8931841
https://doi.org/10.1007/978-3-642-17746-0_48
https://doi.org/10.1145/3269206.3271739
https://doi.org/10.1145/3448016.3452826
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/xiao
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/xiao

Exploring the Utility of Graph Methods in HPC Thermal Modeling
Bruno Guindani

Department of Electronics, Information and

Bioengineering

Politecnico di Milano

Milano, Italy

bruno.guindani@polimi.it

Martin Molan

Department of Electrical, Electronic and Information

Engineering

Università degli Studi di Bologna

Bologna, Italy

martin.molan2@unibo.it

Andrea Bartolini

Department of Electrical, Electronic and Information

Engineering

Università degli Studi di Bologna

Bologna, Italy

a.bartolini@unibo.it

Luca Benini

Department of Information Technology and Electrical

Engineering

ETH Zurich

Zurich, Switzerland

lbenini@iis.ee.ethz.ch

ABSTRACT
This work critically examines several approaches to temperature

prediction for High-Performance Computing (HPC) systems, fo-

cusing on component-level and holistic models. In particular, we

use publicly available data from the Tier-0 Marconi100 supercom-

puter and propose models ranging from a room-level Graph Neural

Network (GNN) spatial model to node-level models. Our results

highlight the importance of correct graph structures and suggest

that while graph-based models can enhance predictions in certain

scenarios, node-level models remain optimal when data is abun-

dant. These findings contribute to understanding the effectiveness

of different modeling approaches in HPC thermal prediction tasks,

enabling proactive management of the modeled system.

CCS CONCEPTS
• Hardware → Temperature simulation and estimation.

KEYWORDS
High-Performance Computing, Graph Neural Network, Thermal

Modeling

ACM Reference Format:
Bruno Guindani, Martin Molan, Andrea Bartolini, and Luca Benini. 2024.

Exploring the Utility of Graph Methods in HPC Thermal Modeling. In

Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3629527.3652895

1 INTRODUCTION
High-Performance Computing (HPC) represents a pinnacle of com-

putational capability, harnessing the power of advanced hardware

This work is licensed under a Creative Commons Attribution

International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0445-1/24/05.

https://doi.org/10.1145/3629527.3652895

and software technologies to solve complex problems with un-

matched speed and precision. The price for this unparalleled perfor-

mance is the high hardware and operational costs, which become

even more critical with the transition to exascale. The most crucial

variable cost is the energy consumption of facility infrastructure,

which is not directly linked to processing [9]. The cooling of the

processing elements is the main contributor to this consumption

along with its associated costs [3].

Intelligent thermal monitoring and prediction systems are being

introduced to minimize the cooling expense and consequently re-

duce the variable cost of the HPC operation. These systems vary

from macro-scale, predicting the power-usage efficiency of the en-

tire data center in connection to weather conditions, to micro-scale,

modeling the thermal dynamics of the processor of the single com-

pute node. Accurate and reliable thermal prediction models would

enable more efficient utilization of HPC computing systems, such

as direct integration with the scheduler [3]. Energy-aware sched-

uling, such as the one proposed in [3], is already a well-explored

concept in the HPC domain. During periods of high cooling costs,

the scheduler aims to schedule fewer and fewer intensive compute

jobs on the system.

Associated with the rise in performance, HPC systems have

also exploded in complexity. Exascale and pre-exascale systems

have up to tens of thousands of compute nodes, each consisting of

CPUs and dedicated accelerators [9]. This explosion in complexity

necessitates the transition frommanual analysis and domain-driven

models to the introduction of machine learning models. The most

recent trend in machine learning-powered predictive models for

HPC is the use of graph representation and Graph Neural Networks

(GNNs) [6]. HPC systems are an ideal target for GNNs as there

are multiple layers of connection between logical units (compute

nodes), such as physical layout or job proximity.

In this work, we critically examine the utility of the graph pro-

cessing approaches for the thermal prediction use case and compare

it against the domain-driven per-node model. Based on this valida-

tion, we find the best node-level thermal prediction model that can

be scaled to current and future pre- and exascale HPC systems. We

perform the experimental evaluation on a publicly available dataset

curated by the University of Bologna [4]. All proposed models are

106

https://doi.org/10.1145/3629527.3652895
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652895

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Bruno Guindani, Martin Molan, Andrea Bartolini, and Luca Benini

also publicly available and form the basis for future exploration of

graph- and non-graph-based predictive models for HPC systems.

Our code is available at https://gitlab.com/ecs-lab/hpc-thermal.

Figure 1: Taxonomy of HPC modeling approaches.

2 RELATEDWORK
2.1 Machine learning approaches in HPC
There are twomain approaches to buildingmachine learningmethod-

ologies to support HPC systems: holistic and component-level mod-

els [8]. Each of them leverages the specific characteristics of HPC

systems. Component-level approaches aim to build many different

machine learning models such as neural networks, each tailored to

a specific component or subsystem of the HPC system [7]. On the

other hand, the holistic approaches aim to leverage large amounts

of data produced by the HPC system to build a single, large model

encompassing the whole HPC system with all its components and

subsystems [1]. The midway point between room-level (holistic)

and component-level models are models designed for a group of

components, e.g, a set of nodes within the same compute rack [6].

We illustrate this taxonomy in Figure 1.

Component-level approaches are well-explored in the area of

HPC modeling. For anomaly detection applications, it has been

well-established that the best possible results come from training

a separate self-supervised anomaly detection model for each com-

pute node [7]. The common denominator of these approaches is

that while the compute nodes are similar (e.g., they have the same

hardware configuration), they nonetheless require models explic-

itly trained for those nodes. This is because each node experiences

slight variations in hardware use, application utilization, and differ-

ent cooling and thermal conditions. What is common across all the

component-level approaches is that they use the same neural net-

work structure, but the model for each node is trained from scratch.

Using the same model structure for each of the component-level

models is possible because the compute nodes in a compute room

share the same hardware characteristics [7].

On the other side of the spectrum are the holistic modeling ap-

proaches (see [1, 7]). Instead of training many models with the same

structure, they attempt to create a single model that provides pre-

dictions for all the components. Because of the data’s large quantity

and complexity, regular tabular modeling approaches cannot be

utilized. Additional information in the form of a graph structure is

introduced to train such models effectively. This graph structure

often takes advantage of the fact that the HPC systems are orga-

nized in compute rooms, in which nodes are arranged in rows of

compute racks. This physical layout can then be a basis for the

graph representation of the room-level dataset. Graph-level models

have proven useful for some problems, like anomaly anticipation,

where they vastly outperform the component-level models [6].

2.2 Thermal modeling in HPC
In line with the taxonomy proposed in Figure 1, several thermal

modeling approaches exist for the problem of compute node-level

temperature prediction. These models, such as the one proposed in

[2], belong to the component-level category. While there have been

attempts [2, 10], [3] at building a holistic thermal model of the entire

computing room, none of these approaches attempt to generate

thermal predictions at the granularity of the individual compute

node. Instead, existing holistic, room-level models only predict

the average temperature of the entire computing room. However,

for optimizing the energy efficiency of the HPC operations, as

well as for energy-aware scheduling, more granular, node-level

temperature predictions are needed [3].

Recent advancements in applications of graph processingmethod-

ologies, such as [6], suggest using Graph Neural Networks (GNNs)

to build a holistic predictive model with a high resolution of pre-

dictions (for each individual node).

Motivated by the need for the node-level thermal prediction

model, this work critically examines the component-level (node-

level in our case) and the holistic modeling approaches. Specifically,

it compares the same-structure, individually-trained approach (in

line with [7]) against the graph-based approach inspired by [6]. To

the best of our knowledge, this is the first work in the literature

with a systematic focus on HPC temperature prediction via graph

models.

3 METHODOLOGY
3.1 Dataset
The data used for our analysis comes from the publicly available

M100 dataset [4]. It contains several features, also referred to as met-

rics, collected from the Tier-0 CINECA Marconi100 supercomputer

over multiple years by the ExaMon HPC monitoring framework [3].

In particular, we focus on the April 2021 – September 2022 period,

in which ExaMon collected all the metrics that are relevant to this

work. We use this data in samples covering contiguous 15-minute

time windows, each representing a snapshot of the HPC system at

a certain period in time. The snapshots include, for each compute

node, aggregations of data (such as average, minimum, maximum,

and standard deviation) collected during the time window. The

use of aggregations is necessary to have a time-uniform dataset

since ExaMon samples different metrics at different frequencies.

We define sample 𝑡 as the snapshot starting from timestamp 𝑡 and

ending at 15 minutes after 𝑡 . We refer to subsequent snapshots as

sample 𝑡 + 1, 𝑡 + 2, etc.

We exclude samples that contain a proportion of missing values

(NaNs) which is larger than 1%, a threshold we fixed after a compre-

hensive inspection of the data. This choice allows to skip snapshots

with clusters of neighboring vertices with missing values, which

would be difficult to impute. On the other hand, in the remaining

eligible samples, we fill in NaNs with a neighbor average approach.
That is, for a given missing value associated with a certain vertex

𝑛, metric𝑚, and timestamp 𝑡 , we collect the (non-missing) values

of the𝑚 metric of the neighbors of 𝑛 at time 𝑡 , perform a weighted

107

https://gitlab.com/ecs-lab/hpc-thermal

Exploring the Utility of Graph Methods in HPC Thermal Modeling ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

average, and impute such average to the missing value. The weights

used are the same as the corresponding edge weights in the graph

model (see Section 3.3).

3.2 Prediction target
Given a snapshot associated with time 𝑡 and a compute node, our

prediction target variable is the future temperature increase mea-

sured at the node outlet, i.e., the difference between the outlet

temperature measured at time at time 𝑡 + 1 and the one measured

at time 𝑡 . This corresponds to a 15-minute prediction horizon, as

mentioned earlier. This time horizon enables almost real-time mon-

itoring of the HPC system, allowing timely interventions by system

administrators or automatic adjustments to the cooling system if

using adaptive control strategies.

We choose to predict a temperature increase rather than the raw

temperature data because it contains the truly relevant information

that system administrators ought to know. A large raw temperature

value does not necessarily suggest a hazardous state. External fac-

tors such as weather and seasonal conditions heavily influence such

value, to the point where it is not uncommon to have an average

10°C difference between both winter and summer [2]. A sudden

spike in temperature instead signals a potentially hazardous state

of the system, especially using a short prediction time horizon.

3.3 Models
For our temperature prediction task, we propose three models,

which represent three hypotheses having increasing complexity: 1)

a Ridge linear regression model for each node; 2) a Dense Neural

Network (DNN) model for each node; and 3) one Graph Neural

Network (GNN) model for the entire Marconi100 room.

In the graph model, we represent the Marconi100 room with an

undirected weighted graph whose structure is based on the physical

layout of the room. We display this layout in Figure 2. Each dot

Figure 2: Spatial coordinates (in meters) of Marconi100 racks.

in the figure represents one of the 49 racks (IBM 7965-S42) in the

room, each of which holds 20 compute nodes and is about 2 meters

tall. The room therefore hosts a total of 980 compute nodes.

In our graph model, each vertex represents a compute node,

with edges connecting it to its closest neighbors in all three spatial

directions. Therefore, each vertex has at least 2 neighbors (for nodes

in the corners of the room) up to 6 (for any node that is not near

the sides of the room). This results in a total of 4782 weighted

edges. Furthermore, edge weights are inversely proportional to

the physical distance between nodes in the room. We refer to this

representation as the spatial graph model.

We use this graph structure to perform regression using the

Graph Convolutional Network (GCNConv) presented in [5]. We

chose this network as it yields the best results in terms of prediction

accuracy, according to preliminary experiments.

4 EXPERIMENTAL RESULTS
4.1 Experimental setting
The goal of our experiments is to assess the validity of the three

models presented earlier. Specifically, for graph models, we seek to

validate or reject the following two research questions:

• Does the data present a graph structure?

• Does a graph structure bring benefit to the prediction task

compared to a per-node analysis?

Therefore, besides the comparison between per-node and graph

models, we also conduct experiments with other graph mapping

structures. Specifically, we also test a random connectivity matrix

and a null connectivity matrix. In the first case, we sample random

pairs of vertices and connect them through edges with randomly

sampled weights. In the second case, we set all edge weights to

zero, preventing the model from exchanging information between

neighboring vertices.

We split the collection of samples into a training set and a test

set, composed of 80% and 20% of the total snapshots, respectively.

We preserve the chronological ordering of snapshots during the

split. This way, we simulate a real-world scenario in which we use

past experience to predict the future behavior of the system. We

use this split to train all models described in this work. We use

the Mean Squared Error (MSE) as the loss function to minimize

during training and as the validation metric for the evaluation of

the test set. Relative metrics like the Mean Absolute Percentage

Error (MAPE) are not suited for this prediction task, since the target

variable is oftentimes very close to zero. For the graph models, we

train each GCN in batches of size 20 for 10 epochs. Further details

about the training process can be found in our code repository.

The baseline against which we compare all models is the trivial

Last-Value Prediction (LVP), in which the prediction for a node’s

temperature at time 𝑡 + 1 is equal to the temperature at time 𝑡 . We

use the temperature difference as the regression target, therefore

the LVP is identically zero for all 𝑡 . The LVP is often used as a

reference benchmark for temperature in HPC settings since temper-

ature is a slow-changing metric. In particular, the LVP represents a

steady-state system approximation for the HPC system. Focusing

on a performance comparison with the LVP means focusing on the

meaningful temperature changes in the system.

The random connectivity matrix described earlier is created by

first fixing the same number of edges as in the spatial mapping

(4782), then randomly sampling that many pairs of vertices. Each

pair corresponds to a graph edge in the random mapping. Then,

the weights for these edges are i.i.d. sampled from a uniform dis-

tribution on (0, 10), which is a similar range to the original spatial

mapping.

4.2 Empirical results
We will describe our process of improving our prediction models to

improve their accuracy. The steps of this incremental process each

refer to one part of Figure 3, in which we plot the true target values

(in red) against the model predictions (in green) in the first portion

of the test set, on a randomly chosen node. We will show that these

steps lead to an overarching conclusion: Simplicity is best.

108

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Bruno Guindani, Martin Molan, Andrea Bartolini, and Luca Benini

(a) Spatial graph mapping: initial high-complexity model.

(b) Spatial graph mapping: reduced model.

(c) Node DNN model.

(d) Ridge linear model.

(e) Random graph mapping.

(f) No graph mapping.

Figure 3: Predictions for several models for node 85.

4.2.1 Model complexity. Webuild our first GNNmodel as described

in the earlier sections. In particular, we use as input all 416 aggre-

gated node features available in the original dataset and use 10

hidden layers with regularly decreasing sizes. As shown in Figure

3a, such a model collapses to the trivial prediction of zero for all

timestamps. This is also the average of all per-node temperature

differences in the entire dataset, as well as the null constant value

of the LVP baseline.

Since this model is unable to capture the trend of the target vari-

able, we tried increasing the number of layers in the neural network.

Still, the added complexity did not translate to an improvement in

the model’s predicting power. The result is nearly identical to the

original model shown in Figure 3a. We then tried to head in the

opposite direction by removing complexity from the model, in two

different ways: by decreasing the number of hidden layers and by

considering a smaller subset of all available features. In particular,

out of the original 416 aggregated node features, we only choose

to keep three that we deem the most relevant and essential. Two

of these features are used twice, once representing information

coming from snapshot 𝑡 − 1, and once from snapshot 𝑡 . This results

in five features being used in the GCN models. We list such features

in Table 1. The underlying physical processes of heating suggest

name description

pcie_avg_t-1 average outlet temperature in snapshot 𝑡 − 1

pcie_t0 outlet temperature at time instant 𝑡

total_power_avg_t-1 average node power consumption in snapshot 𝑡 − 1

total_power_avg_t0 average node power consumption in snapshot 𝑡

ambient_avg_t-1 average inlet temperature in snapshot 𝑡 − 1

Table 1: Reduced subset of node features.

that given temperature information from time 𝑡 − 1 to 𝑡 , as well as

the total power consumption from time 𝑡 − 1 to 𝑡 + 1, we should

be able to infer the temperature at time 𝑡 + 1. In Figure 3b, we can

see that the changes bring positive benefits to the model, which

is now capable of capturing the fluctuations of the next temper-

ature difference. We may attribute the worse performance when

using all available features to the fact that most of the removed

ones are likely irrelevant when inferring temperature, therefore

representing a source of noise.

Simplicity also has a positive impact concerning the GNN model

complexity. Specifically, the best-performing model only has one

hidden GCN layer (plus one input and one output layer). As men-

tioned, increasing the number of hidden layers does not improve

the model performance, and can even have a negative impact when

adding too many. We can explain this phenomenon by the deter-

minism of the underlying physical process.

Simplicity also translates to a lack of complexity in the chosen

GNN model. As previously mentioned, we tested several network

models, and GCN [5] stood out as yielding the best prediction

performance. This is one of the simplest models available in the

literature (see, e.g., [11]).

4.2.2 Per-node models. We now build individual Dense Neural

Network (DNN) models for each individual compute node, by us-

ing the same layer structure as the GNN, except with GCN layers

swapped out for traditional fully connected layers. We also use as

109

Exploring the Utility of Graph Methods in HPC Thermal Modeling ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

model subplot MSE

LVP – 2.260

spatial graph (initial) (a) 2.261

spatial graph (reduced) (b) 1.667

node DNN (c) 2.261

Ridge (d) 1.103

random graph (e) 2.436

no graph (f) 1.453

Table 2: Average test-set Mean Squared Errors for several
models.

input the same reduced subset of the five features described earlier.

However, as depicted in Figure 3c, this model also degenerates to a

constant prediction. This result is consistent with our observation

about complexity. Indeed, an entire neural network for an individ-

ual compute node is arguably more complex than a portion of a

single graph network modeling all nodes at once – in other words,

980 independent DNNs bring more complexity than one GNN.

Finally, we attempt to simplify our assumptions even further by

training one Ridge linear regression model for each compute node.

Similarly to the DNN per-node model, we use the reduced subset of

features. As exemplified in Figure 3d, not only does this model not

collapse to a constant, but it also outperforms the best GNN model

trained so far, i.e., the reduced one (Figure 3b). This is another piece

of evidence suggesting that less complex models are best suited to

this prediction task.

4.2.3 Model comparison. We show the full extent of the compar-

ison between the GNN model and the linear model in Figure 4a.

Specifically, each point on the blue line represents the average

test-set MSE of the GNN predictions on an individual node. These

points are sorted in decreasing order. The figure also shows the

corresponding MSE for both the LVP baseline (in orange) and the

Ridge linear model (in green), by keeping the same order of nodes

used for the GNN errors. In other words, vertically aligned points

refer to the same compute node. Finally, the horizontal dashed lines

represent the average MSEs of the three models across all compute

nodes. Figure 4a shows that Ridge models outperform the GNN

model in nearly all individual nodes. Nonetheless, both models

score lower errors than the LVP baseline.

4.2.4 Graph structure validation. We now report results for both

the random and the zero-weight graph mapping. Their predictions

on the chosen test-set window are displayed in Figures 3e and 3f,

while the errors for all compute nodes are in Figures 4b and 4c,

respectively. The random graph model does not degenerate to a

constant either, but its predictions are less precise than the reduced

spatial model – in fact, they turn out to be worse than even the

trivial LVP baseline. This is most evident from Figure 4b: the curve

of the GNN model error (in blue) lies above the LVP errors (in

orange) for the majority of the nodes. On the contrary, the zero-

weight graph model shows an improvement compared to the spatial

model but still falls short of the linear regression model (as is clear

from Figure 4c).

We show the average test-set MSEs of all models in Table 2.

These figures are consistent with the rest of our analysis. The initial

(a) Spatial graph mapping: reduced model.

(b) Random graph mapping.

(c) No graph mapping.

Figure 4: Sorted Mean Squared Errors for several models.

spatial graph model (a) and the node DNN model (c) are very close

to being constant models, thus they have the same error as the LVP

baseline. The random graph model (e) performs worse than the

baseline and the reduced spatial graph model (b) achieves worse

performance than the zero-weight graph model (f), which in turn

is worse than the per-node linear model (d).

4.2.5 Graph vs per-node models. These results lead us to the fol-

lowing considerations. The fact that the best models (in terms of

110

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Bruno Guindani, Martin Molan, Andrea Bartolini, and Luca Benini

MSE) do not use graph information, shows that a graph structure

is not needed to perform prediction on the M100 data, nor does a

graph structure necessarily improve results in a regression setting.

However, an inappropriate graph structure (such as the random

one in (e)) can still influence the model’s predictive capability in a

negative way. This indicates that the data may still present graph-

like patterns, which do not emerge when using a random graph

structure.

5 DISCUSSION
This work critically examines the node-level and holistic modeling

approaches for thermal prediction in HPC systems. Based on the

experimental evaluation, the best-performing holistic approach is

the spatial GNN which is trained to predict temperature changes

in connection to the current temperature. It beats the baseline and

achieves good prediction results. We also observe the importance

of a correct graph structure: if the graph structure is shuffled, the

prediction performance drops significantly, becoming even worse

than the trivial baseline.

However, the holistic approach performs sub-optimally com-

pared to the node-level approach. A simple node-level model based

on domain-based feature engineering outperforms the graph model.

This contrasts with the recent result in [6] on the same dataset,

where graph-based models severely outperformed the node-level

models on anomaly prediction tasks.

The difference between the anomaly prediction and the tempera-

ture prediction cases is the availability of labels. Anomaly prediction

is an unbalanced classification task; per-node models do not have

sufficient data to learn non-trivial predictions. In the temperature

prediction case, however, the future temperature information is

equally abundant in both the graph and node-level cases. The com-

prehensive study conducted in this paper thus suggests that when

sufficient data is available, simple node-based models outperform

more complex graph models.

Surprising results presented in this study nicely complement the

current preliminary results onGNN applications in theHPC domain.

While graphs are a powerful computational tool that unlocks the

possibilities of fulfilling novel predictive tasks, their utility lies

mainly in augmenting other models’ poor or missing data, such

as anomaly prediction cases. However, when data is abundant, the

classic per-node and per-component modeling approaches still give

the optimal results.

ACKNOWLEDGMENTS
This research was partly supported by the HE EU Graph-Massivizer

project (g.a. 101093202). This work was also supported by the Italian

Ministry of University and Research (MUR) under the National Re-

covery and Resilience Plan (PNRR) and by the European Union (EU)

under the NextGenerationEU project. Finally, we thank CINECA

for their collaboration and access to their machines.

REFERENCES
[1] Aksar, B., Zhang, Y., and Ates, E. e. a. Proctor: A semi-supervised performance

anomaly diagnosis framework for production hpc systems. In High Performance
Computing: 36th International Conference, ISC High Performance 2021, Virtual
Event, June 24–July 2, 2021, Proceedings 36 (2021), Springer, pp. 195–214.

[2] Ardebili, M. S., Bartolini, A., Acqaviva, A., and Benini, L. Rule-based

thermal anomaly detection for tier-0 hpc systems. In International Conference on
High Performance Computing (2022), Springer, pp. 262–276.

[3] Borghesi, A., Conficoni, C., Lombardi, M., and Bartolini, A. Ms3: A

mediterranean-stile job scheduler for supercomputers-do less when it’s too hot!

In 2015 International Conference on High Performance Computing & Simulation
(HPCS) (2015), IEEE, pp. 88–95.

[4] Borghesi, A., Di Santi, C., Molan, M., Ardebili, M. S., Mauri, A., Guarrasi,

M., Galetti, D., Cestari, M., Barchi, F., Benini, L., et al. M100 exadata: a data

collection campaign on the cineca’s marconi100 tier-0 supercomputer. Scientific
Data 10, 1 (2023), 288.

[5] Kipf, T. N., and Welling, M. Semi-supervised classification with graph convo-

lutional networks. In 5th International Conference on Learning Representations
(2017).

[6] Molan, M., Ahmed Khan, J., Borghesi, A., and Bartolini, A. Graph neural

networks for anomaly anticipation in hpc systems. In Companion of the 2023
ACM/SPEC International Conference on Performance Engineering (2023), pp. 239–

244.

[7] Molan, M., Borghesi, A., Cesarini, D., Benini, L., and Bartolini, A. Ruad:

Unsupervised anomaly detection in hpc systems. Future Generation Computer
Systems 141 (2023), 542–554.

[8] Ott, M., Shin, W., Bourassa, N., Wilde, T., Ceballos, S., Romanus, M., and

Bates, N. Global experiences with hpc operational data measurement, collec-

tion and analysis. In 2020 IEEE International Conference on Cluster Computing
(CLUSTER) (2020), IEEE, pp. 499–508.

[9] Shin, W., Oles, V., Karimi, A. M., Ellis, J. A., and Wang, F. Revealing power,

energy and thermal dynamics of a 200pf pre-exascale supercomputer. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (2021), pp. 1–14.

[10] Taneja, S., Zhou, Y., and Qin, X. Thermal benchmarking and modeling for

hpc using big data applications. Future Generation Computer Systems 87 (2018),

372–381.

[11] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun,

M. Graph neural networks: A review of methods and applications. AI open 1
(2020), 57–81.

111

AutoGrAN: Autonomous Vehicle LiDAR Contaminant Detection
using Graph Attention Networks

Grafika Jati
DEI Department, University of

Bologna
Italy

grafika.jati2@unibo.it

Martin Molan
DEI Department, University of

Bologna
Italy

martin.molan2@unibo.it

Junaid Ahmed Khan
DEI Department, University of

Bologna
Italy

junaidahmed.khan@unibo.it

Francesco Barchi
DEI Department, University of

Bologna
Italy

francesco.barchi@unibo.it

Andrea Bartolini
DEI Department, University of

Bologna
Italy

a.bartolini@unibo.it

Giuseppe Mercurio
FEV Italia s.r.l.

Italy
mercurio_g@fev.com

Andrea Acquaviva
DEI Department, University of

Bologna
Italy

andrea.acquaviva@unibo.it

ABSTRACT
Extreme conditions and the integrity of LiDAR sensors influence
AI perception models in autonomous vehicles. Lens contamination
caused by external particles can compromise LiDAR object detec-
tion performance. Automatic contaminant detection is important to
improve reliability of sensor information propagated to the user or
to object detection algorithms. However, dynamic conditions such
as variations in location, distance, and types of objects around the
autonomous vehicle make robust and fast contaminant detection
significantly challenging.

We propose a method for contaminant detection using voxel-
based graph transformation to address the challenge of sparse Li-
DAR data. This method considers LiDAR points as graph nodes and
employs a graph attention layer to enhance the accuracy of con-
taminant detection. Additionally, we introduce cross-environment
training and testing on real-world contaminant LiDAR data to en-
sure high generalization across different environments. Compared
with the current state-of-the-art approaches in contaminant detec-
tion, our proposed method significantly improves the performance
by asmuch as 0.1575 in F1-score. Consistently achieving F1 scores of
0.936, 0.902, and 0.920 across various testing scenarios, our method
demonstrates robustness and adaptability. Requiring 128 millisec-
onds on a AMD EPYC 74F3 CPU for the end-to-end process, our
method is well-suited for an early warning system, outperforming
human reaction times, which require at least 390 milliseconds to
detect hazards. This significantly contributes to enhancing safety
and reliability in the operations of autonomous vehicles.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652896

CCS CONCEPTS
• Computing methodologies → Scene anomaly detection;
Vision for robotics; 3D imaging.

KEYWORDS
Advanced driver assistance systems (ADAS), autonomous vehicle
perception systems, LiDAR Point Cloud reliability, LiDAR contam-
ination and Noise detection, Graph Processing, Graph Attention
Networks

ACM Reference Format:
Grafika Jati, Martin Molan, Junaid Ahmed Khan, Francesco Barchi, Andrea
Bartolini, Giuseppe Mercurio, and Andrea Acquaviva. 2024. AutoGrAN:
Autonomous Vehicle LiDAR Contaminant Detection using Graph Attention
Networks. In Companion of the 15th ACM/SPEC International Conference
on Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3629527.3652896

1 INTRODUCTION
The LiDAR becomes one of the main sensors for the perception
model in autonomous vehicles. LiDAR point clouds provide 3D
information about the surrounding environment, offering an in-
depth picture of the objects around it [12, 16]. Perception models
such as object detection, object recognition, scene reconstruction,
motion estimation, and path planning are essential. The integrity
of LiDAR data influences the performance of perception models in
autonomous vehicles. Failure of integrity can result in catastrophic
errors or failures.

LiDAR data integrity is essential in edge case conditions, such
as sensor cover contamination. While the sensor may be in good
condition, its perception can be limited by unexpected situations
affecting its surface or cover. Beyond severe weather conditions,
the sensor cover’s cleanliness can significantly limit perception

112

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652896
https://doi.org/10.1145/3629527.3652896
https://doi.org/10.1145/3629527.3652896

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Grafika Jati et al.

capabilities. This limitation is evidenced by a decreased object de-
tection accuracy, as highlighted in a recent benchmark study [5].
This benchmark found that weather-related contamination, includ-
ing rain, snow, and fog, reduces object detection performance. For
instance, the PV-RCNN method achieved an Average Precision (AP)
of 84.39 under clean conditions, which dropped to 51.35 with rain-
affected data. That study assessed the impact of adverse weather
conditions leading to particle accumulation on the sensor cover.
In the same survey, using synthetic corruption data (Gaussian,
uniform, and impulse noise only), object detection performance
decreased by up to 20% of AP. On the other hand, sensor cover
contamination can also result from external factors, such as water,
dust, oil, mud, and other external sources.

The impact of these contaminants on the LiDAR lens represents
a major threat to sensor data integrity. This emphasizes the need
for a contaminant detection technique as an early warning before
executing object detection. Contaminant detection is also crucial
for triggering automatic cleaning procedures if contaminants are
present. Perception anomalies remain a hot topic nowadays, as
summarized in a survey of several techniques for anomaly detection
[2]. However, research in contaminant detection still needs to be
improved due to the challenge of scarcity of real-world LiDAR-
contaminated datasets [14].

A key attribute of LiDAR point clouds is the intensity of each
point, which reflects the return strength of a laser beam after strik-
ing an object. Different materials reflect varying intensities and
an object’s distance can diminish this intensity [1]. Typically, the
longer the distance from the sensor to the object, the lower the ob-
ject’s intensity. Thus, detecting contaminants becomes challenging
when relying solely on intensity values in dense or sparse point
clouds, as contaminant presence can be confusedwith large distance
points. Thus, a distance and environment-invariant contaminant
detection model is highly needed for real-world environments.

In this paper, we employ graph representation for contaminant
detection with the following contributions: i) We are the first to
tackle LiDAR contaminant detection using graph representation
by comparing different approaches. ii) We improve state-of-the-art
approaches in terms of accuracy and tested in various contaminant
types from various environmental settings. In particular, detecting
contamination is challenging due to LiDAR sparsity. LiDAR point
clouds at longer distances are more sparse than closer ones. To
tackle this sparsity, we propose a voxel-based graph transformation
to deal with contaminated LiDAR point clouds.

Specifically, we employ a Graph Neural Networks (GNNs)-based
method that treats LiDAR points as connected nodes in a graph.
GNNs are specialized neural networks designed for graph-structured
data, wherein nodes represent entities and edges represent relation-
ships. They excel in capturing spatial information by aggregating
data from neighboring nodes, enhancing their understanding of
relationships and dependencies within the graph. In a LiDAR point
cloud, where an object is present, the points would be denser and
contain more information than in a no-object area. This leads us
to employ graph attention networks. Additionally, we deal with
large regions of the environment and high-resolution LiDAR, which
generates a large number of points. Processing all points as nodes
in the graph increases computation time, so representing some

points as a single node helps reduce the number of nodes. This ap-
proach can be defined as point voxelization. Finally, we introduce a
graph representation of voxel point clouds using graph attention
networks (voxel-GAT) for contaminant detection on autonomous
vehicles, namely AutoGrAN.

The proposed method efficiently represents sparse LiDAR data
and outperforms the state-of-the-art approach regarding classifi-
cation performance and computational efficiency. We utilize three
datasets, namely "5m," "10m," and "20m," to reflect variations in loca-
tion, distance, surrounding objects, and contaminant sources. Our
approach employs a cross-data validation scheme, creating three
models based on each dataset and testing them using a different
dataset. Compared to the 3D CNN-based detection method, our
proposed method improves the F1-score from 0.778, 0.850, and 0.840
to 0.936, 0.902, and 0.920, respectively, across six possible train-test
dataset scenarios.

In terms of computational performance, our proposed method
achieves competitive end-to-end processing times, from graph con-
struction until obtaining contaminant results, all within an average
of 128 milliseconds per point cloud frame running on CPU AMD
EPYC 74F3, single core CPU clock speed 3.2G. This efficiency es-
tablishes the proposed method as a promising candidate for an
early warning system in autonomous vehicle downstream tasks. As
indicated in [10] and [22], the system has to complete the end-to-
end processing within a latency of around 100 milliseconds to be
effective. Additionally, considering human reaction times, which
range from 390 to 600 milliseconds for detecting incoming hazards
[13] [7], the proposed method’s computation times is a significant
advantage. It delivers promising results in contaminant detection
for LiDAR on autonomous vehicles, demonstrating high accuracy,
robustness, ease to train, and low computational overhead.

2 RELATEDWORKS
2.1 LiDAR processing for automotive

applications
The perception model is a crucial input for the decision-making
and planning of an autonomous vehicle. The research was carried
out to increase each perception model’s accuracy, robustness, and
generalization, e.g., in [9],[21]. To achieve this goal, the develop-
ment of the Autonomous vehicle model needs to pay attention to
various aspects ranging from research to development. In more
detail, an AI model’s development depends on the data, algorithm,
and deployment aspects.

In the paper byWang et.al [20], it is mentioned that accuracy and
robustness are important factors. High accuracy is certainly needed,
considering that automotive vehicles require correct decision-making
because they involve life-and-death situations. Errors in percep-
tion can cause decision-making errors, which can have fatal con-
sequences. Robustness concerns the AI model’s ability to perform
well in every situation, dynamic environment, dynamic location,
and object surrounding. We need to realize that there will be situ-
ations and scenarios of uncertainty in the real world. The sensor
properties also influence the AI model, especially the perception
model, which must be robust to all sensor conditions [3]. The per-
ception model must be robust when deployed and tested in different
environments, weather, and traffic situations [25].

113

AutoGrAN: Autonomous Vehicle LiDAR Contaminant Detection using Graph Attention Networks ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Apart from accuracy and robustness, the perception model needs
to consider ease of training. Autonomous vehicles must be usable
under all conditions, making data collection a significant challenge
in terms of both cost and time. The AI training process must be
feasible with limited data. We lack datasets for training in every
possible situation, including various adverse traffic conditions as
well as challenges posed by weather and sensor contamination [24].
Efforts have been made with data degraded by simulators. However,
simulating all scenarios, especially unusual ones (edge cases and
anomalies), proves difficult. Formal verification using mathematical
models can be applied to the created models, but scalability is
limited, especially for complex systems like autonomous vehicles.
Therefore, every AI model developed needs to undergo real-world
testing to validate performance and identify new scenarios that may
not have been previously considered. Real-world testing allows for
the validation of AI performance and the discovery of previously
unrecorded scenarios.

The last aspect to consider regarding AI models is low computa-
tional overhead. Autonomous vehicles require fast decision-making,
where the perception model serves as input for the reinforcement
learning agent in the autonomous vehicle’s decision-making pro-
cess. Therefore, it is crucial to maximize the speed of the subpro-
cesses [17] [23]. Finally, developing LiDAR processing methods
should be prioritized to meet the requirements of high accuracy,
robustness, ease of training, and low computational overhead.

2.2 LiDAR point cloud transformation for
contaminant detection

Driven by applications in autonomous driving, several LiDAR point
cloud processing approaches have been developed. These can be
categorized based on the type of data representation: 1D, 2D, 3D, and
graph. The 1D approach creates a representative vector from the
original 3D data, upon which classical machine learning techniques
for tabular data are applied.

In research aligned with contaminant classification, the use of
1D transformations was introduced by Heinzler et al., who aggre-
gated features from point clouds such as (𝑥,𝑦, 𝑧) for the cartesian
and (𝑟, 𝜃, 𝜑) for the spherical coordinates, echo number, intensity,
and echo pulse width. In their study, Heinzler et al. attempted to
classify weather conditions as clear, rainy, or foggy on LiDAR point
clouds, achieving the best accuracy of 97.14% using SVM and KNN
[6]. Similarly, the application of 1D transformation and KNN for
classifying rain, fog, and snow was proposed by Rivero et al. [19].
However, Rivero placed the LiDAR sensor in a static position. Fur-
thermore, both [19] and [6] did not address the classification of
sensor cover contamination.

Another approach involves 2D transformation, which constructs
a 2D depth and intensity image from the LiDAR point cloud. James
et al. initiated the classification of sensor cover contamination using
2D transformations [8]. They transformed a 2D image of LiDAR data
as input for a 2D CNN to classify contaminants like dirt, salt, and
frost. The 2DCNN achieved promising results, reaching an accuracy
of around 80% in classifying between clean and dirty conditions
using a front-view transformation of LiDAR data. However, the
data used in [8] was collected from a statically positioned sensor
without any objects in front of the acquisition sensor and with the

sensor cover fully contaminated. Therefore, it may not accurately
reflect real-world environmental conditions.

The 2D transformation inevitably reduces spatial information
from the original 3D point cloud. LiDAR processing that uses 3D
data directly often employs voxelization techniques. This technique
distributes the point cloud coordinates while preserving as much
spatial information as possible. The application of 3D voxelization
includes its use in PV-RCNN, which leverages 3D convolution as
a backbone for 3D object detection [4]. However, the proposal to
use 3D convolution for contaminant detection has not yet been
established. Nonetheless, we have considered 3D as one of our
baseline methods for contaminant detection.

The latest advancement in LiDAR processing methodologies
is the introduction of graph processing networks, which aim to
represent sparse LiDAR sensor data as graphs. Graph convolutional
networks were then applied to this graph-represented data. Graph
convolutions can be significantly more efficient than 2D and 3D
convolutions on sparse tensors, as they avoid unnecessary iterations
over zero elements.

The use of graphs for point cloud analysis was initiated by Point-
GNN, which successfully employed a Graph Neural Network to
process point clouds for object detection [15]. However, Point-
GNN’s limitation lies in its inability to capture the global context of
the environment, especially in large settings. Subsequently, graph
attention mechanisms were developed for object detection from
raw LiDAR data [18]. Recent research has utilized Graph Attention
Networks for 3D object detection [11]. These methods have inspired
the use of voxels and attention in graph classification. A simple and
highly accurate network is needed for contaminant detection. To
the best of our knowledge, no study has leveraged a graph-based
approach for contaminant classification research.

3 METHODOLOGY
This paper proposes point cloud contaminant detection as a graph
classification problem. Due to the lack of a dedicated dataset for this
task, we collected the LiDAR data ourselves, which includes varying
levels of location, distance, sparsity, and various types and levels of
contaminations (for details, refer to subsection 3.1). Recognizing the
sparsity of the data in our dataset, we decided to use graph attention
networks (GATs), which utilize the attention mechanism to handle
data sparsity effectively. A LiDAR point cloud comprises up to 2
million points; if a single node represents a single point, it causes
high computational costs. To address this challenge, we propose
voxelization, which involves dividing the 3D space of point clouds
occupied by some points into small cubic volumes called voxels so
that a single node will represent several points. This reduction in
the number of nodes significantly reduces computational time. We
then create the graph structure from the voxelized data (detailed
in subsection 3.2) to be passed into the GAT network (described in
subsection 3.3). The network outputs a single global representation
of each input voxel graph as a binary classifier, aiming to detect
contaminant presence or absence.

3.1 Cover Contamination LiDAR Dataset
The point cloud data were captured using a test-bed car equipped
with a LiDAR sensor, specifically the RS-Ruby from Robosense,

114

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Grafika Jati et al.

Figure 1: Applying contaminant on LiDAR cover: (1) clean,(2)
clean-cover, (3) tap water, (4) dust, (5) mud drop, (6) mud
uniform, (7) salt water, (8) lubricant oil.

rated at level L4+ or considered High Driving Automation. The
LiDAR sensor has specifications of 128 signal beams, maximum 250
meters range, Horizontal resolution 0.2𝑜 , minimum 0.1𝑜 Vertical
Angular Resolution, Horizontal FoV 360𝑜 , Vertical FoV 40𝑜 , 10 Hz
frame rate.

This contaminant detection model differentiates between two
classes: clean and contaminated. The clean class includes two con-
ditions: (1) the sensor is free from contaminants, and (2) the sensor
is covered with a clean-transparent plastic cover. The contaminated
class covers various types of contamination, including water, dry
and wet mud, dust, salt water, and engine lubricant/oil on top of
clean-transparent plastic cover. The application of contaminants is
shown in Figure 1. Each type of contaminant is applied separately
in different experiments. Each contamination has low, middle, and
high levels, corresponding to varying amounts of spray used when
applying the contaminant to the sensor cover. For example, ’low’
corresponds to one spray application, ’mid’ to three, and ’high’ to
five. This approach aims to reflect the diverse characteristics of real-
world contaminants. To simulate objects encountered on the road,
we covered several objects, such as cars, pedestrians, motorbikes,
whiteboards, and aluminum foil.

To evaluate high generalization capabilities with high accuracy
and robustness, this research utilizes three distinct datasets rep-
resenting varied environmental settings: the 5𝑚, 10𝑚, and 20𝑚
datasets. The 5𝑚 collected dataset is of a passage to an underground
parking lot, where the hallway is below ground level and is con-
fined by walls on both sides. In this dataset, the LiDAR is positioned
with the car object around 5 meters ahead, surrounded by other
objects. The 10𝑚 and 20𝑚 datasets have data collected in the exact
location. The location is an outdoor parking lot with wider spatial
dimensions compared to the 5𝑚 data. In the 10𝑚 dataset, the target
object is positioned around 10 meters from the LiDAR, while in the
20𝑚 dataset, the target object is placed at around 20 meters. Figure
2 depicts our data acquisition setup.

We select a specific area in front of the LiDAR sensor to en-
sure the effect of contamination. This area encompasses all three

Figure 2: Contaminated LiDARdata acquisition using testbed-
car, contaminated LiDAR, and surrounding object: (a1) data
5𝑚 in an underground narrow hallway, (a2) raw LiDAR ac-
quired in 5𝑚, (b1) Data 10𝑚 data outdoor parking area, (a2)
raw LiDAR acquired in 10𝑚.

dimensions for the training and testing datasets, with the LiDAR-
equipped car serving as the reference coordinate (Point 0,0,0). We
take the area of interest where target objects are placed in our envi-
ronment. So, along the x-axis, we choose a span of 80 meters from
the reference point (0 to 80 meters). For the y-axis, we select an
area of 15.5 meters (-5.5 to 10 meters in coordinate); for the z-axis,
we take all the return points. The same area of interest cropping
procedure is applied to all three datasets. The 5𝑚 dataset typically
yields around 140,000 points per point cloud, in contrast to the 10𝑚
and 20𝑚 datasets, which generally yield around 70,000 points per
point cloud. The higher point density in the 5𝑚 dataset is due to
the closer distance of the LiDAR to the target object, resulting in
denser point clouds.

3.2 Graph Construction
To construct graphs, we first apply voxelization to reduce the num-
ber of points to avoid computational overhead. Each point cloud is
converted into a three-dimensional voxel grid. The number of vox-
els differs for each point cloud depending on the original structure
or environment in real-world situations.

In voxelization, we employ the concept of average pooling to
maintain the primary feature representation of the point cloud,
which, in the case of LiDAR, is the point cloud structure and in-
tensity of each point. Each voxel computes and retains the average
intensity of the points it encapsulates, thus maintaining spatial
information of the original point cloud. Applying a 3D convolu-
tional layer directly on 3D voxels might make our predictions less
accurate because it processes every voxel, even the ones without
any points. To address this issue, we propose converting voxels
into graphs. In this graph representation, each node corresponds to

115

AutoGrAN: Autonomous Vehicle LiDAR Contaminant Detection using Graph Attention Networks ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

a voxel containing points and the edges to connect voxels closest
to each other in three dimensions. This approach aims to enhance
prediction accuracy by focusing exclusively on voxels containing
relevant information and their immediate spatial relationships. The
edges for each graph are created in a three-step process, as follows:

(1) Point sorting: The initial step is the most important of the
whole process. We employ a QuickSort algorithm to sort
the points according to their coordinates in the three dimen-
sions 𝑋,𝑌, 𝑍 separately. For 𝑛, the number of points along
a dimension, the algorithm will have a O(𝑛 log𝑛) complex-
ity. Since we have it in three dimensions (𝑧,𝑦, 𝑧), the overall
complexity is O(𝑛 log𝑛).

(2) Edge construction: This process considers adjacent points
from the sorted lists in each dimension. Each point in every
dimension can have at most two adjacent points, except for
the first and last elements on the list. This results in approxi-
mately 2𝑛 edges for each dimension, totaling 6𝑛 across all
three dimensions. This process has a O(𝑛) complexity. The
list of edges is then saved in an edge index.

(3) Edge directionality: Contaminants primarily influence the
intensity of the reflected LiDAR beams and the structure of
objects rather than introducing directional effects. There-
fore, in our graph construction, edges play a crucial role in
capturing point distribution for each node according to its
neighbor but do not necessitate bi-directionality. Therefore,
the constructed graphs have un-directed edges. We utilize
the coalesce function from the pytorch-geometric library
to remove duplicate edges. In principle, this process would
require O(𝑘 log𝑘) where 𝑘 is the total number of edges be-
fore removing duplicates. In the worst case, 𝑘 can reach 6𝑘
for all three dimensions, so removing and looping a list of
edges can require O(𝑘) in the worst case. However, since
𝑘 depends on 𝑛, this complexity can also be considered as
part of O(𝑛 log𝑛) because our proposed construction graph
is dominated by sorting operations.

We create a 𝐷𝑎𝑡𝑎 pytorch-geometric library object representing
a graph object. We select all three coordinates and the beam’s
intensity as a feature vector for each instance of a voxel. The edges
we created earlier become the 𝑒𝑑𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 property of the 𝐷𝑎𝑡𝑎

object, which forms the adjacency matrix of nodes. The proposed
method will construct a graph with a different number of nodes
and edges according to the original input point cloud structure.

3.3 Graph Attention Networks
We construct a deep learning model that employs Graph Attention
Networks (GATs). In LiDAR data acquisition, areas with objects
often yield dense point clouds, resulting in sparsity within the well-
suited data for GATs. The GATs efficiently handle sparse data by
representing it as a graph, with each point as a node. Leveraging
attention mechanisms, they focus on relevant subsets of nodes,
adapting to the local structure of the graph. These features em-
power GATs to excel in classifying contamination within point
clouds generated by LiDAR, making them a powerful tool for our
task. Figure 3 outlines the proposed GATs model for contaminant
classification, followed by table 1, which details the number of pa-
rameters in the proposed model. The proposed architecture comes

from empirical experiments to get the minimum parameters with
the highest F1 score.

Figure 3: The Proposed LiDAR Contaminant Detection based
on Graph Attention Networks.

Table 1: The Proposed network for LiDAR Contaminant De-
tection.

conv1.att_src: 64
conv1.att_dst: 64
conv1.bias: 64
conv1.lin_src.weight: 256
conv2.att_src: 2
conv2.att_dst: 2
conv2.bias: 2
conv2.lin_src.weight: 128
Total Parameters: 582

The model uses two GAT layers (GATConv) to process node fea-
tures in the graph, generating an adaptive representation of each
node based on its local context. The first layer employs multi-head
attention mechanisms to enrich and diversify feature representa-
tions with four heads. Each node’s features pass through this first
GAT layer (conv1), followed by an ELU activation for non-linearity.
The second layer (conv2) reduces the output feature dimension to
one for each node. GAT’s attention mechanism assigns varying
weights to node neighbors, enhancing relationship capture. Since
our task is graph classification, we then pass the graph through
a (global mean pooling) aggregation function to get a representa-
tion of all the node features of the graph into a single value for
binary classification: clean or contaminated. The model’s output,
the Log_softmax applied to this value, yields a probability distri-
bution for clean and contaminated classes. Training employs the
Adam optimizer with 𝑙𝑟 = 0.005 and𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 = 5𝑒 − 4.

4 RESULTS
4.1 Setting Experiments
4.1.1 Dataset Preparation. The numbers of contaminated class in-
stances are 360, 328, and 364 for the 5𝑚, 10𝑚, and 20𝑚 datasets,
respectively. The contaminated class combines various contami-
nation sources explained in 3.1. While 360 instances represent the
clean class across all datasets, we consider the data balanced. Each
point cloud instance contains between around 70,000 and 140,000
points. Our proposed method transforms each point cloud instance
into a graph, resulting in node-edge pairs: (n)1361-(e)3879 for the
5𝑚 dataset, (n)2209-(e)6359 for the 10𝑚 dataset, and (n)2514-(e)7242
for the 20𝑚 dataset. Training and testing are conducted using: CPU

116

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Grafika Jati et al.

AMD EPYC 74F3 24 core 48 threads, single core CPU clock speed
3.2G, single GPU NVIDIA GeForce RTX 3090 with 24265MiB, and
RAM 250G DDR4.

To demonstrate the robustness of the contaminant detection
method, we will conduct a cross-environment between training and
testing data. Thus, three models will be developed, each trained on
data from an environment, for example, 5𝑚, and then tested on data
from the other environments, 10𝑚 and 20𝑚, and vice versa. Utilizing
three different datasets captures the dynamic aspects of the point
cloud that are close to real-world conditions. This approach will also
highlight the model’s generalization and transferability capabilities.
Therefore, even with limited training data, the detection model can
perform effectively across different environmental settings.

4.1.2 Baseline Method. To demonstrate the complexity of contam-
inant detection in dynamic situations, we will compare classifica-
tion models ranging from manual feature engineering to the most
straightforward transformations in 1D and 3D. The point cloud is
transformed into 1D data by extracting information such as 𝑥,𝑦, 𝑧
coordinates, and intensity values, resulting in seven features: mini-
mum, maximum, mean, standard deviation, and percentiles at 25,
50, and 75. This process generates 28 1D features that represent
the statistical distribution of the point cloud. Subsequently, we
compare various machine learning algorithms, including Logistic
Regression, Multilayer Perceptron, Support Vector Machine, Naive
Bayes, k-Nearest Neighbors, Decision Tree, and Random Forest. Ad-
ditionally, we compare these methods to another baseline, namely
the 3D approach, which preserves the spatial information from the
point clouds. In the 3D approach, voxelization is performed, and
the model is constructed using a 3D Convolutional Neural Network
(3D CNN).

4.2 Contaminant Detection
The performance of contaminant detection is analyzed in terms
of F1-score, graph construction time, and inference time across all
possible scenarios. Table 2 evaluates the performance of various
machine learning algorithms in detecting contaminants, measured
by F1 scores, at three different data scales (5𝑚, 10𝑚, and 20𝑚).
The models compared include well-established classification tech-
niques such as Decision Tree, Logistic Regression, Naive Bayes, and
Support Vector Machine, as well as more modern approaches like
Multi-Layer Perceptron, K-Nearest Neighbors, 3D Convolutional
Neural Network, and the proposed method, namely Voxel-GAT.

From the data presented in Table 2, we observe that shallow
learning models, such as Decision Trees (DT), Logistic Regression
(Logit), and Naive Bayes (NB), are not able to perform adequately
in contaminant detection tasks, with their average F1 score being
below 80% across all tested data scales. This suggests that shallow
learning methods may lack the capacity to capture and model com-
plex relationships in three-dimensional spatial data, often involving
nonlinear interactions and patterns that are difficult to separate.
This limitation is likely because these models do not exploit the
spatial structure in the data and tend to have more superficial fea-
ture representations, resulting in lower performance in tasks that
require a deep contextual understanding. On the other hand, mod-
els such as 3D CNNs show improved performance compared to
traditional models, supporting the theory that three-dimensional

spatial data structures are inherently better suited to tasks with
spatial characteristics.

The proposed method, Voxel-GAT, stands out in this comparison
by demonstrating high F1 scores across all data scales, indicating its
effectiveness in detecting contaminants with high consistency. This
suggests that Voxel-GAT can capture complex spatial relationships
in the data, an essential aspect of tasks that detect patterns or
anomalies in three-dimensional spatial data. Voxel-GAT excels in
ensuring distance-environment invariance, which is critical for
explaining differences between the trained and tested data. As
previously described, the 10𝑚 data set is similar to the 20𝑚 data set,
whereas the 5𝑚 data set differs regarding the location and distance
of surrounding objects. The proposed model is more robust across
different scenarios, being trained on 5𝑚 and tested on 10𝑚 and
20𝑚 data, and vice versa. For the cross-train-test dataset, we have
six possible scenarios, which, scenarios 1,2,3,4,5 and 6. All of the
scenarios introduced are in table 2. Based on the table, scenarios
3 and 5 are trained on 10𝑚 or 20𝑚 and still performing well on
the 5𝑚 test data—a result not achieved by the baseline methods.
The consistently superior performance of Voxel-GAT across all
data scales confirms its adaptability and robustness in handling
variations in data size and complexity, making it a promising choice
for real-world contaminant detection applications.

The proposed method demonstrates outstanding performance,
as reflected in the confusion matrix shown in Figure 4. We examine
six Voxel-GAT confusion matrices for each scenario, corresponding
to the scenario numbers in Table 2. Based on the confusion matrix
displayed in Figure 4, it is evident that the Voxel-GAT model gener-
ally experiences a low number of False Negatives, with no instances
of False Positives, except in Scenario 4. In this scenario, where the
model was trained with 10𝑚 data and tested with 20𝑚 data, several
cases of False Positives were observed. A closer inspection of the
case data for each misclassification, detailed in Table 3, reveals that
errors occurred with data originating from various sources of con-
taminants, namely water, uniform mud, mud drop, dust, and salt.
Interestingly, misclassifications predominantly happen in cases of
low contamination, where the contamination level is the lowest.
An exception is observed with mud drops, where misclassifications
occur at low, mid, and high contamination levels. This phenome-
non is understandable, given that mud drops cover the sensor at
specific locations with a volume of contaminant that is insignificant
compared to the total sensor coverage.

The false positives identified in Scenarios 4 and 6 were attributed
to the clean cover, which was mistakenly classified as contamina-
tion. This issue is not particularly problematic due to the nature
of the cover installation. Contaminants were applied to the protec-
tive cover surrounding the LiDAR to safeguard the experimental
(and expensive) LiDAR hardware. This cover introduces noise into
the LiDAR image and sometimes acts as an anomaly/contaminant.
Notably, the contaminant classification approach consistently rec-
ognized clean LiDAR data (without the cover) as non-contaminated.
The instances involving the cover are the primary cause of false
positives in Scenarios 4 and 6.

However, the problem with the cover data does not invalidate
the robustness of the proposed contaminant detection model. If we
focus only on the critical anomalies of middle and high contamina-
tion, we still observe that we correctly classify most cases. As only

117

AutoGrAN: Autonomous Vehicle LiDAR Contaminant Detection using Graph Attention Networks ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Table 2: Evaluation result of all cross train and test data scenario for contaminant detection from baseline and the proposed
method Voxel-GAT. The number reported is F1-score.

No. Scenario Model Testing Data 1D DT 1D Logit 1D MLP 1D NB 1D RF 1D SVMrb 1D KNN 3D CNN Voxel-GAT
1 5𝑚 10𝑚 0.308 0.308 0.308 0.308 0.308 0.711 0.308 0.780 0.918
2 5𝑚 20𝑚 0.336 0.336 0.336 0.336 0.336 0.728 0.336 0.777 0.954

average F1 0.322 0.322 0.322 0.322 0.322 0.719 0.322 0.778 0.936
3 10𝑚 5𝑚 0.676 0.512 0.336 0.333 0.526 0.486 0.720 0.733 0.889
4 10𝑚 20𝑚 0.343 0.349 0.825 0.336 0.971 0.936 0.900 0.968 0.915

average F1 0.509 0.430 0.580 0.334 0.748 0.711 0.810 0.850 0.902
5 20𝑚 5𝑚 0.361 0.333 0.336 0.333 0.361 0.381 0.568 0.733 0.876
6 20𝑚 10𝑚 0.871 0.833 0.955 0.308 0.977 0.940 0.977 0.948 0.964

average F1 0.616 0.583 0.645 0.320 0.669 0.660 0.772 0.840 0.920

these examples cause real problems in both autonomous driving
applications and perception systems, they should be the focus of
the proposed work. In practical applications in production-ready
hardware, there would also be no problem with the cover and con-
tamination as the LiDAR will operate without any additional plastic
cover.

Figure 4: Confusion matrix of the proposed method in all
scenarios.

Regarding computational performance, Table 4 compares the
inference time of the baseline methods and the proposed method
when running on both CPU and GPU. The ’CPU’ column displays
the inference time on the CPU, while the ’GPU’ column shows the
inference time when the process is executed on the GPU. Although
the shallow machine learning methods are generally faster, their
F1-score performance is significantly lower than Voxel-GAT.

Table 3: Mis-classification cases of the proposed method
Voxel-GAT.

No.
Scenario

False
Positive

False
Negative

1 - water:low; mudUniform:low,mid;
dust:low; salt:low

2 - water:low; mudUniform:low

3 - water:low; mudDrop:low,mid,high;
dust:low; salt:low

4 cover water:low

5 - water:low; mudDrop:low,mid,high;
dust:low; salt:low

6 cover water:low; mudUniform:low; salt:low

Table 4: Inference time of baseline method and proposed
Voxel-GAT, running on CPU and GPU.

Method CPU (in second) GPU (in second)
DT 5.44E-07 x
Logit 1.20E-06 x
MLP 6.82E-06 x
NB 5.46E-07 x
RF 1.62E-06 x
SVMrb 1.44E-05 x
KNN 1.46E-04 x
3D CNN 6.10E-04 4.03E-05
Voxel-GAT (Proposed) 4.99E-03 7.91E-05

For the proposed method, the inference time on the CPU is
recorded at 4.99e-03 seconds. On the GPU, the inference time re-
duces to 7.91e-05 seconds, indicating that the method benefits sig-
nificantly from the parallel processing capabilities of the GPU. In
comparison, the baseline 3D CNN has an inference time of 6.10e-04
seconds on the CPU and 4.03e-05 seconds on the GPU. This means
that 3D CNN is about 1.96 times faster on the GPU than Voxel-GAT.

An early warning system should not only account for inference
time but also include preprocessing time. The time required for
preprocessing is 0.010 seconds, 0.129 seconds, and 0.128 seconds for
1D, 3D, and graph data, respectively. While 1D processing is faster,
the time taken for voxel and graph creation is not significantly

118

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Grafika Jati et al.

longer, on average. When combining preprocessing with inference
time, the total end-to-end time from raw data to detection result
does not significantly increase. The time to create a graph is approx-
imately 0.128 seconds or 128 milliseconds. However, considering
the trade-off between the F1 score and inference time, Voxel-GAT
is the preferable choice, offering a much higher F1 score than 3D
CNN with a competitive end-to-end computational process.

5 CONCLUSIONS
The LiDAR contaminant detection method for autonomous vehi-
cles has been developed. We compared all transformation methods,
from 1D and 3D, to a developed graph-based transformation. The
proposed method is superior in all experimental scenarios, includ-
ing cross-environments and contamination, on real-world LiDAR
sensors installed on test-bed vehicles.

The proposed method achieves an average F1-score above 0.902,
with the graph processing time from creation to detection under
around 128 milliseconds. We utilize a compact architecture contain-
ing two Graph Attention Networks layers capable of processing
point cloud inputs of dynamic sizes. Ultimately, the proposed model
has been proven to effectively classify cleanliness or contamination
in complex and extreme LiDAR point clouds. This initiates further
research into designing near-sensor LiDAR processingmethods that
are low-cost and sustainable using a graph processing approach.

ACKNOWLEDGMENTS
This research is supported by EU through theNational Recovery and
Resilience Plan (NRRP) Mission 4, Component 2, Investment 3.3 (g.a.
DM 352/2022). We also thank FEV Italia s.r.l. for the collaboration,
access to their hardware, and help in experimental work. This
research was supported in part by the UAE Technology Innovation
Institute (TII) through the Zero-Trust project. This researchwas also
partly supported by the Graph-Massivizer project (g.a. 101093202).
We also thank to Giammarco Cecchini for helping during data
acquisition.

REFERENCES
[1] Csaba Benedek, Andras Majdik, Balazs Nagy, Zoltan Rozsa, and Tamas Sziranyi.

2021. Positioning and perception in LIDAR point clouds. Digital Signal Processing
119 (2021), 103193. https://doi.org/10.1016/j.dsp.2021.103193

[2] Daniel Bogdoll et al. 2022. Anomaly detection in autonomous driving: A survey. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
4488–4499.

[3] Krzysztof Czarnecki and Rick Salay. 2018. Towards a Framework to Manage
Perceptual Uncertainty for Safe Automated Driving. In Computer Safety, Reli-
ability, and Security, Barbara Gallina, Amund Skavhaug, Erwin Schoitsch, and
Friedemann Bitsch (Eds.). Springer International Publishing, Cham, 439–445.

[4] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and
Houqiang Li. 2021. Voxel r-cnn: Towards high performance voxel-based 3d object
detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
1201–1209.

[5] Yinpeng Dong, Caixin Kang, Jinlai Zhang, Zijian Zhu, Yikai Wang, Xiao Yang,
Hang Su, Xingxing Wei, and Jun Zhu. 2023. Benchmarking Robustness of 3D Ob-
ject Detection to Common Corruptions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 1022–1032.

[6] Robin Heinzler et al. 2019. Weather Influence and Classification with Automotive
Lidar Sensors. In 2019 IEEE Intelligent Vehicles Symposium (IV). 1527–1534.

[7] Infineon Technologies AG. 2024. From ADAS to Autonomous Driving. https:
//www.infineon.com/cms/en/discoveries/adas-to-ad/. Accessed: 2024-02-10.

[8] Jyothish K James et al. 2018. Classification of lidar sensor contaminations with
deep neural networks. In Proceedings of the Computer Science in Cars Symposium
(CSCS). 8.

[9] Joel Janai, FatmaGüney, AseemBehl, Andreas Geiger, et al. 2020. Computer vision
for autonomous vehicles: Problems, datasets and state of the art. Foundations
and Trends® in Computer Graphics and Vision 12, 1–3 (2020), 1–308.

[10] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md EHaque, Lingjia
Tang, and JasonMars. 2018. The architectural implications of autonomous driving:
Constraints and acceleration. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. 751–766.

[11] Bin Lu, Yang Sun, and Zhenyu Yang. 2023. Voxel Graph Attention for 3-D
Object Detection From Point Clouds. IEEE Transactions on Instrumentation and
Measurement 72 (2023), 1–12. https://doi.org/10.1109/TIM.2023.3301907

[12] Nguyen Anh Minh Mai et al. 2022. Camera and LiDAR analysis for 3D object
detection in foggy weather conditions. In 2022 12th International Conference on
Pattern Recognition Systems (ICPRS). 1–7.

[13] MIT News. 2019. How fast can humans react to car hazards. https://news.mit.
edu/2019/how-fast-humans-react-car-hazards-0807. Accessed: 2024-02-10.

[14] Birgit Schlager et al. 2022. Contaminations on Lidar Sensor Covers: Performance
Degradation Including Fault Detection and Modeling as Potential Applications.
IEEE Open Journal of Intelligent Transportation Systems 3 (2022), 738–747. https:
//doi.org/10.1109/ojits.2022.3214094

[15] Weijing Shi and Ragunathan (Raj) Rajkumar. 2020. Point-GNN: Graph Neural
Network for 3D Object Detection in a Point Cloud. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[16] Li Tang et al. 2020. Performance Test of Autonomous Vehicle Lidar Sensors Under
Different Weather Conditions. Transportation Research Record 2674, 1 (2020),
319–329. https://doi.org/10.1177/0361198120901681

[17] Xiaolin Tang, Kai Yang, Hong Wang, Jiahang Wu, Yechen Qin, Wenhao Yu,
and Dongpu Cao. 2022. Prediction-Uncertainty-Aware Decision-Making for
Autonomous Vehicles. IEEE Transactions on Intelligent Vehicles 7, 4 (2022), 849–
862. https://doi.org/10.1109/TIV.2022.3188662

[18] Sumesh Thakur, Bivash Pandey, Jiju Peethambaran, and Dong Chen. 2022. A
Graph Attention Network for Object Detection from Raw LiDAR Data. In IGARSS
2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. 3091–
3094. https://doi.org/10.1109/IGARSS46834.2022.9883734

[19] Jose Roberto Vargas Rivero et al. 2020. Weather Classification Using an Automo-
tive LIDAR Sensor Based on Detections on Asphalt and Atmosphere. Sensors 20,
15 (2020). https://doi.org/10.3390/s20154306

[20] Hong Wang, Wenbo Shao, Chen Sun, Kai Yang, Dongpu Cao, and Jun Li. 2024. A
Survey on an Emerging Safety Challenge for Autonomous Vehicles: Safety of the
Intended Functionality. Engineering (2024). https://doi.org/10.1016/j.eng.2023.
10.011

[21] Oliver Willers, Sebastian Sudholt, Shervin Raafatnia, and Stephanie Abrecht.
2020. Safety Concerns and Mitigation Approaches Regarding the Use of Deep
Learning in Safety-Critical Perception Tasks. In Computer Safety, Reliability, and
Security. SAFECOMP 2020 Workshops, António Casimiro, Frank Ortmeier, Erwin
Schoitsch, Friedemann Bitsch, and Pedro Ferreira (Eds.). Springer International
Publishing, Cham, 336–350.

[22] Akihiro Yamaguchi, Yousuke Watanabe, Kenya Sato, Yukikazu Nakamoto, Yoshi-
haru Ishikawa, Shinya Honda, and Hiroaki Takada. 2017. In-vehicle distributed
time-critical data stream management system for advanced driver assistance.
Journal of Information Processing 25 (2017), 107–120.

[23] Kai Yang, Xiaolin Tang, Sen Qiu, Shufeng Jin, Zichun Wei, and Hong Wang.
2023. Towards Robust Decision-Making for Autonomous Driving on Highway.
IEEE Transactions on Vehicular Technology 72, 9 (2023), 11251–11263. https:
//doi.org/10.1109/TVT.2023.3268500

[24] Yuxiao Zhang, Alexander Carballo, Hanting Yang, and Kazuya Takeda. 2023.
Perception and sensing for autonomous vehicles under adverse weather condi-
tions: A survey. ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023),
146–177. https://doi.org/10.1016/j.isprsjprs.2022.12.021

[25] Xingyu Zhao, Kizito Salako, Lorenzo Strigini, Valentin Robu, and David Flynn.
2020. Assessing safety-critical systems from operational testing: A study on
autonomous vehicles. Information and Software Technology 128 (2020), 106393.
https://doi.org/10.1016/j.infsof.2020.106393

119

https://doi.org/10.1016/j.dsp.2021.103193
https://www.infineon.com/cms/en/discoveries/adas-to-ad/
https://www.infineon.com/cms/en/discoveries/adas-to-ad/
https://doi.org/10.1109/TIM.2023.3301907
https://news.mit.edu/2019/how-fast-humans-react-car-hazards-0807
https://news.mit.edu/2019/how-fast-humans-react-car-hazards-0807
https://doi.org/10.1109/ojits.2022.3214094
https://doi.org/10.1109/ojits.2022.3214094
https://doi.org/10.1177/0361198120901681
https://doi.org/10.1109/TIV.2022.3188662
https://doi.org/10.1109/IGARSS46834.2022.9883734
https://doi.org/10.3390/s20154306
https://doi.org/10.1016/j.eng.2023.10.011
https://doi.org/10.1016/j.eng.2023.10.011
https://doi.org/10.1109/TVT.2023.3268500
https://doi.org/10.1109/TVT.2023.3268500
https://doi.org/10.1016/j.isprsjprs.2022.12.021
https://doi.org/10.1016/j.infsof.2020.106393

Enabling Operational Data Analytics for Datacenters through
Ontologies, Monitoring, and Simulation-based Prediction

Shekhar Suman +

s.suman@student.vu.nl
Vrije Universiteit Amsterdam

The Netherlands

Xiaoyu Chu +

x.chu@vu.nl
Vrije Universiteit Amsterdam

The Netherlands

Dante Niewenhuis
d.niewenhuis@vu.nl

Vrije Universiteit Amsterdam
The Netherlands

Sacheendra Talluri
s.talluri@vu.nl

Vrije Universiteit Amsterdam
The Netherlands

Tiziano De Matteis
t.de.matteis@vu.nl

Vrije Universiteit Amsterdam
The Netherlands

Alexandru Iosup
a.iosup@vu.nl

Vrije Universiteit Amsterdam
The Netherlands

ABSTRACT
Datacenters are key components in the ICT infrastructure support-
ing our digital society. Datacenter operations are hampered by op-
erational complexity and dynamics, risking to reduce or even offset
the performance, energy efficiency, and other datacenter benefits. A
promising emerging technology, Operational Data Analytics (ODA),
promises to collect and use monitoring data to improve datacen-
ter operations. However, it is challenging to organize, share, and
leverage the massive and heterogeneous data resulting from moni-
toring datacenters. Addressing this combined challenge, starting
from the idea that graphs could provide a good abstraction, in this
work we present our early work on designing and implementing a
graph-based approach for datacenter ODA. We focus on two main
components of datacenter ODA. First, we design, implement, and
validate a graph-based ontology for datacenters that captures both
high-level meta-data information and low-level metrics of opera-
tional data collected from real-world datacenters, and maps them
to a graph structure for better organization and further use. Second,
we design and implement ODAbler, a software framework for data-
center ODA, which combines ODA data with an online simulator
to make predictions about current operational decisions and other
what-if scenarios. We take the first steps to illustrate the practical
use of ODAbler, and explore its potential to support datacenter
ODA through graph-based analysis. Our work helps construct the
case that graph-based ontologies have great value for datacenter
ODA and, further, to improving datacenter operations.

CCS CONCEPTS
• Computer systems organization → Maintainability and
maintenance.

+These two authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652897

KEYWORDS
graph-based ontology, ODAbler, OpenDC, operational data analyt-
ics, monitoring, mapping, analysis, simulation, datacenter

ACM Reference Format:
Shekhar Suman +, Xiaoyu Chu +, Dante Niewenhuis, Sacheendra Talluri,
Tiziano De Matteis, and Alexandru Iosup. 2024. Enabling Operational Data
Analytics for Datacenters through Ontologies, Monitoring, and Simulation-
based Prediction. In Companion of the 15th ACM/SPEC International Con-
ference on Performance Engineering (ICPE ’24 Companion), May 7–11, 2024,
London, United Kingdom. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3629527.3652897

1 INTRODUCTION
Our economy, academia, and more broadly our society rely on ICT
infrastructures; for example, in the Netherlands, nearly two-thirds
of the $ 1 trillion GDP, over 3million jobs, and a large fraction of
economic growth depend directly on such infrastructure [6]. Data-
centers are one of the most important components of the modern
ICT infrastructure. The complexity of modern datacenters data in-
troduces significant operational challenges, including challenges
related to performance, availability, and efficient use of energy.
To address such challenges, we need new ways to collect, share,
and understand operational data across different operational layers
of datacenters, simplifying, hardware, software, and applications.
In this work, we consider how to enable Operational Data Ana-
lytics (ODA), a family of concepts and techniques that leverage
monitoring data to extract high-level, actionable knowledge that
can be used to drive operational decisions [12]. We focus in this
work on how ontologies, monitoring, and simulation-based predic-
tion can enable ODA for datacenters.

Figure 1 shows a common ODA process, derived from Netti et
al. [12]. The process includes five components: (1) The physical Dat-
acenter, which contains any kind of hardware, energy-transferring
devices, and cooling infrastructure; (2) Data Collection, which in-
cludes different sources of operational data, such as live monitoring
sensors, tracing frameworks, and logging, (3) Data Storage, where,
in this work, we propose to augment the traditional time-series data-
base with an ontology-based approach, (4) Data Analytics, where
different techniques, such as workload characterization and mod-
eling, are used and possibly combined, to analyze and optimize
datacenter operations, and, last, (5) Reassessment and Redeployment,

120

https://doi.org/10.1145/3629527.3652897
https://doi.org/10.1145/3629527.3652897
https://doi.org/10.1145/3629527.3652897

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Shekhar Suman et al.

Reassessment and Redeployment

Data Storage

Database

Data
Collection

Monitoring

Traces

Logs

Data Analytics

Data Analysis

Data Modeling

Machine Learning

Datacenters

Figure 1: ODA process.

where past analytics results and current status are used to drive
decisions and optimize the ODA process automatically.

We augment in this work the typical stage 3 in ODA processes
with an ontology-based approach, and stage 4 with an approach
that leverages the ontology and combines analytical capabilities
related to it into a larger ODA framework, ODAbler. Our motivation
to develop a datacenter ontology are based on the promise of graph
data for any field [14]: (1) Ontology can structure and formalize
complex hierarchies and relationships in graph formats and thus
can be a good way to organize operational data collected from
datacenters, (2) Many powerful graph-based algorithm applications
can be used for ODA data, leading to insights that are difficult to
obtain from non-graph data and in particular frommere time-series,
and (3) From a computer systems perspective, we also aim to give
insights into building graph-based datasets and data management
approaches for datacenter operational data, encouraging future
research in this area.

Several studies have already developed and built ontologies
specifically for ICT infrastructures and datacenters. [1–3]. The
CloudLightning Ontology [1] is designed to address the hetero-
geneous resources management interoperability issues. The HPC
ontology [9] is used for managing training datasets of AI models
for addressing various challenges in HPC. The ICT Infrastructures
ontology network [2] is a high-level datacenter ontology that in-
cludes software, database, hardware, server, and network. However,
these ontologies are neither built on the monitoring data, nor do
they cover all levels and attributes of datacenters, and they are not
designed for operational data analytics, which requires special func-
tions. Thus, a data-centered ontology for operational data analytics
is still lacking.

Addressing a key gap around the use of ontology-based ap-
proaches for datacenter ODA, in this work we take first steps to-
ward a universal framework for datacenter ODA, with a twofold
contribution:

(1) We design and implement an ontology to structure the data
collected in datacenters (in Section 3). It is the first data-
centered ontology for datacenters, which could enable com-
plex graph analysis and applications in the future. We vali-
date the implementation through a prototype ontology that
meets the requirements for a real-world HPC cluster dataset.

(2) We design and implement the ODAbler framework for data-
center ODA framework (in Section 4). Based on the ontology
designed for this work, ODAbler enables the ingestion and
export of operational metrics typical of datacenters. It also

Jobs

Scheduler

Rack

Rack

Rack

Figure 2: System model.

supports complex analysis of datacenter scenarios, around
a state-of-the-art simulator (here, OpenDC [11]). Last, it
offers the technology framework necessary to explore, in
the future, the use of graph-based analysis to understand
how datacenters operate and to conduct what-if analysis for
datacenters in a new way.

2 BACKGROUND
In this section, we describe the system model from which we col-
lected data, and provide basic information about ontology.

2.1 System model
Figure 2 depicts the system model in the HPC cluster we used
to collect data. A datacenter system is composed of many racks,
each of which accommodates multiple server nodes. The nodes are
connected through a network interconnect. Different kinds of jobs
are submitted to a scheduler which then schedules them onto the
nodes of the datacenter. A job can use a single node or multiple
nodes.

We build the ontology based on the data collected from the
SURF Lisa cluster by two tools. First, SLURM scheduler logs, from
which we collect 10 months of job data, from the end of December
2021 to November 2022, with 1,596,963 records and 16 metrics. The
dataset includes job-related metrics such as the number of machines
allocated to jobs, the nodes that were allocated, and the completion
status. Second, Prometheusmonitor, fromwhichwe collect 5 months
of node data, from June 2022 to November 2022, with 127,827,719
records and 82 metrics. This dataset includes node-related metrics
such as node capacities, CPU load, memory, network, and power
and temperature metrics. All these metrics are supposed to be
covered in the designed ontology.

2.2 Ontology and OWL basics
Ontology is the field of science that helps us investigate what types
of entities (or classes, sometimes also called concepts) exist in a do-
main of discourse, how they are grouped into categories, and how
they are related to one another on the most fundamental level. An
ontology along with a set of individual instances of classes consti-
tutes a knowledge base [13]. The common reasons for developing an
ontology are below [13]: (1) Sharing a common understanding of
the structure of information among the utilizing resources; (2) En-
abling reusability of domain knowledge; (3) Making explicit domain
assumptions; (4) Analysing domain knowledge.

121

Enabling Operational Data Analytics for Datacenters through Ontologies, Monitoring,
and Simulation-based Prediction ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

The Web Ontology Language (OWL) is a formal language for
expressing ontologies and is based on the description logic (DL). The
underlying format that is fundamental to storing a wide range of
information in OWL-based ontologies is the Resource Description
Framework (RDF). The information stored in an RDF consists of a
triple: subject, property, and object. For instance, ("DataCenter-XYZ",
hasAmbientTemperature, "21 degrees") states that a DataCenter-XYZ
has an ambient temperature of 21 degrees (which could further
be explicitly related to the time of record capture using another
property, or annotated with the timestamp information).

In this project, OWL has been used for modeling the ontology
(where OWL support is made available in the Python platform by
Owlready2 [8]), and a few experiments (using the SPARQL language)
have been conducted to validate that the designed ontology meets
the expectations by satisfying the requirements outlined in the next
section. Some of the key definitions that set up the basis of the
ontology modeling using OWL are outlined below:

• Classes: Entities in an object-oriented world. In an ontology,
an individual can belong to several classes. The relation
between the two classes can be disjoint (two disjoint classes
cannot have individuals in common), pairwise disjoint (any
pair made up of two classes from this list are disjoint), and
partitions (to declare "either-or" of a class).

• Data properties: properties whose values are data (number,
text, date, boolean, etc.). The data properties have a domain
(the class for which the property is defined), and range (the
associated datatype, which can be an integer or a real number,
boolean, character string, date, and so on).

• Object properties: properties whose values are entities (i.e.
ontology individuals). The range of object properties is the
class of associated objects.

Generally, developing an ontology includes the following practi-
cal steps [13]:

1. Determine the domain and scope of the ontology.
2. Consider reusing existing ontologies.
3. Enumerate important terms in the ontology.
4. Define the classes and the class hierarchy.
5. Define the data properties of classes.
6. Define the object properties of classes.
7. Create instances.

3 ONTOLOGY DESIGN
In this section, we first analyze the requirements for the proposed
datacenter ontology. Following the requirements, we design and
implement the ontology according to the metrics collected from an
HPC datacenter, both high-level and detailed. We also explore how
they could be useful for Operational Data Analytics (ODA). Finally,
we conduct validations to ensure that the ontology aligns with the
proposed requirements.

Following the ontological process introduced in Section 2.2, we
determine the domain and scope of the ontology through require-
ments analysis in Section 3.1 as step 1. We reuse the existing on-
tology in Section 3.2 as step 2. We do high-level design including
identifying important terms in Section 3.3 as step 3. We cover steps
4-6 in in Section 3.4, and create instances for validation in Sec-
tion 3.5.

Table 1: The overall statistics of the designed ontology, based
on metrics from the SURF Lisa dataset.

Axiom count 710
Logical axiom count 442
Declaration axiom count 230
Class count 82
Object property count 17
Data property count 63
Individual count count 69
Annotation property count 2

3.1 Requirements analysis
In order to support operational data analytics, the datacenter ontol-
ogy has to cover a large scope, including infrastructure, hardware,
software, and applications. Besides, we give four functional require-
ments and two non-functional requirements for the datacenter
ontology.

3.1.1 Functional requirements.

FR1. Time-series modeling. The ontology should support the
modeling of attributes extracted from time-series metrics
collected from a large-scale computing infrastructure, e.g.,
an HPC cluster.

FR2. Resource description. The ontology should describe the
datacenter cluster resources in a structured way, including
details about nodes, processors, etc.

FR3. Performance metrics. The ontology should capture and
analyze performance metrics such as resource utilization
and energy consumption.

FR4. Consistency and accuracy. The ontology should be con-
sistent and accurate in its representation by reflecting the
state of the datacenter and its resources.

3.1.2 Non-functional requirements.

NFR1. Interoperability. The ontology should be designed with
interoperability in mind, which should facilitate integration
or reuse with/by other ontologies.

NFR2. Usability. The ontology should be user-friendly, having
sufficient comments or labels for accessibility by both experts
and non-experts.

3.2 Reusing existing ontologies
The best resource that is closer to our ontology requirements is a
work of literature studying the ontological representation of time-
series observations on the Semantic Sensor Web [4]. It suggests
the usage of three important modeling classes, out of which we
find that the most relevant class "Observation" can be reused, and
thus discussed in detail below. The two other classes "Observation-
Collection" and "TimeSeriesObservation" do not seem convincingly
reusable, mainly because of the nature of the requirements to model
a sample time-series data. If we were to model multiple time-series
data in the ontology, then we could have inherited the same struc-
ture. But, in this project, we limit ourselves to demonstrating a
single set of records in the ontology model, other than the estab-
lished relations amongst the classes. Some of the relationships for
observations that have been used here are listed below:

122

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Shekhar Suman et al.

owl:Thing

Concept

Feature

Hardware

Artifact

Entity

ThermalZone

KernelNetworkSubsystem

NetworkInterface

MetricCollector

GPUDevice

MotherBoard

Processor

Rack

Computer

Memory

Data

Figure 3: High-level classes of the datacenter ontology. The
arrow denote the "is-a" relation between classes.

• featureOfInterest: Representation of the object being observed.
• observedProperty: The phenomenon for which the observa-
tion result provides an estimate of its value.

• samplingTime or generatedAtTime: The time when the phe-
nomenon was measured.

• result or value: An estimate of the value of a property gener-
ated using a known procedure.

• memberOf : A relation to a set of observations of observation
collection.

3.3 High-level design and classes
The ontology has been developed to structure and formalize com-
plex hierarchies and relationships of operational data in datacenters,
it provides a foundation to enable further graph-based applications.
We first give an overview of the statistics of the designed ontology,
then we describe the high-level classes, and the key subclasses step
by step.

The ontology has been developed in the OWL language by using
Protégé1 as the ontology editor, knowledge management, and visu-
alization system. We follow a common naming convention when
defining the ontology terms: Singular nouns in CamelCase are used
to present a Class, while Property names start with lowercase letters.
The statistic of the implemented prototype is shown in Table 1. The
ontology has 82 classes, 17 object properties, and 63 data properties
in total.

3.3.1 High-level classes. Figure 3 depicts the high-level classes in
the designed ontology. It consists of: a Concept class, which de-
scribes the Entity in datacenter, such as Software entity, which

1Protege - https://protege.stanford.edu/

Table 2: Object properties of the datacenter ontology.
Property Domain Range
atLocation Thing Thing

exportMonitoringMetrics MetricsExporter MonitoringMetrics
featureOfInterest Thing Feature
hasExitCode Thing ExitCode

hasJobScheduler Computer JobScheduler
hasMember Thing Thing

hasMetricsExporter Entity MetricsExporter
hasMonitoringSystem Computer MonitoringSystem
hasResourceManager Computer ResourceManager

isScheduledOn Data Thing
isScheduledOnServer Thing Server

manageJob Software Job
managesJob JobScheduler Job

measuresValueOfThing MonitoringMetrics Thing
hasMember Thing Thing

observedProperty Thing Property

includes JobScheduler, MetricsExporter, ResourceManager, Monitor-
ingSystem and so on; a Feature class describing different metric col-
lector in the datacenter; a Hardware class, which defining hardware
configurations such as Processor, Memory; a Artifact class, which
captures various source of Data from Job or MonitoringMetrics.

3.3.2 Key subclasses. MonitoringMetrics is an important subclass of
class Data, where we map the metrics collected in the dataset to the
ontology. Here we capture different kinds of metrics of datacenter
including energy-related data such as Temperature, EnergyUsage,
and resource-related data such as CPULoadAverage, NumberOfIOs.
MetricCollector is a subclass of class Feature, which shows different
data collectors such as CPULoadCollector, MemoryStatisticsCollector.
The subclasses of class Hardware shows the common components
of a datacenter, including Server, Rack, Processor etc.

3.4 Detailed design and propertites
There are two kinds of properties: object properties are whose values
are entities (i.e., ontology individuals), data properties are whose
values are data (numbers, texts, dates, Booleans, etc.). In this sub-
section, we will introduce the details of object and data properties
in our ontology.

3.4.1 Object Properties. Object properties indicate the relation-
ships between two classes. Table 2 shows the information of object
properties in the designed ontology. The class Thing has eight rela-
tionships with other classes, including: atLocation, presents Thing
is at some location; featureOfInterest, which describes the feature
being observed; hasExitCode; hasMember, indicates the membership
relation between two entities, and memberOf is an inverse relation
of it; isScheduledOnServer, indicates job is scheduled on some server
(node); observedProperty, which provides an estimation of observed
value. The class Computer has three relations: hasJobScheduler, has-
MonitoringSystem, hasResourceManager, which reveals the relations
between hardware and software. The object properties show the
complexity of hierarchies in different layers inside a datacenter, so
it is the key to linking different components and metrics.

3.4.2 Data Properties. Figure 4 shows partial data properties in
this ontology. Since the goal of ontology is to better organize the
operational data generated in datacenter, it should cover time-series
metrics as required. The data properties include all the metrics
we can collect in the SURF Lisa dataset, and the range of these
properties is either float or string.

123

https://protege.stanford.edu/

Enabling Operational Data Analytics for Datacenters through Ontologies, Monitoring,
and Simulation-based Prediction ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 4: Particial data properties of the datacenter ontology.

3.5 Validation
This section is to validate that the modeled ontologies meet the
requirements of an ontology in terms of structural modeling. It
should be noted that the overall ontology structure could be val-
idated to be syntactically correct using the graph dump property
(ontology.graph.dump in Python’s Owlready2 module2), to ensure
that there are no errors encountered while representing data with
the ontology (e.g., datatype mismatch, incorrect attribute-name,
data missing scenario). If the modeled ontology is structurally in-
correct while adding data, then the graph dump statement should
give an error.

3.5.1 Validation of key properties. Validation of some of the key
properties that are common in both ontologies (e.g. ambient tem-
perature, host power usage, etc.). We perform a SPARQL query to
validate that the results are matched in both ontologies, as shown
in the listing below:

1 result_surf = list(default_world.sparql("""

2 PREFIX <https :// example.org/hpcontology_surf.owl#>

3 SELECT DISTINCT ?x where{

4 ?x rdfs:subClassOf* Property .

5 }

6 """))

3.5.2 Validation of graph structure. Verification that the modeled
ontology also reflects the graphical layout, which could be inferred
to create general graph structures on the fly for analytical purposes
(e.g., for performing ODA-related analysis). The goal of this experi-
ment is to verify that the ontology modeled for both HPC clusters
can be visualized in the form of graphical layouts with nodes and
edges, which could be easily converted to a graphical structure
in a graph database using available tools. The resulting graphical
layout for SURF’s LISA cluster is visualized using WebVOWL ontol-
ogy visualization and shown in Figure 5, from which we can see
properties such as NodeTemperature, PowerUsage, FileSystemSize are
presented in a graph format, with the relations to other metrics in
the ontology.

2Owlready2 - https://owlready2.readthedocs.io/en/latest/

Figure 5: SURF’s OWL ontology visualization (using Web-
VOWL) showing the graph layout according to the VOWL
specification, and listing graphical nodes and edges informa-
tion on the right side information box.

ODAbler

Client

Setup
Experiment

1
Gain

Insight

Apache
Kafka InfluxDB

TSDB
Analysis

Producer
(OpenDC)

2

Export to Ontology

Produce Data

Update Experiment

3 4

5

6

Figure 6: High-level architecture of ODAbler framework.

4 ODABLER: DESIGN OF ONTOLOGY-BASED
SIMULATION IN OPENDC

We propose and implement ODAbler as a prototype to show how
the ontology can benefit operational data analytic.

4.1 Architecture of ODAbler framework
The key design element of ODAbler involves several key elements
as represented in Fig. 6. Some of the key elements include OpenDC
itself, and Apache Kafka as the middleware which is responsible for
message publishing to a time-series database InfluxDB, using the
Telegraf agent. Once the time-series data is available at InfluxDB,
the ODAbler client application performs out-of-band analysis (as
part of the current scope of its implementation)

4.2 Implementation of the ODAbler framework
4.2.1 Ontology-driven export of OpenDC metrics. As shown in
Table 3, the corresponding attributes or properties are selected
to be exported to the time-series database InfluXDB for further
analysis by the ODAbler analysis client. This screenshot is taken
from the OpenDC’s MonitoringMetrics class, which is a data class
whose sole purpose is to hold data of various metrics as reflected
by the name of the member properties.

124

https://owlready2.readthedocs.io/en/latest/

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Shekhar Suman et al.

Table 3: Metrics exported to time-series database reusing the
concepts from the designed ontology in the section 3.

Name Type
cpuIdleTime Long

cpuActiveTime Long
cpuLostTime Long
energyUsage Double

upTime Long
serverId Int
timestamp Long

cpuUtilization Double
powerUsage Double

guestsRunning Int
policyId Int

4.2.2 Technical implementation. The technical implementation of
the ODAbler framework involves the following steps: (1) Enable
fault injection in OpenDC; (2) Launch InfluxDB and Kafka; (3)
Start Telegraf service; (4) Launch OpenDC server, then launch OD-
Abler client analyzer application. (5) Export operational data from
OpenDC to Apache Kafka. (6) Kafka exports the ontology-driven
relevant power usage and energy usage metrics (besides others) to
InfluxDB via the Telegraf agent. (7) ODAbler performs out-of-band
analysis on InfluxDB data, once the data is fully available.

4.3 Exploration of graph applications
We explore the potential applications of ontology-based graph ap-
plications for datacenter operational data analytics. (We have not
yet built these capabilities in ODAbler, but plan to do so.)

4.3.1 Graph queries. Application performance and behavior are
linked across the hardware-software stack. However, the metrics
are isolated in different parts of the stack. Ontology-enabled moni-
toring and analysis tools help link metrics across the stack. Listing 1
provides an example query to access all machines running an ap-
plication using the “production” database and the p99 latency of
the connection between the application and the database.

1 SELECT ?appname , ?machine , p99(? latency)

2 WHERE

3 {

4 ?x appname ?appname ;

5 isScheduledOn ?machine ;

6 linkedTo ?link .

7 ?link linkedTo ?db .

8 hasMetric ?y .

9 ?y metricname "latency" .

10 value ?latency ;

11 ?db appname "production" .

12 }

Listing 1: Example query to retrieve p99 latency of all apps
connected to the “production” database.

4.3.2 Graph analysis. The typical data center data analysis work-
flow now involves manually collating and analyzing metrics data.
New databases [7] have demonstrated the benefit of graph-aware
query engines for linked data. However, the link information is
unique to each data center, hindering the development of ODA-
specific databases and limiting us to slow ad-hoc data analysis. A

common ontology would allow data center operators to bring pow-
erful tools to bear on operational data analytics [12] and workload
modeling [15].

4.3.3 Graphmachine learning. Machine learning has proven promis-
ing in data center resource management applications [10, 15]. How-
ever, automatically enhancing datacenter processes remains a chal-
lenge. Data availability and domain shift are two obstacles to per-
vasive machine learning in the data center. Each datacenter has
its own idiosyncratic data collection architecture, and ML systems
trained on one datacenter’s data do not prove helpful in other data-
centers. Data normalized using a common ontology helps tackle
these obstacles.

5 RELATEDWORK
An ontology encompasses a representation, formal naming, and
definition of the categories, properties, and relations between the
concepts, data, and entities that substantiate one, many, or all do-
mains of discourse. The basic idea is to represent the properties of
a subject area and their relationships, by defining a set of concepts
and categories that represent the subject. One of the main reasons
for designing an ontology for HPC is to make training datasets and
AI models FAIR (FAIR data principles describe Findability, Acces-
sibility, Interoperability, and Reusability) [9]. Some of the existing
HPC ontology design already captures both high-level meta infor-
mation as well as low-level data content for software, hardware,
experiments, workflows, training datasets, AI models, and so on 3.

HPC ontology modelling work has already been done in previous
scientific research. There are several research works already done
in the field of HPC ontology, for example, by C. Liao et al. [9], and
by Castañé et al. [1], amongst others. One of the comprehensive
HPC ontology designs that already captures both high-level meta
information aswell as low-level data content for software, hardware,
experiments, workflows, training datasets, AI models, and so on
is available as HPC Ontology. There are other works of literature
on HPC resources’ ontology models like Zhou et al. [19], Zhao et
al. [18], Tenschert [16] and others, but those are simplified where
the main goal of the authors has been to decompose applications
between compute and data processes for HPC environments. There
are several other works of literature presenting a unified ontology
of cloud computing like Youseff et al. [17] and Imam [5]. Amongst
these works, we did not find any literature studying themodelling of
ontology derived from the metrics collected from operational HPC
clusters. But, thesemetrics are the source of ODA framework design,
and, so, the ODA framework should be driven by the modelled
ontology, which should be derived from those captured metrics of
large-scale computing infrastructures.

6 CONCLUSION AND FUTUREWORK
This paper presents our ongoing efforts to build a datacenter on-
tology to enable operational data analytics based on the data from
a real-world HPC cluster. We adopt both high-level and detailed
designs to cover the designed requirements. The resulting data-
center ontology has modeled properties of essential concepts of
this domain, including hardware, software, and collected metrics.

3https://hpc-fair.github.io/ontology/

125

https://hpc-fair.github.io/ontology/

Enabling Operational Data Analytics for Datacenters through Ontologies, Monitoring,
and Simulation-based Prediction ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Through the validation, the ontology can support typical search
queries using SPARQL.

An essential item of future work is to incorporate graph-based
analytics into ODAbler, and, further, explore applications of this
technology. Although the exact capabilities of a graph-based OD-
Abler, and more generally of graph-based datacenter ODA, are
largely unknown, this line of future work will bring evidence of
whether our exploration in Section 4.3 is correct and could result
in a new way of understanding datacenters.

Future work will also include extensions of the current ontology,
such as more comprehensive relations between different entities.
We will also add more individuals to the ontology and conduct
graph-based experiments to see if the ontology can help better
understand the datacenter operation. The current draft ontology is
available online at https://github.com/am-i-helpful/hpc-ontology-
modeller .

ACKNOWLEDGEMENT
We thank the Dutch National Supercomputing Center SURF for
providing the data. We thank the China Scholarship Council (CSC)
for supporting Xiaoyu Chu. We thank the support of Netherlands-
funded projects NWO OffSense and GFP 6G FNS, and EU-funded
projects MCSA-RISE Cloudstars and Horizon Graph-Massivizer.

REFERENCES
[1] Gabriel G. Castañé, Huanhuan Xiong, Dapeng Dong, and John P. Morrison.

2018. An ontology for heterogeneous resources management interoperability
and HPC in the cloud. Future Gener. Comput. Syst. 88 (2018), 373–384. https:
//doi.org/10.1016/j.future.2018.05.086

[2] Óscar Corcho, David Chaves-Fraga, Jhon Toledo, Julián Arenas-Guerrero, Carlos
Badenes-Olmedo, Mingxue Wang, Hu Peng, Nicholas Burrett, Jose Mora, and
Puchao Zhang. 2021. A High-Level Ontology Network for ICT Infrastructures. In
The Semantic Web - ISWC 2021 - 20th International Semantic Web Conference, ISWC
2021, Virtual Event, October 24-28, 2021, Proceedings (Lecture Notes in Computer
Science, Vol. 12922), Andreas Hotho, Eva Blomqvist, Stefan Dietze, Achille Fokoue,
Ying Ding, Payam M. Barnaghi, Armin Haller, Mauro Dragoni, and Harith Alani
(Eds.). Springer, 446–462. https://doi.org/10.1007/978-3-030-88361-4_26

[3] Yu Deng, Ronnie Sarkar, HariGovind V. Ramasamy, Rafah Hosn, and Ruchi
Mahindru. 2013. An Ontology-Based Framework for Model-Driven Analysis
of Situations in Data Centers. In 2013 IEEE International Conference on Services
Computing, Santa Clara, CA, USA, June 28 - July 3, 2013. IEEE Computer Society,
288–295. https://doi.org/10.1109/SCC.2013.98

[4] Cory Andrew Henson, Holger Neuhaus, Amit P Sheth, Krishnaprasad
Thirunarayan, and Rajkumar Buyya. 2009. An ontological representation of
time series observations on the semantic sensor web. (2009).

[5] Fahim T Imam. 2016. Application of ontologies in cloud computing: The state-of-
the-art. arXiv preprint arXiv:1610.02333 (2016).

[6] Alexandru Iosup, Fernando Kuipers, Ana Lucia Varbanescu, Paola Grosso, Ani-
mesh Trivedi, Jan S. Rellermeyer, Lin Wang, Alexandru Uta, and Francesco Regaz-
zoni. 2022. Future Computer Systems and Networking Research in the Nether-
lands: A Manifesto. CoRR abs/2206.03259 (2022). https://doi.org/10.48550/ARXIV.

2206.03259 arXiv:2206.03259
[7] Guodong Jin, Xiyang Feng, Ziyi Chen, Chang Liu, and Semih Salihoglu. 2023.

KÙZU Graph Database Management System. In 13th Conference on Innovative
Data Systems Research, CIDR 2023, Amsterdam, The Netherlands, January 8-11,
2023. www.cidrdb.org. https://www.cidrdb.org/cidr2023/papers/p48-jin.pdf

[8] Jean-Baptiste Lamy. 2017. Owlready: Ontology-oriented programming in Python
with automatic classification and high level constructs for biomedical ontologies.
Artificial intelligence in medicine 80 (2017), 11–28.

[9] Chunhua Liao, Pei-Hung Lin, Gaurav Verma, Tristan Vanderbruggen, Murali
Emani, Zifan Nan, and Xipeng Shen. 2021. HPC Ontology: Towards a Unified
Ontology for Managing Training Datasets and AI Models for High-Performance
Computing. In IEEE/ACM Workshop on Machine Learning in High Performance
Computing Environments, MLHPC@SC 2021, St. Louis, MO, USA, November 15,
2021. IEEE, 69–80. https://doi.org/10.1109/MLHPC54614.2021.00012

[10] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2019. Learning scheduling algorithms for data pro-
cessing clusters. In Proceedings of the ACM Special Interest Group on Data Com-
munication, SIGCOMM 2019, Beijing, China, August 19-23, 2019, Jianping Wu and
Wendy Hall (Eds.). ACM, 270–288. https://doi.org/10.1145/3341302.3342080

[11] Fabian Mastenbroek, Georgios Andreadis, Soufiane Jounaid, Wenchen Lai, Jacob
Burley, Jaro Bosch, Erwin Van Eyk, Laurens Versluis, Vincent Van Beek, and
Alexandru Iosup. 2021. OpenDC 2.0: Convenient modeling and simulation of
emerging technologies in cloud datacenters. In 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE, 455–464.

[12] Alessio Netti. 2022. Holistic and Portable Operational Data Analytics on Production
HPC Systems. Ph. D. Dissertation. Technische Universität München.

[13] Natalya F Noy, Deborah L McGuinness, et al. 2001. Ontology development 101:
A guide to creating your first ontology.

[14] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz,
Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bern-
hard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi,
Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan
Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian Schulz,
Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tom-
masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun
Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The future is big graphs:
a community view on graph processing systems. Commun. ACM 64, 9 (2021),
62–71. https://doi.org/10.1145/3434642

[15] Siddharth Samsi, Matthew L. Weiss, David Bestor, Baolin Li, Michael Jones,
Albert Reuther, Daniel Edelman, William Arcand, Chansup Byun, John Holod-
nack, Matthew Hubbell, Jeremy Kepner, Anna Klein, Joseph McDonald, Adam
Michaleas, Peter Michaleas, Lauren Milechin, Julia S. Mullen, Charles Yee, Ben-
jamin Price, Andrew Prout, Antonio Rosa, Allan Vanterpool, Lindsey McEvoy,
Anson Cheng, Devesh Tiwari, and Vijay Gadepally. 2021. The MIT Super-
cloud Dataset. In 2021 IEEE High Performance Extreme Computing Conference,
HPEC 2021, Waltham, MA, USA, September 20-24, 2021. IEEE, 1–8. https:
//doi.org/10.1109/HPEC49654.2021.9622850

[16] Axel Tenschert. 2016. Ontology matching in a distributed environment. (2016).
[17] Lamia Youseff,Maria Butrico, andDilmaDa Silva. 2008. Toward a unified ontology

of cloud computing. In 2008 Grid Computing Environments Workshop. IEEE, 1–10.
[18] Y Zhao, C Liao, and X Shen. 2017. An Infrastructure for HPCKnowledge Sharing and

Reuse. Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore,
CA (United States).

[19] Aolong Zhou, Kaijun Ren, Xiaoyong Li, Wen Zhang, and Xiaoli Ren. 2019. Build-
ing quick resource index list using wordnet and high-performance computing
resource ontology towards efficient resource discovery. In 2019 IEEE 21st Inter-
national Conference on High Performance Computing and Communications; IEEE
17th International Conference on Smart City; IEEE 5th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 885–892.

126

https://github.com/am-i-helpful/hpc-ontology-modeller
https://github.com/am-i-helpful/hpc-ontology-modeller
https://doi.org/10.1016/j.future.2018.05.086
https://doi.org/10.1016/j.future.2018.05.086
https://doi.org/10.1007/978-3-030-88361-4_26
https://doi.org/10.1109/SCC.2013.98
https://doi.org/10.48550/ARXIV.2206.03259
https://doi.org/10.48550/ARXIV.2206.03259
https://arxiv.org/abs/2206.03259
https://www.cidrdb.org/cidr2023/papers/p48-jin.pdf
https://doi.org/10.1109/MLHPC54614.2021.00012
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1145/3434642
https://doi.org/10.1109/HPEC49654.2021.9622850
https://doi.org/10.1109/HPEC49654.2021.9622850

ExaQuery: Proving Data Structure to Unstructured Telemetry
Data in Large-Scale HPC

Junaid Ahmed Khan
DEI Department, University of Bologna

Italy
junaidahmed.khan@unibo.it

Martin Molan
DEI Department, University of Bologna

Italy
martin.molan2@unibo.it

Matteo Angelinelli
HPC Department, CINECA

Italy
m.angelinelli@cineca.it

Andrea Bartolini
DEI Department, University of Bologna

Italy
a.bartolini@unibo.it

ABSTRACT
High-performance computing (HPC) is the cornerstone of tech-
nological advancements in our digital age, but its management
is becoming increasingly challenging, particularly as systems ap-
proach exascale. Operational data analytics (ODA) and holistic
monitoring frameworks aim to alleviate this burden by collecting
live telemetry from HPC systems. ODA frameworks rely on NoSQL
databases for scalability, with implicit data structures embedded
in metric names, necessitating domain knowledge for navigating
telemetry data relations. To address the imperative need for ex-
plicit representation of relations in telemetry data, we propose a
novel ontology for ODA, which we apply to a real HPC installation.
The proposed ontology captures relationships between topological
components and links hardware components(compute nodes, rack,
systems) with job’s execution and allocations collected telemetry.
This ontology forms the basis for constructing a knowledge graph,
enabling graph queries for ODA. Moreover, we propose a compar-
ative analysis of the complexity (expressed in lines of code) and
domain knowledge requirement (qualitatively assessed by informed
end-users) of complex query implementation with the proposed
method and NoSQL methods commonly employed in today’s ODAs.
We focused on six queries informed by facility managers’ daily
operations, aiming to benefit not only facility managers but also
system administrators and user support. Our comparative analysis
demonstrates that the proposed ontology facilitates the implemen-
tation of complex queries with significantly fewer lines of code and
domain knowledge required as compared to NoSQL methods.

CCS CONCEPTS
• Information systems→ Resource Description Framework
(RDF); • Computing methodologies → Ontology engineering.

KEYWORDS
High performance computing (HPC), Operational Data Analyt-
ics(ODA), ResourceDescription Framework (RDF) ontology, SPARQL

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652898

ACM Reference Format:
Junaid Ahmed Khan, Martin Molan, Matteo Angelinelli, and Andrea Bar-
tolini. 2024. ExaQuery: Proving Data Structure to Unstructured Telemetry
Data in Large-Scale HPC. In Companion of the 15th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’24 Companion), May
7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3629527.3652898

1 INTRODUCTION
The rise in complexity of large-scale computing infrastructures
driven by post Moore’s and Dennard’s scaling era presents unprece-
dented challenges. Key challenges include efficient power manage-
ment, optimization for parallelism, data movement and storage,
software complexity, fault tolerance, scalability, workload diver-
sity, resource allocation, and security. Many data centers explore
Operational Data Analytics (ODA) to extract knowledge from mon-
itoring data, enabling control over system parameters and aiding
administrators through visualization. Despite extensive research
into individual aspects of ODA, comprehensive solutions for pro-
duction remain rare, particularly given the inherent complexity of
HPC[9, 13].

HPC is operated by multiple teams and organizations, each
tasked with distinct responsibilities for production. This includes
system administrators, facility managers, and user support, who
collectively contribute to its efficient operation and management.
ODA targets holistic management, where the data includes diverse
types such as job tables, sensor time-series data, and other varied
representations ranging from log files and configuration files to
system metadata. ODA frameworks often rely on NoSQL databases
as they allow flexibility with diverse data sources and scalability to
handle big data frameworks[11]. Moreover, namespaces adopted in
ODA are tailored to the specifics of vendors, sites, or configurations,
jeopardizing the portability of knowledge extraction solutions.

Acquiring domain knowledge presents a formidable challenge,
as it often relies on undisclosed or dispersed information within
various organizations and teams managing similar resources, lead-
ing to a fragmented understanding. In ODA, data demonstrates
interconnectivity and the true value lies in identifying and harness-
ing these complex relationships. These relationships encompass
various aspects, including the interactions between system compo-
nents, submitted jobs, their execution on specific compute nodes,
event correlations, and topology mapping.

127

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652898
https://doi.org/10.1145/3629527.3652898

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Junaid Ahmed Khan, Martin Molan, Matteo Angelinelli, & Andrea Bartolini

In this work, we propose the first ontology aiming to provide a
structured data model that captures these intricate relationships.
The current state-of-the-art data center ontologies focus on inven-
tory and infrastructure[4, 5], while the proposed ontology goes
further by incorporating topological component relationships and
establishing links between hardware components (such as compute
nodes, racks, and systems) and job data. This ontology serves as the
foundation for constructing a knowledge graph, providing a struc-
tured representation of ODA data, facilitating organized retrieval of
interconnected data using graph queries. This ontology has been de-
veloped specifically for the CINECA Italian Tier-0 supercomputing
center[15]. We utilized the Marconi100 (M100) system at CINECA,
which employs the Examon ODA framework for holistic monitor-
ing (detailed in sec.3), operating on Cassandra DB and KairosDB
(a NoSQL time-series database), utilizing an encoded version of
metric names and properties as column names. The results of this
manuscript were obtained using a subset of publicly available M100
Examon collected data [3]

Furthermore, this manuscript includes a comparative analysis
of query implementation complexity, measured in lines of code
(LOC), and domain knowledge required between ontology-based
approaches and NoSQL methods. A lower LOC indicates simpler
code, while qualitative assessment of domain knowledge require-
ments is pivotal in determining the user-friendliness of the pro-
posed ontology. The objective is to underscore the significance of
ontologies for ODA and illustrate how they can facilitate ODA for
HPC.

2 RELATEDWORK
In this manuscript, we target the development of ontologies for data
centers and HPC suitable for ODAs telemetry. With this regard,
Oscar Corcho et al.[5] identify a lack of comprehensive implemen-
tations and common data models not only in this field but also
across other ICT infrastructure areas. Their work is deemed impact-
ful, showcasing the practical use of ontologies in managing data
heterogeneity. Gabriel G. Castañé et al.[4], propose an ontology
integrating HPC and cloud. However, its emphasis on HPC-cloud
interrelations may limit its relevance to our specific requirement
of simplifying query of telemetry data in HPC. Liao et al.[7] intro-
duce an HPC ontology to ensure FAIRness (Findable, Accessible,
Interoperable, Reusable) of training datasets and AI models on
heterogeneous supercomputers. Their ontology offers controlled
vocabularies and formal knowledge representations for data anno-
tation and SPARQL query support, which is not the target of the
proposed manuscript. Kousha et al.[6] focus on an HPC ontology
tailored for job script submission and AI-assisted tools, unlike this
paper which concentrates on ODA telemetry data retrieval. Ad-
ditionally, Tuovinen et al.[14] present an HPC ontology to make
a unified framework capable of adapting queries across different
time-series storages. In contrast, the ontology proposed in this
manuscript is designed to address a specific set of queries essential
for the daily operations of an HPC facility manager/engineer. The
aim is to simplify query implementations and reduce the required
domain knowledge compared to NoSQL approaches. Additionally,

we validate our approach through a comparative analysis to demon-
strate its simplicity, thus proving the adoption of data structures to
handle unstructured telemetry data in large-scale HPC.

3 BACKGROUND: EXAMON
Examon is a holistic monitoring framework for HPC[2]. It is de-
signed to collect data from various sources, including hardware
sensors, software logs, and performancemetrics, and stores this data
in a NoSQL database (Cassandra, with KairosDB for time-series) in
a centralized repository.

Examon’s data collection targets a diverse range of sources, as
depicted in (Fig.1). The complexity of the collected data encom-
passes hardware sensors—such as CPU load across all cores, CPU
clock, instructions per second, memory accesses, power consump-
tion, fan speed, and ambient and component temperatures—along
with workload-related information like job submissions and their
characteristics. Additionally, Examon actively monitors compute
node availability by capturing warning messages and alarms from
diagnostic software tools used by system administrators. The figure
further illustrates the granularity of Examon’s approach, showcas-
ing separate plugins for each hardware component, each equipped
with specific sensors. This design underscores Examon’s capacity
to manage diverse data sources, contributing to its inherent capa-
bility to handle massive data complexity in monitoring. The openly
available dataset by Borghesi et al.[3] covers a spectrum of metrics,
from hardware parameters to system-related statistics.

Furthermore, Examon employs a specific set of parameters and
tags, and to interact with its dataset, it features a dedicated query
language known as ExamonQL. This language allows users to ac-
cess information stored in the database, including metadata, and
generate dataframes of the queried results.

4 METHODOLOGY
Themethodology involves creating a knowledge graph aligned with
Examon’s operational principles. This section details the proposed
ontology, its specifications, query language for ontology, complex
queries for comparison with ExamonQL, and the evaluation criteria
for the comparative analysis.

4.1 ODA ontology
In this subsection, we outline the reasoning behind the proposed
ontology, followed by its explanation. The Resource Description
Framework (RDF) plays a central role in this context, being a web
standard essential for ontologies and knowledge graphs. Employing
a triple structure—comprising subject, predicate, and object—RDF
efficiently represents relationships. In RDF, the Uniform Resource
Identifier(URI) uniquely identifies resources, such as classes and
properties. These URIs can be in the form of Uniform Resource
Locator(URL), providing the means to locate a resource on the
internet. In the context of the proposed paper, the resources refer to
components and telemetry data. RDF’s flexibility in accommodating
both literal values and resource descriptions makes it an invaluable
tool for constructing ontologies, providing structured models to
define concepts and their relationships[8].

4.1.1 Reasoning behind ontology. The proposed ontology follows
a novel approach that exploits the holistic nature of ODA’s (and

128

ExaQuery: Proving Data Structure to Unstructured Telemetry Data in Large-Scale HPC ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 1: Examon’s massive scale and data heterogeneity.

Examon’s) monitoring data and the natural ability of knowledge
graphs to capture relationships between data. As this ontology is
designed to facilitate the work of large-scale HPC center data ana-
lysts and facility managers, it is designed to best meet the needs of
these users. While Examon is a very powerful tool for holistic mon-
itoring, it requires a thorough knowledge of the data architecture
itself. With the proposed ontology, data is organized in a structure
that allows easy interrogation by end users. In particular, as will
be shown in the following sections, the data analysis process is
greatly simplified, allowing a data-driven usage, management, and
optimization of supercomputer systems production with workloads
such as those proposed by Molan et al.[10].

4.1.2 Ontology creation process. The proposed ontology is de-
veloped to establish logical connections among the various data
sources within Marconi100, as perceived by system administrators
such as facility engineers and managers. Aligned with the under-
lying principles of Examon (see sec.3), it caters to the meticulous
organization of telemetry data illustrated in Figure 1. In Examon,
telemetry data is structured in a Plugin-centric manner, with spe-
cific plugins housing sensors tailored to each resource within the
facility, be it a compute node or a component of the cooling in-
frastructure. These sensors gather data, which is then stored in
individual files within their respective folders in the database, fol-
lowing a clear pathway from Plugin to Sensor to Sensor Reading,
culminating in a storage file termed as a "Data Record" within our
proposed ontology (see Fig.2).

However, Examon lacks inherent topological information cru-
cial for understanding the physical organization and location of
resources, particularly significant for workloads involving graph
processing[10]. In an HPC facility, the natural topological structure
typically revolves around compute nodes housed in racks, each
rack assigned a physical location in the x and y dimensions, with
compute nodes stacked within. Consequently, the position of a com-
pute node within the stack becomes the third dimension, denoted
as "Position" in our proposed ontology.

Moreover, an integral aspect of any HPC system is the jobs
submitted to it. Therefore, our proposed ontology incorporates
job-specific information, establishing a natural linkage between
submitted jobs and the resources they utilize, which are compute
nodes. This holistic approach creates a unified framework wherein
every resource within the HPC facility is interconnected with its
logical connections—an aspect lacking in themonitoring framework
of Examon.

4.1.3 Proposed Ontology. The proposed ontology (Fig.2) presents
a significant improvement for ODA in HPC. This structured frame-
work organizes elements such as racks, nodes, positional infor-
mation, plugin-specific sensors, and their readings. It establishes
explicit relationships between HPC and ODA components, includ-
ing a specific link between submitted job and the resources utilized,
a feature lacking in other approaches[4, 5]. The proposed ontology
provides a comprehensive model for integrating and understanding
sensor data, spatial configurations, job execution, and deployed
software/hardware components status in HPC infrastructure.

Figure 2: Proposed Ontology

HPC cluster topology consists of multiple racks, each housing a
set of compute nodes. ODA frameworks[11] also organize data into
different plugins (9 in Examon: Nagios, Ganglia, IPMI, Job table,
Slurm, etc), each linked to its corresponding monitored sensors.
The proposed ontology mirrors these observations by representing
physical components as classes and capturing associated informa-
tion through properties. Relationships between classes are precisely

129

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Junaid Ahmed Khan, Martin Molan, Matteo Angelinelli, & Andrea Bartolini

defined, aligning with the arrangement of plugins and sensors of
Marconi100 and Examon.

Table 1 provides an overview of the proposed ontology’s classes
and their attributes, where each class represents a component
within the HPC system. Table 2 reports the properties of the pro-
posed ontology, outlining their roles and functionalities, which
establish relationships between classes.
Class Name Description
Sensor Represents individual sensors with attributes:

sensorName and sensorType.
Sensor Reading Captures sensor data with attributes: value,

timestamp, and unit.
Plugin Represents specific plugins, identified by

pluginName.
Job Represents job information with attributes: jobId,

startTime, and endTime.
Rack Represents physical racks with a unique rackId, that

houses nodes.
Node Represents individual compute nodes with a unique

nodeId

Position Defines spatial coordinates (posX, posY, posZ) of
nodes.

Data Record Represents stored data records in database with
attributes: fileName, startTimestamp, and
endTimestamp.
Table 1: Classes Overview

Property Description
Has Plugin Connects nodes to its plugins.
Has Sensor Links plugins to associated sensors in the HPC in-

frastructure.
Has Reading Connects sensors to its readings.
Uses Node Associates jobs with the nodes utilized during the

job’s execution.
Has Node Establishes a relationship between racks and nodes.
Has Position Connects nodes to spatial coordinates (X, Y, Z) repre-

senting their physical location.
Is Part Of Links sensor readings to data record, specifying their

inclusion in specific files in storage.
Table 2: Properties

4.2 Knowledge graph: Ontology realisation
Ontology is a structured way of representing knowledge, defining
concepts and relationships. Meanwhile, a knowledge graph is a
graph-based structure built upon the schema set by the ontology,
representing information in nodes(components) and edges(relations
between components). By constructing a knowledge graph based
on the proposed ontology, we enable the implementation of graph
queries. These queries would be utilized for the comparative analy-
sis between NoSQL methods. The evaluation criteria are explained
in the (sec.4.5).

4.3 ODA Complex Queries
Table 3 reports the complex ODA queries. Query 1,2,3 targets anom-
aly detection and prediction models that leverage node’s proximity
information and advance graph algorithms, like[10]. Query 4,5,6 tar-
gets the extraction of insights from job data. Overall, these queries
are instrumental for root cause analysis of anomalous behaviors

arising from the submitted jobs. By delving into job-related data,
the aim is to pinpoint irregularities, understand their origins, and
ultimately contribute to the reduction of anomalies in HPC opera-
tions. This approach aligns with the overarching goal of efficient
management of HPC systems through data-driven analytics and
insights derived from complex ODA queries.
No. Query Description
1 Generate adjacency matrix,

each node connected to the
closest nodes in a rack.

Finds closest nodes in the
same rack and constructs an
adjacency matrix.

2 Generate adjacency matrix for
the entire compute room, each
node connected to nearest
neighbors in the 3 dimensions.

Identifies nodes in proximity
in the entire compute room to
form an adjacency matrix.

3 Generate adjacency matrix for
nodes running the same com-
pute job.

Finds node running the same
compute job and forming its
adjacency matrix.

4 Average job power. Calculates average power con-
sumption for a specific job.

5 Howmany jobs are running in
a particular node, over a time-
period.

Count the number of jobs run-
ning on a specific node over a
time period.

6 What is the min, max, average
temperature when a node is in
use, over a given time-period.

Computes temperature statis-
tics of the node in use during
a specified period.

Table 3: Selected Queries

4.4 Ontology query language: SPARQL
SPARQL is the preferred choice for ontology querying due to its
seamless compatibility with the RDF structure. SPARQL aligns well
with RDF’s graph representation, making it ideal for expressing and
retrieving information from knowledge graphs. Its triple pattern
matching capability allows precise matching within RDF triples,
enabling users to specify complex relationships. SPARQL’s expres-
siveness and flexibility make it a powerful tool for crafting tailored
queries. Standardized by the W3C, SPARQL ensures consistency
and interoperability, establishing itself as a state-of-the-art solution
for RDF querying[1, 12].

4.5 Evaluation criteria
The evaluation of each query primarily focuses on its simplicity and
conciseness. This involves a thorough examination of the complex-
ity, indicated by the Lines of Code(LOC) required for each query.
Additionally, the assessment considers the level of domain-specific
knowledge necessary for executing the query effectively. A crucial
aspect of the evaluation is determining the comprehensibility of
each query for individuals with limited to no direct domain knowl-
edge. Traditional metrics such as time to execution and data fetches
are not applicable in this context. The knowledge graph based on
the proposed ontology resides locally, while the Examon query
retrieves information directly from the real Examon installation
and its remote database. Consequently, the execution time won’t
be utilized as a comparative metric in our evaluation. Similarly,
regarding data fetches, the extensive historical data in Examon
makes the volume queried substantially larger than the minimal

130

ExaQuery: Proving Data Structure to Unstructured Telemetry Data in Large-Scale HPC ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

RDF instances (described in sec.5.1) created for experimental pur-
poses. Hence, these metrics are not considered in our evaluation
approach.

5 EXPERIMENTAL EVALUATION
5.1 Experiment setup
The knowledge graph using the proposed ODA ontology is created
in the TURTLE(.ttl) format. SPARQL and Examon queries are exe-
cuted in a Python environment. Examon, being operational with
accessible historical data, allows retrieval of genuine historical data.
Examon utilizes its specific query library, ExamonQL, while RDF
and SPARQL execution in Python relies on the RDFlib library.

To initiate the process, we load the .ttl ontology file and populate
the RDF graph by traversing the tables of examon’s historical data
and selecting small batches of a few instances from each table and
expressing them in the RDF triple format, thereby constructing the
knowledge graph referred to as combined_graph in these queries.
The PREFIX at the start of each query serves as a unique identifier
for the entire ontology, with each component’s identifier as its
extension. The PREFIX remains consistent in all SPARQL queries
and is explicitly defined as follows: "cineca_m100" is the prefix
for the ontology with its base Unique Resource Identifier (URI),
"rdf" is the prefix for the RDF namespace, and "xsd" is the prefix
for the XML Schema namespace, used for defining datatypes in
RDF. These prefixes simplify the notation in SPARQL queries by
providing shorthand representations for longer URIs.

5.2 Query implementation
In this section, we will analyze the implementation of each query
in both SPARQL and ExamonQL, providing a detailed comparison

5.2.1 Query 1: Generate adjacency matrix, each node connected to
the closest nodes in a rack andQuery 2: Generate adjacency matrix for
the entire compute room, each node connected to nearest neighbors in
the 3 dimensions. These two queries are centered around obtaining
topological information, specifically in the context of identifying
compute nodes in close physical proximity. This focus is crucial
for graph-based machine learning and artificial intelligence, where
precise spatial information is essential for generating adjacency
matrices. It’s noteworthy that these two queries are not feasible to
execute using Examon due to the absence of spatial information in
Examon. We present the SPARQL query aligned with the proposed
ontology (Fig. 2) for further exploration. This process involves
retrieving the positions of all nodes within a rack and presenting
the results.

1 query = f""" SELECT ?node ?nodeId ?pos
2 WHERE {{
3 cineca_m100:rack{rack_number} cineca_m100:

hasNode ?node .
4 ?node cineca_m100:nodeId ?nodeId .
5 ?node cineca_m100:hasPosition ?pos .
6 }}"""

Query 1 and 2: SPARQL
The final manipulation process may differ based on different

edge connectivity strategies. We combine the first two queries into
a single subsection due to their similarity and shared requirements.

Notably, the semantic nature of this query establishes a hierarchy,
starting from identifying the target rack to its nodes and positions.
SPARQL’s semantic clarity enables intuitive understanding, even
for individuals with limited domain knowledge familiar with the
ontology and its basic concepts.

5.2.2 Query 3: Generate adjacency matrix for nodes running the
same compute job. This query focuses on job-specific analysis and
the direct linkage in the proposed ontology between job and nodes
makes its implementation simpler (lower LOC count, fewer param-
eters and namespaces based on proposed ontology which are not
specific to an ODA framework or HPC facility) than in ExamonQL.
This structure can be utilized as follows by identifying the job by its
"job_id" and examining its "usesNode" property to retrieve the list of
nodes where this job was executed. Whereas in Examon, accessing
specific data is more intricate due to the absence of direct relations
between its ODA components. Retrieving particular information
necessitates a deep understanding of Examon and its heterogeneous
data types. Users must possess domain knowledge (covering both
ODA’s data types and HPC internal structure) to identify the rel-
evant data source, determine which data table holds the needed
information, and navigate the complete ODA framework to access
the necessary data.

1 query = f""" SELECT ?node ?nodeId
2 WHERE {{
3 cineca_m100:Job{job_id} cineca_m100:usesNode

?node .
4 ?node cineca_m100:nodeId ?nodeId .
5 }}"""

Query 3: SPARQL

1 #Setup for Marconi100
2 sq.jc.JOB_TABLES.add('job_info_marconi100 ')
3 data = sq.SELECT('*').FROM('job_info_marconi100 ')

.WHERE(job_id ={jobId}).TSTART ({ job_start_time
}).TSTOP({ job_end_time }).execute ()

4 #create dataframe of the query result
5 df = pd.read_json(data)
6 print(df['cpus_alloc_layout '][0])

Query 3: Examon

5.2.3 Query 4: Average job power. Implementation of this query
in SPARQL begins by identifying the nodes used and retrieving
start and end times for a job. It then follows a relationship path-
way from these nodes to their associated plugins and subsequently
to their sensors. In this particular instance, the query selects the
"total_power" sensor. Following this, the query proceeds to collect
all readings from the selected sensor and apply a filter based on
the job’s timestamp to narrow down the readings to those within
the job’s specified period. Finally, the query concludes by grouping
each node’s values using the groupby command.

1 query = f""" SELECT ?nodeId ?unit (AVG(? powerValue
) AS ?averagePower)

2 WHERE {{
3 cineca_m100:Job{job_id} cineca_m100:usesNode ?

node ;
4 cineca_m100:startTime ?startTime ;
5 cineca_m100:endTime ?endTime .

131

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Junaid Ahmed Khan, Martin Molan, Matteo Angelinelli, & Andrea Bartolini

6 ?node cineca_m100:hasPlugin/cineca_m100:
hasSensor ?sensor ;

7 cineca_m100:nodeId ?nodeId .
8 ?sensor cineca_m100:sensorName "total_power" ;
9 cineca_m100:hasReading ?reading .
10 ?reading cineca_m100:value ?powerValue ;
11 cineca_m100:timestamp ?timestamp ;
12 cineca_m100:unit ?unit .
13 FILTER (? timestamp >= ?startTime && ?timestamp <=

?endTime)
14 }} GROUP BY ?nodeId """

Query 4: SPARQL

In implementing this query in ExamonQL, we observe that the
number of lines for both query types is almost the same, yet it ap-
pears more complex than the SPARQL query. The complexity arises
because there is no inherent relationship between data sources in
Examon, which requires the user to connect the dots, necessitating
the users to be well-acquainted with each separate data source,
its tables, and the contents of each table to successfully execute
this query. The user has to navigate through different data sources
and establish the necessary connections manually. To facilitate this
process, the use of helper functions in Python becomes essential,
further contributing to the complexity of the query implementation.
In Examon, two sub-queries are required: one to gather job-related
data and another to retrieve sensor readings. Users must integrate
job information from the first sub-query into the second to obtain
the final value. This multi-step process adds complexity compared
to the straightforward SPARQL query.

1 def get_data(node_to_get ,start_time ,end_time):
2 data = sq.SELECT('*') \
3 .FROM('total_power ').WHERE(node=node_to_get).

TSTART(str(start_time)).TSTOP(str(end_time)).
execute ()

4 value = data.df_table['value ']
5 return value
6 sq.jc.JOB_TABLES.add('job_info_marconi100 ')
7 data = sq.SELECT('*') \
8 .FROM('job_info_marconi100 ').WHERE(job_id=

jobId).TSTART ({ start_time }).TSTOP ({ end_time })
.execute ()

9 # create df of the query result
10 df = pd.read_json(data)
11 # get the allocated nodes list
12 dict_of_nodes = df['cpus_alloc_layout '][0]
13 nodes = list(dict_of_nodes.keys())
14 start_time = format_TS(str(df['start_time '][0]))
15 end_time = format_TS(str(df['end_time '][0]))
16 for node in nodes:
17 df = get_data(node ,start_time ,end_time)
18 avg = df.sum()/len(df)

Query 4: Examon

5.2.4 Query 5: How many jobs are running in a particular node, over
a time-period. The implementations clearly show that the SPARQL
query requires fewer lines of code (LOC) compared to the Exam-
onQL query. This pattern aligns with the observation in Query 4,
where a single SPARQL query is used instead of two ExamonQL
subqueries due to the lack of connection between separate data

sources in Examon. Moreover, the semantic nature of SPARQL pro-
vides a logical structure that is easier to understand for individuals
with a basic understanding of the proposed ODA ontology. In con-
trast, the ExamonQL implementation underscores the necessity of
domain knowledge to achieve the desired output.

1 query = f""" SELECT (COUNT(?job) as ?jobCount)
2 WHERE {{
3 ?job a cineca_m100:Job ;
4 cineca_m100:usesNode cineca_m100:Node{node_id} ;
5 cineca_m100:startTime ?startTime ;
6 cineca_m100:endTime ?endTime .
7 FILTER (? startTime <= "{ end_time }"^^ xsd:dateTime

&& ?endTime >= "{ start_time }"^^ xsd:dateTime)
8 }}"""

Query 5: SPARQL

1 def get_nodes_list(jobId ,time_period):
2 data = sq.SELECT('*')\
3 .FROM('job_info_marconi100 ')\
4 .WHERE(job_id=str(jobId))\
5 .TSTART(time_period [0]).TSTOP(time_period [1]).

execute ()
6 # create df of the query result
7 df = pd.read_json(data)
8 # get the allocated nodes list
9 dict_of_nodes = df['cpus_alloc_layout '][0]
10 try: nodes = list(dict_of_nodes.keys())
11 except: pass
12 # create df of the query result
13 df = pd.read_json(data)
14 df['cpus_alloc_layout '][0]
15 nodes = list(dict_of_nodes.keys())
16 return nodes
17 # Setup for Marconi100
18 sq.jc.JOB_TABLES.add('job_info_marconi100 ')
19 data = sq.SELECT('*') \
20 .FROM('job_info_marconi100 ').TSTART ({

start_time }).TSTOP({ end_time }).execute ()
21 df = pd.read_json(data)
22 job_ids = df['job_id ']. to_numpy ()
23 count = 0
24 for job_id in job_ids:
25 try: nodes_list = get_nodes_list(job_id ,

time_period)
26 count += nodes_list.count(node_to_check)
27 except: pass

Query 5: Examon

5.2.5 Query 6: What is the min, max, average temperature when a
node is in use, over a given time-period. In the implementation of
this query, we can see that ExamonQL requires a lot more lines
of code(LOC) as compared to SPARQL. Additionally, in the case
of ExamonQL for this query, the necessity for four sub-queries to
obtain the final results further emphasizes the increased complexity
in comparison to the more concise SPARQL implementation.

1 query = f""" SELECT ?nodeId (AVG(? temperature) as
?avgTemperature) (MIN(? temperature) as ?
minTemperature) (MAX(? temperature) as ?
maxTemperature)

2 WHERE {{

132

ExaQuery: Proving Data Structure to Unstructured Telemetry Data in Large-Scale HPC ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

3 ?job rdf:type cineca_m100:Job ;
4 cineca_m100:startTime ?jobStart ;
5 cineca_m100:endTime ?jobEnd ;
6 cineca_m100:usesNode ?node .
7 ?node cineca_m100:hasPlugin/cineca_m100:

hasSensor ?sensor ;
8 cineca_m100:nodeId ?nodeId .
9 ?sensor cineca_m100:sensorName "temperature" ;
10 cineca_m100:hasReading ?reading .
11 ?reading cineca_m100:value ?temperature ;
12 cineca_m100:timestamp ?timestamp ;
13 cineca_m100:unit ?unit .
14 FILTER (? jobStart <= "{ end_time }"^^ xsd:dateTime

&& ?jobEnd >= "{ start_time }"^^ xsd:dateTime)
15 }}GROUP BY ?nodeId """

Query 6: SPARQL

1 def get_nodes_list(jobId ,time_period):
2 data = sq.SELECT('*') \
3 .FROM('job_info_marconi100 ').WHERE(job_id=str

(jobId))\
4 .TSTART(time_period [0]).TSTOP(time_period [1])

.execute ()
5 # create df of the query result
6 df = pd.read_json(data)
7 # get the allocated nodes list
8 dict_of_nodes = df['cpus_alloc_layout '][0]
9 try: nodes = list(dict_of_nodes.keys())
10 except: pass
11 # create df of the query result
12 df = pd.read_json(data)
13 df['cpus_alloc_layout '][0]
14 nodes = list(dict_of_nodes.keys())
15 return nodes
16 # Setup for Marconi100
17 sq.jc.JOB_TABLES.add('job_info_marconi100 ')
18 data = sq.SELECT('*').FROM('job_info_marconi100 ')

.TSTART ({ start_time }).TSTOP({ end_time })\
19 .execute ()
20 df = pd.read_json(data)
21 job_ids = df['job_id ']. to_numpy ()
22 node_used_in_job_list = []
23 for job_id in job_ids:
24 try: nodes_list = get_nodes_list(job_id ,

time_period)
25 if (node_to_check in nodes_list):
26 print(job_id ,nodes_list)
27 node_used_in_job_list.append(job_id)
28 except: pass
29 def get_data(node_to_get ,metric ,start_time ,

end_time):
30 data = sq.SELECT('*').FROM(metric).WHERE(node=

node_to_get).TSTART(str(start_time)).TSTOP(
str(end_time)).execute ()

31 value = data.df_table['value ']
32 return value
33 def get_job_time(jobId):
34 data=sq.SELECT('*').\
35 FROM('job_info_marconi100 ')\
36 .WHERE(job_id=str(jobId),node=node_to_check)\
37 .TSTART ({ start_time }).TSTOP({ end_time })\
38 .execute ()

39 df = pd.read_json(data)
40 start_time= format_TS(str(df['start_time '][0]))
41 end_time= format_TS(str(df['end_time '][0]))
42 return start_time ,end_time
43 each_job_df = []
44 for job in node_used_in_job_list:
45 start_time ,end_time = get_job_time(job)
46 try:
47 df = get_data(node_to_check ,metric ,start_time

,end_time)
48 each_job_df.append ((max(df),min(df),(df.sum()

/len(df))))
49 except: print("error")

Query 6: Examon

6 DISCUSSION
The evaluation of SPARQL queries against ExamonQL provides
valuable insights into their efficiency and usability for querying
topological information and conducting job-specific analyseswithin
HPC environments (see sec. 5.2). In queries 1 and 2, SPARQL’s se-
mantic clarity and alignment with the proposed ontology enable
intuitive querying, starting from rack identification to node po-
sitions. In contrast, Examon lacks spatial information, rendering
such queries unfeasible in ExamonQL. For queries 3, 4, 5, and 6, the
direct linkage between jobs and their utilized nodes in the proposed
ontology simplifies query implementation, resulting in fewer lines
of code and reduced complexity compared to ExamonQL. Addi-
tionally, SPARQL’s filtering capabilities lead to a more concise and
logical query structure, whereas ExamonQL’s fragmented queries
lead to increased complexity.

Overall, SPARQL consistently demonstrates advantages in ef-
ficiency and usability across all six queries, offering a structured
framework that simplifies query development and comprehension.
In contrast, ExamonQL’s manual connection requirements and frag-
mented querying pose challenges for users, necessitating a deeper
understanding of the underlying connectivity between different
data sources.

7 CONCLUSION
In this manuscript, we presented an ontology for ODA and a com-
parative analysis with state-of-the-art ODA methods. The compar-
ative analysis of complex ODA queries implemented in Examon
and SPARQL sheds light on the practical applicability of SPARQL,
showcasing its efficiency and clarity in query execution(fewer LOC
and less domain knowledge requirements). SPARQL’s semantic
nature allows users to comprehend queries by following the logi-
cal structure outlined in the proposed ontology. With even basic
knowledge of the proposed ontology, its classes, and relationships,
users can easily grasp the query’s intent. This feature enhances
accessibility and comprehension without necessitating extensive
domain expertise. SPARQL query seamlessly aligns with the in-
herent relations in the HPC data, making queries transparent and
aiding a straightforward understanding. Future work involves fur-
ther refining the ontology, assessing capabilities with more complex
queries, and converting historical Examon datasets into RDF format
for deployment in graph databases for further comparative analysis.

133

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Junaid Ahmed Khan, Martin Molan, Matteo Angelinelli, & Andrea Bartolini

ACKNOWLEDGMENT
This research was partly supported by the EuroHPC EU Regale
project (g.a. 956560), the HE EU Graph-Massivizer project (g.a.
101093202), and also the Spoke "FutureHPC & BigData" of the ICSC
– Centro Nazionale di Ricerca in "High Performance Computing,
Big Data and Quantum Computing", funded by European Union –
NextGenerationEU. We also express our gratitude to CINECA for
their collaboration and providing access to their machines.

REFERENCES
[1] Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga

Ngomo. 2022. A survey of RDF stores & SPARQL engines for querying knowledge
graphs. The VLDB Journal 31a, 3 (May 1 2022), 1–26. https://doi.org/10.1007/
s00778-021-00711-3

[2] Andrea Bartolini, Francesco Beneventi, Andrea Borghesi, Daniele Cesarini, An-
tonio Libri, Luca Benini, and Carlo Cavazzoni. 2019. Paving the Way Toward
Energy-Aware and Automated Datacentre. In Proceedings of the 48th Interna-
tional Conference on Parallel Processing: Workshops (Kyoto, Japan) (ICPP 2019).
Association for Computing Machinery, New York, NY, USA, Article 8, 8 pages.
https://doi.org/10.1145/3339186.3339215

[3] Andrea Borghesi, Carmine Di Santi, MartinMolan, Mohsen Seyedkazemi Ardebili,
Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco
Barchi, Luca Benini, Francesco Beneventi, and Andrea Bartolini. 2023. M100
ExaData: a data collection campaign on the CINECA’s Marconi100 Tier-0 super-
computer. Scientific Data 10, 1 (18 May 2023), 288. https://doi.org/10.1038/s41597-
023-02174-3

[4] Gabriel G. Castañé, Huanhuan Xiong, Dapeng Dong, and John P. Morrison.
2018. An ontology for heterogeneous resources management interoperability
and HPC in the cloud. Future Generation Computer Systems 88 (2018), 373–384.
https://doi.org/10.1016/j.future.2018.05.086

[5] Oscar Corcho, David Chaves-Fraga, Jhon Toledo, Julián Arenas-Guerrero, Carlos
Badenes-Olmedo, Mingxue Wang, Hu Peng, Nicholas Burrett, José Mora, and
Puchao Zhang. 2021. A High-Level Ontology Network for ICT Infrastructures.
In The Semantic Web – ISWC 2021, Andreas Hotho, Eva Blomqvist, Stefan Dietze,
Achille Fokoue, Ying Ding, Payam Barnaghi, Armin Haller, Mauro Dragoni, and
Harith Alani (Eds.). Springer International Publishing, Cham, 446–462.

[6] Pouya Kousha, Vivekananda Sathu, Matthew Lieber, Hari Subramoni, and Dha-
baleswar K. Panda. 2023. Democratizing HPC Access and Use with Knowledge

Graphs. In Proceedings of the SC ’23 Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis (<conf-loc>,
<city>Denver</city>, <state>CO</state>, <country>USA</country>, </conf-
loc>) (SC-W ’23). Association for Computing Machinery, New York, NY, USA,
243–251. https://doi.org/10.1145/3624062.3624094

[7] Chunhua Liao, Pei-Hung Lin, Gaurav Verma, Tristan Vanderbruggen, Murali
Emani, Zifan Nan, and Xipeng Shen. 2021. HPC Ontology: Towards a Unified
Ontology for Managing Training Datasets and AI Models for High-Performance
Computing. In 2021 IEEE/ACM Workshop on Machine Learning in High Per-
formance Computing Environments (MLHPC). 69–80. https://doi.org/10.1109/
MLHPC54614.2021.00012

[8] BrianMcBride. 2004. The Resource Description Framework (RDF) and its Vocabulary
Description Language RDFS. Springer Berlin Heidelberg, Berlin, Heidelberg, 51–65.
https://doi.org/10.1007/978-3-540-24750-0_3

[9] Dejan Milojicic, Paolo Faraboschi, Nicolas Dube, and Duncan Roweth. 2021. Fu-
ture of HPC: Diversifying Heterogeneity. In 2021 Design, Automation Test in Eu-
rope Conference Exhibition (DATE). 276–281. https://doi.org/10.23919/DATE51398.
2021.9474063

[10] Martin Molan, Junaid Ahmed Khan, Andrea Borghesi, and Andrea Bartolini. 2023.
GraphNeural Networks for Anomaly Anticipation in HPC Systems. InCompanion
of the 2023 ACM/SPEC International Conference on Performance Engineering. 239–
244.

[11] M. Ott, W. Shin, and et al. 2020. Global Experiences with HPC Operational Data
Measurement, Collection and Analysis. In 2020 IEEE International Conference on
Cluster Computing.

[12] Bastian Quilitz and Ulf Leser. 2008. Querying Distributed RDF Data Sources
with SPARQL. In The Semantic Web: Research and Applications, Sean Bechhofer,
Manfred Hauswirth, Jörg Hoffmann, and Manolis Koubarakis (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 524–538.

[13] Woong Shin, Vladyslav Oles, Ahmad Maroof Karimi, J. Austin Ellis, and Feiyi
Wang. 2021. Revealing Power, Energy and Thermal Dynamics of a 200PF Pre-
Exascale Supercomputer. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (St. Louis, Missouri)
(SC ’21). Association for Computing Machinery, New York, NY, USA, Article 12,
14 pages. https://doi.org/10.1145/3458817.3476188

[14] Lauri Tuovinen and Jaakko Suutala. 2021. Ontology-based Framework for Inte-
gration of Time Series Data: Application in Predictive Analytics on Data Center
Monitoring Metrics. 151–161. https://doi.org/10.5220/0010650300003064

[15] Wikipedia. 2021. CINECA — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=CINECA&oldid=954269846. [Online; accessed
04-December-2021].

134

https://doi.org/10.1007/s00778-021-00711-3
https://doi.org/10.1007/s00778-021-00711-3
https://doi.org/10.1145/3339186.3339215
https://doi.org/10.1038/s41597-023-02174-3
https://doi.org/10.1038/s41597-023-02174-3
https://doi.org/10.1016/j.future.2018.05.086
https://doi.org/10.1145/3624062.3624094
https://doi.org/10.1109/MLHPC54614.2021.00012
https://doi.org/10.1109/MLHPC54614.2021.00012
https://doi.org/10.1007/978-3-540-24750-0_3
https://doi.org/10.23919/DATE51398.2021.9474063
https://doi.org/10.23919/DATE51398.2021.9474063
https://doi.org/10.1145/3458817.3476188
https://doi.org/10.5220/0010650300003064
http://en.wikipedia.org/w/index.php?title=CINECA&oldid=954269846
http://en.wikipedia.org/w/index.php?title=CINECA&oldid=954269846

An Extensive Characterization of Graph Sampling Algorithms
S. Haleh S. Dizaji

University of Klagenfurt
Klagenfurt am Wörthersee, Austria
Seyedehhaleh.Seyeddizaji@aau.at

Jože M. Rožanec
Jožef Stefan Institute
Ljubljana, Slovenia
joze.rozanec@ijs.si

Reza Farahani
University of Klagenfurt

Klagenfurt am Wörthersee, Austria
reza.farahani@aau.at

Dumitru Roman
SINTEF

Oslo, Norway
dumitru.roman@sintef.no

Radu Prodan
University of Klagenfurt

Klagenfurt am Wörthersee, Austria
radu.prodan@aau.at

ABSTRACT
While graph sampling is key to scalable processing, little research
has tried to thoroughly compare and understand how it preserves
features such as degree, clustering, and distances dependent on
the graph size and structural properties. This research evaluates
twelve widely adopted sampling algorithms across synthetic and
real datasets to assess their qualities in three metrics: degree, clus-
tering coefficient (CC), and hop plots. We find the random jump
algorithm to be an appropriate choice regarding degree and hop-
plot metrics and the random node for CC metric. In addition, we
interpret the algorithms’ sample quality by conducting correlation
analysis with diverse graph properties. We discover eigenvector
centrality and path-related features as essential features for these
algorithms’ degree quality estimation, node numbers (or the size of
the largest connected component) as informative features for CC
quality estimation and degree entropy, edge betweenness and path-
related features as meaningful features for hop-plot metric. Fur-
thermore, with increasing graph size, most sampling algorithms
produce better-quality samples under degree and hop-plot metrics.

CCS CONCEPTS
• Applied computing → Computer forensics; System forensics;

KEYWORDS
Graph sampling algorithms, Scalable graph processing

ACM Reference Format:
S. Haleh S. Dizaji, JožeM. Rožanec, Reza Farahani, Dumitru Roman, and Radu
Prodan. 2024. An Extensive Characterization of Graph SamplingAlgorithms.
In Companion of the 15th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United
Kingdom.ACM,NewYork, NY, USA, 6 pages. https://doi.org/10.1145/3629527.
3652899

This work is licensed under a Creative Commons Attribu-
tion International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652899

1 INTRODUCTION
Graphs offer a flexible approach to modeling connected compo-
nents and carry useful information about relationships of the struc-
tured data. However, accessing or processing full graphs in large-
scale scenarios is infeasible or poses considerable challenges. For
example, computing measures such as shortest paths, clusterings,
or betweenness centrality (BC) become impractical [12] on large
graphs. In such scenarios, graph sampling [12] is a popular remedy
that allows for estimating these properties from a small fraction of
its nodes and edges [25]. In addition, sampling can benefit machine
learning tasks, with training more effectively on smaller fractions
of the data. In particular, it can directly influence the robustness
[3] and performance [1] of graph neural networks.

As the graph sampling algorithms becomemore extensive, study-
ing their behavior becomes more demanding, as they perform dif-
ferently depending on desired quality metrics and graphs. Unfortu-
nately, literature remains scarce, and few works address this area,
considering the limited amount of synthetic or real graphs. Fur-
thermore, they do not provide an in-depth analysis of sampling
quality considering graph size and structural features.

To bridge this void, we compare twelve graph sampling meth-
ods across around 2900 synthetic graphs of six types and twelve
real datasets. We assess them using three metrics considered in
the literature [12, 27], i.e., degree, clustering coefficient (CC), and
hop-plots, to evaluate the qualities of samples regarding the orig-
inal graphs. We quantify the dependency of these properties on
graph features (77 features) and find the most relevant ones for
each algorithm and metric. We uncover some important depen-
dencies and highlight the most relevant features for different algo-
rithms regarding each metric. In addition, we evaluate algorithms
on small and large real graphs, confirming some of the relevant
features obtained for synthetic ones.

The paper has seven sections. Section 2 reviews relevant sam-
pling algorithms. Section 3 introduces related studies to our re-
search. Section 4 defines themetrics used for evaluating samplings’
result quality. Section 5 explains the experimental setup, including
datasets, and experimental settings. Section 6 analyzes the results.
Finally, section 7 concludes the paper and outlines future research.

2 GRAPH SAMPLING ALGORITHMS
We characterize graph sampling algorithms for static networks un-
der three categories: node, edge, and traversal-based sampling [12].
This paper contributes to the state-of-the-art by investigating the

135

https://orcid.org/
https://orcid.org/0000-0002-3665-639X
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3629527.3652899
https://doi.org/10.1145/3629527.3652899
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652899

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom S. Haleh S. Dizaji, Jože M. Rožanec, Reza Farahani, Dumitru Roman, & Radu Prodan

sampling qualities of twelve popular algorithms of the three cate-
gories under various graph properties.

2.1 Node-based sampling
Node-based methods are most intuitive but only weakly preserve
properties of specific graph types [2, 22], possibly losing connectiv-
ity [9]. Random node (RN) can preserve the CC for some graphs [9]
and the degree distribution for randomgraphs [22], however poorly
preserves the power-law degree distribution [14, 22] and average
path length (APL) for non-small samples. Randomdegree node (RDN)
applies probabilistic node selection proportional to the degrees [12],
but loses degree distribution by creating bias over high-degree nodes [22].
Random PageRank nodemitigates this bias [14] using nodes PageR-
ank scores [20].Node samplingwith contraction reduces the graph’s
size by randomly removing nodes [6].

2.2 Edge-based sampling
Edge-based sampling can preserve edge-dependent properties, such
as path length [2]. On the other hand, primary edge-based sam-
plers have bias over high-degree nodes and poorly preserve some
properties, such as connectivity and clustering. Random edge (RE)
has poor preservation of graph structure (higher APLs for larger
samples and lower CC). Random node edge (RNE) randomly se-
lects a node and its edge [12]. RN selection mitigates bias over
high-degree nodes [12]; however it can generate sparse graphs [14]
due to limited edge selection. To solve this problem, hybrid sam-
pling performs RNE or RE steps probabilistically [12], resulting in
less bias towards high-degree nodes than RE. Induced random edge
(IRE), an extension of RE, performs an induction step by adding all
edges between selected nodes in RE, collecting more information
and better preserving the topological properties [2]. Edge sampling
with contraction generates samples by randomly removing an edge
and merging nodes previously joined by that edge [6].

2.3 Traversal-based sampling
Traversal-based methods improve the performance of RN and RE
methods by capturing topological information of graph [2, 6].

Random traversal methods. Random walk (RW) performs sam-
pling initialized from one seed node [21] with a better degree dis-
tribution estimation [18], but can get stuck in a graph region. To
overcome this problem, random jump (RJ) jumps to a random node
with some probability. Metropolis-Hastings random walk (MHRW)
selects the neighboring nodes in RW proportional to degree ratios
[23], but fails to estimate the degree distribution well [18].Multiple
independent random walkers avoid sampling from a specific region
[6], [4], resulting in higher estimation errors [17].

Neighborhood exploration methods. Snowball (SB) traverses the
graph by selecting a fixed number of neighbors of the current node
set [5, 6], which preserves CC for certain graphs [9], but suffers
from boundary bias [9], underestimating power-low degree distri-
bution exponent and lower APL [9]. Forest fire (FF) adapted from
the evolution networkmodel [10]mitigates the local sampling prob-
lem of SB with the neighborhood size following a geometric distri-
bution [6] with a bias over high-degree nodes and getting stuck
in isolated clusters regions [14]. Frontier sampling (FS) performs
probabilistic node selection from the current set according to its

degree and replaces it randomly with one of its neighbors [17];
however, increasing the number of seed nodes (infinitely) results
in uniform node and edge distribution [6]. Expansion sampling (XS)
aims to preserve some graph community structure [13, 27] by start-
ing from a random seed and traversing the neighborhood by select-
ing the node maximizing out-links of the current sample. Rank de-
gree (RD) preserves community structure [27] by ranking the node
neighborhood by degrees [24], randomly selecting a node from a
seed set and its top-k neighbors as sample edges and replacing the
seed set with them. Tight sampling (TS) mitigates the local sam-
pling of SB trying to preserve local clusters around seed nodes [8].
List sampling (LS) tries to solve poor neighborhood exploration us-
ing a list of currently sampled nodes’ neighbors [28] and has a
better APL estimation on graphs with high CC [27].

3 RELATEDWORK
We summarize the studies for graph sampling algorithms analysis
in two sections: analytical and numerical evaluations.

3.1 Analytical evaluations
Stumpf and Wiu [22] analyzed RN on random, exponential and
scale-free graphs and Lee et al. [9] studied RN and RE on Albert-
Barabasi (AB) and real graphs.They characterized the degree distri-
bution of samples dependent on the original graph degree distribu-
tion and sampling rate. Illenberger and Flötteröd [7] analyzed SB
algorithm on Erdos-Renyi (ER) and real graphs and concluded that
the original graphs’ mean degree, degree correlation, and CC esti-
mation quality decrease with the increasing variance of the origi-
nal graph degree distribution. Ribeiro and Towsley [18] analyzed
RN, RE, RW, and MHRW, estimating the graph degree distribution
based on the unbiased Horvitz-Thompson estimator dependent on
sample degrees and distributions and verified on large real graphs.

Limitations. While providing accurate estimations, these analy-
ses study limited sampling algorithms and synthetic graphs and
do not consider various graph properties. We analyze several al-
gorithms (including updated algorithms) under six synthetic and
twelve real graphs, considering several graph features.

3.2 Numerical evaluation
Leskovec and Faloutsos [12] evaluated ten node, edge, and traversal-
based algorithms under scale-down and back-in-time samplings
using nine metrics (i.e., degree, CC, connected components sizes,
hop-plots, and singular values distributions) over four real graphs
concluding that traversal-based algorithms yield better results for
static graphs. Yoon et al. [26] evaluated RW under quality met-
rics, i.e., degree distribution, CC, and degree-degree correlation
for Albert-Barabasi (AB) and three real graphs and found for high
power-law degree distribution exponents, RWpreservesmost topo-
logical properties and reported deviations in small samples’ degree
distribution exponents with increasing the exponent. Lee et al. [9]
studied RN, RE, and SB under degree, BC, APL, assortativity, and
CC and found very different quantities of these properties for these

136

An Extensive Characterization of Graph Sampling Algorithms ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

algorithms. Zhang et al. [29] studied fourteen samplers of all cate-
gories using random and real graphs under numerical quality met-
rics (degree, BC, and hop-plots distributions), visualization, and ex-
ecution time and discovered that the algorithm’s performance de-
pends on graph type, size, andmeasured property. Yousuf et al. [27]
evaluated five traversal-based algorithms for twelve large real and
three synthetic graphs, i.e., forest fire model (FFM), Watts-Strogatz
(WS) and mixed model under degree, CC, and path length distribu-
tions, global CC (GCC), assortativity and modularity and analyzed
their performance for various graph types and properties, and con-
cluded that algorithms aggressively exploring the sample node’s
neighborhood better preserve structural properties and the selec-
tion of high-degree nodes is beneficial.

Limitations.Despite several studies, none characterize these sam-
pling algorithms thoroughly under diverse graph properties. We
try to fill this gap by analyzing correlations between quality met-
rics and graphs’ size and topological features on six synthetic data
types and twelve real graphs.

4 SAMPLING EVALUATION METRICS
We analyze the performance of a sampling algorithm under quality
metrics, assessing the similarity of the sample to the original graph
under a desired property to preserve.

4.1 Graph Properties
We considered three popular structural graph properties as sam-
pling quality metrics.

(1) Degree distribution captures the overall degree structure in the
graph in terms of the number of edges connected to each node.

(2) CC distribution evaluates the clustering property around every
node formulated as the number of closed triangles divided by
the possible (closed or open) number of triangles.

(3) Hop-plot distribution evaluates the closeness of interconnected
nodes (similar to the shortest path) [12, 15] by counting the
number of pairs separated by a maximum number of hops.

4.2 Distributions Divergence
Among the different distribution divergence metrics in the litera-
ture, we consider the Kolmogorov-Smirnov D-statistic metric used
in previous studies [12, 29] for analyzing samplings:

𝐾𝑆 = |max (𝐹𝐺 (𝑥) − 𝐹𝐺𝑠 (𝑥)) | ,

where 𝐺 and 𝐺𝑠 are original and sample graphs and 𝐹𝐺 (.) is the
cumulative distribution function of graph 𝐺 . We normalize the
distributions to be independent of graph size and capture struc-
tural properties, similar to [12]. We analyze sampling algorithms
using three quality metrics based on this definition: degree (D3),
CC (C2D2), and hop-plots (HPD2) distribution divergences.

5 EXPERIMENTAL DESIGN
We describe the extracted graph features, datasets, and experimen-
tal settings in our experiments.

Type |E| |G| 𝐷𝑒𝑔 𝐷 𝐶𝐶 𝐸𝐵𝐶 |𝑁 |
|𝐸 | 𝐻 (𝐷𝑒𝑔) 𝐻 (𝐶𝐶) 𝐸𝐼𝐶 𝐷𝑖𝑎

AB 196 ∼ 640, 000 460 115 0.13 0.19 2868 0.2 3.60 1.58 0.04 4.70
ER 1 ∼ 800, 479 560 111 0.12 0.12 2298 1.67 2.71 0.65 0.04 5.86
WS 200 ∼ 800, 000 460 135 0.15 0.23 6322 0.20 2.60 1.51 0.04 13.02
PLC 196 ∼ 5991 480 5 0.02 0.32 3552 0.42 1.84 2.32 0.03 6.75
FFM 104 ∼ 1, 801, 233 464 164 0.22 0.45 6013 0.51 2.77 1.99 0.03 14.28
SBM 316 ∼ 404, 879 475 117 0.13 0.29 1726 0.06 3.96 2.43 0.04 3.46

Table 1: Characteristics of synthetic graphs. (|G|: number of graphs).

Dataset |N| |E| 𝐶𝐶 H(deg) H(CC) 𝐶𝐶𝑣𝑎𝑟 𝐸𝐼𝐶𝑚𝑎𝑥 𝐷𝑖𝑎
Bio 924 3239 0.88 2.62 2.62 0.122 0.32 10
Email 1005 16,064 0.54 4.32 3.4 0.063 0.17 7
Pow-1138 bus 1138 1458 0.09 1.68 1.09 0.056 0.41 31
Euroroad 1174 1417 0.02 1.39 0.42 0.007 0.22 62
Soc-Wiki vote 889 2914 0.15 2.7 2.41 0.050 0.29 13
Tech-ISP 2113 6632 0.25 2.55 2.32 0.113 0.20 12
Tech-Topology 34,761 107,720 0.29 1.87 1.64 0.167 0.33 10
Tech-Gnutella 62,586 147,892 0.005 2.08 0.18 0.003 0.04 11
Tech-Caida 190,914 607,610 0.16 2.58 2.06 0.072 0.07 26
Cit-Cora 23,166 89,157 0.27 2.92 2.91 0.082 0.14 20
Cit-HepTh 27,769 352,285 0.31 4.14 3.40 0.049 0.26 15
Cit-HepPh 34,546 420,877 0.28 4.14 3.40 0.043 0.11 14

Table 2: Characteristics of real-world graphs.

5.1 Graph features
We considered several graph size and topology features, their sta-
tistics (minimum, maximum, median, mean, variance), and the fea-
tures’ calculation time. These features consist of node and edge
numbers (|𝑁 | and |𝐸 |), degree (𝑑𝑒𝑔), 𝐶𝐶 , and 𝐺𝐶𝐶 , degree and CC
entropy (𝐻 (.)), degree assortativity, density (𝐷), node and edge
BC (𝑁𝐵𝐶 and 𝐸𝐵𝐶), number and sizes of connected components
(𝐶𝑜𝑛𝐶𝑆), eccentricity (𝐸𝐶𝐶), eigenvector (𝐸𝐼𝐶), PageRank and far-
ness (𝐹𝐶) centralities, maximum spanning tree degrees (𝐷𝑀𝑆𝑇),
diameter (𝑑𝑖𝑎) and shortest path length (𝑆𝑃𝐿).

5.2 Datasets
Synthetic graphs. We generated around 2900 graphs of six types,

i.e., AB, WS, ER, power-low-cluster (PLC), stochastic block model
(SBM), and FFM with |𝑁 | of 100 ∼ 2000, summarized in Table 1.
These graph types have different properties, i.e., scale-free (AB
and PLC), clustering (WS and PLC), community structure (SBM),
evolving pattern (FF), and theoretical implications (ER). For fur-
ther analysis, we extracted 77 graph features (size and topology)
and reported average values of the most relevant ones in Table 1.

Real graphs. We considered twelve publicly available1 [11, 19]
real graphs of various sizes of around 1000 to 190.000 nodes and cat-
egories, including power, biological, email, infrastructure, social,
citation, and technology (Internet service provider (ISP)) graphs.
Table 2 represents their characteristics and relevant features.

5.3 Experimental setup
We conducted two sets of sampling experiments in our analysis:
(1) Small synthetic graphs finding correlations between sampling

algorithms’ performance and graphs’ features;
(2) Small and large real-world graphs investigating algorithms’ be-

havior according to the correlation results.
1http://konect.cc/networks/

137

https://networkrepository.com/econ-beaflw.php
https://snap.stanford.edu/data/email-Eu-core.html
https://networkrepository.com/power-1138-bus.php
https://networkrepository.com/road-euroroad.php
https://networkrepository.com/soc-wiki-Vote.php
https://networkrepository.com/tech-routers-rf.php

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom S. Haleh S. Dizaji, Jože M. Rožanec, Reza Farahani, Dumitru Roman, & Radu Prodan

We considered sampling rates of 0.1 and 0.3, representing the
approximate percentage of graph nodes sampled from the graph.
We conducted each sampling experiment for five iterations and
reported the average results over different sampling rates, graph
types, and sampling iterations. We used the Pearson correlation co-
efficient 𝜌 [16] for quantifying the relationship between the graph
quality metrics introduced in Section 4.1 and graph features.

6 EVALUATION RESULTS
We provide analysis and evaluations on synthetic and real graphs.

6.1 Synthetic graphs
We summarize the results for the three quality metrics for four
graph types and analyze their dependency on graph properties.

6.1.1 Degree distribution divergence. Figure 1(a) compares only four
graph types (AB, ER, WS, and SBM) with similar average densities
(see Table 1), illustrating the relatively better performance of most
algorithms on AB graphs. XS and FF are the best algorithms.

Correlation analysis. Figure 2(a) represents the highly correlated
sampling algorithms and graph features (i.e., |𝜌 | > 0.5), including
only some statistics of features. The highest correlated features re-
gardless of algorithms are EICmax, H (deg), CCvar and EBCmed . We
also observed a higher correlation of path-related features (FC, SPL,
dia and ECC) with traversal-based algorithms, representing bet-
ter traversing and degree distribution preservation in graphs with
higher path lengths. This feature also impacts RE. 𝐸𝐵𝐶 ,𝐶𝐶𝑣𝑎𝑟 also
are more relevant to traversal algorithms, with 𝐸𝐼𝐶 and 𝐻 (𝑑𝑒𝑔)
being relevant to most traversal algorithms (indicating their poor
degree preservation on graphs with highly randomized degrees,
such as SBM graphs (Figure 1(a))). Density is more relevant to FF
and RJ. There is also a high relevance of 𝐷𝑀𝑆𝑇 to RNE.

6.1.2 Clustering coefficient distribution divergence. Figure 1(b) rep-
resents a better sampling quality in C2D2 than in D3 metric, with
better results for WS graphs. These results indicate the better CC
preservation of RN and RD for most cases.

Correlation analysis. Figure 2(b) represents the highly correlated
graph features with sampling algorithms’ C2D2 results. H (deg),
|N |, ConCSmax and NBC are the most relevant feature for most al-
gorithms. |N |, ConCSmax , and PRC are more correlated with node-
based algorithms i.e., RN and RNE. H (deg) and DMST are most
relevant to RD, MHRW, and FS traversal algorithms that are bi-
ased over higher degree nodes. NBC is important for edge-based
algorithms (RE, IRE, and RNE) and RDN.

6.1.3 Hop-plot distribution divergence. Figure 1(c) reveals FF as
the best algorithm for almost all four graph types. RJ and MHRW
have a low HPD2 for some graph types.

Correlation analysis. Figure 2(c) reveals some interesting high
HPD2 correlations with path-related features and EBC. Decreasing
path-related features results in lower HPD2 for most algorithms,
rising from lost connectivity by sampling (except for SB and FS al-
gorithms).We observed the same pattern for EBC andNBC.Whereas
𝐷 , CC, H (deg), 𝐷𝑀𝑆𝑇 , 𝑑𝑒𝑔 and |𝐸 |/|𝑁 | are negatively correlated
with most algorithms, however, they reverse impact FS and SB.

This indicates better distance preservation by decreasing distances
in dense or highly clustered graphs.

6.2 Real-world graphs
6.2.1 Degree distribution divergence.

Small graphs. Tables 9 and 3 represent that RJ and FF are the
best algorithms. Most traversal-based algorithms have D3 under
0.2 (with below 0.1 for FF) for Road and Bus datasets having high
path lengths, high EICmax and EBCmed , low H (deg) and density
relevant to most algorithms (Figure 2). RJ has a low D3 for the Bio
graph with a high CCvar and rather high EICmax relevant to RJ.
Almost all algorithms have high D3 for the Email dataset, having a
low EICmax and EBCmed , and highH (deg) relevant to all samplings.

FF XS RJ FS MHRW RN RNE RE IRE RDN SB RD
Email 0.21 0.44 0.23 0.74 0.32 0.67 0.84 0.52 0.23 0.26 0.65 0.25
Bio 0.18 0.25 0.12 0.38 0.25 0.74 0.83 0.43 0.15 0.20 0.61 0.18
Bus 0.05 0.09 0.13 0.12 0.13 0.65 0.64 0.46 0.33 0.52 0.26 0.55
Road 0.06 0.18 0.19 0.13 0.20 0.78 0.80 0.64 0.54 0.72 0.41 0.68
Wiki 0.15 0.31 0.16 0.37 0.22 0.61 0.71 0.39 0.18 0.17 0.39 0.25
ISP 0.24 0.37 0.17 0.22 0.22 0.55 0.60 0.32 0.18 0.20 0.26 0.26

Table 3: Average D3 for small real-world graphs

Large graphs. Large graphs revealed similar and different pat-
terns. Overall, RJ, IRE and RD perform better than other samplers
for large graphs (tables 4 and 9), where RJ is consistent with small-
scale results. FS has a very low D3 for Topology network with high
EICmax and CCvar . FF has a D3 of 0.1 for the HepPh dataset (and
0.12 for Cora) with a lower EICmin (opposite for Topology) and
high D3 for Gnutella, with low EICmax and CCvar , consistent with
our findings. Therefore, FF is a better choice for citation than tech-
nology graphs. RJ and IRE produce good-quality samples for Cora,
Caida and HepTh. Cora and HepTh have a very low EICmin (also
Caida) relevant to these algorithms. In addition, Cora and Caida
have higher diameters, correlated with them. RDN better estimates
the degree property of HepTh with a rather high EICmax.

6.2.2 Clustering coefficient distribution divergence.

Small graphs. According to Table 5, RN and RNE have the best
results (RN is consistent with synthetic data). Most algorithms can
better capture the CC property of Bus, Wiki and ISP networks.
It is interpretable for ISP network with more nodes and higher
ConCSmax relevant to C2D2 of most samplers.

Large graphs. Table 6 illustrates the best results for RN and RNE
(as in small-scale). RN has a perfect CC preservation with a max-
imum C2D2 of 0.01. For Gnutella, most algorithms very well pre-
serve the CC property, having low H (CC) and rather high |𝑁 | rel-
evant to C2D2. Additionally, this table represents poor CC preser-
vation of most algorithms on Caida and Topology datasets.

6.2.3 Hop-plot distribution divergence.

Small graphs. Table 7 represents the poor sample quality by al-
most all algorithms regarding HPD2 on small real graphs, except
for SB in Wiki. On average (Table 9), XS, RJ and FF has relatively
better results (FF performs well on synthetic (syn) graphs). We also

138

An Extensive Characterization of Graph Sampling Algorithms ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

AB ER W
S

SB
M

0.0

0.2

0.4

0.6

0.8

1.0

D
3

FF
FS
IRE
MHRW
RD
RDN
RE
RJ
RN
RNE
SB
XS

(a) D3.

AB ER W
S

SB
M

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C2
D2

(b) C2D2.

AB ER W
S

SB
M

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
PD

2

(c) HPD2.
Figure 1: Average synthetic graph quality metric results.

(a) D3. (b) C2D2. (c) HPD2.
Figure 2: Correlation matrix with graph features.

FF FS IRE MHRW RD RDN RE RJ RN RNE SB XS
Gnutella 0.28 0.24 0.27 0.29 0.35 0.24 0.36 0.24 0.56 0.44 0.26 0.33
HepPh 0.10 0.77 0.14 0.62 0.17 0.14 0.88 0.16 0.56 0.92 0.63 0.25
HepTh 0.17 0.71 0.12 0.55 0.08 0.11 0.83 0.12 0.51 0.89 0.57 0.29
Cora 0.12 0.43 0.11 0.39 0.10 0.17 0.69 0.10 0.57 0.79 0.41 0.14
Caida 0.24 0.17 0.10 0.20 0.14 0.18 0.55 0.09 0.55 0.71 0.24 0.20
Topology 0.27 0.04 0.25 0.34 0.18 0.28 0.44 0.19 0.65 0.59 0.31 0.29

Table 4: Average D3 for large real-world graphs.

FF XS RJ FS MHRW RN RNE RE IRE RDN SB RD
Email 0.3 0.45 0.26 0.27 0.23 0.11 0.16 0.29 0.28 0.29 0.23 0.34
Bio 0.27 0.36 0.23 0.26 0.31 0.10 0.13 0.21 0.19 0.24 0.24 0.34
Bus 0.29 0.13 0.10 0.16 0.45 0.07 0.08 0.08 0.07 0.07 0.26 0.24
Road 0.15 0.29 0.12 0.15 0.38 0.06 0.07 0.12 0.12 0.11 0.26 0.27
Wiki 0.33 0.08 0.15 0.15 0.28 0.08 0.09 0.09 0.09 0.10 0.12 0.19
ISP 0.04 0.04 0.05 0.04 0.12 0.04 0.05 0.04 0.04 0.05 0.41 0.29

Table 5: Average C2D2 results for small real-world graphs

FF FS IRE MHRW RD RDN RE RJ RN RNE SB XS
Gnutella 0.04 0.05 0.05 0.19 0.14 0.05 0.05 0.04 0.01 0.02 0.1 0.07
HepPh 0.16 0.21 0.21 0.18 0.39 0.22 0.21 0.17 0.01 0.09 0.31 0.43
HepTh 0.17 0.18 0.17 0.13 0.32 0.18 0.17 0.13 0.01 0.06 0.33 0.33
Cora 0.18 0.21 0.21 0.28 0.42 0.22 0.21 0.17 0.01 0.09 0.27 0.37
Caida 0.30 0.28 0.24 0.33 0.47 0.26 0.24 0.18 0.00 0.06 0.38 0.33
Topology 0.21 0.21 0.23 0.40 0.43 0.3 0.23 0.18 0.01 0.12 0.34 0.34

Table 6: Average C2D2 results for large real-world graphs

observed that high path lengths in Road and Bus graphs result in
poor HPD2 results for most algorithms.

FF XS RJ FS MHRW RN RNE RE IRE RDN SB RD
Email 0.37 0.55 0.27 0.80 0.15 0.49 0.79 0.49 0.31 0.31 0.53 0.18
Bio 0.31 0.18 0.20 0.46 0.31 0.56 0.87 0.43 0.19 0.26 0.12 0.29
Bus 0.35 0.15 0.56 0.42 0.75 0.96 0.99 0.85 0.71 0.89 0.89 0.92
Road 0.43 0.21 0.63 0.44 0.66 0.97 0.99 0.89 0.80 0.94 0.90 0.94
Wiki 0.30 0.35 0.19 0.42 0.17 0.62 0.91 0.39 0.20 0.27 0.07 0.39
ISP 0.36 0.46 0.23 0.52 0.27 0.63 0.95 0.54 0.29 0.37 0.14 0.48

Table 7: Average HPD2 results for small real-world graphs

FF FS IRE MHRW RD RDN RE RJ RN RNE SB XS
HepPh 0.24 0.93 0.10 0.63 0.16 0.10 0.91 0.09 0.53 0.97 0.55 0.28
HepTh 0.29 0.82 0.29 0.52 0.43 0.34 0.83 0.11 0.33 0.94 0.32 0.41
Cora 0.25 0.78 0.11 0.62 0.19 0.11 0.86 0.14 0.47 0.98 0.15 0.11
Topology 0.17 0.33 0.25 0.68 0.28 0.38 0.56 0.20 0.21 0.94 0.33 0.23

Table 8: Average HPD2 results for large real-world graphs.

Large graphs. Table 8 represents HPD2 results for four large real
graphs. This table and Table 9 indicate that on average RJ and IRE
can better preserve distances (RJ was also good in small graphs).
RJ, RDN, and IRE result in low HPD2 for the HepPh with a high
𝐻 (𝑑𝑒𝑔) and low 𝐸𝐵𝐶 relevant to these algorithms. We observe that
most algorithms have lower HPD2 for large graphs. These graphs
have lower diameters (Table 2) or path-related features, which is
important formost algorithms (Figure 2(c)).Therefore,H (deg), EBC
and path-related features appear to be important for the HPD2.

Overall results. The average results of three metrics in Table 9
indicate sampling algorithms’ quality regarding scale and type of
graphs (for HPD2 metric we only consider four large real graph

139

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom S. Haleh S. Dizaji, Jože M. Rožanec, Reza Farahani, Dumitru Roman, & Radu Prodan

D3 C2D2 HPD2
Syn Real Syn Real Syn Real

Small Large Small Large Small Large
FF 0.61 0.15 0.20 0.18 0.23 0.18 0.20 0.35 0.24
FS 0.77 0.33 0.39 0.15 0.17 0.19 0.69 0.51 0.71
IRE 0.71 0.27 0.16 0.15 0.13 0.18 0.28 0.42 0.19
MHRW 0.66 0.22 0.40 0.17 0.30 0.25 0.31 0.38 0.61
RD 0.65 0.38 0.17 0.20 0.42 0.36 0.44 0.56 0.27
RDN 0.79 0.34 0.19 0.16 0.14 0.21 0.34 0.51 0.23
RE 0.89 0.65 0.63 0.15 0.14 0.18 0.66 0.78 0.79
RJ 0.65 0.17 0.15 0.15 0.15 0.15 0.25 0.35 0.13
RN 0.87 0.59 0.57 0.09 0.06 0.01 0.43 0.49 0.38
RNE 0.90 0.74 0.72 0.12 0.10 0.07 0.78 0.92 0.96
SB 0.79 0.43 0.40 0.23 0.25 0.29 0.60 0.44 0.34
XS 0.60 0.27 0.25 0.36 0.23 0.31 0.30 0.32 0.26

Table 9: Average results for different graph categories

results). The algorithms can better preserve degree distribution for
real graphs and many algorithms have better sampling quality for
large real graphs. However, regarding CC most algorithms have
better sampling quality for synthetic graphs and RN and RNE per-
form better on large real graphs. Regarding HPD2most algorithms
have better results on large real graphs, due to the lower diameters.

7 CONCLUSION AND FUTUREWORK
We investigated the quality of samples by twelve sampling algo-
rithms of node, edge, and traversal-based categories underD3, C2D2,
andHPD2metrics.We evaluated themusing several synthetic graphs
of six types and twelve small and large real graphs. Our experi-
ments show different characteristics of algorithms. XS and RJ bet-
ter capture the degree distribution of synthetic and real graphs re-
spectively. RN results in better samples regarding CC for all graph
types. RJ produces better samples regarding hop-plots. Correla-
tion analysis and verification on large real graphs represented the
impact of EIC (usually high in citation or social networks), path-
related features and CCvar on D3 results of most algorithms.While,
|𝑁 | and ConCS are relevant to C2D2.H (deg), EBC and path-related
features aremost correlated with HPD2 results.We also discovered
inconsistent patterns in large graphs compared with small graphs.
As a particular result, the correlation analysis revealed no signifi-
cant dependency on the sampling rate. Overall, we observed better
sample quality of most algorithms on large real graphs under D3
and HPD2 metrics, which is promising for large-scale scenarios.

This work is beneficial to selecting an appropriate sampling al-
gorithm regarding the desired topological property of samples hav-
ing graph features. It can guide researchers in developing sampling
quality predictors by selecting the most relevant features. It can
also have implications for understanding algorithms and provide
better estimations for original graph properties by considering the
most correlated features.

Wewill conductmore experiments in the future, including larger
synthetic and real graphs, other sampling qualitymetrics, andmore
sampling algorithms. Furthermore, we will analyze the results us-
ing other methods, such as mutual information.

ACKNOWLEDGMENTS
Graph-Massivizer receives funding from the Horizon Europe re-
search and innovation program of the European Union. Its grant
management number is 101093202:https://graph-massivizer.eu/.

REFERENCES
[1] Sami Abu-El-Haija et al. 2023. SubMix: learning to mix graph sampling heuris-

tics. In Uncertainty in Artificial Intelligence. PMLR.
[2] Nesreen K Ahmed et al. 2013. Network sampling: From static to streaming

graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 8 (2013),
1–56.

[3] Simon Geisler et al. 2021. Robustness of graph neural networks at scale. Ad-
vances in Neural Information Processing Systems 34 (2021), 7637–7649.

[4] Minas Gjoka et al. 2010. Walking in facebook: A case study of unbiased sampling
of osns. In 2010 Proceedings IEEE Infocom. Ieee, 1–9.

[5] Leo A Goodman. 1961. Snowball sampling. The annals of mathematical statistics
(1961), 148–170.

[6] Pili Hu andWing Cheong Lau. 2013. A survey and taxonomy of graph sampling.
arXiv preprint arXiv:1308.5865 (2013).

[7] Johannes Illenberger andGunnar Flötteröd. 2012. Estimating network properties
from snowball sampled data. Social Networks 34, 4 (2012), 701–711.

[8] Kshitijaa Jaglan et al. 2023. Tight Sampling in Unbounded Networks. arXiv
preprint arXiv:2310.02859 (2023).

[9] Sang Hoon Lee et al. 2006. Statistical properties of sampled networks. Physical
review E 73, 1 (2006), 016102.

[10] Jure Leskovec et al. 2005. Graphs over time: densification laws, shrinking di-
ameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining. 177–187.

[11] Jure Leskovec et al. 2007. Graph evolution: Densification and shrinking diam-
eters. ACM transactions on Knowledge Discovery from Data (TKDD) 1, 1 (2007),
2–es.

[12] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. 631–636.

[13] Arun S Maiya and Tanya Y Berger-Wolf. 2010. Sampling community structure.
In Proceedings of the 19th international conference on World wide web. 701–710.

[14] Anna Myakushina. [n. d.]. Exploring Sampling Techniques in Large Graphs and
Networks. ([n. d.]).

[15] Christopher R Palmer et al. 2002. ANF: A fast and scalable tool for data min-
ing in massive graphs. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. 81–90.

[16] Karl Pearson. 1896. VII. Mathematical contributions to the theory of evolution.—
III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal
Society of London. Series A, containing papers of a mathematical or physical char-
acter 187 (1896), 253–318.

[17] Bruno Ribeiro and Don Towsley. 2010. Estimating and sampling graphs with
multidimensional randomwalks. In Proceedings of the 10th ACM SIGCOMM Con-
ference on Internet Measurement (IMC ’10). Association for Computing Machin-
ery, 390–403. https://doi.org/10.1145/1879141.1879192

[18] Bruno Ribeiro and Don Towsley. 2012. On the estimation accuracy of degree
distributions from graph sampling. In 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC). IEEE, 5240–5247.

[19] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-
tory with Interactive Graph Analytics and Visualization. In AAAI. https:
//networkrepository.com

[20] Benedek Rozemberczki et al. 2020. Karate Club: an API oriented open-source
python framework for unsupervised learning on graphs. In Proceedings of the
29th ACM international conference on information & knowledge management.
3125–3132.

[21] Daniel A Spielman and Shang-Hua Teng. 2004. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In Proceed-
ings of the thirty-sixth annual ACM symposium on Theory of computing. 81–90.

[22] Michael PH Stumpf et al. 2005. Subnets of scale-free networks are not scale-
free: sampling properties of networks. Proceedings of the National Academy of
Sciences 102, 12 (2005), 4221–4224.

[23] E Upfal and M Mitzenmacher. 2005. Probability and computing.
[24] Elli Voudigari et al. 2016. Rank degree: An efficient algorithm for graph sam-

pling. In 2016 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM). IEEE, 120–129.

[25] Yanhong Wu et al. 2016. Evaluation of graph sampling: A visualization perspec-
tive. IEEE transactions on visualization and computer graphics (2016).

[26] Sooyeon Yoon et al. 2007. Statistical properties of sampled networks by random
walks. Physical Review E 75, 4 (2007), 046114.

[27] Muhammad Irfan Yousuf et al. 2023. Empirical characterization of graph sam-
pling algorithms. Social Network Analysis and Mining 13, 1 (2023), 66.

[28] Muhammad Irfan Yousuf and Suhyun Kim. 2018. List sampling for large graphs.
Intelligent Data Analysis 22, 2 (2018), 261–295.

[29] Fangyan Zhang et al. 2015. A visual and statistical benchmark for graph sam-
pling methods. In Exploring Graphs at Scale Workshop, Vol. 3.

140

https://graph-massivizer.eu/
https://doi.org/10.1145/1879141.1879192
https://networkrepository.com
https://networkrepository.com

Building Massive Knowledge Graphs using an Automated ETL
Pipeline

Aaron Eberhart
metaphacts GmbH

Germany
ae@metaphacts.com

Peter Haase
metaphacts GmbH

Germany
ph@metaphacts.com

Wolfgang Schell
metaphacts GmbH

Germany
ws@metaphacts.com

ABSTRACT
Knowledge graphs are extremely versatile semantic tools, but there
are current bottlenecks with expanding them to a massive scale.
This concern is a focus of the Graph-Massivizer project, where
solutions for scalable massive graph processing are investigated. In
this paper we’ll describe how to build a massive knowledge graph
from existing information or external sources in a repeatable and
scalable manner. We go through the process step-by-step, and dis-
cuss how the Graph-Massivizer project supports the development
of large knowledge graphs and the considerations necessary for
replication.

CCS CONCEPTS
• Information systems→ Data exchange;Mediators and data
integration.

KEYWORDS
Graph-Massivizer; metaphactory; ETL; RDF
ACM Reference Format:
Aaron Eberhart, Peter Haase, and Wolfgang Schell. 2024. Building Massive
Knowledge Graphs using an Automated ETL Pipeline. In Companion of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
Companion ’24), May 7–11, 2024, London, United Kingdom. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3629527.3652900

1 INTRODUCTION
A knowledge graph is a flexible semantic tool that can serve as
the foundation for a wide variety of information representation
purposes and use cases, such as fast-tracking drug discovery and
reducing research costs, smart manufacturing solutions to support
human manufacturing planners, and global fraud detection and
risk management. It also unlocks AI initiatives by enriching exist-
ing black-box solutions with machine-interpretable semantics and
adding a layer of trust and transparency. While knowledge graphs
are extremely versatile, there are current bottlenecks with expand-
ing them to a massive scale. This concern is a focus of the Graph-
Massivizer [3] project, where solutions for scalable massive graph
processing are investigated. In this paper we’ll describe how to build

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3652900

a massive knowledge graph from existing information or external
sources in a repeatable and scalable manner. We go through the
process step-by-step, and discuss how the Graph-Massivizer project
supports the development of multiple large knowledge graphs and
the considerations necessary for replication.

1.1 Knowledge Graphs
Knowledge graphs are large networks of entities representing real-
world objects, like people and organizations, and abstract concepts,
like professions and topics, and their semantic relations and at-
tributes. Knowledge graphs help organizations centralize, organize
and understand internal data, often stored away in disparate sources.
Depending on the volume of data a knowledge graph varies in size,
ranging from a simple knowledge graph of a few to one with an
extensive repository with millions of entities and interlinked rela-
tions.

There aremultiple approaches to creating a knowledge graph this
large in size, including using an ETL (extract-transform-load) or ELT
(extract-load-transform) pipeline, which we’ll explore in this paper.
The ETL pipeline was developed as part of Graph-Massivizer, an EU-
funded research project dedicated to researching and developing a
scalable, sustainable and high-performing platform based on the
massive graph representation of extreme data.

1.2 The Graph-Massivizer Project
The Graph-Massivizer project is developing a suite of five open-
source software tools encompassing the sustainable life cycle of
processing extreme data as massive graphs. These massive graphs
support use cases such as green AI for a sustainable automotive in-
dustry, a data center digital twin for sustainable exascale computing
and more.

The tools focus on holistic usability (from extreme data inges-
tion and massive graph creation), automated intelligence (through
analytics and reasoning), performance modeling, and environmen-
tal sustainability tradeoffs, supported by credible data-driven evi-
dence across the computing continuum. For example, the Graph-
Massivizer’s Graph-Inceptor tool is designed for creating knowl-
edge graphs and storing graph data, offering two primary services:

(1) An extract, transform and load (ETL) pipeline requiring de-
ployment to an IT cloud infrastructure consisting of servers,
storage systems and databases

(2) A graph processing framework delivered as a Java library
and made available in HPC clusters

Furthermore, the project consortium aims to create an integrated
platform that is user-friendly and easy to deploy in enterprise envi-
ronments The platform will tightly integrate the tools developed
by Graph-Massivizer to provide a comprehensive offering.

141

https://doi.org/10.1145/3629527.3652900
https://doi.org/10.1145/3629527.3652900

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Aaron Eberhart, Peter Haase, & Wolfgang Schell

2 KNOWLEDGE GRAPH CREATION PROCESS
Once a user has decided on their approach, they can start creating
their knowledge graph, which involves many different tasks and
phases. We’ll explore in-depth some of the aspects to consider for
the knowledge graph creation process.

2.1 FAIR Data Principles
A knowledge graph is only one system within an enterprise en-
vironment consisting of interconnected systems and data sources.
One key aspect in this world of interconnected systems and data is
following the FAIR [5] data principles, which ensures the reusabil-
ity and interoperability of a knowledge graph, allowing users to
enrich and extend their knowledge graph for various use cases and
applications.

A knowledge graph supports the FAIR principles with the use
of unique and persistent identifiers for entities, providing linked
metadata describing the origin and modalities for accessing and us-
ing datasets, the use of semantic data models, and building on open
standards for storing, accessing, and querying data. The following
sections provide more information on how this works in detail.

2.2 Graph data model
Graphs are represented using the Resource Description Framework
(RDF) [6], a semantic web standard for data interchange on the
web. By using RDF, a graph can be expressed as a set of statements
(or triples), each of which describes a single fact It allows for easy
merging, linking and sharing of structured and semi-structured
data across various systems and applications.

In this paper we only consider RDF-based graphs. There are other
graph models, e.g.Labeled Property Graphs (LPG). Using RDF-star1,
any graph can be expressed, so RDF-star can also be used as a bridge
to and from Labeled Property Graphs. RDF-star is an extension of
RDF and also supports expressing statements on statements, which
allows one to model edges with attributes.

2.3 Iterative approach
When creating a knowledge graph from scratch, it is useful to apply
an iterative approach, involving:

(1) identifying source datasets and making them accessible
(2) defining a semantic data model using ontologies and vocab-

ularies
(3) defining RDF mappings to convert from structured source

data to RDF
(4) pre-processing source data (per file), e.g., to clean up data
(5) performing RDF conversion using the provided mappings
(6) post-processing intermediate results (per file), e.g., to create

additional relations or aggregate data
(7) loading RDF data into the knowledge graph to persist the

data in a graph database
(8) post-process intermediate results (whole graph), e.g., to cre-

ate additional relations or aggregate data
(9) performing data validation to ensure the graph conforms to

the defined data model.

1https://www.w3.org/groups/wg/rdf-star/publications/

Figure 1: Iterative KG Creation Approach

When violations are observed during data validation, the results
can be used as a starting point to improve the pipeline. For example,
source data can be fixed by performing data cleansing, adjusting
the ontology or RDF mappings, or performing another iteration of
the data integration process or ETL pipeline.

2.4 Providing dataset metadata
Data catalogs are a core building block for any FAIR data implemen-
tation, as they connect the available data assets with the knowledge
graph. They support both interoperability as well as accessibility,
as defined in the FAIR data principles.

In this approach, the data catalog is represented as a knowledge
graph itself. It is semantically described with descriptive metadata
and access metadata and is interlinked with other parts of the
knowledge graph—such as ontologies and vocabularies—and it is
embedded into and connected with data assets. Dataset descriptions
(or data catalogs) are based on open and extensible W3C standards
(e.g., DCAT) to make the data discoverable, accessible and trace-
able. With dataset descriptions, humans and machines (i.e., AI/ML
algorithms) can consume data in context since the data is directly
linked to the models and dataset descriptions, which themselves
are based on open standards, are shareable and can even be queried
all at once through a single, semantic query language.

2.5 Semantic Data Model
The next step in creating the knowledge graph is defining the
data model. A knowledge graph typically follows one or multiple
well-defined schemas which are specified using ontologies and
vocabularies.

2.5.1 Ontologies. Ontologies are semantic data models that define
the types of entities that exist in a domain and the properties that
can be used to describe them. An ontology combines a representa-
tion, formal naming and definition of the elements (such as classes,
attributes and relations) that define the domain of discourse. One
may think of it as the logical graph model that defines what types
(sets) of entities exist, their shared attributes and logical relations.

142

https://www.w3.org/groups/wg/rdf-star/publications/

Building Massive Knowledge Graphs using an Automated ETL Pipeline ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

Ontologies can be specified using open standards like Web Ontol-
ogy Language (OWL) [1] and Shapes Constraint Language (SHACL)
[2].

2.5.2 Vocabularies. Vocabularies are controlled term collections or-
ganized in concept schemes that support knowledge graph experts,
domain experts and business users in capturing business-relevant
terminology. A term could include preferred and alternative labels
(synonyms) in multiple languages and carries natural language
definitions. Terms can be related to each other or defined as loosely
related. The most common examples of different types of vocabular-
ies are thesauri, taxonomies, terminologies, glossaries, classification
schemes and subject headings, which can be managed using SKOS
as an open standard.

2.6 RDF Mappings
The mapping process enables simple conversion, from a huge
amount of source data to RDF, in an automated fashion. Converting
structure data to RDF can be done by mapping certain elements and
attributes from the source files to RDF data using a set of mapping
rules.

As an example, all values of a column in a CSV file or a table in
a relational database are mapped to RDF statements with the row’s
unique key being mapped to a subject IRI, the column to a predicate
and the row value to the object position of a triple. Mapping rules
can be provided either in a declarative way or programmatically.

2.6.1 Declarative mappings. Declarative mappings follow the no-
code approach, meaning they can be defined using a simple text
editor or visual tools, without requiring special programming skills.

The mappings are defined using the standardized Relational
Mapping Language (RML). RML itself is also based on RDF, so both
data model (ontology), mappings (RML maps) and instance data
all use the same format. RML supports both tabular/relational and
hierarchical data structures in formats like CSV, JSON or XML.
Support for other formats can be provided as well.

RML defines just the mapping language. A wide range of imple-
mentations in the form of mapping engines (most of them open-
source) are available. They can be used either as stand-alone tools
or embedded into custom applications as a library.

2.6.2 Programmatic mappings. Implementing the mapping process
using a custom program is the most flexible way to convert data
to RDF. All means provided by the programming language and
its ecosystem— such as frameworks and libraries—can be used
(e.g., accessing data in various formats). Also, language-specific
connectors, such as JDBC to access relational databases in the Java
programming language, or web service connectors provide great
flexibility. The biggest advantage is full control over the mapping
process, as any kind of algorithm, data generation, use of caches
and memory, navigating data structure or control flow is possible.

2.6.3 Choosing between declarative or programmatic approach. Us-
ing declarative mappings based on RML is the quickest and easiest
way to implement mappings from structured data to RDF, as it
follows a pre-defined approach that covers many use cases and
formats and does not require special programming skills.

Only when declarative mappings do not suffice for the mapping
at hand, should mappings be implemented as a custom program.
While programmatic mappings allow for greater flexibility, this
approach also requires more effort and programmatic skills, which
are not necessarily available to people implementing a data pipeline.

In some cases where declarative mappings support most data
structures to be mapped to RDF and only a few more complicated
cases cannot be covered, a hybrid approach may be suitable. In that
case, most mappings would be implemented declaratively in RDF
and only a few special cases be handled by custom coding.

2.7 Performing pre- and post-processing
Besides converting source data as-is to RDF, sometimes additional
steps are required to conform to the graph data model. This may be
performed as pre- or post-processing steps, either on the original
source before the RDF conversion or after.

Pre-processing steps typically work on the unit of a single source
file. Typical examples are data cleansing, filtering of invalid data,
splitting out units from numerical values, and datatype conversions
to conform with certain numeric or date-time formats.

Post-processing steps may either be performed on the interme-
diate RDF files or the whole graph. Typical examples are tasks such
as: specify the named graph for a set of statements, update graph
metadata, such as the timestamp of last update of a dataset based
on source data, and others.

2.8 Data Ingestion
The result of the previous steps is composed of a set of files in RDF
format. This set of files may already be used to distribute the data
in RDF format, e.g. as a data product.

As a next step, ingesting this file-based dataset into a graph
database provides a base for easy querying and graph analytics
supported by the database engine.

In addition to loading the data into the database for querying
using the SPARQL query language, creating a full-text search index
enables additional capabilities when searching for textual data in the
graph. This is typically handed off from the database to specialized
and tightly integrated full-text search engines like Lucene2, Solr3,
or Elasticsearch4.

2.9 Performing data validation
Once all data has been converted to RDF and is ingested in the
database, it can be submitted to a data validation to ensure good
data quality.

When defining the ontology using OWL and SHACL, the model
description can be used to automatically validate the database and
ensure that data follows the defined model. This can be done using a
so-called SHACL engine, which verifies that the data in the database
adheres to the shapes defined in the ontology. SHACL engines are
provided by (commercial) RDF databases as well as open-source
projects or commercial tools such as metaphactory.

2https://lucene.apache.org/
3https://solr.apache.org/
4https://www.elastic.co/

143

https://lucene.apache.org/
https://solr.apache.org/
https://www.elastic.co/

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Aaron Eberhart, Peter Haase, & Wolfgang Schell

Figure 2: ETL Architecture

3 ARCHITECTURE
The pipeline uses amultitude of AWS services to implement the RDF
conversion and ingestion process with a cloud-native approach re-
sulting in high parallelization and efficient use of resources. Details
on this architecture can be found in Figure 2.

4 EXAMPLE
The Graph Massivizer use cases from the data center, industrial,
and financial domains are based on either commercial, internal or
sensitive datasets, so they cannot be used for a public demonstration.
Instead, we’ll use the Dimensions Covid Dataset5 [4] as an example
of a large, publicly available dataset to create a scientific knowledge
graph using the ETL pipeline.

The dataset provides information on global publications, aca-
demic papers, authors, research organizations, funders, grants,
datasets and clinical trials. The zipped dataset (1.09GB) is avail-
able for download on Figshare. The data files are in CSV format, the
fields are described in the documentation of the main Dimensions

5https://www.dimensions.ai/covid19/

dataset (although not all documented fields are available in this
publicly available subset).

The semantic data model and dataset description as well as the
corresponding RML mappings are provided as an example in the
ETL pipeline Git repository6.

5 FUTUREWORK
The ETL pipeline will be extended and integrated to work with the
Graph-Massivizer toolkit. This process will continue through the
duration of the project, adapting to evolving project needs and use
cases.

In parallel with Graph-Massivizer developments, work on the
ETL pipeline will also provide and extend capabilities with the
metaphactory platform.

Acknowledgement This project has received funding from the
European Union’s Horizon Research and Innovation Actions under
Grant Agreement Nº 101093202.7

6https://github.com/metaphacts/metaphacts-etl-pipeline
7More information available at: https://graph-massivizer.eu/

144

https://www.dimensions.ai/covid19/
https://github.com/metaphacts/metaphacts-etl-pipeline
https://graph-massivizer.eu/

Building Massive Knowledge Graphs using an Automated ETL Pipeline ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Sean Bechhofer, Frank vanHarmelen, JimHendler, Ian Horrocks, DeborahMcGuin-

ness, Peter Patel-Schneijder, and Lynn Andrea Stein. 2004. OWL Web Ontology
Language Reference. Recommendation. World Wide Web Consortium (W3C). See
http://www.w3.org/TR/owl-ref/.

[2] Dimitris Kontokostas and Holger Knublauch. 2017. Shapes Constraint Language
(SHACL). W3C Recommendation. W3C. https://www.w3.org/TR/2017/REC-shacl-
20170720/.

[3] Radu Prodan, Dragi Kimovski, Andrea Bartolini, Michael Cochez, Alexandru Iosup,
Evgeny Kharlamov, Jože Rožanec, Laurenţiu Vasiliu, and Ana Lucia Vărbănescu.
2022. Towards Extreme and Sustainable Graph Processing for Urgent Societal

Challenges in Europe. In 2022 IEEE Cloud Summit. 23–30. https://doi.org/10.1109/
CloudSummit54781.2022.00010

[4] Dimensions Resources. 2021. Dimensions COVID-19 publications, datasets and
clinical trials. (9 2021). https://doi.org/10.6084/m9.figshare.11961063.v42

[5] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data 3 (2016).

[6] David Wood, Markus Lanthaler, and Richard Cyganiak. 2014. RDF 1.1 Concepts and
Abstract Syntax. W3C Recommendation. W3C. https://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/.

145

http://www.w3.org/TR/owl-ref/
https://doi.org/10.1109/CloudSummit54781.2022.00010
https://doi.org/10.1109/CloudSummit54781.2022.00010
https://doi.org/10.6084/m9.figshare.11961063.v42

Serverless Workflow Management on the Computing Continuum:
A Mini-Survey

Reza Farahani
reza.farahani@aau.at

Alpen-Adria-Universität Klagenfurt
Klagenfurt, Austria

Frank Loh
frank.loh@uni-wuerzburg.de

University of Würzburg
Würzburg, Germany

Dumitru Roman
dumitru.roman@sintef.no

Sintef
Oslo, Norway

Radu Prodan
radu.prodan@aau.at

Alpen-Adria-Universität Klagenfurt
Klagenfurt, Austria

ABSTRACT
The growing desire among application providers for a cost model
based on pay-per-use, combined with the need for a seamlessly
integrated platform to manage the complex workflows of their
applications, has spurred the emergence of a promising comput-
ing paradigm known as serverless computing. Although serverless
computing was initially considered for cloud environments, it has
recently been extended to other layers of the computing continuum,
i.e., edge and fog. This extension emphasizes that the proximity of
computational resources to data sources can further reduce costs
and improve performance and energy efficiency. However, orches-
trating the computing continuum in complex applicationworkflows,
including a set of serverless functions, introduces new challenges.
This paper investigates the opportunities and challenges introduced
by serverless computing for workflow management systems (WMS)
on the computing continuum. In addition, the paper provides a
taxonomy of state-of-the-art WMSs and reviews their capabilities.

CCS CONCEPTS
• Computer systems organization → Cloud computing.

KEYWORDS
Workflow;WorkflowManagement Systems (WMS); Serverless Com-
puting; Function-as-a-Service (FaaS); Edge-Cloud Continuum; Func-
tion Scheduling; Service Orchestration; Sustainability.
ACM Reference Format:
Reza Farahani, Frank Loh, Dumitru Roman, and Radu Prodan. 2024. Server-
less Workflow Management on the Computing Continuum: A Mini-Survey.
In Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3629527.3652901

1 INTRODUCTION
The proliferation of online applications, advancements in network-
ing and computing technologies, and the continuously growing

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, UK
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652901

number of users who opt for diverse online services have collec-
tively propelled application workflow management systems (WMS)
to the forefront of discussions among various stakeholders [54]. In
this context, an application workflow refers to cooperative tasks,
activities, or processes that execute a specific business or compu-
tational logic. These tasks require network, computational, and
storage resources beyond the capabilities of a single on-premises
cluster. The emergence of cloud computing has revolutionized the
domain of WMSs by offering scalable resources and diverse ser-
vices. Most public cloud providers offer WMS, such as Amazon
Simple Workflow Service and Google Cloud Composer, enabling
application providers to build, deploy, schedule, and orchestrate
their workflow tasks comprehensively. Although the adoption of
cloud services represented a significant advancement, challenges
persist in realizing a pure pay-per-use model and achieving seam-
less scalability. This is because cloud providers typically charge
application owners based on allocated resources rather than ac-
tual consumption. Furthermore, application providers are burdened
with ongoing responsibilities to configure and scale infrastructure
instances, requiring comprehensive application monitoring and
expertise in both infrastructure and services management [49].

To address the described challenges, both application and cloud
providers made substantial architectural modifications. On the ap-
plication side, the architecture transitioned from monolithic to
service-oriented, then to microservices [14], and Function-as-a-
Service (FaaS) [8], allowing the execution of small pieces of code as
functions [46]. Taking into account the distinctive characteristics
of emerging applications, particularly those with FaaS-based archi-
tectures, cloud providers have taken advantage of their previous
experience, e.g., virtualization and containerization paradigms, to
establish a pure pay-per-use paradigm known as serverless [53]
as an alternative to the Infrastructure-as-a-Service (IaaS) model.
Hence, cloud providers are increasingly adopting serverless prin-
ciples across a spectrum of their existing services, encompassing
serverless containers (e.g., AWS Fargate or Google Cloud Run),
serverless databases (e.g., AWS DynamoDB), and even serverless
graph processing (e.g., AWS Neptune). Furthermore, most cloud
providers offer serverless WMSs, such as AWS Step Functions,
Google Workflows, and IBM Composer.

In pursuit of cost efficiency, reduced latency, and energy conser-
vation, both industry and academia have recently increased their

146

https://doi.org/10.1145/3629527.3652901
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652901

ICPE ’24 Companion, May 7–11, 2024, London, UK Reza Farahani, Frank Loh, Dumitru Roman, & Radu Prodan

efforts to utilize fog or edge resources in close proximity to appli-
cation users, thus, establishing serverless WMSs throughout the
entire computing continuum [20]. To this end, open-source server-
less platforms, e.g., Apache OpenWhisk [1] or OpenFaaS [38], have
been developed to operate on on-promise or leased edge or fog
instances. However, this presents a challenge, given that the server-
less paradigm was originally designed for cloud environments, not
accounting for such computational constraint instances. Hence,
among numerous critical considerations, one key research ques-
tion in designing serverless WMSs on the computing continuum
is: “How can service level objectives (SLOs), e.g., latency and en-
ergy, and economic cost, be optimized by determining the strategic
allocation of workflow functions, deciding which to execute on
edge or fog instances and which to offload to the public cloud?”
This mini-survey explores fundamental concepts, reviews the latest
WMSs, and discusses the opportunities and challenges arising from
integrating serverless paradigms into WMSs.

2 BACKGROUND
2.1 Computing Continuum
The computing continuum is a structural design consisting of vari-
ous computing and storage resources with varying network band-
width, interconnected in three layers: Cloud, Fog, and Edge [18, 23].
The cloud layer is supported by public providers, such as AWS,
IBM, or Google, to provide large-scale infrastructure and a broad
range of services. The fog layer presents computing capabilities in
close proximity to data sources and user devices on a smaller scale.
This involves utilizing less powerful devices with lower access la-
tencies compared to cloud servers, typically located in network
base stations (e.g., gNodeB in 5G). The edge layer consists of lo-
cal servers and devices with limited resources, including sensors
and actuators, equipped with computational capabilities. These are
strategically placed at user locations to further minimize service
latency. Although each layer can collaborate and exchange infor-
mation in the execution of applications, it also possesses the ability
to operate independently. Adopting this multi-layer architecture
empowers application providers to utilize appropriate resources
and services, consequently enhancing SLOs, energy, and economic
cost compared to dependence on a singular layer of resources.

2.2 Serverless Computing
Serverless is an emerging computing paradigm designed for the
deployment of FaaS applications and other services statelessly [3].
Serverless applications typically comprise a collection of stateless
and atomic functions, commonly deployed within containers or
encapsulated as Zip files. Upon invocation of the function by the
application, a cold start occurs on the infrastructure side, requiring
the deployment of the container from online repositories to the
specified resource. In contrast, a warm start occurs when the re-
quested function is pre-deployed on the computational resource,
resulting in rapid initialization and execution. In such paradigms,
functions interact and exchange data using platform services like
databases, if necessary [28]. Therefore, it empowers application
developers to build scalable and event-driven applications while
incurring charges based on the execution time of functions (i.e.,
pay-per-use), in addition to any supplementary services utilized by

these functions. Moreover, it eliminates the complexities associated
with the provisioning and maintenance of resources, challenges
commonly encountered in traditional cloud-based systems designed
for monolithic applications [49]. For a comprehensive overview of
the serverless lifecycle, we refer to literature [37].

2.3 Workflow Management Systems
Application workflows typically consist of multiple stages, each
comprising a set of independent tasks. These workflows are com-
monly represented as directed acyclic graphs (DAGs), where nodes
represent tasks and edges denote data dependencies. Task com-
munication is generally based on shared file systems and task ex-
ecution occurs only when all dependencies are satisfied [55]. A
workflow management system (WMS) operates as a dedicated tool
to execute and orchestrate such workflows in heterogeneous com-
puting and storage resources, including local and cloud instances.
Many WMSs, such as Pegasus [13], Airflow [22], Argo, AWS Step
Functions, Google Workflows, or IBM Composer, plus open-source
ones like LithOps [48], and PyWren [26], have been developed to
facilitate the seamless execution and management of application
workflows across diverse computing architectures with serverful
or serverless models. Such WMSs typically receive an application
DAG as input, actively monitor the progress of running tasks and
available resources, and generate execution plans by mapping tasks
to the existing computing resources to enforce rigorous adherence
to data dependencies while simultaneously striving to minimize
the overall execution time.

3 SERVERLESS WORKFLOWMANAGEMENT
The rising customer demands from major public cloud providers,
such as AWS, Google, IBM, and Azure, for serverless platform inte-
gration, coupled with the increasing complexity of serverless work-
flows, have greatly boosted the popularity of serverless WMSs [12].
Statistics reveal a substantial six-fold increase in the adoption of
serverless workflows in Azure between 2019 and 2022 [32]. Man-
aging complex workflows, often involving multiple functions and
adhering to specific SLO levels, presents a challenge that cannot
be adequately addressed by a single cloud-based architecture with
concurrent function execution limitations (e.g., 1,000 functions for
AWS Lambda). Therefore, the prevalent adoption of open source
serverless platforms such as OpenFaaS [38] or OpenWhisk [1] has
become a common practice to equip the other two layers of the com-
puting continuum with serverless capabilities. However, designing
WMSs to meet requested SLO levels across various resources in
the computing continuum while accounting for available resources
and concurrency limitations presents a considerable and intricate
challenge. In the following discussion, we categorize and review
state-of-the-art WMSs into three distinct types.

3.1 Cloud-based WMSs
Currently, all leading cloud providers have established their pro-
prietary serverless WMSs. For instance, AWS Step Functions, an
Amazon serverless WMS, utilizes the JSON format to orchestrate
workflow functions, employing various constructs for paralleliza-
tion, data distribution, and conditional branches. Despite providing
versatile constructs, both WMSs are limited in scalability as they

147

Serverless Workflow Management on the Computing Continuum: A Mini-Survey ICPE ’24 Companion, May 7–11, 2024, London, UK

operate within the same cloud region of a single provider, prevent-
ing the use of other cloud regions in a federated cloud manner
or the computing continuum. Google Workflows uses the YAML
format to define control and data flows within workflows. Unlike
the previously mentioned WMSs, it supports function execution
through HTTP requests, allowing the deployment of serverless
functions across any cloud region.

In recent years, various WMSs have been developed to execute
workflows across single or multiple providers’ regions. Spock [21]
operates as a scalable and adaptive WMS, employing virtual ma-
chines and a serverless platform deployed in public clouds. Its objec-
tive is to distribute the execution of machine learning inference jobs
to minimize SLO violations. Sequoya [51] is another that provides
developers with multiple scheduling policies tailored to various
Quality of Service (QoS) parameters. Once a function completes,
it triggers successor functions either on the local server running
OpenWhisk or on cloud servers. The Multi-Provider Serverless
Computing (MPSC) framework [2] is one of the multi-cloud WMSs,
aiming to optimize task allocation between local servers and cloud
platforms, specifically AWS Lambda and IBM Cloud Functions. Hy-
perflow [36] is anotherWMS that enables the execution of workflow
functions exclusively within a designated region of AWS Lambda
or Google Cloud Functions. However, these WMSs mostly ignore
the function concurrency limitations of cloud providers.

The literature has also introduced domain-specific serverless
WMSs, designed to accelerate the development of serverless appli-
cations within specific domains. Examples include scientific work-
flows, which encompass complex and long-term data-intensive
tasks [6, 25]. The mentioned WMSs use HyperFlow to construct
WMSs and execute scientificworkflows onAWSLambda andGoogle
Cloud Functions. Furthermore, numerous recent works aim to en-
hance the execution speed of workflows in public cloud environ-
ments [10, 30, 31, 33]. For this aim, Mahgoub et al. [31] introduced
three levels of optimizations integrated on AWS Lambda, allocating
the appropriate resources for each function invocation. They also
introduced SONIC [30], which determines the optimal approach to
pass data between various serverless functions, that is, local storage,
direct passing, and remote storage.

3.2 Edge-Cloud Continuum-based WMSs
In the domain of edge-cloud WMSs, numerous works have focused
mainly on specific tasks within WMSs, such as function schedul-
ing [41, 50, 56, 58]. For instance, Aslanpour et al. proposes an energy-
aware serverless scheduling method tailored for applications in
edge computing in [4]. Two priority-based and zone-oriented al-
gorithms improve the operational availability of bottleneck edge
devices using “sticky offloading” and “warm scheduling” to opti-
mize QoS metrics. Skippy [42] represents another container-based
scheduling method within these types of WMS, strategically bal-
ancing trade-offs between data and computation exchange. It takes
workload-specific compute requirements into account, including
GPU acceleration, to optimize overall utilization. Numerous works,
such as OSCAR [43], propose the offloading of functions to clouds
when edge resources become overloaded. Skedulix is another sys-
tem on the edge-cloud continuum [11] that offloads functions from
OpenFaaS to AWS Lambda to minimize costs while adhering to

deadline constraints. Similarly, Serverledge is a decentralized edge-
cloud system [47] that runs serverless functions on edge devices
and offloads them to cloud servers or neighboring edge instances
in case of overload. However, such systems target small single-
workflow scheduling due to the concurrency limitations of edge
devices and a single cloud instance. Costless [17] is a framework de-
signed to optimize the execution cost of single serverless workflow
applications by dividing their execution between the edge layer and
the cloud. However, it does not account for scheduling concurrent
workflows. The authors of [29] investigated the placement of work-
flow functions in edge-cloud systems to only minimize completion
time.

3.3 Simulations-based WMSs
Addressing the need for proactive performance evaluation and
prediction in serverless WMSs, many dedicated simulators have
recently been developed. These simulators not only aid in assess-
ing performance or cost metrics before deployment and execu-
tion [24, 34, 45, 52], but strive to provide valuable predictions [5, 16]
to serverless providers regarding diverse load and request patterns.
The authors in [34] simulate serverless functions with a fixed mem-
ory setup in a single cloud region and model the average response
time of the functions, cold start, and concurrent instances of the
serverless function. SimLess [45] is another serverless simulator
that assesses the overhead of individual functions, as well as the
entire workflow, and their comparable setups in federated clouds.
DFaaSCloud [24] as an extension of CloudSim [7] and OpenDC
Serverless [27] are simulators specifically designed to simulate the
execution time of workflow functions. Faas-sim [40] is an edge-
cloud simulator offering a versatile serverless simulation environ-
ment backed by real-world trace data.

4 OPPORTUNITIES
4.1 Cost Model
Unforeseeable variations in application workloads pose a challenge
when using fixed container provisioning, resulting in charges dur-
ing inactive periods. While dynamic auto-scaling is an option for
most IaaS providers, it introduces additional costs and the potential
for imprecise resource provisioning. On the contrary, serverless
computing charges are determined by actual triggered events, in-
cluding dedicated resources and function invocation frequency. The
serverless paradigm ensures more predictable pricing irrespective
of workload fluctuations. By leveraging the precise scalability of
serverless, avoiding unnecessary resource allocation and idle-time
costs, the overall price remains unaffected by workload variability.

4.2 Scalability
Certain applications operate consistently in close proximity to data
sources on the edge layer of the computing continuum, while sev-
eral others require seamless integration throughout the computing
continuum. Leveraging the execution of serverless functions on
the computing continuum enables WMSs to carry out these func-
tions optimally. For instance, many serverless WMSs operating
within the computing continuum adopt a straightforward service
execution strategy that involves task execution on edge instances
as long as resources are available, with a subsequent transition to

148

ICPE ’24 Companion, May 7–11, 2024, London, UK Reza Farahani, Frank Loh, Dumitru Roman, & Radu Prodan

offloading tasks to the fog or cloud when needed. Furthermore,
concurrent function executions through parallelization techniques
not only enhance the practicality but also boost the scalability of
WMSs within the computing continuum.

4.3 Auto-scaling
Traditional IaaS infrastructure relying on virtual machines faced
drawbacks such as large memory footprints and challenging scala-
bility, involving duplication of significant data when creating more
service replicas on an instance. Therefore, one of the critical chal-
lenges for IaaS-based resource-limited edge and fog layers lies in
resource management. Embracing lightweight abstractions like con-
tainers, serverless solutions offer a smaller footprint and precise
autoscaling. This efficiency is particularly notable because of the
minimal overhead in creating or terminating replicas compared to
full virtual machines. The promise is further enhanced when server-
less adopts computation principles based on functions inherited
from microservice architecture advancements instead of treating
the entire application as a black box.

4.4 Statelessness
The statelessness feature of serverless architecture offers several
advantages over a serverful architecture. Since each function or ser-
vice operates independently without maintaining a persistent state
between invocations, fault tolerance and resilience improved, since
failures in one function do not impact the overall system. Moreover,
it makes serverless platforms such as WMSs appealing for real-time
collaboration tools such as instant messaging and chatbots [57].
Therefore, it enables WMSs to have more suitable performance,
particularly for applications with inherent lack reliance on and
awareness of previous event, compared to the serverful ones.

5 CHALLENGES
5.1 Stream Processing
While the serverless paradigm is widely acknowledged as a success-
ful advancement for cloud computing, the scale-to-zero technique
and the subsequent cold start of serverless functions may not be
optimal for certain latency-sensitive stream processing applica-
tions [19, 37]. The ability to scale to zero has both advantages and
drawbacks. Although it minimizes energy consumption and reduces
economic costs, initial invocation of the function results in a cold
start, introducing additional delays with current technologies. Al-
though this delay poses no issue for batch applications, it can lead
to performance degradation in stream time-sensitive processing
applications, since they require real-time decision-making, particu-
larly on resource-limited devices. This discrepancy has led to active
exploration within the research community, with studies analyzing
its impacts [15, 44] and proposing various promising solutions, such
as reducing overhead in the development phase [53].

5.2 Data Distribution
Data and storage management are key in serverless WMSs, ir-
respective of the computational and network differences among
computing continuum instances. The stateless nature of the server-
less, coupled with a lack of server affinity, gives rise to challenges.

While cloud-based WMSs uphold function states by storing them
in storage, the proximity of maintaining this state becomes pivotal
at the edge, consequently, the edge layer transmitting substantial
data per function invocation to remote devices. Current serverless
WMSs within the edge-cloud continuum tend to prioritize CPU and
memory specifications while neglecting crucial storage provision-
ing techniques. Imagine a scenario where an application involves a
sequence of function invocations. In this case, the transfer cost is
incurred only once in traditional approaches for monolithic applica-
tions. However, with serverless, this cost may be incurred multiple
times between any two consecutive function invocations if executed
on different layers. In the cloud, these limitations are seamlessly ad-
dressed by robust data centers and a high-speed communication. In
contrast, in the edge layer of the computing continuum, data trans-
port becomes problematic [3, 35]. Although numerous research
studies have been initiated that focus on data caching and storage
placement have been initiated to address this problem [9, 39], we
believe that more research is needed to fully address this challenge.

5.3 Complexity
The lack of effective abstractions for managing task-based work-
loads on serverless platforms, especially for workflows that exhibit
intricate structures and dependencies, necessitates manual parti-
tioning and encapsulation of workflow function codes. In addition,
despite the overarching promise of serverless to diminish the need
for manual resource management, it still requires the configura-
tion and adjustment of resource-related parameters for applica-
tion workflows, such as concurrency and memory per container.
The mentioned requirements add complexity for the application
providers. In addition, multiple layers of infrastructure within the
computing continuum, coupled with middleware and execution
engines, pose challenges in monitoring, understanding, and predict-
ing application performance. Therefore, more research activities
are needed to alleviate these complications.

6 CONCLUSION
This mini-survey explores relevant technologies and assesses the
capabilities of serverless workflow management systems. We dis-
cuss the appropriateness of serverless WMSs on the computing
continuum due to their (1) potential for seamless integration from
cloud to edge, (2) provision of pure pay-per-use and cost-effective
design, (3) mitigation of challenges related to resource provision-
ing and scaling, (4) facilitation of easy parallelization for stateless
functions, and (5) provision of fine-grained scalability for resources.
However, the design of such WMSs for today’s applications faces
significant challenges, including (1) prolonged latencies induced by
cold startups, (2) difficulties in handling stream processing work-
flows, (3) complexities in managing data distribution and storage,
(4) the intricate task of designing cost-, SLO-, and energy-aware
systems, and (5) the potential to induce resource inefficiencies that
necessitate collaborative efforts from both academia and industry.

ACKNOWLEDGMENTS
Graph-Massivizer receives funding from the Horizon Europe re-
search and innovation program of the European Union. Its grant
management number is 101093202.

149

Serverless Workflow Management on the Computing Continuum: A Mini-Survey ICPE ’24 Companion, May 7–11, 2024, London, UK

REFERENCES
[1] 2023. OpenWhisk. https://openwhisk.apache.org/ Accessed: 2023-11-20.
[2] Austin Aske and Xinghui Zhao. 2018. Supporting Multi-Provider Serverless Com-

puting on the Edge. In Workshop Proceedings of the 47th International Conference
on Parallel Processing (ICPP Workshops ’18). ACM.

[3] Mohammad S Aslanpour et al. 2021. Serverless Edge Computing: Vision and
Challenges. In Proceedings of the 2021 Australasian Computer Science Week Multi-
conference.

[4] Mohammad Sadegh Aslanpour et al. 2022. Energy-Aware Resource Scheduling
for Serverless Edge Computing. In 2022 22nd IEEE Intl. Symp. on Cluster, Cloud
and Internet Computing. IEEE.

[5] Barcelona-Pons et al. 2021. Benchmarking Parallelism in FaaS platforms. Future
Generation Computer Systems (2021).

[6] Krzysztof Burkat et al. 2021. Serverless Containers-Rising Viable Approach
to Scientific Workflows. In 2021 IEEE 17th International Conference on eScience
(eScience). IEEE.

[7] Rodrigo N Calheiros et al. 2011. CloudSim: A Toolkit for Modeling and Simulation
of Cloud Computing Environments and Evaluation of Resource Provisioning
Algorithms. Software: Practice and experience (2011).

[8] Paul Castro et al. 2019. The Rise of Serverless Computing. Commun. ACM (2019).
[9] Chen Chen et al. 2023. S-Cache: Function Caching for Serverless Edge Computing.

In Proceedings of the 6th International Workshop on Edge Systems, Analytics and
Networking.

[10] Anirban Das et al. 2020. Performance Optimization for Edge-Cloud Serverless
Platforms via Dynamic Task Placement. In 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID). IEEE.

[11] Anirban Das et al. 2020. Skedulix: Hybrid Cloud Scheduling for Cost-Efficient
Execution of Serverless Applications. In 2020 IEEE 13th Intl. Conf. on Cloud
Computing. IEEE.

[12] Datadog. 2023. Datadog. The State of Serverless, August 2023. https://www.
datadoghq.com/state-of-serverless/ Accessed: 2023-11-20.

[13] Ewa Deelman et al. 2015. Pegasus, a workflow management system for science
automation. Future Generation Computer Systems (2015).

[14] Paolo Di Francesco et al. 2019. Architecting with Microservices: A Systematic
Mapping Study. Journal of Systems and Software (2019).

[15] Klimentina Djeparoska and Marjan Gusev. 2023. Limitations of AWS and GCP
Serverless Functions. In 2023 31st Telecommunications Forum (TELFOR). IEEE.

[16] Simon Eismann et al. 2020. Predicting the Costs of Serverless Workflows. In Int.
Conf. on Performance Engineering. ACM.

[17] Tarek Elgamal et al. 2018. Costless: Optimizing Cost of Serverless Comput-
ing through Function Fusion and Placement. In 2018 IEEE/ACM Symp. on Edge
Computing. IEEE.

[18] Reza Farahani et al. 2023. Towards Sustainable Serverless Processing of Massive
Graphs on the Computing Continuum. In Proc. of the 1st Workshop on Serverless,
Extreme-Scale, and Sustainable Graph Processing Systems.

[19] Marios Fragkoulis et al. 2023. A survey on the evolution of stream processing
systems. The VLDB Journal (2023).

[20] Sukhpal Singh Gill et al. 2024. Modern computing: vision and challenges. Telem-
atics and Informatics Reports (2024).

[21] Jashwant Raj Gunasekaran et al. 2019. Spock: Exploiting Serverless Functions
for SLO and Cost Aware Resource Procurement in Public Cloud. In 2019 IEEE
12th Intl. Conf. on Cloud Computing. IEEE.

[22] Scott Haines. 2022. WorkflowOrchestrationwith Apache Airflow. InModern Data
Engineering with Apache Spark: A Hands-On Guide for Building Mission-Critical
Streaming Applications. Springer.

[23] Matthijs Jansen et al. 2023. The SPEC-RG Reference Architecture for the Compute
Continuum. In 2023 IEEE/ACM 23rd Intl. Symp. on Cluster, Cloud and Internet
Computing. IEEE.

[24] Hongseok Jeon et al. 2019. A CloudSim-Extension for Simulating Distributed
Functions-as-a-Service. In International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT).

[25] Aji John et al. 2019. SWEEP: Accelerating Scientific Research Through Scalable
Serverless Workflows. In IEEE/ACM International Conference UCC Companion.
ACM.

[26] Eric Jonas et al. 2017. Occupy the Cloud: Distributed Computing for the 99%. In
Proceedings of the 2017 symposium on cloud computing.

[27] S Jounaid. 2020. OpenDC Serverless: Design, Implementation and Evaluation of
a FaaS Platform Simulator. Ph.D. thesis, Vrije Universiteit Amsterdam.

[28] Samuel Kounev et al. 2023. Serverless Computing: What It Is, and What It Is Not?
Commun. ACM (2023).

[29] Liuyan Liu et al. 2019. Dependent Task Placement and Scheduling with Function
Configuration in Edge computing. In Proc. of the Intl. Symp. on Quality of Service.

[30] Ashraf Mahgoub et al. 2021. {SONIC}: Application-aware Data Passing for
Chained Serverless Applications. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). 285–301.

[31] Ashraf Mahgoub et al. 2022. {ORION} and the Three Rights: Sizing, Bundling,
and Prewarming for Serverless {DAGs}. In 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22).
[32] Ashraf Mahgoub et al. 2022. WISEFUSE: Workload Characterization and DAG

Transformation for Serverless Workflows. Proc. of the ACM on Measurement and
Analysis of Computing Systems (2022).

[33] Nima Mahmoudi et al. 2019. Optimizing Serverless Computing: Introducing
an Adaptive Function Placement Algorithm. In Proceedings of the 29th Annual
International Conference on Computer Science and Software Engineering.

[34] Nima Mahmoudi and Hamzeh Khazaei. 2021. SimFaaS: A Performance Simulator
for Serverless Computing Platforms. In Int. Conf. on Cloud Computing and Services
Science.

[35] Redowan Mahmud et al. 2020. Application Management in Fog Computing
Environments: A Taxonomy, Review and Future Directions. ACM Computing
Surveys (CSUR) (2020).

[36] Maciej Malawski et al. 2020. Serverless Execution of Scientific Workflows: Ex-
periments with HyperFlow, AWS Lambda and Google Cloud Functions. Future
Generation Computer Systems (2020).

[37] Kien Nguyen et al. 2023. Serverless Computing Lifecycle Model for Edge Cloud
Deployments. In 2023 IEEE International Conference on Communications Work-
shops (ICC Workshops). IEEE.

[38] OpenFaaS. 2023. OpenFaaS. https://www.openfaas.com/ Accessed: 2023-11-20.
[39] Li Pan et al. 2022. Retention-Aware Container Caching for Serverless Edge Com-

puting. In IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE.

[40] Philipp Raith et al. 2023. faaS-sim: A Trace-Driven Simulation Framework for
Serverless Edge Computing Platforms. Software: Practice and Experience (2023).

[41] Thomas Rausch et al. 2021. Optimized Container Scheduling for Data-Intensive
Serverless Edge Computing. Future Generation Computer Systems (2021).

[42] Thomas Rausch et al. 2021. Optimized Container Scheduling for Data-Intensive
Serverless Edge Computing. Future Generation Computer Systems (2021).

[43] Sebastián Risco et al. 2021. Serverless Workflows for Containerised Applications
in the Cloud Continuum. Journal of Grid Computing (2021).

[44] Sashko Ristov et al. 2022. Colder than the Warm Start and Warmer than the
Cold Start! Experience the Spawn Start in FaaS Providers. In Proceedings of the
2022 Workshop on Advanced tools, programming languages, and PLatforms for
Implementing and Evaluating algorithms for Distributed systems.

[45] Sashko Ristov et al. 2022. SimLess: simulate serverless workflows and their twins
and siblings in federated FaaS. In Proceedings of the 13th Symposium on Cloud
Computing.

[46] Sashko Ristov et al. 2023. Large-scale Graph Processing and Simulation with
Serverless Workflows in Federated FaaS. In Companion of the 2023 ACM/SPEC
International Conference on Performance Engineering.

[47] Gabriele Russo Russo et al. 2023. Serverledge: Decentralized Function-as-a-
Service for the Edge-Cloud Continuum. In 2023 IEEE Intl. Conf. on Pervasive
Computing and Communications. IEEE.

[48] Josep Sampe et al. 2021. Outsourcing Data Processing Jobs with Lithops. IEEE
Transactions on Cloud Computing (2021).

[49] Hossein Shafiei et al. 2022. Serverless Computing: A survey of Opportunities,
Challenges, and Applications. Comput. Surveys (2022).

[50] Yang Tang et al. 2020. Lambdata: Optimizing Serverless Computing by Mak-
ing Data Intents Explicit. In 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD).

[51] Ali Tariq et al. 2020. Sequoia: Enabling Quality-of-Service in Serverless Comput-
ing. In Proceedings of the 11th ACM symposium on cloud computing.

[52] Erwin van Eyk. 2019. SimFaaS. https://github.com/erwinvaneyk/simfaas. Ac-
cessed: 2024-02-07.

[53] Erwin Van Eyk et al. 2018. Serverless Is More: From PaaS to Present Cloud
Computing. IEEE Internet Computing (2018).

[54] Laurens Versluis and Alexandru Iosup. 2021. A survey of domains in workflow
scheduling in computing infrastructures: Community and keyword analysis,
emerging trends, and taxonomies. Future generation computer systems (2021).

[55] Fuhui Wu et al. 2015. Workflow scheduling in cloud: a survey. The Journal of
Supercomputing (2015).

[56] Song Wu et al. 2021. Container Lifecycle-Aware Scheduling for Serverless Com-
puting. Software: Practice and Experience (2021).

[57] Mengting Yan et al. 2016. Building a Chatbot with Serverless Computing. In
Proceedings of the 1st International Workshop on Mashups of Things and APIs.

[58] Hanfei Yu et al. 2021. Harvesting Idle Resources in Serverless Computing via
Reinforcement Learning. arXiv preprint arXiv:2108.12717 (2021).

150

https://openwhisk.apache.org/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://www.openfaas.com/
https://github.com/erwinvaneyk/simfaas

Go-Network: a graph sampling library written in Go
Jože M. Rožanec
Jožef Stefan Institute
Ljubljana, Slovenia
joze.rozanec@ijs.si

Matias Rožanec
Facultad de Ingeniería, Universidad de Buenos Aires

Buenos Aires, Argentina
mrozanec@fi.uba.ar

ABSTRACT
Go-Network is a Go language package for network generation and
sampling. The core package provides basic data structures represent-
ing undirected graphs. Go-Network currently supports only integer
values on graph nodes and edges. The library implements (a) data
loading utilities supporting frequent graph formats, (b) algorithms
for synthetic graph generation (e.g., Erdős-Rényi graphs), and thirty
implementations of graph sampling algorithms. Among the many
benefits the library inherits from Go (designed as a replacement for
C++) are the compilation and execution speed (compiles directly to
machine code) and its great support for concurrency while being
memory savvy. These factors make the library a powerful tool for
scientific purposes. We briefly describe the existing functionality,
compare it against another graph sampling library (Little Ball of
Fur), describe our design decisions, and draw attention to future
work. Go-Network is publicly available and can be imported from
https://github.com/graph-massivizer/go-network.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Computing methodologies→ Artificial intelligence.

KEYWORDS
Artificial Intelligence, Graph Sampling Algorithm, Scalable Graph
Processing
ACM Reference Format:
Jože M. Rožanec and Matias Rožanec. 2024. Go-Network: a graph sampling
library written in Go. In Companion of the 15th ACM/SPEC International
Conference on Performance Engineering (ICPE ’24 Companion), May 7–11,
2024, London, United Kingdom. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3629527.3652903

1 INTRODUCTION
Our environment is full of systems for which it is challenging to de-
rive collective behavior based on the knowledge of its components.
Such systems are known under the term complex systems. They
can be modeled as networks to capture the interactions between
the system’s components of relevance to analyze the actual behav-
ior or make predictions. Networks may require modeling billions
of nodes and their relationships [3]. Nevertheless, when graphs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652903

get very large, working with them becomes challenging. Among
techniques that reduce their size while preserving properties of rel-
evance, we find graph sampling and graph summarization [14, 24].
While graph sampling considers a subset of nodes and edges from
the original graph, graph summarization reduces the graph to a
smaller data structure that maintains the relevant properties. With
the increasing relevance of graph neural networks, graph sampling
has regained new relevance: sampling methods have become an
indispensable strategy to speed up their training [6, 23, 34].

When applying graph sampling techniques, attention must be
devoted to whether particular sampling techniques preserve rele-
vant aspects and information of the graph relevant to downstream
tasks. While some research was devoted to understanding how
graph sampling techniques affect a specific graph, the variety of
tasks and aspects to be considered make it an open and relevant
research question [20, 23, 29, 39].

Motivation. Multiple libraries have been developed for network
analysis and operation. NetworkX [13] has long been a reference
library for graph processing, implementing a wide range of genera-
tors and graph processing algorithms. In the same line, the Stanford
Network Analysis Project (SNAP) library [21] has been developed
to provide efficient implementations for graph processing at scale
and collecting relevant network datasets. Among distributed pro-
cessing implementations, we find the GraphX module, which was
implemented on the top of Apache Spark [11]. Nevertheless, in
contrast to the abovementioned libraries, it provides a narrow se-
lection of implementations of graph processing algorithms. More
recently, standards have been developed for graph frameworks to
ensure standard building blocks for expressing graph algorithms in
the language of linear algebra (e.g., GraphBLAS [4]), and several
implementations were developed for them (e.g., SuiteSparse [7] or
GraphBLAST [37]). In addition, multiple libraries have been devel-
oped for deep learning on graphs (e.g., Deep Graph Library [36]
and PyTorch Geometric [8]. Nevertheless, when it comes to graph
sampling, while particular sampling algorithms have been released
(e.g., GraphSAINT [40]), few libraries gather graph sampling algo-
rithms in a single package. One such library is Little Ball of Fur [32],
which provides a Python interface and implementations for over
twenty sampling techniques. We propose Go-Network, a library
for efficient network generation and sampling, to address this void
in the Go language.

Contribution. We present Go-Network, an open-source graph
generation and sampling library implemented in Go. We describe
the library design and implementation, highlighting particular goals
and choices.

Outline. The paper has four sections. Section 2 briefly describes
our choice for the Go language. Section 3 reviews graph sampling
methods. Section 4 describes the library implementation, design

151

https://orcid.org/0000-0002-3665-639X
https://orcid.org/0009-0003-9511-9513
https://github.com/graph-massivizer/go-network
https://doi.org/10.1145/3629527.3652903
https://doi.org/10.1145/3629527.3652903
https://doi.org/10.1145/3629527.3652903

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Jože M. Rožanec & Matias Rožanec

choices, and the implemented graph sampling algorithms. Finally,
Section 5 concludes the paper and outlines future research.

2 GO LANGUAGE FOR MACHINE LEARNING
DEVELOPMENT

The Go programming language was designed and introduced by
Google in 2009 as a statically typed and compiled programming lan-
guage, prioritizing simplicity, safety, and concurrency. While faster
than, e.g., Python, it is currently an overlooked language for the
development of machine learning libraries, mainly due to its lack
of native support for CUDA and the limited amount of specialized
libraries focused on statistics, calculus, and matrix manipulation -
key to efficient machine learning implementations. Nevertheless,
its simplicity and ease of implementing concurrency make it an
attractive option for developing multi-threaded implementations
requiring overly complex code, e.g., if developed in C++. We ex-
pect that, with time, the current shortcomings of the Go language
ecosystemwill be overcome, making it the go-to option for machine
learning library development.

3 RELATEDWORK
This section briefly describes graph sampling algorithms, focusing
on the subset considered in two graph sampling libraries: Little Ball
of Fur [32] and Go-Network.

3.1 Graph sampling
We consider graph sampling methods to be divided into categories
based on two aspects: (a) the node/link selection criteria and (b)
the operation applied to the graph upon node/link selection. The
node/link selection criteria are usually divided into node-, link-,
exploration-based, and hybrid methods. On the other hand, three
operations can be applied to the graph: node/link preservation,
contraction, or deletion. Following this taxonomy, we briefly sum-
marize thirty graph sampling methods (see Table 1), and present
them in detail in the following subsections.

Much effort has been invested into characterizing the graph
sampling methods to understand what properties from the source
graph are preserved in the graph sample [19, 20, 35, 38]. In particular,
Krishnamurthy et al. [16] have shown that deletion or contraction
methods allow resampling graphs to about 70% of their original
size while keeping some original graph properties (e.g., the power-
law distribution is respected). The author highlighted that among
the benefits of resampling are simulation speed-ups: the authors
estimated that reducing a graph to up to 70% of the original size
can lead to simulation speed-ups of 11x or 37x for O(n2) or O(n3)
simulations. For a detailed overview of sampling techniques and
their properties, we defer the reader to the surveys by Hu et al. [14]
Qi [28], and Liu et al. [23].

3.1.1 Node/link contraction. Sampling by node/link contraction
involves iteratively merging edges in a large graph, reducing its
size while preserving key properties. This process continues until
a representative sample is obtained, enabling efficient analysis and
exploration of the original graph’s structure and characteristics.
We depict the procedure in Fig. 1.

Figure 1: Graph sampling by contraction works by incrementally
contracting (merging) nodes/links from a graph. The Figure depicts
two types of contractions node-based (on the left) and link-based
(on the right). The selected node/link is colored in dark gray.

Figure 2: Graph sampling by deletion works by incrementally remov-
ing nodes/links from a graph. The Figure depicts a case of node-based
deletion sampling. The selected node is colored in dark gray.

3.1.2 Node/link deletion. Sampling by node/link deletion is meant
to gradually remove nodes/links from the graph until the desired
graph size is achieved. This technique was introduced by Krishna-
murthy et al. [16], who considered such sampling should follow
three steps: (i) select nodes/links to be removed (only a small per-
centage (3%-5%) of nodes/links) and delete them, (ii) compute the
connected components, preserving the largest and deleting the rest,
and (iii) restart the procedure until achieving the desired graph size.
We consider (ii) to be done to ensure the resulting graph mirrors a
property observed in real-world graphs: that all of their elements
are linked [3]. We depict the procedure in Fig. 2.

Figure 3: The Figure depicts a case of node-based preservation sam-
pling. The selected nodes are colored in dark gray.

3.1.3 Node/link preservation. While the deletion methods select
nodes and edges to delete them from the graph, preservation meth-
ods do the opposite: they retain them. Graph sampling by preserva-
tion works by incrementally adding nodes/links from the source
graph to a new (initially empty) one. While the deletion-based
methods follow a procedure that ensures the resulting graph has
a single connected component, the preservation methods cannot
provide such guarantees. We depict the procedure in Fig. 3.

152

Go-Network: a graph sampling library written in Go ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Node/link Selection criteria Operation applied to node/link selection
Contraction Deletion Preservation

Node

Breadth First Search
Circulated Neighbors RandomWalk [41]
Common Neighbor Aware RandomWalk [22]
Community Structure Expansion [25]
Depth First Search
Diffusion [33]
Diffussion Tree [33]
Forest Fire [20]
Frontier [30]
Inclusive Random Neighbour [26]
Loop Erased RandomWalk [17]
Metropolis Hastings RandomWalk [15]
Non-Back Tracking RandomWalk [18]
PageRank [20]
Random [16] [35]
Random Degree [16] [1]
Random Neighbour [5]
RandomWalk [20]
RandomWalk With Jump [20]
RandomWalk With Restart [20]
Shortest Path
Snowball [12]
SpikyBall [31]

Link

Hybrid of RL and RNL [16]
Inclusive Random Node/Link [26]
Random Link [16] [16]
Random Link With Induction [2]
Random Link With Partial Induction [2]
Random Node/Link [16] [16]
RandomWalk [20]

Table 1: The table lists various graph sampling methods, referencing
the scientific works in which they were introduced.

3.1.4 Node/link selection strategies. Multiple strategies have been
devised to perform node/link selection. In this section, we introduce
some of them. In Table 1, we reference the scientific works in
which they were introduced, considering their intersection with
the operations applied upon node/link selection. Below, we briefly
introduce each of them:

• Breadth-First Search: starting at a random node, it per-
forms breadth-first search, including all of the nodes/links
traversed until achieving the desired size;

• Circulated Neighbors RandomWalk: simulates a random
walker where the nodes of a neighborhood are randomly
shuffled to ensure the walker can escape from closely knit
communities;

• Common Neighbor Aware RandomWalk: simulates a
random walker that has a preference for neighbors with a
lower number of common neighbors;

• Community Structure Expansion: given a random node
from the graph, it chooses a node already connected to ex-
isting sampled nodes, always generating a connected graph;

• Depth First Search: starting at a random node, it performs
depth-first search, including all of the nodes/links traversed
until achieving the desired size;

• Diffusion: simulates a diffusion process, sampling nodes/links
affected by the process;

• Diffussion Tree: is initiated by selecting a random node and
expanding via random walks to neighboring nodes. It aims
to efficiently capture local neighborhood structures while
preserving connectivity, yielding a representative subgraph
for analysis or further sampling;

• Forest Fire: simulates the fire spread through a forest, where
each node represents a tree and edges represent potential
paths of fire propagation. Starting from a randomly chosen
node, it iteratively spreads fire to neighboring nodes based

on a predefined probability parameter, typically resulting in
a graph structure characterized by clusters and long-range
connections resembling a forest fire propagation pattern;

• Frontier: iteratively expands a frontier set of nodes that
consists of nodes adjacent to the current subgraph. This
method efficiently explores the graph structure, allowing for
the generation of representative subgraphs for various graph
analysis tasks such as clustering, community detection, or
pattern mining;

• Inclusive Random Neighbour: similar to random neigh-
bor sampling, it includes the random node and the sampled
neighbor into the sampled graph;

• Loop Erased RandomWalk: is a stochastic algorithm used
to generate random spanning trees on graphs. It operates
by performing a random walk on the graph, erasing loops
encountered during the walk, and ultimately constructing
a spanning tree of the graph based on the path traversed
without forming cycles;

• Metropolis Hastings RandomWalk: is a Markov Chain
Monte Carlo method for sampling graphs based on a tar-
get distribution. It iteratively explores the space of possible
graphs by proposing changes to the current graph state and
accepting or rejecting these changes based on a probability
criterion derived from the Metropolis-Hastings algorithm,
ensuring convergence to the desired distribution;

• Non-Back Tracking Random Walk: generates random
walks on a graph where the walker does not backtrack to its
previous node at the next step, ensuring a path without rep-
etition. This technique is often employed in graph analysis
and sampling to explore the structure of the graph efficiently
while avoiding redundant traversal;

• Non-Back Tracking Random Walk: samples selecting
nodes with a probability proportional to their PageRank
scores, preserving the structural properties essential for
PageRank calculations;

• Random: randomly selects a node/link from the graph;
• Random Degree: randomly selects a node from the graph
with a probability proportional to their degree, ensuring that
the resulting graph maintains similar connectivity patterns
to the original one;

• Random Node: randomly selects a node from the graph
and then switches it for a randomly sampled neighbor;

• RandomWalk: simulates a random walk through its nodes
and edges. It involves starting from a random node, then
iteratively moving to neighboring nodes according to a sto-
chastic process, resulting in a sequence of visited nodes that
represent a sample from the graph’s structure;

• RandomWalk With Jump: similar to the Random Walk,
but for each step, a decision is made with a probability of
c=0.15 whether to continue the random walk or to jump to
some random node within the graph;

• RandomWalkWith Restart: similar to the RandomWalk,
but for each step, a decision is made with a probability of
c=0.15 whether to continue the random walk or to the start-
ing node;

• RandomWalk With Restart: starts by selecting two ran-
dom nodes to compute the shortest path between them later;

153

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Jože M. Rožanec & Matias Rožanec

• Snowball: iteratively samples nodes based on their connec-
tivity to previously sampled nodes, expanding the sampling
radius in a snowball-like manner. It starts with a small set of
seed nodes and gradually adds nodes connected to the sam-
pled nodes, typically used for capturing local neighborhoods
in large graphs efficiently;

• SpikyBall: constructs graphs by placing nodes on the sur-
face of a high-dimensional sphere and connecting them
based on geometric rules, resulting in graphs with a spiky
appearance.

4 LIBRARY DESIGN AND IMPLEMENTATION
4.1 Implemented methods
In Table 2, we provide a matrix describing the implemented graph
sampling methods, grouping them based on whether the sampled
element is a node or link, and two dimensions: (a) graph node/link
selection criteria and (b) the operation applied on the graph upon
the selected node/link.

Node/link Selection criteria Operation applied to node/link selection
Contraction Deletion Preservation

Node

Breadth First Search BoF
Circulated Neighbors RandomWalk BoF
Common Neighbor Aware RandomWalk BoF
Community Structure Expansion BoF
Depth First Search BoF
Diffusion BoF
Difussion Tree BoF
Forest Fire BoF
Frontier BoF
Inclusive Random Neighbour GoN GoN GoN
Loop Erased RandomWalk BoF
Metropolis Hastings RandomWalk BoF
Non-Back Tracking RandomWalk BoF
PageRank BoF
Random GoN GoN BoF, GoN
Random Degree GoN GoN BoF, GoN
Random Neighbour GoN GoN BoF, GoN
RandomWalk GoN GoN BoF, GoN
RandomWalk With Jump GoN GoN BoF, GoN
RandomWalk With Restart GoN GoN BoF, GoN
Shortest Path BoF
Snowball BoF
SpikyBall BoF

Link

Hybrid of RL and RNL GoN GoN BoF, GoN
Inclusive Random Node/Link
Random Link GoN GoN BoF, GoN
Random Link With Induction BoF
Random Link With Partial Induction BoF
Random Node/Link GoN GoN BoF, GoN
RandomWalk

Table 2: The table lists a variety of graph sampling methods, indicat-
ing which ones are supported by Go-Network (GoN) and which ones
by the Little Ball of Fur library.

4.2 Main modules
Overview. Go-Network is written in the Go language. The li-

brary declares a core graph model package and defines a graph
interface. The current release only supports undirected graphs. The
graph nodes and edges are modeled as integer values. Three kinds
of utilities have been made available so far: (a) data loading and
persistence, (b) graph generation, and (c) graph sampling.

Data loading and persistence. Various utilities are provided to
load and persist graphs encoded in various formats. We find edge
lists and adjacency lists among the supported formats.

Graph sampling. Thirty graph sampling algorithms were imple-
mented. To ensure extensibility regarding graph sampling algorithm
implementations, a Visitor pattern [10] was used. Doing so allows
new methods to be seamlessly included without changing existing
graph interfaces.

4.3 Design choices
To support a wide range of graph sampling algorithms while keep-
ing a stable graph interface, we implemented a Visitor pattern [27]
invoked on a graph. In particular, the sampling strategy is imple-
mented as a Visitor and calls upon a graph, which provides itself to
the Visitor to perform the sampling and then return the sampled
graph. Given certain sampling algorithms follow the same structure
(e.g., deletion sampling strategies perform incremental deletions
and select the biggest connected component), such structure was
implemented as a Template pattern [9], ensuring only the relevant
sampling strategy is provided, reusing the rest of the code from
the base struct. In Go-Network, graph sampling is not meant to be
destructive. Therefore, a deep copy of the original graph is created
before a sampling operation starts with deletion or contraction sam-
pling strategies. Each time sampling is invoked on a graph, a new
graph instance will be returned. This choice was made to ensure (i)
immutability, given immutable data is implicitly concurrent-safe,
and each concurrent process may operate on the same data without
modifying it, and (ii) once a graph is loaded, multiple graph sam-
pling algorithms can be applied simultaneously without altering
it while obtaining the corresponding sampled graphs. This design
decision may be reviewed in the future based on our benchmarking
experience performed on massive graphs.

5 CONCLUSION AND FUTUREWORK
In this paper, we have introduced Go-Network and compared it
against another graph sampling library: Little Ball of Fur. Go-Network
does not cover the wide range of node/link selection strategies Lit-
tle Ball of Fur yet provides. Nevertheless, Go-Network can already
boast more sampling strategies, providing implementations that
span graph sampling by contraction, deletion, and preservation,
while Little Ball of Fur provides only implementations considering
graph preservation. We consider supporting graph contraction and
deletion as key to scalable graph sampling while ensuring the graph
nodes remain connected [16]. Future work will focus on three areas:
(a) enrich data loading and graph generation capabilities, (b) imple-
ment additional graph sampling techniques while adding support
for multi-threaded and distributed execution, and (c) benchmark
the graph sampling algorithms while comparing them against other
implementations.

ACKNOWLEDGMENTS
Graph-Massivizer receives funding from the Horizon Europe re-
search and innovation program of the European Union. Its grant
management number is 101093202:https://graph-massivizer.eu/.

REFERENCES
[1] Lada A Adamic, Rajan M Lukose, Amit R Puniyani, and Bernardo A Huberman.

2001. Search in power-law networks. Physical review E 64, 4 (2001), 046135.

154

https://graph-massivizer.eu/

Go-Network: a graph sampling library written in Go ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

[2] Nesreen K Ahmed, Jennifer Neville, and Ramana Kompella. 2013. Network
sampling: From static to streaming graphs. ACM Transactions on Knowledge
Discovery from Data (TKDD) 8, 2 (2013), 1–56.

[3] Albert-László Barabási and Márton Pósfai. 2016. Network science. Cambridge
University Press, Cambridge. http://barabasi.com/networksciencebook/

[4] Benjamin Brock, Aydın Buluç, Timothy Mattson, Scott McMillan, and José Mor-
eira. 2019. The graphblas c api specification. GraphBLAS. org, Tech. Rep (2019).

[5] Reuven Cohen, Shlomo Havlin, and Daniel Ben-Avraham. 2003. Efficient im-
munization strategies for computer networks and populations. Physical review
letters 91, 24 (2003), 247901.

[6] Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. 2020.
Minimal variance sampling with provable guarantees for fast training of graph
neural networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1393–1403.

[7] Timothy A Davis. 2019. Algorithm 1000: SuiteSparse: GraphBLAS: Graph algo-
rithms in the language of sparse linear algebra. ACM Transactions on Mathemati-
cal Software (TOMS) 45, 4 (2019), 1–25.

[8] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993. Design
patterns: Abstraction and reuse of object-oriented design. In ECOOP’93—Object-
Oriented Programming: 7th European Conference Kaiserslautern, Germany, July
26–30, 1993 Proceedings 7. Springer, 406–431.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
patterns: elements of reusable object-oriented software. Pearson Deutschland
GmbH.

[11] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. {GraphX}: Graph processing in a distributed
dataflow framework. In 11th USENIX symposium on operating systems design and
implementation (OSDI 14). 599–613.

[12] Leo A Goodman. 1961. Snowball sampling. The annals of mathematical statistics
(1961), 148–170.

[13] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[14] Pili Hu and Wing Cheong Lau. 2013. A survey and taxonomy of graph sampling.
arXiv preprint arXiv:1308.5865 (2013).

[15] Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahra-
mani. 2008. Metropolis algorithms for representative subgraph sampling. In 2008
Eighth IEEE International Conference on Data Mining. IEEE, 283–292.

[16] Vaishnavi Krishnamurthy, Michalis Faloutsos, Marek Chrobak, Li Lao, J-H Cui,
and Allon G Percus. 2005. Reducing large internet topologies for faster simula-
tions. In International Conference on Research in Networking. Springer, 328–341.

[17] Gregory F Lawler. 1999. Loop-erased random walk. Perplexing Problems in
Probability: Festschrift in Honor of Harry Kesten (1999), 197–217.

[18] Chul-Ho Lee, Xin Xu, and Do Young Eun. 2012. Beyond random walk and
metropolis-hastings samplers: why you should not backtrack for unbiased graph
sampling. ACM SIGMETRICS Performance evaluation review 40, 1 (2012), 319–330.

[19] Sang Hoon Lee et al. 2006. Statistical properties of sampled networks. Physical
review E 73, 1 (2006), 016102.

[20] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. 631–636.

[21] Jure Leskovec and Rok Sosič. 2016. Snap: A general-purpose network analysis and
graph-mining library. ACM Transactions on Intelligent Systems and Technology

(TIST) 8, 1 (2016), 1–20.
[22] Yongkun Li, Zhiyong Wu, Shuai Lin, Hong Xie, Min Lv, Yinlong Xu, and John CS

Lui. 2019. Walking with perception: Efficient random walk sampling via com-
mon neighbor awareness. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE). IEEE, 962–973.

[23] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, and Dongrui Fan. 2021.
Sampling methods for efficient training of graph convolutional networks: A
survey. IEEE/CAA Journal of Automatica Sinica 9, 2 (2021), 205–234.

[24] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph summa-
rization methods and applications: A survey. ACM computing surveys (CSUR) 51,
3 (2018), 1–34.

[25] Arun S Maiya and Tanya Y Berger-Wolf. 2010. Sampling community structure.
In Proceedings of the 19th international conference on World wide web. 701–710.

[26] Yitzchak Novick and Amotz Bar-Noy. 2023. Inclusive random sampling in graphs
and networks. Applied Network Science 8, 1 (2023), 56.

[27] Jens Palsberg and C Barry Jay. 1998. The essence of the visitor pattern. In
Proceedings. The Twenty-Second Annual International Computer Software and
Applications Conference (Compsac’98)(Cat. No. 98CB 36241). IEEE, 9–15.

[28] Xiao Qi. 2022. A Review: Random Walk in Graph Sampling. arXiv preprint
arXiv:2209.13103 (2022).

[29] Amir H Rasti, Mojtaba Torkjazi, Reza Rejaie, D Stutzbach, N Duffield, and W
Willinger. 2008. Evaluating sampling techniques for large dynamic graphs. Univ.
Oregon, Tech. Rep. CIS-TR-08 1 (2008).

[30] Bruno Ribeiro and Don Towsley. 2010. Estimating and sampling graphs with
multidimensional random walks. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. 390–403.

[31] Benjamin Ricaud, Nicolas Aspert, and Volodymyr Miz. 2020. Spikyball sampling:
Exploring large networks via an inhomogeneous filtered diffusion. Algorithms
13, 11 (2020), 275.

[32] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Little ball of fur: a
python library for graph sampling. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 3133–3140.

[33] Benedek Rozemberczki and Rik Sarkar. 2018. Fast sequence-based embedding
with diffusion graphs. In Complex Networks IX: Proceedings of the 9th Conference
on Complex Networks CompleNet 2018 9. Springer, 99–107.

[34] Marco Serafini and Hui Guan. 2021. Scalable graph neural network training: The
case for sampling. ACM SIGOPS Operating Systems Review 55, 1 (2021), 68–76.

[35] Michael PH Stumpf, Carsten Wiuf, and Robert M May. 2005. Subnets of scale-free
networks are not scale-free: sampling properties of networks. Proceedings of the
National Academy of Sciences 102, 12 (2005), 4221–4224.

[36] Minjie Yu Wang. 2019. Deep graph library: Towards efficient and scalable deep
learning on graphs. In ICLR workshop on representation learning on graphs and
manifolds.

[37] Carl Yang, Aydın Buluç, and John D Owens. 2022. GraphBLAST: A high-
performance linear algebra-based graph framework on the GPU. ACM Transac-
tions on Mathematical Software (TOMS) 48, 1 (2022), 1–51.

[38] Sooyeon Yoon et al. 2007. Statistical properties of sampled networks by random
walks. Physical Review E 75, 4 (2007), 046114.

[39] Muhammad Irfan Yousuf, Izza Anwer, and Raheel Anwar. 2023. Empirical char-
acterization of graph sampling algorithms. Social Network Analysis and Mining
13, 1 (2023), 66.

[40] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.
arXiv preprint arXiv:1907.04931 (2019).

[41] Zhuojie Zhou, Nan Zhang, and Gautam Das. 2015. Leveraging history for faster
sampling of online social networks. arXiv preprint arXiv:1505.00079 (2015).

155

http://barabasi.com/networksciencebook/

Performance Optimization in the LLM World 2024

Kingsum Chow
 College of Software Technology

 Zhejiang University
 Ningbo, Zhejiang, China

 kingsum.chow@gmail.com

Yu Tang
 College of Software Technology

 Zhejiang University
 Ningbo, Zhejiang, China

 y.tang@zju.edu.cn

Zhiheng Lyu
 Department of Computer Science

 University of Hong Kong
 Hong Kong SAR, China
 cogito@connect.hku.hk

Anil Rajput
 Datacenter Ecosystem

 AMD Corporation
Portland, Oregon, USA

 Anil_Rajput@yahoo.com

Khun Ban
 Datacenter and AI
 Intel Corporation

 Hillsboro, Oregon, USA
 khunban@gmail.com

ABSTRACT
The popularity and adoption of large language models (LLM) like
ChatGPT has evolved rapidly. LLM pre-training is expensive.
ChatGPT is estimated to cost over $700,000 per day to operate and
using GPT-4 to support customer service can cost a small business
over $21,000 a month. The high infrastructure and financial costs,
coupled with the specialized talent required, make LLM technology
inaccessible to most organizations. For instance, the up-front costs
include the emissions generated to manufacture the relevant
hardware and the cost to run that hardware during the training
procedure, both while the machines are operating at full capacity
and while they are not. The best estimate of the dynamic computing
cost in the case of GPT-3, the model behind the original ChatGPT,
is approximately 1,287,000 kWh, or 552 tons of carbon dioxide. The
goal of this workshop is to address the urgency of reducing energy
consumption of LLM applications, by bringing together researchers
from the academia and industry to share their experience and
insights in performance engineering in the LLM world.

ACM Reference format:

Kingsum Chow, Yu Tang, Zhiheng Lyu, Anil Rajput and Khun Ban. 2024.
Performance Optimization in the LLM World. In Companion of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE’24
Companion), May 7–11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3629527.3651436

Organiers/presenter and affiliations (including
short bios)
Kingsum Chow (kingsum.chow@gmail.com) is a professor at the
School of Software Technology, Zhejiang University. He received
his Ph.D. in Computer Science and Engineering at the University of
Washington in 1996. Prior to joining Zhejiang University in 2023,
Kingsum has been working as a chief scientist and senior principal
engineer in the industry. He has extensive experience in software
hardware co-optimization from thirty years of working at Intel and
Alibaba. He delivered two QCon keynotes. He appeared four times
in JavaOne keynotes. He has been issued 30 patents. He has
delivered more than 100 technical presentations. He has
collaborated with many industry groups, including groups at
Alibaba, Amazon, AMD, Ampere, Appeal, Arm, BEA, ByteDance,
Facebook, Google, IBM, Intel, Microsoft, Netflix, Oracle, Siebel, Sun,
Tencent and Twitter. In his spare time, he volunteers to coach
multiple robotics teams to bring the joy of learning Science,
Technology, Engineering and Mathematics to the K-12 students in
USA and China.

Yu Tang (y.tang@zju.edu.cn) is a postgraduate student at the
Zhejiang University. His advisor is Kingsum Chow. His research
interest focuses on Large Language Model, system performance
analysis and optimization.

Zhiheng Lyu (cogito@connect.hku.hk) is a distinguished senior at
the University of Hong Kong (HKU) and concurrently serves as a
research assistant within the Berkeley AI Research Lab at the
University of California, Berkeley. His academic journey is
punctuated by seminal contributions at both UCB and ETH Zürich,
resulting in key papers on LLM interpretability and practical
applications — several of which are under active conference review.
A noteworthy internship at Megvii's R-face Institute allowed him to
advance automatic CV model training systems, setting new
industry standards. Beyond research, Zhiheng's prowess in
algorithmic competitions is evident: he boasts two gold medals from
regional ICPC events and an impressive appearance in the ICPC

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the Owner/Author.
ICPE '24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651436

156

https://jpn01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1145%2F3629527.3651436&data=05%7C02%7C%7C2c6aadb901404a7737bf08dc4abd69f7%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C638467424956376803%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=muQroPyB%2FwegZtANMNl2QFWHWuuyahwzYOCeAkUBYPE%3D&reserved=0
https://jpn01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1145%2F3629527.3651436&data=05%7C02%7C%7C2c6aadb901404a7737bf08dc4abd69f7%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C638467424956376803%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=muQroPyB%2FwegZtANMNl2QFWHWuuyahwzYOCeAkUBYPE%3D&reserved=0

ICPE’24 Companion, May 7-11, 2024, London, United Kingdom Kingsum Chow, Yu Tang, Zhiheng Lyu, Anil Rajput, & Khun Ban

world finals. As the current leader of the HKU AI4Good
Community, Zhiheng consistently synthesizes his deep knowledge
in AI, robotics, and LLMs to spur innovation. His role as the
organizer of this workshop underscores his dedication to fostering
richer insights into LLM application and optimization.

Anil Rajput (Anil_Rajput@yahoo.com) is an AMD Fellow,
Software System Design, as core architect for datacenter and cloud
with focus on performance, deployments, optimizations, and best
practices. He received his certification in data analytics from
Harvard Business Analytics Program in 2022 and his Master’s in
Electrical and Computer Engineering from Portland State
University in 1997. Currently, Anil’s focus areas are workloads
characterization, platform evaluation, cloud deployments, on-prem
datacenters as well as understanding and resolving large
deployment issues at scale for critical customers. Earlier, he has
been at Intel Corporation for more than 20 years, playing various
roles in the Software and Services Group, leading platform design,
managed runtime like Java and .Net, scripting languages and
development of representative benchmarks as chair of Java
committee at SPEC. He was key members of teams who architected
and developed several benchmarks like SPECjbb2005,
SPECjvm2008, SPECjEnterprise2010, SPECpower_ssj2008 etc. Anil
is also guiding graduate students as mentor and also participates in
local High School science fairs to encourage kids for STEM in
Oregon, USA.

Khun Ban (khunban@gmail.com) is an Intel cloud performance
architect leading a team to drive solutions to solve today's complex
business problems by analyzing the requirements and making
architecture recommendations for CPUs/storage/network balance
to best meet the needs based on the constraints. He has over twenty
years of enterprise software development experience. His current
focus is on Open-Source Relational Databases. He received his B.S.
degree in Computer Science and Engineering from the University
of Washington in 1995.

A list of topics to be covered, including format
(e.g., talks, demos, etc.), target audience, and pre-
requisite knowledge
The half day workshop will be composed of invited talks, work in
progress and fully refereed papers and a panel. Presentations are not
limited to the following topics:

1. Optimizing LLM Workloads on Traditional and New
Architectures

 Hardware Assisted LLM Systems

 LLM Optimization at Scale

 Code generation optimization for modern hardware

2. Panel Discussion (speakers from the industry and academia)

The target audience:

1. Researchers that are advocating new ways of optimizing LLM
applications in software or hardware optimizations.

2. Practitioners that need to solve runtime performance problems
in their LLM deployments.

Expected duration : half day

Expected attendees: 30

The main organizer delivered the following
workshops and tutorials in the past

 Runtimes in the Cloud 3, a full day workshop at HPCA,
2020/02, 20 attendees.
 Runtimes in the Cloud 2, a full day workshop at ISCA,

2019/06, 20 attendees.
 Runtimes in the Cloud, a full day workshop at ISCA,

2018/06, 30 attendees.
 Scaling Software Performance and Software Performance

in the Cloud, a half day workshop at PNSQC, 2017/10, 50
attendees.
 Software Performance Analytics in the Cloud, a full day

tutorial at ICPE, 2017/04, 20 attendees.
 Applying Analytics to Data Center Performance, a half

day workshop at CMG Performance and Capacity
Conference, 2015/11, 30 attendees.

Workshop Website
https://sites.google.com/view/pollmw

157

https://sites.google.com/view/pollmw

EchoSwift
An Inference Benchmarking and Configuration Discovery Tool for Large Language Models (LLMs)

Karthik Krishna
CTO

 InfobellIT Solutions Pvt. Ltd
Bengaluru, Karnataka, India

 karthik@infobellit.com

Ramana Bandili
CEO

 InfobellIT Solutions Pvt. Ltd
 Bengaluru, Karnataka, India

 braman@infobellit.com

ABSTRACT
Large Language Models (LLMs) are advanced natural language
processing models that are trained on vast amounts of text data to
understand and generate human-like language. These models are
designed to understand context, generate coherent and
contextually relevant text, and demonstrate advanced language
capabilities. In the dynamic landscape of LLMs, the demand for
efficient inference benchmarking is crucial.

Organizations such as TPC and SPEC brought several industry
standard benchmarks [1][2][3][4]. This publication introduces
EchoSwift [11], a comprehensive benchmarking framework
designed to evaluate the real-time performance of LLMs in
deployment scenarios.

As LLMs ascend to the forefront of technological innovation, their
seamless integration into real-world applications demands a
nuanced understanding of their efficiency, throughput, latency,
and scalability. It is within this dynamic landscape that our
publication unveils the EchoSwift, a novel benchmarking
framework meticulously crafted to address the pressing need for
comprehensive inference benchmarking, as well as the discovery
of the right configuration for specific LLM requirements. For
instance, certain deployments might have 32 tokens as input and
256 tokens as output, while others might have 256 tokens as input
and 64 tokens as output. It is crucial to acknowledge that the
configuration for these two requirements need not be the same for
an optimal performance, scale and better TCO. The EchoSwift not
only aids in comprehensive configuration discovery but also
facilitates robust Performance/Scale testing, ensuring that LLM
deployments are not only efficient but also finely tuned to their
specific operational demands.

∗Both authors contributed equally to this research.

__

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE Companion '24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652273

CSS CONCEPTS
• Computer Systems Organization → Artificial Intelligence
→ Natural Language Processing.

KEYWORDS
Large language models, Text generation Inference, Llama2, LLM
Performance, AI Benchmarking

ACM Reference format:

Karthik Krishna and Ramana Bandili. 2024. EchoSwift: An Inference
Benchmarking and Configuration Discovery Tool for Large Language Models
(LLMs), 2024. In Companion of the 15th ACM/SPEC International Conference on
Performance Engineering. May 7–11, 2024, London, United Kingdom. ACM,
New York, NY, USA. https://doi.org/10.1145/3629527.3652273

1. INTRODUCTION
 LLMs have become so profound that language comprehension
and production have transcended traditional boundaries, making it
imperative to gauge the real-time performance of these models in
deployment scenarios more crucial than ever. The advent of LLMs,
exemplified by models like the Llama2 from Meta with varying
parameters and precision levels, has propelled them into the core
of applications ranging from natural language processing to AI-
driven services.

This publication delves into the intricate challenges posed by
diverse LLM variants. Llama2 is one such open sourced publicly
available LLM and this benchmarking tool was primarily tested
with Llama2, however, this tool is applicable to all different LLMs
deployed with various architectures and technologies. Llama2 is an
advanced AI platform that combines cutting-edge algorithms,
extensive data sets, and powerful computational capabilities to
deliver exceptional results. Llama2 model has various models
which different in parameters such as 7B, 13B, and 70B, coupled
with precision nuances in BF16, Int8, and Int4. These intricacies
make the identification of an ideal and efficient infrastructure for
serving these models a formidable challenge. Enter EchoSwift – a
compass guiding practitioners through the delicate balance
between model complexity and operational efficiency in the realm
of LLMs.

In this publication, we embark on a journey to introduce and
expound upon EchoSwift, a benchmarking framework tailored to

158

mailto:karthik@infobellit.com
mailto:braman@infobellit.com

ICPE Companion '24 , May 7–11, 2024, London, United Kingdom Karthik Krishna & Ramana Bandili

assess the real-time performance of LLMs. As we traverse through
the subsequent sections, we unravel the significance of this
framework, its methodology, and the pivotal role it plays in
shaping the deployment landscape for Large Language Models.

2. BACKGROUND
Before the advent of LLMs, a substantial 70% of the AI Inference
market was dominated by CPU architectures, highlighting the
transformative shift brought about by the introduction of LLMs in
the landscape of inference processing. Within the burgeoning
landscape of LLMs, this publication unveils EchoSwift – a
pioneering benchmarking framework meticulously crafted to
assess the real-time performance of LLMs in deployment
scenarios. The results presented here reflect out-of-the-box
performance with currently released software, with the
anticipation of additional performance gains in upcoming releases.

3. ECHOSWIFT OVERVIEW APPROACH
The article outlines benchmarking the performance of LLM using
LLama2-7B as the sample LLM model and measures Token
Latency, Throughput calculated as tokens per second, and Time To
First Token (TTFT).

Figure 1: Performance Metrics

Latency is measured of time to output each token when streaming
the output excluding the first token and is often measured in
millisecond.

𝑳𝒂𝒕𝒆𝒏𝒄𝒚 =
𝑻𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆 𝒕𝒐 𝒐𝒖𝒕𝒑𝒖𝒕 − 𝑻𝑻𝑭𝑻

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒐𝒌𝒆𝒏𝒔 − 𝟏

TTFT is the time to process the prompt and output the first token
and is often measured in millisecond.

TTFT=Time To First Token

Throughput is calculated as tokens per second which takes in to
account the total time taken to output all the tokens and
normalized to 1 second, i.e., total tokens for the output divided by
total time taken in seconds.

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝑻𝒐𝒕𝒂𝒍 𝑵𝒐 𝒐𝒇 𝒕𝒐𝒌𝒆𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝑻𝒊𝒎𝒆 𝒕𝒐 𝑶𝒖𝒕𝒑𝒖𝒕 (𝒊𝒏 𝒔𝒆𝒄𝒐𝒏𝒅𝒔)

The EchoSwift Benchmark is used in two modes:

a) Configuration Discovery Mode

b) Performance Benchmarking Mode

In Configuration Discovery mode, we restrict the number of
parallel requests to 1, 3, or 10 while varying the parameters for
input token size and output token size based on the specific
requirements of the application. We employ this approach to test
different scenarios and identify Token Latency, Throughput, and
TTFT for various combinations of Input and Output tokens. The
data obtained is then used to discover the optimal configuration.

In Performance Benchmarking Mode, we maintain the input token
and output token size as constants (for example, 32 tokens for
Input and 256 tokens for output or any other combination specific
to the application requirement) and scale the number of parallel
requests (or parallel users) for this fixed combination of a single
input and output token. This scaling enables a better sizing of the
environment.

4. BENCHMARKING METHODOLOGY AND
STEPS

The steps for benchmarking LLM have been discussed below:

4.1. Data Collection
The Hugging Face Hub consists of the vast amount datasets for
variety of domains and tasks. The datasets available on Hugging
Face is continually expanding, and new datasets are consistently
being added by both the Hugging Face team and the community.
The Hugging Face Hub hosts a large number of community-
curated datasets for a diverse range of domains, languages, and
tasks such as translation, automatic speech recognition, and image
classification.

159

https://github.com/Infobellit-Solutions-Pvt-Ltd/EchoSwift

EchoSwift ICPE Companion '24 , May 7–11, 2024, London, United Kingdom

The dataset used here in the benchmark is from ShareGPT Dataset
from Hugging Face. Dataset has been filtered based on varying
input token lengths. Considered input token lengths in this
context range from 32 to 2,000, with variations of approximately
±10 tokens for each length. The specified lengths include 32, 64,
128, 256, 512, 1K and 2K tokens, providing a comprehensive
coverage of input sizes for benchmarking. The dataset contains the
7 different files that have 1000 prompts for each token length as
specified. Python file DatasetFiltering.py has been used here for
Data Processing.

4.2. Configuration Discovery Test
The objective of the work involves identifying the optimal
configuration with a single container test.

The analysis involves determining the optimal latency, throughput
and TTFT by sending individual requests one at a time with

different input and output tokens. To enhance throughput, parallel
requests are then dispatched to the endpoint. Figure 2 above
depicts the sample output capturing the performance metrics
when a single request for 128 input tokens and with varying
output token combinations 64, 128, 256 is given as input request.
Similarly varying combinations of input and output tokens in
different combinations like 128 output tokens for 128 input and
256 output tokens for 128 inputs for 5 parallel requests are sent to
capture the ideal performance parameters.

The maximum throughput is identified when the model
consistently provides prompt responses to input requests without
significant degradation in latency. This approach allows for a
balanced assessment, ensuring that the system achieves optimal
performance by striking the right balance between response time
and concurrent processing capabilities.

4.3. Scale Testing/Parallel Requests
Locust Load testing has been used for benchmarking setup. Locust
is an opensource load testing tool, written in Python and is a
highly valuable tool for identifying performance bottlenecks,
testing the scalability of system, and ensuring that the developed
web applications can handle a specified level of traffic. The tool
allows to set the Number of Users which indicates the maximum
no. of users that can run simultaneously, and Spawn Rate denotes
the number of users that will be spawned per second.

For deployment, hugging face text-generation inference model
server 1.1.1 is used.

The steps below need to be followed to run the load test:

1. Define the configurations to run the load test.

2. Listing the parallel users (1, 3, 10, 30) and the Input
tokens (32, 64, 128, 256, 512) and Output tokens (32, 64,
128, 256, 512).

3. TGI endpoint has been used for hosting the model.

In Section 5 the results are discussed and the generated graphs for
performance metrics have been explained in detail.

5. RESULT ANALYSIS
The result analysis involves determining the optimal latency,
throughput and TTFT by sending individual requests one at a time
with different input and output tokens. To enhance throughput,
parallel requests are then dispatched to the endpoint. This section
gives the detailed observation for Configuration Discovery Result
analysis and performance test.

5.1. Configuration Discovery Result Analysis
To identify an optimal Configuration to achieve ideal token
latency and throughput, the systems are tested with various
combinations of input and output tokens. The below graphs

Figure 2: Sample Output for varying combinations of input and output token for Single User

160

ICPE Companion '24 , May 7–11, 2024, London, United Kingdom Karthik Krishna & Ramana Bandili

illustrate the Throughput, Token latency and TTFT for single user
sending the requests to the endpoint for 32, 64, 128 input tokens
and 64,128, 256 output tokens.

In Figure 3, it can be observed that the throughput varies between
4.94 tokens/second to 11.88 tokens/second for single user.

Figure 3: Throughput for Single User

Figure 4 depicts tokens latency for single user ranging from 233
milliseconds/token to 247 milliseconds/token.

Figure 4: Token Latency for Single User

Similarly, Figure 5 depicts the TTFT for single user it varies
between 363 milliseconds to 859 milliseconds.

Figure 5: TTFT for a Single User

The achieved performance results were obtained through testing
the model on a hardware configuration featuring a 16-core CPU
and 128 GB of RAM. It is anticipated that conducting the same
load testing on more robust hardware configurations will likely
yield even more substantial improvements in performance.

5.2. Performance Test (with Parallel Requests)
Result Analysis
The model can also be tested against multiple users for parallel
requests sent to the model endpoint for varying input and output
tokens combinations. Performance testing with parallel requests is
a critical aspect of evaluating the robustness and scalability of a
system. When analysing the results of such tests, it is important to
consider various factors to gain insights into the system’s
behaviour under intense loads. Therefore, a comprehensive
analysis of performance test is done by examining throughput and
token latency against parallel requests sent to the model to get
some insights for improvement.

Line graph shown in Figure 6 depicts the relationship between the
number of parallel requests made to the model endpoint and the
average latency of those requests. It can be observed that when
number of parallel requests increases, the average latency also
increases due to limited system resources. Thus, it is utmost
important to identify the ideal configuration that can handle
multiple parallel requests for scale testing.

Figure 6: Latency vs Parallel Requests

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160

La
te

n
cy

 (
in

 m
s)

Parallel Users

161

EchoSwift ICPE Companion '24 , May 7–11, 2024, London, United Kingdom

Graph in Figure 7 shows the relationship between the number of
parallel requests made to the model endpoint and the throughput
of the system, measured in tokens per second. It can be inferred
from the graph that the throughput increases linearly with the
requests initially and starts slowing down as the resources become
saturated, and eventually decreases when the system is overloaded
as the system has limited resources.

Thus, the specific curve and values will vary depending on the
specific system and workload, but the general trend is consistent.

Figure 7: Throughput vs Parallel Requests

The above graphs can be used to understand the performance
limitations of a system under increasing load. It can help the users
to determine the optimal number of system configurations
required to handle the concurrent requests to while maintaining
acceptable throughput and latency. Additionally, it can be used to
compare the performance of different systems or to track changes
in performance over time.

6. CONCLUSION
This benchmark can be used to evaluate a single container, or a
cluster with thousands or nodes deploying an LLM. This can be
used to test scale, test latency, throughput and TTFT for any
environment deploying an LLM. This is not limited to Llama2 but
any form of LLM, quantized models with lower precisions (int8,
int4, etc) and different precision and different sizes with and
without CPU, GPU, Accelerators, or other technology.

This could also be used for inference benchmarking with Retrieval
Augmented Generation (RAG) based applications, Fine Tuning
models or Fully trained LLM models.

Benchmarking LLMs provides valuable insights for businesses
aiming to deploy natural language processing applications. To

make the best decisions, it's crucial to acknowledge the specific
needs of each application and understand how well LLMs perform
on different types of CPUs, GPUs and Accelerators to identify the
ideal throughput, latency and scale and drive the total cost of
ownership (TCO) lower. Consideration of the specific
requirements of each application, coupled with an understanding
of the strengths and weaknesses of LLMs on different software
and hardware technologies, and architectures empowers
businesses to make informed and optimised decisions.

In line with our commitment to standardization and industry best
practices, we propose this workload to industry standard
organizations like SPEC to create standards for Inference on Large
Language Models. Establishing such standards will further
facilitate benchmarking efforts, promote consistency, and provide
a solid foundation for the broader adoption of LLMs in various
applications.

ACKNOWLEDGEMENTS
Authors would like to thank Anna Joseph, Gogula Akhil Reddy ,
Arun Kumar Tiwary , Bhavana k, Divya Singh, Harshitha T, Vadla
Sai Charitha, Sarthak Dwivedi, Kammara Prasad Achari, Arunima
Divya, who are engineers from InfobellIT who helped test and
develop this benchmark.

REFERENCES
[1] https://spec.org/
[2] https://tpc.org/
[3] Raghunath Nambiar, Tilmann Rabl, Karthik Kulkarni, Michael

Frank:
Enhancing Data Generation in TPCx-HS with a Non-uniform
Random Distribution. TPCTC: 2015: 94-129

[4] Meikel Poess, Raghunath Nambiar, Karthik Kulkarni, Chinmayi
Narasimhadevara, Tilmann Rabl, Hans-Arno Jacobsen: Analysis of
TPCx-IoT: The First Industry Standard Benchmark for IoT Gateway
Systems. ICDE 2018: 1519-1530

[5] https://www.intel.com/content/www/us/en/developer/articles/techn
ical/accelerate-llama2-ai-hardware-sw-optimizations.html

[6] https://huggingface.co/NousResearch/Llama-2-7b-
hf?ref=blog.truefoundry.com

[7] https://github.com/huggingface/text-generation-inference
[8] https://locust.io/
[9] Llama 2: Open Foundation and Fine-Tuned Chat Models -

https://arxiv.org/pdf/2307.09288.pdf
[10] https://www.anyscale.com/blog/reproducible-performance-metrics-

for-llm-inference
[11] EchoSwift: https://github.com/Infobellit-Solutions-Pvt-Ltd/EchoSwift

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

Th
ro

u
gh

p
u

t
(T

o
ke

n
s/

se
co

n
d

s)

Parallel Requests

162

https://spec.org/
https://tpc.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-llama2-ai-hardware-sw-optimizations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-llama2-ai-hardware-sw-optimizations.html
https://huggingface.co/NousResearch/Llama-2-7b-hf?ref=blog.truefoundry.com
https://huggingface.co/NousResearch/Llama-2-7b-hf?ref=blog.truefoundry.com
https://github.com/huggingface/text-generation-inference
https://locust.io/
https://arxiv.org/pdf/2307.09288.pdf
https://www.anyscale.com/blog/reproducible-performance-metrics-for-llm-inference
https://www.anyscale.com/blog/reproducible-performance-metrics-for-llm-inference
https://github.com/Infobellit-Solutions-Pvt-Ltd/EchoSwift

HotCloudPerf’24 Workshop Chairs’ Welcome
Dragi Kimovski

dragi.kimovski@aau.at
University of Klagenfurt

Klagenfurt, Austria

Klervie Toczé
klervie.tocze@liu.se
Linköping University
Linköping, Sweden

Nikolas Herbst
nikolas.herbst@uni-wuerzburg.de

University of Würzburg
Würzburg, Germany

Tiziano De Matteis
t.de.matteis@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

ACM Reference Format:
Dragi Kimovski, Klervie Toczé, Nikolas Herbst, and Tiziano De Matteis.
2024. HotCloudPerf’24 Workshop Chairs’ Welcome. In Companion of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
’24 Companion), May 7–11, 2024, London, United Kingdom. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3629527.3651415

It gives us immense pleasure to extend a warm welcome to you for
the 2024 edition of the Workshop on Hot Topics in Cloud Comput-
ing Performance – HotCloudPerf 2024.

Cloud computing represents one of the most significant trans-
formations in the realm of IT infrastructure and usage. The adop-
tion of global services within public clouds is on the rise, and the
immensely lucrative global cloud market already sustains over 1
million IT-related jobs. However, optimizing the performance and
efficiency of the IT services provided by both public and private
clouds remains a considerable challenge. Emerging architectures,
techniques, and real-world systems entail interactions with the com-
puting continuum, serverless operation, everything as a service,
complex workflows, auto-scaling and -tiering, etc. The extent to
which traditional performance engineering, software engineering,
and system design and analysis tools can contribute to understand-
ing and engineering these emerging technologies is uncertain. The
community requires practical tools and robust methodologies to
address the hot topics in cloud computing performance effectively.

In response to this demand, the HotCloudPerf workshop offers
a platform for academics and practitioners in the field of cloud
computing performance. The workshop seeks to foster engage-
ment within this community and fosters the development of new
methodological approaches to achieve a deeper comprehension not
only of cloud performance but also of cloud operation and behav-
ior. This is to be achieved through a diverse array of quantitative
evaluation tools, including benchmarks, metrics, and workload gen-
erators. The workshop places emphasis on exploring novel cloud
attributes such as elasticity, performance isolation, dependability,
and other non-functional system properties, alongside traditional

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651415

performance-related metrics such as response time, throughput,
scalability, and efficiency.

Following a rigorous review process, HotCloudPerf 2024 featured
seven full papers, two short papers and one demo. Furthermore,
we are delighted to announce that the workshop will include three
keynote talks, delivered by the following speakers.

• Josef Spillner is a senior lecturer/associate professor for
computer science at Zurich University of Applied Sciences,
Switzerland. His research activity focuses on distributed ap-
plication computing paradigms. Particular emphasis is on
technological support for emerging digitalisation needs of in-
dustry and society, such as smart cities and mobility. He will
give a talk on the topic: "Upscaling messaging and stateful
computation".

• Robert Chatley holds the position of Director of Software
Engineering Practice at Imperial College London. His role at
Imperial combines a strong focus on education with industry-
focused research. Robert has worked with many compa-
nies, from startups to multinationals, variously either as a
trainer/coach, as a consultant on technical practice, or work-
ing as part of engineering leadership. He will give a talk on
the topic: "Continuous Developer Feedback for Cloud Native
Systems".

• Sasko Ristov is an Assistant Professor for computer science
at the University of Innsbruck, Austria. His main research
interests include performance modeling and optimization of
distributed systems and applications. In particular, he focuses
on serverless computing, cloud engineering, and cloud fed-
eration. His talk is on the topic: "Engineering serverless ap-
plication life-cycles in federated serverless infrastructures".

The HotCloudPerf 2024 program committee was composed of the
following members: Alexandru Iosup (VU, NL), Nikolas Herbst (U.
Würzburg, DE), Cristina Abad (ESPOL, ECU), Auday Al-Dulaimy
(Mälardalen University, SE), Andre Bondi (Software Performance
and Scalability Consulting LLC, US), Wilhelm Hasselbring (Univer-
sity of Kiel, DE), Dragi Kimovski (University of Klagenfurt, AT),
Tania Lorido (Roblox, US), Tiziano De Matteis (VU, NL), Narges
Mehran (University of Klagenfurt, AT), Zahra Najafabadi (Uni-
versity of Klagenfurt, AT), Issam Rais (The Arctic University of
Norway, NO), Prateek Sharma (Indiana University Bloomington,
US), Josef Spillner (ZHAW School of Engineering, CH), Sacheendra
Talluri (VU, NL), Klervie Toczé (Linköping University, SE), Petr

163

https://doi.org/10.1145/3629527.3651415
https://doi.org/10.1145/3629527.3651415

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Dragi Kimovski, Klervie Toczé, Nikolas Herbst, and Tiziano De Matteis

Tůma (Charles University, CZ), André van Hoorn (University of
Hamburg, DE), Chen Wang (IBM, US).

We thank all the authors who submitted their research to the
workshop and the keynote speakers. We also thank the members
of the HotCloudPerf PC for their in depth reviews and discussion.
Furthermore, thanks go to the ICPE workshop chairs Diego Costa
and Michele Tucci, the ICPE general chairs Simonetta Balsamo and
William Knottenbelt, and the complete organization team.

This seventh edition of the HotCloudPerf is supported by the
EU Graph-Massiviser project. The HotCloudPerf workshop is tech-
nically sponsored by the Standard Performance Evaluation Corpo-
ration (SPEC) Research Group (RG), and is organized annually by
the RG Cloud Group. HotCloudPerf has emerged from the series
of yearly meetings organized by the RG Cloud Group, since 2013.
The RG Cloud Group group is taking a broad approach, relevant for
both academia and industry, to cloud benchmarking, quantitative
evaluation, and experimental analysis.

164

Upscaling Messaging and Stateful Computation
Josef Spillner

josef.spillner@zhaw.ch
Zurich University of Applied Sciences

Winterthur, Switzerland
ABSTRACT
Large-scale, production-grade cloud applications are no longer
black boxes for academic researchers. They are observable sub-
jects under test in an increasing number of projects, with the aim
to quantify and improve their runtime characteristics, including
performance. With more meaningful measurements available, data-
driven approaches have matured and advanced the knowledge in
particular around conventional stateless workloads such as func-
tions and containers. A few less explored areas still exist. They
are fueled by the increasing number of atypical function deploy-
ments for instance in message brokers, in intelligent switches and
in blockchains. This talk summarises reference architectures for
large-scale applications, sometimes resulting in nation-scale de-
ployments, discusses performance numbers in this context, and
elaborates on whether more focus on performance is needed.
ACM Reference Format:
Josef Spillner. 2024. Upscaling Messaging and Stateful Computation. In
Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/3629527.3652885

1 INTRODUCTION
Industrially relevant systems engineering has led to high compu-
tational complexities, both in pure software systems (e.g. business
applications and middleware) and in an increasing variety of sys-
tems that depend on combinations of specific hardware and sensors.
The complexity is partly driven by the sheer scale, with even small
and medium engineering companies often facing the demand to
produce, deploy and operate large-scale and even nation-scale ap-
plications. With concurrent invocations exceeding the limits of
commercial off-the-shelf offerings (e.g. FaaS), engineers are then
faced with the tough choice to revert back to self-managed VMs or
containers, or to become creative especially with atypical function
deployments. This keynote talk encourages to try the latter and to
dare looking forward to software and system architectures where
the simplicity is maintained and yet the posssible scale is increased
significantly. Can entry-level engineers or students be tasked with
such a task now? Probably not, but within a few years that may
change.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652885

2 EXPLORATION
To explore the topic area systematically, a few ideas around the
notion of functions must be combined and critically examined. Raw

concurrency? Can be achieved with big data processing frame-
works, all of which fit into modern cloud hosting by now, but
require understanding user-defined functions especially for event-
driven (non-batch) stream processing [3], as well as prediction of
computation time bases on input sources. Ease of deployment and
portability? Second-generation serverless frameworks, running pre-
containerised functions, help but come with fixed isolation levels
and severe limitations per deployment and per region. In-situ pro-
cessing of logic within message brokers [4], or even within switches
and network interfaces [2]? Brings computation closer to the com-
munication path but often hits limits of devices designed for the
latter but not for the former. Blockchains running smart contracts
with function semantics? Have recently brought an interesting
perspective to stateful functions [1] but, due to the nature of decen-
tralisation, may not be suitable for raw throughput and low latency.
Liquid functions across edge-cloud continuums? Prototypes exist...

Given such a large number of choices, systematic evaluations and
practical experience are both required to come upwith useful advice
to engineers in the form of checklists, patterns, metaprogramming
and other simplifications at the textbook level. The challenges are
not only in the infrastructure with hardware constraints and arbi-
trarily set limits, but deeply routed in the messaging protocols (e.g.
privacy considerations) and compute units. With reference to cur-
rently ongoing industry-funded research and innovation projects,
the talk therefore goes beyond the encouragement and demon-
strates the practical need to find convincing system designs, under
the hypothesis that atypical function deployments (beyond main-
stream FaaS) plays a role in this search process. It gives examples
from several cyber-physical application domains such as monitor-
ing people flows and herd movement, as well as digital pandemic
and academic credentials management.

REFERENCES
[1] Maksym Arutyunyan, Andriy Berestovskyy, Adam Bratschi-Kaye, Ulan Degen-

baev, Manu Drijvers, Islam El-Ashi, Stefan Kaestle, Roman Kashitsyn, Maciej
Kot, Yvonne-Anne Pignolet, Rostislav Rumenov, Dimitris Sarlis, Alin Sinpalean,
Alexandru Uta, Bogdan Warinschi, and Alexandra Zapuc. 2023. Decentralized
and Stateful Serverless Computing on the Internet Computer Blockchain. In 2023
USENIX Annual Technical Conference, USENIX ATC 2023, Boston, MA, USA, July
10-12, 2023, Julia Lawall and Dan Williams (Eds.). USENIX Association, 329–343.

[2] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2021. Speedo: Fast
dispatch and orchestration of serverless workflows. In SoCC ’21: ACM Symposium
on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021, Carlo Curino, Georgia
Koutrika, and Ravi Netravali (Eds.). ACM, 585–599. https://doi.org/10.1145/
3472883.3486982

[3] Yannis Foufoulas and Alkis Simitsis. 2023. Efficient Execution of User-Defined
Functions in SQL Queries. Proc. VLDB Endow. 16, 12 (aug 2023), 3874–3877. https:
//doi.org/10.14778/3611540.3611574

[4] K. Sundar Rajan, A. Vishal, and Chitra Babu. 2021. A Scalable Data Pipeline for
Realtime Geofencing Using Apache Pulsar. In Comp. Intellig. in Data Science - 4th
IFIP TC 12 Intl. Conf., ICCIDS 2021, Chennai, India, March 18-20, 2021 (IFIP Advances
in Information and Communication Technology, Vol. 611), Vallidevi Krishnamurthy,
Suresh Jaganathan, Kanchana Rajaram, and Saraswathi Shunmuganathan (Eds.).
Springer, 3–14. https://doi.org/10.1007/978-3-030-92600-7_1

165

https://orcid.org/0000-0002-5312-5996
https://doi.org/10.1145/3629527.3652885
https://doi.org/10.1145/3629527.3652885
https://doi.org/10.1145/3472883.3486982
https://doi.org/10.1145/3472883.3486982
https://doi.org/10.14778/3611540.3611574
https://doi.org/10.14778/3611540.3611574
https://doi.org/10.1007/978-3-030-92600-7_1

Engineering Serverless Application Life-cycles in Federated
Serverless Infrastructures

Sashko Ristov
sashko.ristov@uibk.ac.at
University of Innsbruck

Department of Computer Science
Innsbruck, Tyrol, Austria

ABSTRACT
The top cloud providers offer more than a hundred serverless ser-
vices, such as Function-as-a-Service and various ML-based Services
speech to text, text to speech, or translation. Unfortunately, while
the cloud provider SDKs simplify the usage of serverless services,
they also lock the users to use services of the respective provider
only. Moreover, the dynamic and heterogeneous nature of the un-
derlying serverless infrastructure introduces other deficiencies for
agile development, automated deployment, and efficient and effec-
tive execution of serverless workflow applications.

This talk will present our advances [1, 2] in many steps of server-
less application life-cycles: development, modeling, and running
serverless workflow applications that use various serverless man-
aged services in federated serverless infrastructures. The main goal
is to follow the approach "Code Once Run Everywhere" where the
developers code their "intents" and the runtime systems then selects
the specific deployment of end-point managed cloud services.

CCS CONCEPTS
• Computer systems organization → Cloud computing.

ACM Reference Format:
Sashko Ristov. 2024. Engineering Serverless Application Life-cycles in Fed-
erated Serverless Infrastructures. In Companion of the 15th ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’24 Companion),
May 7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 1 page.
https://doi.org/10.1145/3629527.3652886

AUTHOR KEYWORDS
interoperability, optimization, performance, serverless, simulation,
workflow applications.

BIOGRAPHY
Sashko Ristov is Assistant Professor for computer science at the Uni-
versity of Innsbruck, Austria. His main research interests include
performance modeling and optimization of distributed systems and
applications. In particular, Dr. Ristov focuses on serverless comput-
ing, cloud engineering, and cloud federation.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652886

ACKNOWLEDGEMENT
This research received funding from Land Tirol, under the contract
F.35499.

REFERENCES
[1] . 2024. FaaS Tools. Retrieved 2024-03-17 from https://github.com/FaaSTools/
[2] . 2024. xAFCL Serverless Workflow Management System. Retrieved 2024-03-17

from https://github.com/xAFCL

166

https://orcid.org/0000-0003-1996-0098
https://doi.org/10.1145/3629527.3652886
https://doi.org/10.1145/3629527.3652886
https://github.com/FaaSTools/
https://github.com/xAFCL

A Systematic Configuration Space Exploration of the Linux Kyber
I/O Scheduler

Zebin Ren
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Krijn Doekemeijer
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Animesh Trivedi
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

ABSTRACT
NVMe SSDs have become the de-facto storage choice for high-
performance I/O-intensive workloads. Often, these workloads are
run in a shared setting, such as in multi-tenant clouds where they
share access to fast NVMe storage. In such a shared setting, ensuring
quality of service among competing workloads can be challeng-
ing. To offer performance differentiation to I/O requests, various
SSD-optimized I/O schedulers have been designed. However, many
of them are either not publicly available or are yet to be proven
in a production setting. Among the widely-tested I/O schedulers
available in the Linux kernel, it has been shown that Kyber is one
of the best-fit schedulers for SSDs due to its low CPU overheads
and high scalability. However, Kyber has various configuration op-
tions, and there is limited knowledge on how to configure Kyber to
improve applications’ performance. In this paper, we systematically
characterize how Kyber’s configurations affect the performance of
I/O workloads and how this effect differs with different file systems
and storage devices. We report 11 observations and make 5 guide-
lines that indicate that (i) Kyber can deliver up to 26.3% lower read
latency than the None scheduler with interfering write workloads;
(ii) with a file system, Kyber can be configured to deliver up to
35.9% lower read latency at the cost of 34.5%–50.3% lower write
throughput, allowing users tomake a trade-off between read latency
and write throughput; and (iii) Kyber leads to performance losses
when Kyber is used with multiple throughput-bound workloads
and the SSDs is not the bottleneck. Our benchmarking scripts and
results are open-sourced and available at: https://github.com/stonet-
research/hotcloudperf24-kyber-artifact-public.

CCS CONCEPTS
• Software and its engineering→ Secondary storage;Operating
systems.

KEYWORDS
Linux storage schedulers, Kyber, Measurements

ACM Reference Format:
Zebin Ren, Krijn Doekemeijer, and Animesh Trivedi. 2024. A Systematic
Configuration Space Exploration of the Linux Kyber I/O Scheduler. In Com-
panion of the 15th ACM/SPEC International Conference on Performance En-
gineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3629527.3651416

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651416

1 INTRODUCTION
Modern high-performance solid-state drives (SSDs) are able to de-
liver millions of I/O operations per second (IOPS) with single-digit
microsecond-level latency [5, 11, 12]. These devices are widely used
inmulti-tenant cloud environments for their improved performance
over hard disks [30, 36, 46]. Cloud providers need to provide quality
of service (QoS) guarantees for I/O services such as throughput or
tail latency service-level objectives across multiple tenants. These
guarantees are usually achieved by scheduling I/O requests with
an I/O scheduler [29, 34].

However, existing Linux I/O schedulers designed for hard disks
do not work well with these high-performance SSDs and induce
significant CPU and scalability overheads [38, 42]. To reduce these
overheads, there are many state-of-the-art I/O schedulers designed
for SSDs [21, 24, 26, 27, 31–33, 35, 39, 41, 43]. Despite these studies
on I/O schedulers for SSDs, using these past published I/O sched-
ulers is challenging. Many of them do not have their source code
public or are written for a specific kernel version, or assume specific
hardware support from SSDs [24, 43]. Thus, users need to imple-
ment these I/O schedulers in the Linux kernel, which is not trivial,
preventing their widespread use.

Compared to these state-of-the-art I/O schedulers, the state-of-
the-practice plug-and-play Linux I/O schedulers [7], Kyber [6], MQ-
Deadline [8], and BFQ [2], are the most accessible schedulers. In our
past studies, we demonstrate that Kyber has a low CPU overhead
and high scalability on fast SSDs and recommend using Kyber on
high-performance SSDs for its low CPU overhead and high scalabil-
ity [37, 38]. We also identify that Kyber’s configuration significantly
impacts workload performance in terms of latency and throughput,
and this impact also differs between different workloads [37]. Kyber
provides two configurable parameters, read and write target latency,
allowing users to set the target latencies that Kyber should try to
deliver. The effect of Kyber’s configurations and the difference of
this effect on different workloads create challenges in using Kyber
in practice. There is no existing study on configuring Kyber for
specific software and hardware settings. Specifically, how to find an
optimized Kyber configuration with a specific setting for different
(1) workloads, (2) file systems, and (3) types of SSDs.

In our study, we cover these three aspects to show the effect of
Kyber’s configurations on its performance. Firstly, workloads have
different I/O patterns and latency/throughput requirements [23, 24].
Existing studies of Kyber focus on its CPU and latency overhead,
scalability, and its ability to deliver low latency for foreground
workloads [23, 33, 38, 42]. There is a lack of systematic studies
on how Kyber’s configurations affect the performance of inter-
fering concurrent workloads with diverse demands in terms of
expected read/write latencies and throughputs. Moreover, predict-
ing the achieved performance with the latency targets is not trivial

167

https://orcid.org/0000-0003-1466-0002
https://orcid.org/0009-0007-7530-4438
https://orcid.org/0000-0003-3586-7168
https://github.com/stonet-research/hotcloudperf24-kyber-artifact-public
https://github.com/stonet-research/hotcloudperf24-kyber-artifact-public
https://doi.org/10.1145/3629527.3651416
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3651416

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Zebin Ren, Krijn Doekemeijer, & Animesh Trivedi

since the user-specified latency targets are not guaranteed by Ky-
ber . Thus, there is a gap between the target performance (Kyber’s
configurable parameters of read/write latencies) and the achieved
performance (latency and throughput), which is not obvious from
the latency targets configured. Secondly, real-world workloads usu-
ally work with file systems instead of directly accessing the storage
device. File systems change the I/O patterns of the workloads. Thus,
the effect of Kyber on workload performance with different file
systems is unknown. Thirdly, different types of SSDs have signifi-
cantly different performance properties such as peak throughput,
latency, and read/write interference behavior [23, 35]. For example,
flash-based SSDs have unpredictable performance and read/write in-
terference, but non-flash-based ultra-low latency (UUL) SSDs such
as Intel Optane SSDs have stable performance and no read/write
interference [44, 47].

In conclusion, the lack of understanding of how Kyber’s config-
urations affect the achieved performance with different workloads,
file systems, and types of SSDs makes it unclear how to optimize
Kyber in practice. Specifically, we investigate the following research
questions (RQs) around howKyber’s configurations affect the work-
loads’ performance with different workloads, file systems and types
of SSDs:

(RQ1) How does Kyber affect the performance of workloads
when workloads run concurrently and interfere with
each other? We investigate how Kyber affects the perfor-
mance of different workloads by studying the relation be-
tween target latency and the workloads’ achieved perfor-
mance.

(RQ2) How to configure Kyber’s parameters for diverse types
NVMe SSDs and diverse file systems tomeet workloads’
requirements? The key motivation is to find out if and how
our findings on Kyber’s configurations performance effects
can be generalized to different file systems and types of SSDs.
We also provide guidelines on how to configure Kyber to
meet the workloads’ requirements in practice with diverse
software and hardware environments.

To address these questions, we conduct a first-of-its-kind sys-
tematic study of Linux’ Kyber I/O scheduler with various kinds of
workloads, file systems, and types of SSDs to establish guidelines
on how to configure Kyber in practice. Our key contributions in
this work include:

• We extensively study how Kyber with different configura-
tions affects workload performance using different combina-
tions of latency-sensitive and throughput-bound workloads
on 2 types of SSDs, resulting in 11 observations. To the best
of our knowledge, we are the first to investigate the effect of
Kyber’s configurations on workloads.

• Based on our observations, we provide 5 guidelines on how
to configure Kyber in practice with various workloads, file
systems, and types of SSDs.

• We open-source all artifacts, datasets, and scripts for this pa-
per as FAIR data sets at https://github.com/stonet-research/
hotcloudperf24-kyber-artifact-public.

Global
read/write tokens

Update

Latency
histogram

Dispatch

WriteRead

CPU 0
...

CPU n-1

I/O Request

Figure 1: Architecture of the Linux Kyber I/O scheduler.

2 BACKGROUND
NVMe SSDs. Non-volatile memory express (NVMe) is an interface
for accessing storage devices through PCIe. NVMe is widely used
by high-performance SSDs. In this paper, we evaluate two kinds of
NVMe SSDs: flash-based SSDs and non-flash-based SSDs with the
3D Xpoint technology [1].

Flash-based SSDs are composed of a controller that is connected
to an array of flash chips. Each flash chip is organized in a hier-
archy of dies, planes, blocks, and pages. SSDs have high internal
parallelism as both dies and planes can operate in parallel. The
NVMe protocol [10] exposes this parallelism to workloads with
a multi-queue interface that allows SSDs to execute multiple I/O
requests in parallel. Nevertheless, to fully utilize this parallelism,
workloads need to issue multiple concurrent I/O requests to the
SSD. A challenge here is that a plane can not execute different types
of commands (read or write) in parallel. If a read is issued to a die
where a write is already being executed, the read is blocked until
the write finishes, leading to a 10–40× longer read latency. This
performance degradation is called read/write interference [17, 45].
Moreover, the physical constraints of flash chips do not allow in-
place updates or intra-block random writes. Pages in a block can
only be written sequentially, and written pages need to be erased
before they can be rewritten. Erasures happen at the unit of blocks,
not at the unit of pages. To imitate the block interface provided by
hard disks, the Flash Translation Layer (FTL) in SSD controllers
maps logical addresses provided in the block interface to physical
addresses in the flash chips. On an update, the data of the update is
written to a new page, and the old page is marked invalid. The inter-
nal operations lead to additional interference with user I/O requests,
leading to unpredictable performance. In conclusion, flash-based
SSDs have (1) high parallelism, (2) unpredictable performance, and
(3) read/write interference.

There are also non-flash-based SSDs such as Intel Optane SSDs [4],
made with 3D Xpoint technology [1, 44]. 3D Xpoint has two big
differences from flash: (1) it is byte-addressable, thus an I/O request
can be broken into smaller pieces and processed in parallel by mul-
tiple channels to achieve low latency; and (2) it supports in-place
updates and can, thus, provide stable performance without internal
translation operations needed such as flash-based SSDs [47].
Kyber Internals. Kyber is an I/O scheduler designed for fast and
highly parallel storage devices inspired by active queue manage-
ment techniques from network routing [6, 13]. Kyber prioritizes
reads over writes based on the heuristic that a process that issues a
read request usually waits for the issued read to finish. In contrast,
a process that issues a write request usually continues executing

168

https://github.com/stonet-research/hotcloudperf24-kyber-artifact-public
https://github.com/stonet-research/hotcloudperf24-kyber-artifact-public

A Systematic Configuration Space Exploration of the Linux Kyber I/O Scheduler ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Table 1: Benchmarking environment.

Component Configuration
CPU Single socket Intel(R) Xeon(R) Silver 4210R CPU 10 cores @ 2.40GHz, Hyper-

threading disabled, Turbo disabled.
Memory 256GiB, DDR4.
Storage Samsung 980 PRO 1TiB (Flash-based SSD); Intel SSD 900P (Optane SSD)
Software Ubuntu 20.04 with Linux kernel v6.3.8, fio v3.35.

without waiting for the write to finish. Figure 1 shows the architec-
ture of the Linux Kyber I/O scheduler. Kyber maintains two queues
for each CPU core, one for reads and one for writes. Kyber inserts
I/O requests into the queues on the same core where the application
issued the requests. These read/write queues are associated with
a global token bucket. These tokens are used to limit the number
of concurrent requests issued to the SSD to achieve high respon-
siveness. An I/O request is dispatched to the NVMe device driver
only when there are available tokens. The number of tokens re-
mains the same if both read and write target latencies are satisfied,
and is increased if read or write P99 latency exceeds the target
latency. Increasing the number of tokens increases the priority of
that workload. The number of NVMe tokens for a particular type of
request (read or write) is reduced when (1) the achieved P90 latency
for that request type is lower than the target latency; and (2) the
achieved P99 latency for the other type is higher than the target
latency. Kyber aims to deliver the user configured target latencies.
However, there is no guarantee that Kyber achieves the target laten-
cies. Further on, it is not studied how these target latencies affect
the achieved workload throughput and latency. The default read
and write target latencies are 2ms and 10ms, respectively. However,
achievable latencies for NVMe SSDs range from 10 to 80 𝜇s and
differ between different types of SSDs [4, 11]. Therefore, there is a
huge gap between the default target latencies and the best latencies
that NVMe SSDs can deliver. It is unknown how this gap and the
performance difference of SSDs affect workload performance on
NVMe SSDs when using Kyber . The aim of this paper is to investi-
gate how Kyber’s target latencies and the performance of different
SSDs affect the achieved workload throughput and latency.

3 METHODOLOGY
Hardware and Software.Our benchmarking environment is shown
in Table 1.We use fio [3] as a workload generator with the io_uring
interface [14]. All the I/O requests are issued with the O_DIRECT
flag so the I/O requests bypass the page cache. We use two met-
rics to evaluate performance: throughput and latency. We measure
throughput in I/O operations per second (IOPS) and latency in 99
percentile operation tail latencies (P99 latency). Before running the
experiments, we precondition the flash SSD according to [16]—by
sequentially writing the entire SSD, then writing 2 TiB of 4 KiB
random writes. We run each experiment on the Samsung 980 PRO
for 12 minutes (6 minutes warm-up time + 6 minutes run time)
with five repetitions. For each experiment, we report the average(s)
of these five runs. On the Intel Optane SSD, we run each experi-
ment with one repetition for 2 minutes and 30 seconds (30 seconds
warm-up time + 2 minutes run time). We use a shorter run time
for the experiments on the Optane SSD because it delivers stable
performance.
Synthetic Workloads and Methodology.Workloads in cloud en-
vironments have diverse I/O requirements, such as latency-sensitive
workloads (e.g., online database query) and throughput-bound

Table 2: Baseline performance of Samsung 980 PRO SSD with
the None scheduler.

Workload(s) R TP
(in KIOPS)

W TP
(in KIOPS)

R P99 Lat
(in 𝜇s)

W P99 Lat
(in 𝜇s)

1 R1 17.0 - 77.5 -
2 R256 364.3 - 793.8 -
3 W1 - 62.3 - 23.1
4 W256 - 70.0 - 15,794.2
5 R1–W1 4.0 65.0 1,879.2 26.8
6 R1–W256 0.3 68.9 15,217.5 15,558.2
7 R256–W1 302.6 61.5 3,044.1 32.1
8 R256–W256 83.2 93.1 15,283.0 15,938.4

workloads (e.g., batch processing systems) [24]. We use two syn-
thetic workloads: latency-sensitiveworkloads (L-app) and throughput-
bound workloads (T-app). Both only issue 4KiB read or write re-
quests. For the L-apps, we issue a single outstanding request (we
use queue depth, or QD to represent ‘the number of outstanding
requests’ for simplicity in later sections). The T-apps issue 256 out-
standing requests to saturate the SSDs. In the following sections,
we use R1 and W1 to represent L-app read and write workloads
respectively and R256 and W256 to represent T-app read and write
workloads respectively. The number after R and W represents the
QD of the workload.

4 BASELINE PERFORMANCEWITH THE
NONE SCHEDULER

As we explained in §2, flash-based SSDs have read/write interfer-
ence, which means that a write blocks concurrent reads to the same
die. In this section, we establish the baseline performance of the
evaluated flash SSDs with and without interference. We report the
read/write throughput and latency with different workload com-
binations (i.e., L-app, T-app). We use the None scheduler, a no-op
scheduler, which passes the I/O requests to the NVMe device driver
in a first-in-first-out manner. Each workload is pinned to a ded-
icated CPU core to avoid interference by the process scheduler.
Table 2 shows the throughput (in KIOPS) and P99 tail latency (in
𝜇s) of different workload combinations. We show the (combination)
of workloads in the second column and we show the throughput
and latency of the read and write workloads in the third to sixth
columns. We have three observations:
Asymmetric read/write performance.The flash SSDs have asym-
metric read/write performance (Observation 1, O-1). With a single
CPU core and no interfering workloads, the flash SSD delivers up
to 364.3 KIOPS random read throughput at QD=256 and 77.5 𝜇s
P99 random read latency at QD=1 (row 1). When fio issues ran-
dom writes, the flash SSD delivers up to 70.0 KIOPS throughput at
QD=256 (row 4) and 23.1 𝜇s P99 latency at QD=1 (row 3). In short,
the flash SSD has different throughput and latency for reads and
writes without interference. Next, we show how this performance
changes with the interference of a second workload.
Writes have a huge impact on read performance. A concur-
rent write workload significantly degrades the performance of a
co-running read workload. When a latency-sensitive read work-
load R1 is mixed with a latency-sensitive write workload W1 (row
5), the read throughput drops 76.5% (from 17.0 to 4.0 KIOPS) and
the latency increases 24.2× (from 77.5 to 1,879.2 𝜇s) compared
to R1 without interference (row 1). The read performance degra-
dation is more significant with a throughput-bound write work-
load W256 (row 6), showing 98.2% lower throughput (from 17.0 to

169

https://ark.intel.com/content/www/us/en/ark/products/197098/intel-xeon-silver-4210r-processor-13-75m-cache-2-40-ghz.html
https://semiconductor.samsung.com/consumer-storage/internal-ssd/980pro/
https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint/specifications.html

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Zebin Ren, Krijn Doekemeijer, & Animesh Trivedi

Table 3: Evaluated workloads combinations with Kyber.

L-app with write (W1) T-app with write (W256)
L-app with read (R1) R1–W1 R1–W256

T-app with read (R256) R256–W1 R256-W256

0.3 KIOPS) and 200.8× higher latency (from 77.5 to 15,217.5 𝜇s) than
R1 without interference. When a read throughput-bound work-
load and a write throughput-bound workload compete for through-
put (row 8), the read workload has 77.2% lower throughput (from
364.3 to 83.2 KIOPS) than without the interference of concurrent
writes. To conclude, the read performance is highly sensitive to the
write workload, changing the write workload leads to a significant
effect on read throughput and latency (O-2).
Reads have a less significant impact on write performance. A
co-running read workload has less impact on the write performance
than the impact write workloads have on read workloads. When
W1 runs with R1 in the background (row 5), the write workload
has comparable throughput (from 62.3 to 65.0 KIOPS), and the la-
tency only increases by 16.0% (23.1 to 26.8 𝜇s) compared to running
W1 in isolation. With a throughput-bound workload R256 on the
background (row 7), the write latency increases 39.0% (from 23.1
to 32.1 𝜇s), much lower than the latency increase of reads in this
setting (200.8×). Thus, the write performance is less sensitive to
the read workload than the interference of writes on reads (O-3).

The key finding here is that the None scheduler can not mitigate
read/write interference. When a latency-sensitive read workload
runs concurrently with a write workload, the read workload has
a significantly higher P99 tail latency than the read workload run-
ning in isolation. When there are two throughput-bound read and
write workloads competing for throughput, None does not pro-
vide any functionality to tune the throughput share between the
read and write workloads. Kyber offers configuration options that
let the users prioritize reads or writes over each other. Thus, in
the following sections, we investigate if and how Kyber affects
read/write interference and how it affects the throughput share be-
tween throughput-bound read and write workloads under different
configurations.

We repeat the same benchmark on an Intel Optane P900 SSD (the
results are not plotted in the paper). We have two observations.
Firstly, the Optane SSD have symmetric read/write performance.
Unlike the flash SSD, the Optane SSD deliver comparable through-
put and latency for both reads and writes. Secondly, the Optane
SSD have less read/write interference. R1 has up to 65.6% higher
latency (15.4 vs. 44.8 𝜇s) with a concurrently running W256 com-
pared to running R1 in isolation, which is significantly lower than
the Samsung 980 PRO (24.2× lower). We show how Kyber and it’s
configurations affect the performance of these workloads in §5.

5 PERFORMANCE EFFECT OF KYBER’S
CONFIGURATIONS WITHOUT A FILE
SYSTEM

We start our analysis with a performance characterization of the im-
pact of differentKyber configurations on fio-basedmicro-benchmarks.
We run these micro-benchmarks without any file system. Specifi-
cally, we investigate how different Kyber configurations affect the
P99 latency of L-apps and throughput of T-apps when concurrent

0.0
2
0.0

5
0.1

0
0.2

5
0.5

0 1 2 5 10 10
0

Write target latency (ms)

100
10
5
2
1

0.50
0.25
0.10
0.05

R
ea

d
ta

rg
et

la
te

nc
y

(m
s)

2.9 2.8

1.9

3.0 1.8 1.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) R1 P99 latency (in ms)

0.0
2
0.0

5
0.1

0
0.2

5
0.5

0 1 2 5 10 10
0

Write target latency (ms)

100
10
5
2
1

0.50
0.25
0.10
0.05

R
ea

d
ta

rg
et

la
te

nc
y

(m
s)

131.3 105.5

108.4

152.1 93.2 74.6
0

50

100

150

200

250

(b) W256 throughput (in KIOPS)

Figure 2: Performance of L-app (read-only) and T-app (write-
only) workload combinations with different Kyber configu-
rations.

0.0
2
0.0

5
0.1

0
0.2

5
0.5

0 1 2 5 10 10
0

Write target latency (ms)

100
10
5
2
1

0.50
0.25
0.10
0.05

R
ea

d
ta

rg
et

la
te

nc
y

(m
s)

2.6 178.5

82.5 108.7 154.2

175.2

181.1 184.8 265.3
0

50

100

150

200

250

(a) R256 throughput (in KIOPS)

0.0
2
0.0

5
0.1

0
0.2

5
0.5

0 1 2 5 10 10
0

Write target latency (ms)

100
10
5
2
1

0.50
0.25
0.10
0.05

R
ea

d
ta

rg
et

la
te

nc
y

(m
s)

123.2 94.0

130.0 128.9 129.1

91.0

125.3 112.0 67.8
0

50

100

150

200

250

(b) W256 throughput (in KIOPS)

Figure 3: Performance of T-app read and write workload
combinations with different Kyber configurations.

read and write workloads interfere with each other, see Table 3 for
all combinations. Such a setup is common in the multi-tenant cloud.
For each benchmark, we start two concurrent fio processes. One
fio process issues reads and one process issues writes. Each fio
process is pinned to a separate and dedicated CPU core to prevent
them from competing for CPU resources. We do a grid search to
investigate how Kyber’s configurations affect the achieved perfor-
mance of fioworkloads in the search space. We set the lowest read
and write target latency to 50 𝜇s and 20 𝜇s respectively, based on
the minimum P99 latency of the flash SSD (§4), and we gradually
increase the target latency to 100ms. We report our performance
results in Figure 2 and Figure 3 as heatmaps where the x-axis rep-
resents the write target latency and the y-axis represents the read
target latency. The temperature in the heatmaps is the measured
performance with read and write target latencies set to correspond-
ing values in y- and x-axis.
How does Kyber affect the performance of different combi-
nations of workloads? We report that Kyber’s configurations do
not have a significant effect on the performance of workload com-
binations R1–W1 (thus they are not plotted in the paper) (O-4). We
do not observe a relation between the P99 read/write latencies and
Kyber configurations. The P99 read latency varies between 1.3 and
1.6ms and the P99 write latency varies between 23.4 and 27.3 𝜇s.
The reason that Kyber does not have a significant effect on R1–W1 is
that Kyber’s mechanism is only effective with multiple outstanding
I/O requests. Yet, with R1–W1, there is only 1 outstanding read and
write request. Since Kyber allows at least one read and one write
to be sent to the SSDs, thus Kyber does not throttle the request
with R1–W1. We report that Kyber is effective when there is at least

170

A Systematic Configuration Space Exploration of the Linux Kyber I/O Scheduler ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

more than one outstanding read or more than one outstanding
write (Guideline 1, G-1).
Can Kyber provide bounded P99 latency for the L-app when
an L-app interferes with a T-app? Figure 2 shows how Kyber’s
configuration affects fio-workload performance when a read L-
app (R1) and a write T-app (W256) run concurrently. The temper-
ature in Figure 2a shows the read P99 latency (in ms, darker is
better) of the read L-app and the temperature in Figure 2b shows
the throughput (in KIOPS, lighter is better) of the write T-app. In
our experiments, Kyber mitigates read/write interference at the cost
of write throughput (O-5). When the read target latency is set to
50 𝜇s and the write target latency is set to 100ms, the achieved read
P99 latency is 1.4ms, 26.3% lower (1.8ms) than the read latency
of R1–W1 with the None scheduler (row 5, Table 2). Thus, Kyber
delivers low read latency with background throughput-bound write
workloads by setting the read target latency to the lowest read P99
latency that the SSD can achieve (50 𝜇s in our case) and the write
target latency to a value higher than the achieved write latency
with the None scheduler (15.6ms, row 6, Table 3). However, the
cost of achieving low read latency is lower write throughput (from
peak 152.1 to 74.6 KIOPS, 50.9% lower throughput). We suggest
using Kyber in multi-tenant situations when low read latency is
considered more important than high throughput (G-2).
How do Kyber’s configurations affect the throughput share
of two throughput-bound fio-workloads? Figure 3 shows how
Kyber’s configurations affect the interference between a read T-
app and a write T-app. The temperature in Figure 3a shows the
read throughput and the temperature in Figure 3b shows the write
throughput (in KIOPS, lighter is better). Firstly, decreasing the read
target latency leads to higher read throughput. With a fixed write
target latency (fixed x value), as the read target latency decreases,
the read throughput increases (O-6). For example, with the write
target latency is set to 20 𝜇s (first column in Figure 3a), as the read
target latency decreases from 100ms to 50 𝜇s, the read throughput
increases from 2.6 KIOPS to 181.1 KIOPS, a 69.7× increase. Secondly,
when the read target latency is lower than 10ms and the write tar-
get latency is lower than 5ms, changing Kyber configurations does
not lead to a statistical difference in read and write throughput.
The reason is that the achieved read and write latencies are 5ms
and 18ms (not visualized). Tuning the target latencies in a configu-
ration space where all the candidate values are much lower than
the lowest achievable latency, all the configurations in this configu-
ration space lead to comparable performance (we call this space the
dead configuration space). In conclusion, by tuning Kyber’s configu-
ration, the throughput between reads and writes can be distributed.
We suggest that the users (1) run this grid search micro-benchmark
in Figure 2 and Figure 3 to find out how the target latencies affect
the performance of a specific SSD and (2) avoid tuning Kyber in the
dead configuration space (G-3).
How does this effect change with different SSDs?We repeat
our experiments on the Intel Optane SSD to investigate how this
effect varies across different SSDs. Firstly, similar to the Samsung
SSD, we observe that with R1–W256, prioritizing reads by setting
low read target latency and high write target latency leads to lower
P99 read latency at the cost of write throughput. When Kyber is
configured to prioritize reads, it delivers 62.5% lower latency (from
44.8 to 16.8 𝜇s) than it does with the None scheduler at the cost

of 67.1% lower write throughput (from 228.2 to 75.0 KIOPS) (O-7).
Secondly, when two throughput-bound workloads interfere with
each other (R256–W256), we report that prioritizing reads leads to
lower write throughput (from 202.5 to 68.9 KIOPS) and comparable
read throughput when prioritizing writes. However, when neither
reads nor writes are prioritized, setting the read and write latency to
the same value leads to high read and write throughputs (215.4 and
203.1 KIOPS, respectively) at the same time. The explanation for this
phenomenon is that the Optane SSD has low read/write interfer-
ence [44]. When the SSD is not saturated, adding a concurrent write
workload with a read workload does not have a significant effect
on the performance of the read workload. In this setting (R256–
W256), the SSD is not saturated. In short, limiting read (or write)
throughput does not increase the write (or read) throughput on the
Optane SSD. With the Optane SSD, a misconfiguration when the
SSD is not saturated leads to a throughput drop for reads or writes
without any throughput increase for writes or reads (O-8). Thus,
we suggest using Kyber with Optane SSDs only when the SSDs are
the bottleneck.

6 PERFORMANCE EFFECT OF KYBER’S
CONFIGURATIONS WITH FILE SYSTEMS

In the previous section, we investigate how Kyber affects the perfor-
mance of fio-workloads without using any file system. However,
real-world workloads usually access SSDs via file systems. In this
section, we characterize how Kyber’s configuration affects the I/O
performance with three different file systems: ext4 [9], f2fs [28],
and xfs [22]. The goal is to investigate if the observations of our
microbenchmarks (§5) generalize to file systems. We evaluate two
workload combinations: R1–W256 and R256–W256 in Table 3 with
four Kyber configurations where the target read and write latency is
set to (50 𝜇s R, 20 𝜇sW), (50 𝜇s R, 100msW), (100ms R, 20 𝜇sW) and
(100ms R, 100ms W), the four extreme configurations in the con-
figuration search space in the previous section. The performance
of the fio workloads is reported in Figure 4.

How does Kyber affect the I/O performance with the use
of a file system? We first investigate how Kyber’s configurations
affect the performance of R1–W256 with different file systems. Fig-
ure 4a and Figure 4b show the P99 read latency (in 𝜇s, the lower
the better) and write throughput (in KIOPS, the higher the better)
respectively with workload R1–W256. Kyber delivers the lowest
read P99 latency with configuration (50 𝜇s R, 100ms W), 13.0%–
35.9% lower latency than the worst configuration (160.4–160.8 𝜇s
vs. 184.9–249.9 𝜇s) . This lower P99 read latency comes at the cot
of lower write throughput (72.9–75.5 KIOPS or 34.9%–50.1% lower)
compared to the highest write throughput (116.0–147.0 KIOPS) (O-
9). If the workloads access the SSD via a file system, Kyber can be
configured to deliver up to 35.9% lower read P99 latency than the
P99 read latency delivered in other configurations with concurrent
background writes (G-4).

Next, we investigate howKyber’s configurations affect the through-
putwhen a read throughput-boundworkload and awrite throughput-
bound workload run concurrently. Figure 4c and Figure 4d show
the read and write throughput with workload setting R256–W256.
We have two observations. Firstly, the workloads with ext4 and xfs
have similar performance. Configuring Kyber to prioritize read (e.g.,

171

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Zebin Ren, Krijn Doekemeijer, & Animesh Trivedi

ext4 f2fs xfs0

100

200

300

P9
9

la
te

nc
y

(µ
s)

19
4.

8

17
8.

4 20
1.

7

16
0.

4

16
0.

8

16
0.

8

24
9.

9

18
4.

9

24
8.

0

22
8.

8

18
2.

9

24
9.

9
(a) R latency in R1–W256

ext4 f2fs xfs0

100

200

300

T
hr

ou
gh

pu
t(

K
IO

PS
)

11
8.

2

10
5.

3 12
6.

4

72
.9

75
.5

73
.3

14
3.

8

11
6.

0 14
7.

0

14
0.

1

11
3.

9 14
6.

0

(b) W throughput in R1–W256

ext4 f2fs xfs0

100

200

300

T
hr

ou
gh

pu
t(

K
IO

PS
)

22
7.

7

23
4.

4

22
8.

1

23
1.

0

23
9.

3

23
4.

6

93
.2

22
9.

7

13
2.

6

23
0.

5

23
9.

1

23
0.

9

(c) R throughput in R256–W256

ext4 f2fs xfs0

100

200

300

T
hr

ou
gh

pu
t(

K
IO

PS
)

11
5.

5

10
4.

3

12
2.

9

65
.6

67
.9

65
.6

12
7.

6

10
7.

8 13
2.

6

11
9.

0

10
8.

7

12
8.

2

(50 µs, 20 µs)
(50 µs, 100 ms)

(100 ms, 20 µs)
(100 ms, 100 ms)

(d) W throughput in R256–W256

Figure 4: Performance of R1–W256 and R256–W256 combinations with different Kyber configurations and ext2, f2fs and xfs.

50 𝜇s read latency and 100ms write latency, the second bar in each
group) does not lead to significantly higher read throughput com-
pared to the other three settings (from 227.7 and 228.1 KIOPS to
231.1 and 234.6 KIOPS, 1.3% and 2.8% higher read throughput). How-
ever, the write throughput is significantly decreased (from 127.6
and 132.6 KIOPS to 65.6 KIOPS, 48.6% and 50.5% lower through-
put). The same occurs when we configure Kyber to prioritize writes
over reads (e.g., 100ms write latencies and 20 𝜇s read latencies,
the third bar in each group) (O-10). Secondly, Kyber’s configura-
tions do not have a significant effect on the read throughput of
f2fs (the read throughput is 229.7–239.3 KIOPS). However, prioritiz-
ing reads causes the write throughput to decrease from 108.7 KIOPS
to 67.9 KIOPS, a 37.5% lower write throughput (O-11). Thus, we
recommend that users should configure Kyber with the same read
and write target latencies. In our setup, the read and write target
latencies are set to (50 𝜇s R, 20 𝜇s W) and (100ms R, 100ms W) to
achieve both read and write peak throughput (G-5).

In conclusion, when a latency-sensitive workload runs concur-
rently with a throughput-bound write workload via a file system,
Kyber can be configured to deliver low read P99 latency by setting
low read target latency and high write target latency to prioritize
reads. When there are read and write throughput workloads run-
ning concurrently, we suggest setting the read and write target
latencies to similar values to achieve high read and write through-
put.

7 RELATEDWORK
I/O schedulers for flash SSDs. Our study focuses on the state-of-
the-practice Linux I/O scheduler Kyber . However, there are many
start-of-the-art I/O schedulers for SSDs for Linux.

Designing fair-sharing I/O schedulers has been extensively stud-
ied with SSDs [15, 18, 21, 35, 39, 40, 43, 48]. MQFQ [21] utilizes the
multi-queue interface to increase its scalability. D2FQ [43] further
increases the performance of fair-sharing I/O schedulers by elimi-
nating the “stage” step and offloading the scheduling to SSDs using
the weighted round-robin feature [25].

There are also I/O schedulers that are optimized to deliver low
latency for latency-sensitive workloads in shared environments [24,
31, 33]. K2 [33] strictly prioritizes high-priority requests and trades
throughput for latency. blk-switch [24] provides low latency for
high-priority workloads and preserves high total throughput at the
same time. FastResponse [31] co-designs the I/O scheduler with the
storage stack to reduce the I/O interference.

Flash-based SSDs have many idiosyncrasies because of their
complex internal architectures. Various I/O schedulers are built to

utilize these idiosyncrasies to increase SSDs’ write performance
and lifespan by using fine-grained access [41], reducing SSD GC
overhead [19, 20, 26] and reducing read/write interference [27, 35].

Performance characterization of Linux I/O schedulers.Many
studies characterize the performance of Linux I/O schedulers with
NVMe SSDs [37, 38, 42]. Whitaker et al. [42] characterize the per-
formance of the Linux I/O schedulers on ULL SSDs based on 3D
XPoint technology. Their findings include that Linux I/O sched-
ulers lead to higher latency, lower throughputs, and higher energy
overhead than without the I/O schedulers. Ren et al. [37] extended
this work by characterizing the performance overhead, scalability,
QoS with more common flash-based SSDs. Additionally, they char-
acterize how Kyber’s configurations affect the interference between
foreground read workloads and background write workloads. We
extend this work on Kyber by characterizing the performance of
Kyber with different combinations of workloads and how these
effects can be generalized to different file systems. We presented an
in-depth, systematic study to give guidelines on how to configure
Kyber with specified SSDs and workloads.

8 CONCLUSION AND FUTUREWORK
In this paper, we investigate how Kyber’s configurations affect the
performance of different workloads with various file systems and
storage devices. Our results show that Kyber can be configured
to deliver low read latency when there is a concurrently running
write workload. Kyber can also be used to balance the throughput
share between read and write throughput-bound workloads when
the applications directly run on the top of block devices.

This work can be expended in (1) evaluating how Kyber’s con-
figuration affects the performance of applications with mixed read
and write workloads, (2) designing an automatic tool that can find
the best Kyber configuration automatically, and (3) designing al-
gorithms that dynamically configures Kyber when the workload
changes.
AcknowledgmentsThiswork is partially supported byNetherlands-
funded projects from the Dutch Research Council (NWO) grants
(OCENW.KLEIN.561 and OCENW.KLEIN.209) and GFP 6G FNS, and
EU-funded projects MCSA-RISE Cloudstars and Horizon Graph-
Massivizer. Krijn Doekemeijer is funded by the VU PhD innovation
program. We thank the anonymous HotCloudPerf’24 reviewers for
their invaluable and constructive feedback. We would also like to
thank Jesse Donkervliet, Sacheendra Talluri, Matthijs Jansen, and
the AtLarge group at VU Amsterdam for their help with the paper.

172

A Systematic Configuration Space Exploration of the Linux Kyber I/O Scheduler ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Accessed: 2024-03-13. 3D XPoint. https://insidehpc.com/2015/07/intel-and-

micron-announce-3d-xpoint-non-volatile-memory/
[2] Accessed: 2024-03-13. BFQ Budget Fair Queueing Document. https://www.

kernel.org/doc/html/latest/block/bfq-iosched.html
[3] Accessed: 2024-03-13. fio. https://github.com/axboe/fio
[4] Accessed: 2024-03-13. Intel Optane 900P Techinical Specification.

https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-
ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint/specifications.html

[5] Accessed: 2024-03-13. Intel® Optane™ SSD DC P5800X Series.
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-
ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html

[6] Accessed: 2024-03-13. Kyber Multiqueue I/O Scheduler. https://lwn.net/Articles/
720071/

[7] Accessed: 2024-03-13. Linux I/O Schedulers. https://wiki.ubuntu.com/Kernel/
Reference/IOSchedulers

[8] Accessed: 2024-03-13. MQ-Deadline Implementation. https://elixir.bootlin.com/
linux/latest/source/block/mq-deadline.c

[9] Accessed: 2024-03-13. The New ext4 Filesystem: Current Status and Future Plans.
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf

[10] Accessed: 2024-03-13. NVM Express. https://nvmexpress.org
[11] Accessed: 2024-03-13. Samsung 980 PRO PCIe 4.0 SSD. https://semiconductor.

samsung.com/consumer-storage/internal-ssd/980pro/
[12] Accessed: 2024-03-13. Toshiba Memory Introduces XL-FLASH Storage Class

Memory Solution. https://americas.kioxia.com/en-us/business/news/2019/
memory-20190805-1.html

[13] Accessed: 2024-03-13. Two New Block I/O Schedulers for 4.12. https://lwn.net/
Articles/720675/

[14] Jens Axboe. Accessed: 2024-03-13. Efficient I/O with io_uring. https://kernel.
dk/io_uring.pdf

[15] Alan J. Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and Simu-
lation of a Fair Queueing Algorithm. In Proceedings of the ACM Symposium on
Communications Architectures & Protocols, SIGCOMM 1989. ACM, 1–12.

[16] Diego Didona, Nikolas Ioannou, Radu Stoica, and Kornilios Kourtis. 2020. Toward
a Better Understanding and Evaluation of Tree Structures on Flash SSDs. Proc.
VLDB Endow. 14, 3 (2020), 364–377.

[17] Nima Elyasi, Mohammad Arjomand, Anand Sivasubramaniam, Mahmut T. Kan-
demir, Chita R. Das, and Myoungsoo Jung. 2017. Exploiting Intra-Request Slack
to Improve SSD Performance. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2017. ACM, 375–388.

[18] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. 1996. Start-Time Fair Queue-
ing: A Scheduling Algorithm for Integrated Services Packet Switching Networks.
In Proceedings of the ACM SIGCOMM1996 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, 1996. ACM, 157–168.

[19] Jiayang Guo, Yimin Hu, and Bo Mao. 2015. Enhancing I/O Scheduler Performance
by Exploiting Internal Parallelism of SSDs. In Algorithms and Architectures for
Parallel Processing - 15th International Conference, ICA3PP 2015. Proceedings, Part
IV (Lecture Notes in Computer Science, Vol. 9531). Springer, 118–130.

[20] Jiayang Guo, Yiming Hu, Bo Mao, and SuzhenWu. 2017. Parallelism and Garbage
Collection Aware I/O Scheduler with Improved SSD Performance. In 2017 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2017. IEEE
Computer Society, 1184–1193.

[21] Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty. 2019. Multi-
Queue Fair Queuing. In 2019 USENIX Annual Technical Conference, USENIX ATC
2019. USENIX Association, 301–314.

[22] Christoph Hellwig. 2009. XFS: The Big Storage File System for Linux. login
Usenix Mag. 34, 5 (2009).

[23] Tejun Heo, Dan Schatzberg, Andrew Newell, Song Liu, Saravanan Dhakshina-
murthy, Iyswarya Narayanan, Josef Bacik, Chris Mason, Chunqiang Tang, and
Dimitrios Skarlatos. 2022. IOCost: Block IO Control for Containers in Datacenters.
In ASPLOS ’22: 27th ACM International Conference on Architectural Support for
Programming Languages and Operating System 2022. ACM, 595–608.

[24] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. 2021.
Rearchitecting Linux Storage Stack for 𝜇s Latency and High Throughput. In 15th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021.
USENIX Association, 113–128.

[25] Kanchan Joshi, Kaushal Yadav, and Praval Choudhary. 2017. Enabling NVMe
WRR Support in Linux Block Layer. In 9th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 17). USENIX Association.

[26] Myoungsoo Jung,Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, andMahmut T.
Kandemir. 2014. HIOS: A Host Interface I/O Scheduler for Solid State Disks. In
ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014.
IEEE Computer Society, 289–300.

[27] Jieun Kim, Dohyun Kim, and Youjip Won. 2022. Fair I/O Scheduler for Alleviating
Read/Write Interference by Forced Unit Access in Flash Memory. In HotStorage
’22: 14th ACM Workshop on Hot Topics in Storage and File Systems, 2022. ACM,

86–92.
[28] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho. 2015. F2FS:

A New File System for Flash Storage. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies, FAST 2015. USENIX Association, 273–286.

[29] Shaohong Li, Xi Wang, Xiao Zhang, Vasileios Kontorinis, Sreekumar Kodakara,
David Lo, and Parthasarathy Ranganathan. 2020. Thunderbolt: Throughput-
Optimized, Quality-of-Service-Aware Power Capping at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2020. USENIX
Association, 1241–1255.

[30] Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis. 2022. RAIL:
Predictable, Low Tail Latency for NVMe Flash. ACM Trans. Storage 18, 1 (2022),
5:1–5:21.

[31] Mingzhe Liu, Haikun Liu, Chencheng Ye, Xiaofei Liao, Hai Jin, Yu Zhang, Ran
Zheng, and Liting Hu. 2022. Towards Low-Latency I/O Services for Mixed Work-
loads Using Ultra-Low Latency SSDs. In ICS ’22: 2022 International Conference on
Supercomputing, 2022. ACM, 13:1–13:12.

[32] Hui Lu, Brendan Saltaformaggio, Ramana Rao Kompella, and Dongyan Xu. 2015.
vFair: Latency-Aware Fair Storage Scheduling via per-IO Cost-Based Differentia-
tion. In Proceedings of the Sixth ACM Symposium on Cloud Computing, SoCC 2015.
ACM, 125–138.

[33] Till Miemietz, Hannes Weisbach, Michael Roitzsch, and Hermann Härtig. 2019.
K2: Work-Constraining Scheduling of NVMe-Attached Storage. In IEEE Real-Time
Systems Symposium, RTSS 2019. IEEE, 56–68.

[34] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-Sensitive
Datacenter Workloads. In 16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2019. USENIX Association, 361–378.

[35] Stan Park and Kai Shen. 2012. FIOS: A Fair, Efficient Flash I/O Scheduler. In
Proceedings of the 10th USENIX conference on File and Storage Technologies, FAST
2012. USENIX Association, 13.

[36] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong, Yu Xu, and Haibing Guan.
2018. MDev-NVMe: A NVMe Storage Virtualization Solution with Mediated
Pass-Through. In 2018 USENIX Annual Technical Conference, USENIX ATC 2018.
USENIX Association, 665–676.

[37] Zebin Ren, Krijn Doekemeijer, Nick Tehrany, and Animesh Trivedi. 2024. BFQ,
Multiqueue-Deadline, or Kyber? Performance Characterization of Linux Storage
Schedulers in the NVMe Era. To Appear in the Proceedings of the 2024 ACM/SPEC
International Conference on Performance Engineering, ICPE 2024. (2024).

[38] Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of Modern
Storage Stacks: POSIX I/O, libaio, SPDK, and io_uring. In Proceedings of the 3rd
Workshop on Challenges and Opportunities of Efficient and Performant Storage
Systems, CHEOPS 2023. ACM, 35–45.

[39] Kai Shen and Stan Park. 2013. FlashFQ: A Fair Queueing I/O Scheduler for
Flash-Based SSDs. In 2013 USENIX Annual Technical Conference, 2013. USENIX
Association, 67–78.

[40] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gregory R. Ganger.
2007. Argon: Performance Insulation for Shared Storage Servers. In 5th USENIX
Conference on File and Storage Technologies, FAST 2007. USENIX, 61–76.

[41] Mingyang Wang and Yiming Hu. 2014. An I/O Scheduler Based on Fine-Grained
Access Patterns to Improve SSD Performance and Lifespan. In Symposium on
Applied Computing, SAC 2014. ACM, 1511–1516.

[42] Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Nihat Altiparmak. 2023.
Do We Still Need IO Schedulers for Low-latency Disks?. In Proceedings of the
15th ACM/USENIX Workshop on Hot Topics in Storage and File Systems, HotStorage
2023. ACM, 44–50.

[43] Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. 2021. D2FQ: Device-
Direct Fair Queueing for NVMe SSDs. In 19th USENIX Conference on File and
Storage Technologies, FAST 2021. USENIX Association, 403–415.

[44] Kan Wu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2019. To-
wards an Unwritten Contract of Intel Optane SSD. In 11th USENIX Workshop on
Hot Topics in Storage and File Systems, HotStorage 2019. USENIX Association.

[45] Suzhen Wu, Weiwei Zhang, Bo Mao, and Hong Jiang. 2019. HotR: Alleviating
Read/Write Interference with Hot Read Data Replication for Flash Storage. In
Design, Automation & Test in Europe Conference & Exhibition, DATE 2019. IEEE,
1367–1372.

[46] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu Awasthi,
Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. 2015. Performance
Analysis of NVMe SSDs and Their Implication on Real World Databases. In
Proceedings of the 8th ACM International Systems and Storage Conference, SYSTOR
2015. ACM, 6:1–6:11.

[47] Jinfeng Yang, Bingzhe Li, and David J. Lilja. 2020. Exploring Performance Char-
acteristics of the Optane 3D Xpoint Storage Technology. ACM Trans. Model.
Perform. Evaluation Comput. Syst. 5, 1 (2020), 4:1–4:28.

[48] Minhoon Yi, Minho Lee, and Young Ik Eom. 2017. CFFQ: I/O Scheduler for
Providing Fairness and High Performance in SSD Devices. In Proceedings of
the 11th International Conference on Ubiquitous Information Management and
Communication, IMCOM 2017. ACM, 87.

173

https://insidehpc.com/2015/07/intel-and-micron-announce-3d-xpoint-non-volatile-memory/
https://insidehpc.com/2015/07/intel-and-micron-announce-3d-xpoint-non-volatile-memory/
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://github.com/axboe/fio
https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint/specifications.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://lwn.net/Articles/720071/
https://lwn.net/Articles/720071/
https://wiki.ubuntu.com/Kernel/Reference/IOSchedulers
https://wiki.ubuntu.com/Kernel/Reference/IOSchedulers
https://elixir.bootlin.com/linux/latest/source/block/mq-deadline.c
https://elixir.bootlin.com/linux/latest/source/block/mq-deadline.c
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://nvmexpress.org
https://semiconductor.samsung.com/consumer-storage/internal-ssd/980pro/
https://semiconductor.samsung.com/consumer-storage/internal-ssd/980pro/
https://americas.kioxia.com/en-us/business/news/2019/memory-20190805-1.html
https://americas.kioxia.com/en-us/business/news/2019/memory-20190805-1.html
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf

Baking Disaster-Proof Kubernetes Applications with Efficient
Recipes

Runyu Jin
runyu.jin@ibm.com

IBM Almaden Research Center
Almaden, California, USA

Paul Muench
pmuench@us.ibm.com

IBM Almaden Research Center
Almaden, California, USA

Travis Janssen
travis.janssen@ibm.com

IBM Almaden Research Center
Almaden, California, USA

Brian Hatfield
bhatfiel@us.ibm.com

IBM Almaden Research Center
Almaden, California, USA

Veera Deenadhayalan
veerad@us.ibm.com

IBM Almaden Research Center
Almaden, California, USA

ABSTRACT
Multicluster disaster recovery on cloud-native platforms such as
Kubernetes usually replicates application data and Kubernetes re-
sources to a safe recovery cluster. In the event of a disaster, Kuber-
netes resources are restored to the recovery cluster to recover the
affected applications. We tested 10 popular Kubernetes applications
using this naive approach, and 60% failed. Problems include data
being restored in the wrong order, cluster-specific data being re-
stored instead of generated by the cluster, etc. All these problems
lead to our recipe design that enables disaster recovery of all Ku-
bernetes applications. In this paper, we analyze the problems we
encountered during the disaster recovery of Kubernetes applica-
tions and categorize applications based on their disaster recovery
behaviors. We present a recipe that groups, orders, and filters Ku-
bernetes resources to enable disaster recovery. Finally, we evaluate
the reliability and efficiency of the recipe. Our evaluation shows
that recipe achieves a 100% success rate of disaster recovery while
adding mere seconds of overhead to the recovery time.

CCS CONCEPTS
• Computer systems organization → Reliability; Cloud com-
puting; Availability.

KEYWORDS
Disaster Recovery, Cloud Computing, Kubernetes, Reliability, Con-
tainerized, Multi-cluster

ACM Reference Format:
Runyu Jin, Paul Muench, Travis Janssen, Brian Hatfield, and Veera Deenad-
hayalan. 2024. Baking Disaster-Proof Kubernetes Applications with Efficient
Recipes. In Companion of the 15th ACM/SPEC International Conference on
Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3629527.3651417

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651417

1 INTRODUCTION
Kubernetes has become the container orchestration platform of
choice across the IT industry [26]. Kubernetes is no longer focused
only on stateless applications and as a result the users of Kubernetes
are concerned with data resiliency [25]. This paper focuses on
disaster recovery (DR). A naive approach to protecting stateful
applications against disasters is to replicate all application persistent
storage and all Kubernetes resources to a safe recovery cluster. This
naive approach failed for 60% of 10 stateful applications evaluated.
This paper proposes disaster recovery recipes, which is a method
of implementing disaster recovery for Kubernetes applications for
which the naive approach fails.

Recipes in our disaster recovery solution have 4 goals: (1) provide
a disaster recovery solution to currently deployed applications (2)
enable Site Reliability Engineers or developers to create disaster
recovery recipes for applications (3) enable application developers
to create disaster recovery hooks when other recovery techniques
are not sufficient (4) make application disaster recovery reliable
and efficient. Achieving all of these goals requires a user to deploy a
disaster recovery framework along with Kubernetes as Kubernetes
is not inherently disaster resistant. The disaster recovery framework
discussed in this paper is Ramen [20], which is an IBM open-source
project that provides a naive DR solution to Kubernetes applications.
We implemented recipes in Ramen and evaluated the recipe design
using Ramen. The resulting implementation is now available on
the Ramen GitHub.

Ten Kubernetes data management system applications were stud-
ied. Four of the data management systems were able to recover
from 100% of simulated disasters without a recipe. Two of the data
management systems required recipes without hooks to achieve
any successful recovery from a disaster. The remaining four appli-
cations require both recipes and hooks and that recovery technique
is not the focus of this paper. With 1 to 3 days effort each of the
2 applications that needed recipes without hooks recovered from
100% of simulated disasters. On average the Kubernetes resource
restore time for applications is 28% of the application’s recovery
time. Our DR solution has a small and fixed recovery time for any
size of raw data. Thus our approach is both highly effective and
highly efficient.

Our disaster recovery solution with recipes is the only known
solution that can combine filtering, ordering, and hooks for Ku-
bernetes resource protection and recovery. These protection and

174

https://doi.org/10.1145/3629527.3651417
https://doi.org/10.1145/3629527.3651417
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3651417

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Runyu Jin, Paul Muench, Travis Janssen, Brian Hatfield, & Veera Deenadhayalan

recoverymechanisms enable two essential values. First, our solution
can be applied to running applications. Second, our solution can be
leveraged by users without changing application code which can
make a solution rapidly available. Other solutions exist to protect
Kubernetes applications from disasters. There are backup/restore
solutions that require time to restore data before an application
is restarted [21], which makes total recovery time longer. There
are solutions based on cross data center Kubernetes clusters [19],
but those solutions rely on synchronous replication. Synchronous
replication is not suitable to address region wide disasters as the
communication latency for maintaining cluster membership across
regions is too high. There are other solutions like ours that can
protect applications across regions with data in place recovery [30].
However, these other solutions do not provide the flexible Kuber-
netes resource protection and recovery mechanisms that are needed
by data management systems.

2 BACKGROUND
Business continuity is the ability of a business to meet the demands
of its clients by recovering from diverse types of problems as quickly
as possible at a reasonable cost. The types of problems that affect
business continuity can be broadly classified as follows: (1) failure
of subsystems (such as, nodes, network, etc.) within a data center or
availability zone (AZ), (2) unrecoverable corruption of data (either
accidentally or maliciously), and (3) failure of the entire data center
or multiple data centers in a region. These problems are solved
respectively using: (a) high availability (HA) solutions, such as
redundancy within the data center to avoid single points of failure,
(b) backup and restore (B/R) of data using an external secondary
store, and (c) disaster recovery (DR) solutions that replicate the
application state to another data center that is in a different AZ or
region [24]. In our paper, we focus on DR but some of the problems
we outline in Section 3 also apply to B/R.

The goal of B/R and DR solutions is to recover critical application
state after a disaster event. Bare-metal servers, virtual machines,
and containers typically store their bootstrap configuration data in
locally attached persistent volumes (e.g., in the /etc directory of
the root file system) and may store their application volume data
either in locally attached persistent volumes or in remote network
attached persistent volumes. Whereas, in Kubernetes, application
state is a combination of (a) Kubernetes API resources stored in an
etcd backing store [17] and (b) volume data stored in persistent
volumes. Examples of API resource types are deployments, pods,
PersistentVolumeClaims (PVCs), PersistentVolumes (PVs), services,
secrets, and ConfigMaps.

There aremanyDR solutions for Kubernetes. Kubernetes stretched
cluster is a solution that takes a single Kubernetes cluster and
stretches it by placing all the control plane components, including
etcd, across AZs within a region. This solution leverages the HA
features of Kubernetes to build a basic DR solution across multi-
ple AZs [18]. Given that this solution uses a single etcd cluster
across multiple AZs, it does not suffer from the multi-cluster DR
problems we motivate in Section 3. However, this solution suffers
from the effects of network latency across AZs. The longer the
distance between the AZs, the higher the latency is between them
and proportionally severe is the latency effect on etcd replication
I/O across AZs. High network latencies can cause etcd to miss

heartbeats, experience timeouts, result in leader elections that are
disruptive to the cluster, and can also lead to API slowness [35].
This makes it unsuitable to stretch the cluster across long distances.
Hence, this limitation of Kubernetes stretched cluster serves as a
motivation for Kubernetes multi-cluster DR, which is the focus
of this paper. Kubernetes multi-cluster DR [34] is a solution that
overcomes the limitations of Kubernetes stretched cluster by using
multiple independent Kubernetes clusters, each with its own etcd
backing store.

Figure 1: Kubernetes Multi-cluster DR

Kubernetes enables building DR features with its extensible de-
sign paradigm. While DR features are not part of core Kubernetes,
many vendors offer custom extensions to Kubernetes. Ramen [20] is
an example of an open-source DR solution. The Ramen DR solution
can handle applications deployed using GitOps [7] and other tradi-
tional deployment methods. It focuses on protection and recovery
of Kubernetes API resources only. To protect API resources, Ramen
captures selected API resources, asynchronously stores them in an
object store in the recovery DR cluster, and restores them to the
etcd of the recovery DR cluster after a disaster event.

3 NAIVE KUBERNETES DR
Our primary motivation is to disaster-proof stateful Kubernetes
applications (a) without modifying the applications themselves and
(b) irrespective of the application deployment methodology [2].

3.1 Limitations Of The Naive Approach
GitOps [7] uses CI/CD pipelines to automate deployment of appli-
cations using declarative object-configuration stored in Git reposi-
tories. A naive approach to recover such a GitOps deployed appli-
cation is to again use GitOps on the recovery cluster. However, this
approach may not work for all types of applications. Consider an
example of a GitOps deployed stateful application that has PVCs.
Kubernetes will dynamically provision PV resources to fulfill the
PVCs. These locally created PV resources in the home cluster do
not come from the declarative Git source. If one were to use GitOps
in the recovery cluster, Kubernetes will dynamically provision new
PV resources to fulfill the PVCs that do not contain PV contents at
the home cluster, resulting in data loss. We expect other application
specific examples where not all API resources come from a declara-
tive source, which makes GitOps-based DR fall short as a full DR
solution. This implies that we need to capture the API resources
stored in the home cluster and restore it to the recovery cluster.

A naive capture of the API resources on the home cluster period-
ically queries the API server and stores the results in the recovery
cluster. After a disaster event, a naive recovery of API resources

175

Baking Disaster-Proof Kubernetes Applications with Efficient Recipes ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

on the recovery cluster restores previously captured API resources
of the home cluster to the recovery cluster. This naive approach
does not consider parent and child resources, sequence resource
creation, nor exclude any resources.

We define a naive DR approach to use naive capture, naive re-
covery, or use naive GitOps for DR. While naive DR appears to be
simple and intuitive, our case-study shows examples where naive
DR falls short due to problems that come from (a) the application
(b) the third-party DR service that is in use, (c) Kubernetes itself.
Kubernetes aims to eliminate the need for orchestration of com-
plex applications with its design comprising a set of independent,
composable control processes that continuously drive the current
state towards the provided desired state, but these principles do not
apply to diverse applications that are out in the wild.

3.2 Case Study Using The Naive Approach
We selected 10 popular Kubernetes applications to study how the
naive approach works. Five are database management systems
ranked among DB-Engine’s seven most popular either directly
or as open-source relatives: Elasticsearch [8], EnterpriseDB [12],
MariaDB [14], MongoDB [27], and Redis [36, 39]. Two are popu-
lar open-source machine learning frameworks: PyTorch [31] and
TensorFlow [1, 40]. Jenkins [22] is one of the most popular con-
tinuous integration/continuous delivery (CI/CD) tools [6]. Apache
Kafka [13] is the most popular open-source event streaming plat-
form [23]. And Apache Spark [15] is an engine for large-scale data
processing used by 80% of Fortune 500 companies [15].

The naive approach failed to recover 60% of the applications from
simulated disaster. We categorize the reasons for failure into four
modes. Table 1 below lists the applications tested and for which
reasons they failed.

Naive Approach Failure Reason
Application Success Absence Order Stale Mode
Elasticsearch ✓ ✓
EnterpriseDB ✓
Jenkins ✓
Kafka ✓
MariaDB ✓
MongoDB ✓
PyTorch ✓
Redis ✓
Spark ✓
TensorFlow ✓

Table 1: Naive Approach DR Results

Following are examples of how applications failed to recover
from simulated disaster, including some analysis of why the failures
happened. Each example failure is classified according to the failure
reason in Table 1. An application that fails to recover due to absence
requires a Kubernetes API resource that is missing. For example,
Elasticsearch could not query ApmServer resources because its
custom resource definition (CRD) resource was not installed. The
CRD resource type is cluster-scoped and the naive approach restores
cluster-scoped resources by exception only. A CRD is only restored

if a resource of the type it defines exists in the application’s names-
pace [5].

The naive approach restores most resource types in alphabetical
order by type name [4], e.g., Deployments, Jobs, StatefulSets. It
recreates resources without delay between types, but some appli-
cations benefit from a different order or delay. The order column
identifies applications that failed to recover due to their Kuber-
netes API resources being restored in an incorrect order. For ex-
ample, Elasticsearch typically failed to reach healthy status when
an EnterpriseSearch resource was restored immediately after its
associated Elasticsearch one, but succeeded whenever they were
separated by a five-second delay [9]. We discovered this acciden-
tally by specifying an explicit restore order which introduced the
delay.

Some applications failed to recover when stale information spe-
cific to the home cluster persisted in their Kubernetes API resources.
For example, PyTorch, deployed by the OpenShift Data Science op-
erator, failed to recover because an endpoint, containing the home
cluster’s name, was unreachable. The application recovered after
replacing the home cluster’s namewith the recovery cluster’s. Some
applications require a specific mode to restart on another cluster.
Redis, for example, failed to restart with the naive approach, but suc-
ceeded when its RedisEnterpriseCluster resource was modified
setting its spec.clusterRecoverymode to true [37]. In summary,
the naive approach to DR worked for some applications, but not all.
The naive approach worked for applications that omitted cluster-
specific information, did not have restore order requirements, had
no dependencies, and generally tolerated being restored on another
cluster.

4 ROBUST KUBERNETES DR USING RECIPES
Theoretically, Kubernetes application resources can be backed up as
a single unordered group, then restored as a single unordered group,
and eventually regain a functional state, provided the application
data is available. Our case study indicates that this assumption does
not hold true for many applications. Further, the issues that prevent
backup or recovery in a single group may not be fixed without
modifying the underlying application. To address these issues, we
introduce the Recipe concept for robust disaster recovery.
4.1 Recipe
A recipe is a Kubernetes custom resource (CR) that defines the cap-
ture and recovery sequences of Kubernetes objects. Recipes enable
and automate DR for any application. The recipe design specifically
addresses the issues experienced with naive DR as discussed in
Section 3. A key abstraction in a recipe is a workflow, which defines
a sequence of actions to take during a capture or recovery sequence.
A workflow is a sequentially processed list of groups and hooks.
Groups define the resources to be included or excluded in a step of a
workflow, and Hooks define actions that should be run in between
groups. With these three abstractions, all issues encountered during
the case study can be addressed.

The absence issue encountered with ElasticSearch involved a
missing CRD (ApmServer resource) whose absence failed the recov-
ery. Backing up an object CR requires the CRD, as does restoring
it. A recipe can handle this situation by capturing an active object
(ApmServer CR) along with the CRD it uses. This is preferred to

176

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Runyu Jin, Paul Muench, Travis Janssen, Brian Hatfield, & Veera Deenadhayalan

installing the full operator which includes the CRD on the recovery
cluster, as the recovery cluster version may not match the operator
version without prior planning.

Combinations of groups enable sequencing a recovery process.
If a particular resource is dependent on another in a parent-child
relationship, they can be split up into two groups to ensure the
parent resource exists before the child resource. Groups address
the absence and order problems encountered with ElasticSearch,
where the ElasticSearchCluster CR needs to be available before the
EnterpriseSearch CR (Recipe Example 1).

Hooks can address scenarios where an object must be modified
after restoration [3]. Restoring an object involves copying the re-
source contents from the home cluster and reproducing them on
the recovery cluster. Some applications, like OpenShift Data Sci-
ence, embed cluster-specific information in their resources, like
Notebooks. Kubernetes resources can become available, but the
application is inaccessible through an endpoint, which uses a stale
URL. By correcting this data, Hooks can address the stale issues
encountered in the case study.

Hooks can also address scenarios where selectively ordering or
filtering resource groups is insufficient to recover an application.
Redis requires that a recovery mode is specified on the CR when a
majority of nodes become unavailable [37]. During recovery, Re-
dis begins without any nodes available, and setting the recovery
mode is required to launch pods and continue operation. Adding
spec.clusterRecovery=true to the RedisEnterpriseCluster CR to be-
gin the recovery mode that is required by Redis. Hooks can be
used to add the recovery mode field on application CRs, addressing
mode-type scenarios found during the case study.
4.2 Recipe API and Examples
Now that the high level abstractions have been explained, the API
can be introduced. The sample recipe is based on ElasticSearch, but
adds hooks to demonstrate the feature. The recipe object itself is
divided into the three abstractions: groups, hooks and workflows.
The captureWorkflow is used for the backup/capture sequence, and
the recoverWorkflow is used for the restore/recover sequence. A
sequence is defined using a map of strings, where a user specifies
a type (Group or Hook), then the name of that group or hook (for
example: "group: everything"). Each step of the sequence must be
completed before the next one begins.

Groups are defined with a unique name identifier, and may in-
clude and exclude resource types by name. Groups use namespace-
scoped visibility by default, but may opt-into cluster-scoped re-
sources with an additional field (includeClusterResources = true).
Since capture and recovery sequences may not be symmetrical, a
backupRef field is used to source recovery contents.

A full Recipe is shown below in Recipe Example 1. In the current
recipe implementation, groups are processed independently. There-
fore, it is possible to restore duplicate resources across different
groups. Using excludedResourceTypes avoids this scenario.
Recipe Example 1

apiVersion: ramendr.openshift.io/v1alpha1
kind: Recipe
metadata:

name: recipe-demo
namespace: eck

spec:
appType: eck
volumes:

name: volumes
type: volume
labelSelector: {} # select all PVCs

groups:
- name: everything

type: resource
includedResourceTypes:
- "*"

- name: cluster
backupRef: everything
type: resource
includedResourceTypes:
- elasticsearches.elasticsearch.k8s.elastic.co

- name: enterprise-search
backupRef: everything
type: resource
includedResourceTypes:
- enterprisesearches.enterprisesearch\

.k8s.elastic.co
- name: misc

backupRef: everything
type: resource
excludedResourceTypes:
- enterprisesearches.enterprisesearch\

.k8s.elastic.co
- elasticsearches.elasticsearch.k8s.elastic.co

hooks:
- name: demo-hooks

labelSelector:
matchLabels:

appname: eck
type: exec
ops:
- name: date

container: main
timeout: 10m

command: # runs as single command: "/bin/sh -c date"
- "/bin/sh"
- "-c"
- "date"

captureWorkflow:
sequence:
- hook: demo-hooks/date
- group: everything

recoverWorkflow:
sequence:
- group: cluster
- group: enterprise-search
- group: misc

4.3 Implementation
Recipes are a general concept which may be used as a library com-
ponent [10]. The controller logic discussed in this paper was imple-
mented within Ramen, an open-source Disaster Recovery solution

177

Baking Disaster-Proof Kubernetes Applications with Efficient Recipes ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Category Application
Type 1 Jenkins, Kafka, MongoDB, Spark
Type 2 Elasticsearch, MariaDB
Type 3 EnterpriseDB, PyTorch, Redis, Tensorflow
Table 2: Kubernetes Applications Categorization

[20]. Ramen handles volumes replication across clusters, while
recipes handle application recovery. The separation of API and
controller logic allows for customization of the software stack, if
a user desires. Ramen was released as a part of OpenShift Data
Foundations (formerly OpenShift Container Storage) v4.7 [32].

5 EVALUATION
We evaluated the performance of recipe-based disaster recovery
following the design described in Section 4. We implemented the
recipe based on Ramen [20]. Our key evaluation metrics are relia-
bility and efficiency of application recovery.

5.1 Environment Setup
We setup two RedHat Openshift Container Platform (OCP) [16]
4.12 clusters, one cluster serves as the home cluster where appli-
cations are installed and initially deployed. Another cluster serves
as the recovery cluster. When a simulated disaster happens, all the
applications deployed on the home cluster are recovered on the
recovery cluster. The application deployed on the home cluster is
removed completely including all the Kubernetes resources and
persistent volumes to mimic real-world production outages. Both
clusters use the same external RedHat OpenShift Data Foundation
(ODF) Ceph [33] cluster as the storage backend for all the appli-
cation persistent data. ODF offers the Metro Disaster Recovery
(MetroDR) solution which synchronously replicates persistent data
between the home and recovery clusters. We deployed Ramen on
both OCP clusters to protect Kubernetes application resources ev-
ery 5 minutes. We simulate a disaster scenario by removing all the
applications on the home cluster, and then initiate disaster recovery
on the recovery cluster.

5.2 Kubernetes Applications Categorization
Applications are categorized into three types, which reflects the
amount of custom handling required with a Recipe to enable DR
protection for the application. Type 1 applications do not require
Recipes: all the resources can be captured and recovered on its own.
Type 2 applications require Recipe Groups: either resource filtering
and/or ordering are required to restore the application. Type 3 ap-
plications require both Recipe Groups and Hooks: if an application
requires a program to run to reach a consistent application state,
this is done with a Hook. The categorization of the 10 applications
is shown in Table 2 based on the naive DR approach we studied
(Section 3).

We focus the evaluation on type 1 and type 2 applications in this
paper and type 3 applications evaluation will be future work. We
evaluated 6 modern applications that are either type 1 or type 2
applications which are a subset of the 10 applications introduced in
Section 3. The applications include Elasticsearch (v2.8.0), Jenkins
(v2.432), Apache Kafka (v2.5.0), MariaDB (v0.20.0), MongoDB (v7.0),

Application Ramen w/o Recipes Ramen w Recipes
Elasticsearch 0% 100%
Jenkins 100% 100%
Kafka 100% 100%
MariaDB 0% 100%
MongoDB 100% 100%
Spark 100% 100%
Table 3: DR Success Rate Without & With A Recipe

and Apache Spark (v3.1.1). Among them, Elasticsearch andMariaDB
are type 2 applications and use recipes. Elasticsearch uses 3 recipe
groups for ordering while MariaDB uses 4 recipe groups for both
ordering and filtering. All other applications are type 1 applications
and do not use recipes.

During the evaluation, each application is tested alone for its
disaster recovery reliability and efficiency. We tested disaster re-
covery 40 times one way for each application from home cluster
to recovery cluster and then back from recovery cluster to home
cluster back to back. Each disaster recovery iteration consists of
Kubernetes resource restore time and application recovery time.
Kubernetes resource restore time is the time for Ramen to create
all the Kubernetes resources. Ramen’s role in application recovery
ends once the Kubernetes objects have been created on the recovery
cluster. Application recovery time includes the Kubernetes resource
restore time, but also includes the time for the application to be-
come fully usable. We will show the success rate and the recovery
efficiency for the 80 runs in the following sections.

5.3 Recipe Reliability And Efficiency
Table 3 shows the success rate for the 40 runs of disaster recovery
of the 6 applications. Without recipe, Elasticsearch and MariaDB
cannot be successfully recovered. All the type 1 applications were
able to achieve 100% success rate of recovery. After applying the
recipe, Elasticsearch and MariaDB recovered successfully 100% of
the time. Also, the code modifications to Ramen to include the new
recipe design do not reduce the reliability of type 1 applications,
all the applications were recovered 100% of the time.

Figure 2 shows the the total recovery time v.s. the Kubernetes
resource restore time for the six applications. All the applications
were able to complete disaster recovery within 5 minutes. The
longest one was Kafka, which takes around 265 seconds. The short-
est one wasMongoDB, which takes around 106 seconds. Kubernetes
resource restore time takes a small portion of the total recovery
time, with an average of 28%. For most applications, it takes around
20% of the total application recovery time to restore Kubernetes
resources. MongoDB and Jenkins finish Kubernetes resources re-
store the fastest with 29 seconds. MariaDB takes the longest to
restore Kubernetes resources with 92 seconds around 61% of the
total recovery time. All the applications were able to finish recover-
ing Kubernetes resources within one and half minutes. Note that
besides the resource size, resource types also make a difference to
the resource restore time. Certain resources like pods take longer
to recover due to the underlying design of Velero where the restore
process requires querying of the server object by object.

After Ramen restores all the resources, it takes some more time
for the application to become ready by reconciling the application

178

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Runyu Jin, Paul Muench, Travis Janssen, Brian Hatfield, & Veera Deenadhayalan

Kubernetes resource restore time

Total app recovery time

T
im

e
 (

s
)

0

50

100

150

200

250

300

Elasticsearch Jenkins Kafka MariaDB MongoDB Spark

Figure 2: App DR Time v.s.
Resource Restore Time

1 group 2 groups 3 groups

K
u

b
e

rn
e

te
s
 R

e
s
o

u
rc

e
 R

e
s
to

re
 T

im
e

 (
s
)

0

10

20

30

40

50

60

 Spark Kafka

Figure 3: Adding Recipe
Groups Overhead

R
e

s
o

u
rc

e
 s

iz
e

 (
M

B
)

0

2

4

6

8

10

12

Elasticsearch Jenkins Kafka MariaDB MongoDB Spark

Figure 4: Application Re-
source Size In Megabytes

P
e

rs
is

te
n

t
v
o

lu
m

e
 s

iz
e

 (
G

B
)

0

10

20

30

40

Elasticsearch Jenkins Kafka MariaDB MongoDB Spark

Figure 5: Application Data
Size In Gigabytes

to match the desired application state in the Kubernetes resources.
MariaDB takes the shortest time around 58 seconds to become ready.
Kafka takes the longest of 227 seconds to become ready. Compared
to other applications, Kafka has two sets of pods, zookeeper and
kafka, to reconcile. MariaDB and Elasticsearch which are type
2 applications do not have a substantially longer recovery time
compared to other type 1 applications.

To measure the overhead of using recipe groups, we forcefully
added recipe groups to type 1 applications and show the Kuber-
netes resource restore time after adding different number of recipe
groups. Figure 3 illustrates the results. Adding 1 group has the same
Kubernetes resource restore time as not using recipe. When we add
more recipe groups, the Kubernetes resource restore time increases.
For Spark, from 1 group to 2 groups increases the restore time by 7
seconds. It further increases the restore time by 15 seconds from 2
groups to 3 groups. For Kafka, 2 groups and 3 groups add around 9
seconds of overhead. Most of the overhead come from communi-
cating with API server or Kubelet when switching groups which
takes around 5 seconds. We haven’t tuned API server to be efficient
and we believe this overhead can be eliminated after optimization.
Given the reliability that recipe enhanced, recipe overhead is low
in seconds and still restores resources with a reasonable amount of
time.

The total recovery time is largely related with the amount of
Kubernetes resources each application has. Figure 4 shows the size
of the Kubernetes resources in Megabytes. In general, the larger
the resource size, the longer it takes to recover the application. We
can see Kafka has the largest amount of resources so it takes the
longest to recover. For Elasticsearch and MariaDB which are type 2
applications, recipe adds some overhead to the total recovery time.

Figure 5 shows the total data size of all the Persistent Volumes
(PV) for each application. Because we are using MetroDR which
synchronously backups data volumes across the clusters, the data
volumes don’t need to be restored during disaster recovery. This
brings the benefits that the disaster recovery time is not related to
the data size of the PVs. Although MongoDB has the largest PV
size, it doesn’t take the longest to restore MongoDB.

6 RELATEDWORKS
Disaster recovery for Kubernetes applications is new enough that
there are no standards for how it should be deployed. Disaster
recovery solutions can be divided into two classes, solutions for
stateless applications and solutions for stateful applications. At this
time the techniques used for each class of disaster recovery solution
are distinct, but how techniques can be reused between the two
classes is an open area of research. So this section will compare our
solution with both classes of application disaster recovery.

The most common disaster recovery approach for Kubernetes
stateful applications is to use a backup/restore solution with persis-
tent volumes and Kubernetes resources being protected on a remote
site. De et al [11], Pakrijauskas and Mažeika [29] and Rubio [38]
all evaluate backup/restore solutions in the cloud. These studies
do not focus on evaluating successful disaster recovery for a set
of Kubernetes applications. This can explain why De et al [11],
Pakrijauskas and Mažeika [29] and Rubio [38] do not mention the
need for a disaster recovery solution based on more than simple
replication. Torta [41] focuses on disaster recovery managed by
data management systems. Due to the active-active nature of data
management system disaster recovery the associated recovery time
can be very small. The limitation of using the disaster recovery
strategy in Torta [41] is that every application must have its own
disaster recovery solution. This application by application approach
to disaster recovery can be complex to manage and hence risky to
operate. Tran et al [42] investigates the mechanisms for the protec-
tion and recovery of running containers based based on application
checkpoints. Tran et al [42] does not investigate the protection and
recovery of Kubernetes applications with persistent volumes and
Kubernetes resources.

Stateless applications do not use persistent volumes and do not
rely on updates to Kubernetes resources. Hence these applications
can easily be recovered after a disaster. Moshfeghifar [28] studies
stateless applications in the form of serverless computing. The key
challenges addressed in Moshfeghifar [28] are deploying applica-
tions across multiple clusters and getting those clusters to act like
a single cluster environment.

7 CONCLUSION AND FUTUREWORK
This paper presents a disaster recovery (DR) solution for Kubernetes.
The novelties of this work lie in first, categorization of the problems
that current modern Kubernetes applications have when doing DR;
second, present a novel disaster recovery solution called recipes to
enable DR for all the modern applications without modifications to
the applications; third, evaluate the recipe solution to confirm that
recipe can achieve 100% success rate of DRwith low overhead. In our
future work, we will further explore recipe design with hooks and
how hooks can help disaster recovery of type 3 applications. Besides,
we will explore the disaster recovery solution’s applicability for
large scale database deployments and databases under continuous
load. We will also validate application data staleness.

REFERENCES
[1] Omdia Analyst. 2022. The Evolution of ML Frameworks Report - 2022. Technical

Report. Omdia.
[2] The Kubernetes Authors. 2023. Kubernetes Object Management.

https://kubernetes.io/docs/concepts/overview/working-with-objects/object-

179

https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/

Baking Disaster-Proof Kubernetes Applications with Efficient Recipes ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

management/
[3] Velero Authors. 2023. Velero 1.12 Restore Resource Modifiers. https://velero.io/

docs/v1.12/restore-resource-modifiers/
[4] Velero Authors. 2023. Velero Docs - Restore Reference. https://velero.io/docs/v1.

9/restore-reference/#restore-order
[5] Velero Authors. 2023. velero/pkg/backup/backup.go

at 9b5678f32a4aa696de5d645d15bc0ff1f989f464 · vmware-
tanzu/velero. https://github.com/vmware-tanzu/velero/blob/
9b5678f32a4aa696de5d645d15bc0ff1f989f464/pkg/backup/backup.go#L410-L419

[6] Michael Azoff. 2023. Omdia Universe: DevOps Release Management Solutions, 2023.
Technical Report. Omdia.

[7] Florian Beetz and Simon Harrer. 2022. GitOps: The Evolution of DevOps? IEEE
Software 39, 4 (2022), 70–75. https://doi.org/10.1109/MS.2021.3119106

[8] Elasticsearch B.V. 2022. Elasticsearch Platform — Find real-time answers at scale
| Elastic. https://www.elastic.co/

[9] Elastic B.V. 2023. Prerequisites | Enterprise Search documentation [8.11] | Elas-
tic. https://www.elastic.co/guide/en/enterprise-search/current/prerequisites.
html#prerequisites

[10] IBM Corp. 2023. Recipe API. https://github.com/RamenDR/recipe/blob/main/
api/v1alpha1/recipe_types.go

[11] Suman De, R Prashant Singh, et al. 2022. Selective Analogy of Mechanisms and
Tools in Kubernetes Lifecycle for Disaster Recovery. In 2022 IEEE 2nd International
Conference on Mobile Networks and Wireless Communications (ICMNWC). IEEE,
IEEE, 3 Park Avenue, 17th Floor New York, NY 10016-5997 USA, 1–6.

[12] enterprisedb. 2023. EnterpriseDB. "https://www.enterprisedb.com/"
[13] Apache Software Foundation. 2022. Apache Kafka. https://kafka.apache.org/
[14] MariaDB Foundation. 2022. https://mariadb.org/. MariaDBServer:

Theopensourcerelationaldatabase
[15] The Apache Software Foundation. 2022. Unified engine for large-scale data

analytics. https://spark.apache.org/
[16] The Linux Foundation. 2022. OpenShift Container Platform 4.12 Documentation.

https://docs.openshift.com/container-platform/4.12/welcome/index.html
[17] The Linux Foundation. 2023. Kubernetes Components. https:

//web.archive.org/web/20231025011453/https://kubernetes.io/docs/concepts/
overview/components/#etcd

[18] The Linux Foundation. 2023. Kubernetes: Running in multiple zones.
https://web.archive.org/web/20231020051135/https://kubernetes.io/docs/setup/
best-practices/multiple-zones/

[19] Red Hat. 2023. OpenShift Disaster Recovery using Stretch Cluster. https://red-
hat-storage.github.io/ocs-training/training/ocs4/ocs4-metro-stretched.html

[20] Red Hat. 2023. Ramen DR opensource project. https://github.com/RamenDR/
ramen/

[21] IBM. 2021. Overview of Kubernetes Backup Support. https://www.ibm.com/
docs/en/spp/10.1.5?topic=containers-overview

[22] Jenkins. 2022. Jenkins. https://www.jenkins.io/
[23] Alex Johnston. 2022. Connectivity is the watchword as Confluent continues to

expand. Technical Report. 451 Research.
[24] Th. Lumpp, J. Schneider, J. Holtz, M. Mueller, N. Lenz, A. Biazetti, and D. Petersen.

2008. From high availability and disaster recovery to business continuity solu-
tions. IBM Systems Journal 47, 4 (2008), 605–619. https://doi.org/10.1147/SJ.2008.

5386516
[25] Parth Sandip Mehta. 2023. NoSQL Databases in Kubernetes. Master’s thesis. San

Jose State University. https://doi.org/10.31979/etd.qrrp-3equ
[26] Christine Miyachi. 2021. The Rise of Kubernetes. In 2021 Cloud Continuum.

IEEE, 3 Park Avenue, 17th Floor New York, NY 10016-5997 USA, 1–5. https:
//doi.org/10.1109/CloudContinuum54760.2021.00002

[27] Inc. MongoDB. 2022. MongoDB: For the next generation of intelligent applica-
tions. https://www.mongodb.com/

[28] AmirhosseinMoshfeghifar. 2022. Active Disaster Recovery Strategy for Applications
Deployed Across Multiple Kubernetes Clusters, Using Service Mesh and Serverless
Workloads. Master’s thesis. Tampere University.

[29] Kęstutis Pakrijauskas and Dalius Mažeika. 2021. On recent advances on stateful
orchestrated container reliability. In 2021 IEEE Open Conference of Electrical,
Electronic and Information Sciences (eStream). IEEE, IEEE, 3 Park Avenue, 17th
Floor New York, NY 10016-5997 USA, 1–6.

[30] Portworx. 2023. Disaster Recovery. https://docs.portworx.com/portworx-
enterprise/operations/operate-kubernetes/disaster-recovery

[31] pytorch. 2023. PyTorch. "https://pytorch.org/"
[32] Inc. Red Hat. 2021. OpenShift Container Storage 4.7 release notes.

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_
storage/4.7/html-single/4.7_release_notes/index

[33] Inc. Red Hat. 2022. Red Hat OpenShift Data Foundation. https://www.redhat.
com/en/technologies/cloud-computing/openshift-data-foundation

[34] Inc. Red Hat. 2023. Introduction to OpenShift Data Foundation Disaster
Recovery. https://web.archive.org/web/20231010175615/https://access.redhat.
com/documentation/en-us/red_hat_openshift_data_foundation/4.13/html-
single/configuring_openshift_data_foundation_disaster_recovery_for_
openshift_workloads/index#introduction-to-odf-dr-solutions_common

[35] Inc Red Hat. 2024. Recommended etcd practices. https://web.
archive.org/web/20231105012238/https://docs.openshift.com/container-
platform/4.14/scalability_and_performance/recommended-performance-scale-
practices/recommended-etcd-practices.html

[36] redis. 2023. https://redis.io/. Redis
[37] Redis. 2023. Recover a Redis Enterprise cluster on Kubernetes | Redis Docu-

mentation Center. https://docs.redis.com/latest/kubernetes/re-clusters/cluster-
recovery/

[38] Sergio Fernández Rubio. 2022. Disaster Recovery Analysis of different Cloud
Managed Kubernetes Clusters. Master’s thesis. Edinburgh Napier University.
https://www.researchgate.net/profile/Sergio-Fernandez-Rubio/publication/
363632856_Disaster_Recovery_Analysis_of_different_Cloud_Managed_
Kubernetes_Clusters/links/6325ee52873eca0c0094f0e1/Disaster-Recovery-
Analysis-of-different-Cloud-Managed-Kubernetes-Clusters.pdf

[39] solid IT. 2023. DB-Engines Ranking. https://db-engines.com/en/ranking
[40] tensorflow. 2023. TensorFlow. "https://www.tensorflow.org/"
[41] Francesco Torta. 2023. Business Continuity in Kubernetes Multi-Cluster Environ-

ments. Ph. D. Dissertation. Politecnico di Torino.
[42] Minh-Ngoc Tran, Xuan Tuong Vu, and Younghan Kim. 2022. Proactive Stateful

Fault-Tolerant System for Kubernetes Containerized Services. IEEE Access 10
(2022), 102181–102194.

180

https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://velero.io/docs/v1.12/restore-resource-modifiers/
https://velero.io/docs/v1.12/restore-resource-modifiers/
https://velero.io/docs/v1.9/restore-reference/#restore-order
https://velero.io/docs/v1.9/restore-reference/#restore-order
https://github.com/vmware-tanzu/velero/blob/9b5678f32a4aa696de5d645d15bc0ff1f989f464/pkg/backup/backup.go#L410-L419
https://github.com/vmware-tanzu/velero/blob/9b5678f32a4aa696de5d645d15bc0ff1f989f464/pkg/backup/backup.go#L410-L419
https://doi.org/10.1109/MS.2021.3119106
https://www.elastic.co/
https://www.elastic.co/guide/en/enterprise-search/current/prerequisites.html#prerequisites
https://www.elastic.co/guide/en/enterprise-search/current/prerequisites.html#prerequisites
https://github.com/RamenDR/recipe/blob/main/api/v1alpha1/recipe_types.go
https://github.com/RamenDR/recipe/blob/main/api/v1alpha1/recipe_types.go
"https://www.enterprisedb.com/"
https://kafka.apache.org/
MariaDB Server: The open source relational database
MariaDB Server: The open source relational database
https://spark.apache.org/
https://docs.openshift.com/container-platform/4.12/welcome/index.html
https://web.archive.org/web/20231025011453/https://kubernetes.io/docs/concepts/overview/components/#etcd
https://web.archive.org/web/20231025011453/https://kubernetes.io/docs/concepts/overview/components/#etcd
https://web.archive.org/web/20231025011453/https://kubernetes.io/docs/concepts/overview/components/#etcd
https://web.archive.org/web/20231020051135/https://kubernetes.io/docs/setup/best-practices/multiple-zones/
https://web.archive.org/web/20231020051135/https://kubernetes.io/docs/setup/best-practices/multiple-zones/
https://red-hat-storage.github.io/ocs-training/training/ocs4/ocs4-metro-stretched.html
https://red-hat-storage.github.io/ocs-training/training/ocs4/ocs4-metro-stretched.html
https://github.com/RamenDR/ramen/
https://github.com/RamenDR/ramen/
https://www.ibm.com/docs/en/spp/10.1.5?topic=containers-overview
https://www.ibm.com/docs/en/spp/10.1.5?topic=containers-overview
https://www.jenkins.io/
https://doi.org/10.1147/SJ.2008.5386516
https://doi.org/10.1147/SJ.2008.5386516
https://doi.org/10.31979/etd.qrrp-3equ
https://doi.org/10.1109/CloudContinuum54760.2021.00002
https://doi.org/10.1109/CloudContinuum54760.2021.00002
https://www.mongodb.com/
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/disaster-recovery
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/disaster-recovery
"https://pytorch.org/"
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.7/html-single/4.7_release_notes/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.7/html-single/4.7_release_notes/index
https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://web.archive.org/web/20231010175615/https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.13/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#introduction-to-odf-dr-solutions_common
https://web.archive.org/web/20231010175615/https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.13/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#introduction-to-odf-dr-solutions_common
https://web.archive.org/web/20231010175615/https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.13/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#introduction-to-odf-dr-solutions_common
https://web.archive.org/web/20231010175615/https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.13/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#introduction-to-odf-dr-solutions_common
https://web.archive.org/web/20231105012238/https://docs.openshift.com/container-platform/4.14/scalability_and_performance/recommended-performance-scale-practices/recommended-etcd-practices.html
https://web.archive.org/web/20231105012238/https://docs.openshift.com/container-platform/4.14/scalability_and_performance/recommended-performance-scale-practices/recommended-etcd-practices.html
https://web.archive.org/web/20231105012238/https://docs.openshift.com/container-platform/4.14/scalability_and_performance/recommended-performance-scale-practices/recommended-etcd-practices.html
https://web.archive.org/web/20231105012238/https://docs.openshift.com/container-platform/4.14/scalability_and_performance/recommended-performance-scale-practices/recommended-etcd-practices.html
Redis
https://docs.redis.com/latest/kubernetes/re-clusters/cluster-recovery/
https://docs.redis.com/latest/kubernetes/re-clusters/cluster-recovery/
https://www.researchgate.net/profile/Sergio-Fernandez-Rubio/publication/363632856_Disaster_Recovery_Analysis_of_different_Cloud_Managed_Kubernetes_Clusters/links/6325ee52873eca0c0094f0e1/Disaster-Recovery-Analysis-of-different-Cloud-Managed-Kubernetes-Clusters.pdf
https://www.researchgate.net/profile/Sergio-Fernandez-Rubio/publication/363632856_Disaster_Recovery_Analysis_of_different_Cloud_Managed_Kubernetes_Clusters/links/6325ee52873eca0c0094f0e1/Disaster-Recovery-Analysis-of-different-Cloud-Managed-Kubernetes-Clusters.pdf
https://www.researchgate.net/profile/Sergio-Fernandez-Rubio/publication/363632856_Disaster_Recovery_Analysis_of_different_Cloud_Managed_Kubernetes_Clusters/links/6325ee52873eca0c0094f0e1/Disaster-Recovery-Analysis-of-different-Cloud-Managed-Kubernetes-Clusters.pdf
https://www.researchgate.net/profile/Sergio-Fernandez-Rubio/publication/363632856_Disaster_Recovery_Analysis_of_different_Cloud_Managed_Kubernetes_Clusters/links/6325ee52873eca0c0094f0e1/Disaster-Recovery-Analysis-of-different-Cloud-Managed-Kubernetes-Clusters.pdf
https://db-engines.com/en/ranking
"https://www.tensorflow.org/"

Empirical Evaluation of ML Models for Per-Job Power Prediction
Debajyoti Halder

Stony Brook University

Stony Brook, New York, USA

dhalder@cs.stonybrook.edu

Manas Acharya

Stony Brook University

Stony Brook, New York, USA

macharya@cs.stonybrook.edu

Aniket Malsane

Stony Brook University

Stony Brook, New York, USA

amalsane@cs.stonybrook.edu

Anshul Gandhi

Stony Brook University

Stony Brook, New York, USA

anshul@cs.stonybrook.edu

Erez Zadok

Stony Brook University

Stony Brook, New York, USA

ezk@cs.stonybrook.edu

ABSTRACT
Sustainability has become a critical focus area across the technology

industry, most notably in cloud data centers. In such shared-use

computing environments, there is a need to account for the power

consumption of individual users. Prior work on power prediction

of individual user jobs in shared environments has often focused

on workloads that stress a single resource, such as CPU or DRAM.

These works typically employ a specific machine learning (ML)

model to train and test on the target workload for high accuracy.

However, modern workloads in data centers can stress multiple

resources simultaneously, and cannot be assumed to always be

available for training. This paper empirically evaluates the perfor-

mance of various ML models under different model settings and

training data assumptions for the per-job power prediction prob-

lem using a range of workloads. Our evaluation results provide key

insights into the efficacy of different ML models. For example, we

find that linear ML models suffer from poor prediction accuracy

(as much as 25% prediction error), especially for unseen workloads.

Conversely, non-linear models, specifically XGBoost and Random

Forest, provide reasonable accuracy (7–9% error). We also find that

data-normalization and the power-prediction model formulation

affect the accuracy of individual ML models in different ways.

CCS CONCEPTS
•Hardware→ Power and energy; Power estimation and opti-
mization; Enterprise level and data centers power issues.

KEYWORDS
Sustainability, per-job power prediction, ML models, co-executed

workloads.

ACM Reference Format:
Debajyoti Halder, Manas Acharya, AniketMalsane, Anshul Gandhi, and Erez

Zadok. 2024. Empirical Evaluation of ML Models for Per-Job Power Pre-

diction . In Companion of the 15th ACM/SPEC International Conference on

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00

https://doi.org/10.1145/3629527.3651418

Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3629527.3651418

1 INTRODUCTION
The exponential growth in digital data, coupled with increasing

computational demands (e.g., DNN training and crypto mining),

has raised significant questions about the carbon footprint of data

centers [31]. Both data center providers and users often share a

common interest in regulating carbon usage [12, 25]. To regulate

carbon usage, an important first step is to track the power con-

sumption of each workload (or job, used interchangeably). This

per-job power-tracking enables informed decision-making, empow-

ering users to make design choices that align with sustainability

goals [15]. Further, in the near future, providers may consider pric-

ing models that partly charge users based on their attributed power

use (e.g., carbon tax), thus incentivizing sustainable practices.

Predicting the per-job power consumption is a difficult problem

due to the often time-varying utilization of the various server re-

sources by a job at runtime. The problem is further exacerbated

by OS- and device-specific scheduling intricacies when resources

have to be shared between jobs. Machine Learning (ML) approaches,

such as regression models, are well suited to the power prediction

problem given their ability to infer complex relationships between

variables [25]. In particular, prior works have used a variety of

ML models and model settings for the power-prediction problem.

However, given the large variety of ML models and their settings,

a thorough evaluation is first necessary to assess the usefulness of
different ML models for job-level power prediction.

Recent works on per-job power prediction have primarily focused

on estimating the power consumption based on CPU and mem-

ory utilization metrics [6, 13, 14]. As we discuss in Section 2, it is

not enough to account only for the power consumption of CPU

and memory subsystems. The classical works in power prediction

(e.g., Joulemeter [21], VMeter [17]) employ linear ML models to

predict power as a function of resource-utilization metrics. While

such models may work well for benchmarks designed to saturate

individual resources, we find that linear models have poor accuracy

when predicting per-job power for workloads that stress multiple

resources simultaneously, such as TensorFlow and MongoDB.

In this paper, we empirically evaluate the performance of sev-

eral, diverse ML models (both linear and non-linear) to predict

per-job power consumption, using several workloads and both

micro- and macro-benchmarks. We also evaluate the impact on

181

https://doi.org/10.1145/3629527.3651418
https://doi.org/10.1145/3629527.3651418
https://doi.org/10.1145/3629527.3651418

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Debajyoti Halder, Manas Acharya, Aniket Malsane, Anshul Gandhi, & Erez Zadok

prediction accuracy of several models and system settings, such

as data normalization, accounting for background processes, and

factoring in idle power. To investigate the impact of training data

and the deployment context, we evaluate the ML models under

different settings, including testing on the training workloads and

testing on unseen workloads.

Our experimental results using 8 different pairs of (co-executed)

test workloads under 7 different ML models show that non-linear
models outperform linear models in terms of per-job prediction ac-

curacy (see Section 4). In particular, XGBoost and Random Forest

provided less than 10% error when predicting the per-job power

consumption of unseen workloads (comparing the sum of predicted

per-job power values with full-server power measurements). By

contrast, linear regression (LR) had much worse accuracy, with

errors as high as 40–50% for some pairs of co-located workloads.

Our experiments beyond two co-executed workloads show that

non-linear models can predict per-job power consumption with

∼10% error when the training dataset corresponds to the test co-

execution scenario. However, training a model for each workload

class (CPU-, DRAM-, I/O-heavy) separately did not improve the

prediction accuracy significantly (3–7% difference).

We also find that the ML model settings and prediction formu-

lation can have an impact on prediction accuracy. For example,

predicting for the residual power (after subtracting idle system

power) instead of total power, and including the intercept term in

supported ML models, can reduce prediction error by as much 10%.

We also found that data normalization techniques like standardiza-

tion or min-max scaling significantly affect neural network models’

accuracy. Other models, such as decision trees, are less sensitive

to data scaling. Finally, we found that prediction accuracy is not

much affected when we take into account the resource utilization of

background processes, suggesting that ML models can capture such

activities through the resource usage of foreground workloads.

In summary, this paper makes the following contributions:

• Weempirically evaluate severalMLmodels, including aworkload-
specificmodel, for power prediction. This is in contrast to existing

works that often only consider a single model. Further, we report

on the impact of model formulation settings and data-processing

techniques on power prediction accuracy. We have made our

datasets and code available [27] for reproducibility.

• We consider the practical yet challenging problem of per-job
power prediction to allow users in shared environments to as-

sess their sustainability footprint. We considered up to four co-

executed workloads. Few prior works focus on this realistic case.

• Unlike prior works, we experiment with diverse workloads that
are not just CPU- or memory-bound but stress the entire system.

Further, we consider the realistic scenario where a test workload

has not been observed in training, unlike much of the prior work

that focuses only on cross-validation results.

2 BACKGROUND AND PRIORWORK
The problem of predicting the power consumption of individual jobs

in the presence of other co-executing jobs is challenging for at least
two reasons. First, the power consumption of a server when running

multiple jobs simultaneously is not simply the sum of the power

consumed when the jobs are run individually (see Appendix A for

empirical data). This is likely due to resource saturation, sharing,

and contention when multiple jobs co-execute.

The second challenge is that there is no accurate, ground truth

power value that is available for individual jobs. Prior research
has focused on predicting total server power [3, 32] by using re-

source usage metrics (e.g., CPU and memory utilization). While

these models are valuable for specific use cases, our goal is to model

the concurrent utilization of all system resources to predict per-job
power consumption.

Prior Work. Joulemeter [21] employs linear ML models to predict

per-VM power consumption using observable power states in the

hypervisor. Linear regression models have also been employed

in CloudMonitor [32] and VMeter [17] to predict VM-level power.

Likewise, linear regression has also been used to predict total server

power (Krishnan et al. [23]) and process-level power (Bertran et
al. [4]). However, we find that linear models are inadequate for

predicting the power consumption of co-executed jobs in shared

environment scenarios (see Section 4.2).

Several studies have employed a single, non-linear ML model

for power prediction. Xiao et al. [35] and BitWatts by Colmant et
al. [7] explore polynomial regression for predicting power in vir-

tual environments. Dhiman et al. [11] proposed the use of Gaussian
Mixture Models (GMM) for power prediction in virtualized envi-

ronments. Recent works by Fieni et al. [13, 14] leverage Lasso and

Ridge regression for power modeling. The authors also use sequen-

tial learning to calibrate their power models online by training

on currently executing workloads [14]. The authors also rely on

PowerAPI [18] (which in turn relies on Intel RAPL [9]) to track CPU

package and DRAM power consumption values as ground truth.

RAPL-reported values provide power consumption of CPU pack-

age (cores, caches, and any integrated GPU) and DRAM. Phung et
al. [30] leverage RAPL values as additional features for learning, but
focus on modeling the power use of only CPU-intensive workloads.

While RAPL power values can serve as ground truth for CPU

and/or DRAM power consumption, they are not accurate indicators

of full-server power (see Appendix B) as RAPL does not include
power consumed by disks, motherboard, network, or GPU(s).

Given the importance of power consumption tracking, there

have also been power modeling tools developed for consumer use.

Scaphandre [28] predicts per-process power consumption by track-

ing the jiffies and correlating it with RAPL power values when a

process is running. However, as noted by prior work [20], Scaphan-

dre’s focus is primarily on CPU-power consumption (hence the

reliance on RAPL). Kepler [6] is a tool developed by Red Hat that

predicts pod and node power consumption; however, Kepler is lim-

ited to only Kubernetes environments. Further, Kepler uses cgroups

and sysfs to get CPU and memory usage statistics, and thus only

focuses on the power of these two resources. Similar tools have also

been developed for user-facing purposes, but these tools are not

accurate enough for tracking the power of workloads that stress

multiple resources. For example, Apple provides an “Energy Im-

pact” metric with their Activity Monitor tool [2], but the estimates

reported are only relative values (with no units) that are based on

a job’s CPU usage [26].

There are other prior works that focused on specific scenarios or

workloads (see survey paper by Lin et al. [25]), such as approaches

182

Empirical Evaluation of ML Models for Per-Job Power Prediction ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Table 1: Features used to train ML models.

Entity Features
CPU Cycles, Ref-cycles, Instructions

DRAM LLC-load-misses, LLC-loads, LLC-store-misses, LLC-

stores

Disk Bytes, Blocks (# of reads and writes)

RAPL Package power, RAM power

that estimate the power usage of HPC servers [19, 34] or predict the

power consumption of DNN training systems [1, 24, 31]. However,

they rely on the specifics of the workload or system, and are thus

not easily generalizable.

3 POWER MODELING
For all ML models we considered, the ground truth for server power,

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 , was obtained via a power meter (see Section 4.1). In general,

the ML models estimate server power at time 𝑡 , say 𝑃𝑡𝑠𝑒𝑟𝑣𝑒𝑟 , as a

function of some feature vector, ®𝑥𝑡 , as 𝑃𝑡𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑓 (®𝑥𝑡). The hat

notation denotes predicted values (as opposed to ground truth

values). For ease of notation, we drop the 𝑡 superscript by implicitly

considering the formulations as being specific to a given time.

3.1 Features
The ML models aim to predict power consumption as a function

of resource utilization and other metrics, referred to as features

(the ®𝑥). Rather than determining these features from scratch, we

built on existing studies to obtain features for our power-prediction

problem; note that we are not considering networked systems in

this paper, so we do not include network features, though they

could be easily added as needed.

Based on prior works [17, 21, 32], we arrived at the feature

list shown in Table 1. We believe this list is short yet representa-

tive enough to capture the important resource-utilization values.

While RAPL power values may not track full-server power, RAPL

power values may still serve as useful features, as we explore in
Section 4. For CPU and DRAM features, we used perf-stat to ob-

tain performance event counts, which are reported per TID (Thread

Identifier). We used pstree to track all TIDs (including for child

threads) pertaining to a given workload to aggregate the features

from perf-stat per workload. We used blktrace to track per-process

disk reads and writes.

All performance event counts from perf-stat are sampled at

200ms intervals. A higher sample rate increased the power con-

sumption overhead of tracing by 5W. We aggregate performance

event counts for every 1s interval and align them with the full-

system power values obtained from the power meter every 1s. For

workload-specific resource utilization, we combine the performance

event counts for each workload separately. We obtain RAPL power

values from turbostat; RAPL power values are reported as an ag-

gregate for the CPU package and DRAM, and not per TID.

3.2 Power Prediction
We start with a simple setting where a single workload is running

on a server. In this case, the power prediction can be formulated as:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑓 (®𝑥𝑤1) (1)

where ®𝑥𝑤1 is the feature vector, say of size𝑛, obtained for the (single)

workload. For example, for Linear Regression (LR) with intercept

term, Eq. (1) takes the form 𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝛽0 +
∑𝑛
𝑖=1 𝛽𝑖 · 𝑥𝑤1.𝑖 , where

the 𝛽 terms denote the coefficients of the LR model that are learned

during training and 𝑥𝑤1.𝑖 is the 𝑖
𝑡ℎ

feature of the ®𝑥𝑤1 feature vector.

For LR (and other ML models that support the intercept term, 𝛽0),

one can also set up the ML model without intercept. We evaluate

both options in our experiments.

Since the server has some baseline idle power, say 𝑃𝑖𝑑𝑙𝑒 , which

can be considered as a constant (for that server), another formula-

tion is to predict the residual power (or dynamic power), which is

𝑃𝑟𝑒𝑠𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑠𝑒𝑟𝑣𝑒𝑟 − 𝑃𝑖𝑑𝑙𝑒 . In this case, the prediction takes the form

𝑃𝑟𝑒𝑠𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑓 (®𝑥𝑤1), and so we predict full-server power as:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑖𝑑𝑙𝑒 + 𝑓 (®𝑥𝑤1) (2)

Another variant of Eq. (2) is to also subtract the feature values

obtained for an idle system, say ®𝑥𝑖𝑑𝑙𝑒 (e.g., CPU cycles of an idle

system spent on background processes) to better correlate with

residual power as:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑖𝑑𝑙𝑒 + 𝑓 (®𝑥𝑤1 − ®𝑥𝑖𝑑𝑙𝑒) (3)

Co-Executed Workloads. When we have two workloads (can be

extended beyond two) executing concurrently, as is the focus of

this paper, we can separately predict the power consumption of

each workload as 𝑃𝑤𝑖 = 𝑓 (®𝑥𝑤𝑖), and predict full-server power as:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑓 (®𝑥𝑤1) + 𝑓 (®𝑥𝑤2) (4)

For ML models that have an intercept term (e.g., Linear Regression
with 𝛽0 in 𝑓 ()), we subtract the intercept once from Eq. (4) to avoid

double-counting the intercept. Note that we still use full-server

power (𝑃𝑠𝑒𝑟𝑣𝑒𝑟) as the dependent variable in the final prediction

formulation since we have ground truth for only full-server power

(and not for the power consumption of individual workloads).

For co-executed scenarios, we separately track the feature values

(e.g., CPU cycles) for each workload process and their children to

obtain ®𝑥𝑤1 and ®𝑥𝑤2. Feature values that do not belong to either of

the processes can be attributed to background or kernel processes,

denoted as ®𝑥𝑏𝑔 . As such, another variant of Eq. (4) that we consider
is with 𝑓 (®𝑥𝑏𝑔) added to the right-hand side.

For the residual power formulation, we similarly have:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑖𝑑𝑙𝑒 + 𝑓 (®𝑥𝑤1) + 𝑓 (®𝑥𝑤2) (5)

with the possibility of 𝑓 (®𝑥𝑏𝑔) added to the right-hand side. We

also consider variants of the above formulations where ®𝑥𝑖𝑑𝑙𝑒 is

subtracted from each feature vector on the right-hand side.

Power accounting. For the co-executed formulations, Eqs. (4) and (5),

and their variants, the power contribution of each workload can

be estimated as 𝑓 (®𝑥𝑤𝑖), for 𝑖 = 1, 2. If 𝑃𝑖𝑑𝑙𝑒 (or the intercept term

or 𝑓 (®𝑥𝑏𝑔)) also must be accounted for, then we can charge each

workload with a fraction of 𝑃𝑖𝑑𝑙𝑒 proportional to its estimated

power. For example, in Eq. (5), we estimate workload 1’s total power

contribution as:

𝑓 (®𝑥𝑤1) +
𝑓 (®𝑥𝑤1)

𝑓 (®𝑥𝑤1) + 𝑓 (®𝑥𝑤2)
· 𝑃𝑖𝑑𝑙𝑒 (6)

183

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Debajyoti Halder, Manas Acharya, Aniket Malsane, Anshul Gandhi, & Erez Zadok

Table 2: Workloads employed in our experiments.

Resource Workload
CPU 7zip, Cypto++, CP2K, Gzip

DRAM Stream, MBW, Tinymembench, RAMSpeed SMP

Disk Unpack Linux, LevelDB, SQLite, FIO

System Stress-ng, Tensorflow, Mobile Neural Network, Sys-

bench, Memcached, Filebench, MongoDB

Using the proportion of predicted power to account for 𝑃𝑖𝑑𝑙𝑒 is

preferable to, say, using the proportion of a resource usage metric,

since predicted power is a function of all features.

4 EVALUATION
In this section we discuss the results and observations from the

evaluation of the power models on various workloads and model

formulations. In Section 4.1 we discuss our experimental setup,

the benchmarks used for evaluation, the ML models, their model

formulation settings, and the metrics used for evaluation. We con-

ducted experiments for multiple scenarios like predicting per-job

power when only a single workload is executed, or when two or

more workloads are co-executed. The evaluation results for ev-

ery scenario are discussed in Section 4.2. We also discuss 5-fold

cross-validation results and feature importance.

To make our results reproducible, we have made available our

datasets and code for power-prediction model evaluation [27].

4.1 Experimental Setup and Methodology
We conduct all our experiments on a server with two Intel Xeon E5

CPUs with Haswell architecture (has RAPL support). The server has

24 cores total and 256GB of memory. We disabled speedstep (DVFS),

hyperthreading, and turboboost (overclocking) to minimize power

consumption uncertainties due to dynamic system/OS behavior. To

obtain ground truth, we use an external wall power meter, WattsUp

Pro [33], attached to the server, which provides full-server power

readings once per second.

Workloads. For our evaluation, we employed workloads from stress-

ng [22], YCSB [8], and Phoronix Test Suite [29], as shown in Table 2.

The resource-specific workloads were primarily used for training

whereas the System workloads were used for testing; a similar

methodology was adopted by prior works that modeled the power

consumption of individual (not co-executed) workloads [7, 13, 16].

Training on microbenchmarks allows the ML models to learn the

impact of resource utilization on power consumption under con-

trolled stress-test conditions. Every workload ran for around 20

minutes either independently, or co-executed with other workloads.

ML Models. We used a variety of ML models to evaluate power

prediction: Linear Regression (LR), Decision Tree (DT), Random

Forest (RF), Support Vector Regressor (SVR), XGBoost, Lasso, and

Neural Network (NN). All ML model hyper-parameters were tuned

via Grid Search; see Appendix C for details.

Data Processing Techniques. For data processing, we experimented

with three popular techniques: (i) de-mean, whereby the mean of

the dataset is subtracted, (ii) standardization, which additionally

divides by the standard deviation of the data, and (iii) min-max

normalization, which scales data to the (0, 1) range. In general,

Neural Net XGBoost Linear Reg Lasso SVR Dec Tree Rnd Frst
Power Model

0

10

20

30

40

50

M
AP

E
(%

)

MongoDB
Tensorflow
Sysbench
Memcached
Mobile Neural Net
Filebench

Figure 1: MAPE values for power modeling when a single
application is run on the server.

all techniques provided better results than no processing as raw

values for different features have different magnitudes. For example,

CPU cycles/second is usually in the billions, whereas for non-disk-

intensive workloads, the reads/second or writes/second during

workload execution is typically in the thousands.

Prediction Metrics. We used Mean Absolute Error (MAE) and Mean

Absolute Percentage Error (MAPE) as our error metrics; ground

truth was obtained from the power meter. MAE values showed the

same trend as MAPE, so we report MAPE values in our results.

4.2 Experimental Results
For evaluation, unless otherwise stated, we use the System work-

loads (as listed in Table 2) for testing the ML models, while using

the others for training.

4.2.1 Single Workload Execution. We start by evaluating the ML

models for the single workload scenario using the residual power

prediction formula with idle features removed (see Eq. (3)). Fig-

ure 1 illustrates the MAPE values obtained for predicting the server

power on the y-axis and the ML models on the x-axis. All the mod-

els perform well, with an average MAPE value of less than 17%

across all workloads. Support Vector Regression (SVR) outperforms

the others, with an average MAPE of 6.6%, followed by Random

Forest with an average MAPE of 9.6%. Even Linear Regression (LR)

provides satisfactory results, achieving an average MAPE of 12.7%.

For the power prediction in Figure 1, we experimented with

different data-processing techniques. We found that the de-mean

approach provided the best results for all models, except NN. For

all models except NN, other approaches like standardization result

in a 1–2% increase in MAPE. With min-max normalization, MAPE

increased by 1–3%. For NN, min-max scaling worked the best, im-

proving the prediction accuracy significantly (76%); standardization

only provided some improvement (11%) in prediction accuracy. The

reason for this is the NN model’s sensitivity to input scale and

reliance on gradient-based optimization methods [5]. Techniques

like min-max scaling ensure a consistent scale for all features, fa-

cilitating efficient learning and stable convergence. Without this

consistent scaling, the NN model’s learning could be inefficient due

to skewed gradients. Other models such as Decision trees, Random

Forest, and XGBoost, are less sensitive to data scaling because their

splitting criteria and/or ensemble nature focuses on the relative

ordering of feature values rather than their specific scales. These

models make decisions based on feature relationships, making them

184

Empirical Evaluation of ML Models for Per-Job Power Prediction ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Neural Net XGBoost Linear Reg Lasso SVR Dec Tree Rnd Frst
Power Model

0

10

20

30

40

> 50

M
AP

E
(%

)

Tensorflow + MobileNN
Sysbench + Memcached
Tensorflow + MongoDB
MobileNN + Filebench
Sysbench + MobileNN
MongoDB + Filebench
Tensorflow + Filebench
Tensorflow + Memcached

Figure 2: Prediction results when workloads are co-executed
and residual server power is predicted as the sumof predicted
residual power of each workload.

inherently robust to variations in feature scales. For subsequent

evaluations, we used de-mean for all models except NN, for which

we used min-max scaling.

Among the different model variants considered, the residual

power prediction approach (Eq. (2)) offered better accuracy com-

pared to directly predicting full-server power (Eq. (1)). This im-

provement is seen particularly in the case of Linear Regression (LR)

and XGBoost, resulting in a 10% reduction in MAPE. Excluding idle

features (®𝑥𝑖𝑑𝑙𝑒) from the prediction process did not affect prediction

accuracy. Furthermore, including the intercept term in supported

models led to a slight improvement in prediction accuracy. How-

ever, for LR, the improvement was substantial, reducing MAPE

by approximately 20%. Unless specified otherwise, we considered

these variations in our subsequent results.

Predicting residual power, where we isolate the active system

usage by subtracting idle power, proved effective in improving ac-

curacy. This is because predicting residual power allows the model

to capture only the specific resource patterns associated with ac-

tive jobs, providing a better understanding of how power usage is

affected by resource utilization of jobs. At the same time, incorpo-

rating the intercept term in the models was crucial for considering

baseline power, representing the constant power consumption of

the server (which includes idle power) when no active jobs are

running. These two steps (predicting for residual power and including
the intercept term) are important for power prediction as they ensure
that the model does not unintentionally miss or attribute variations,
preventing bias in predictions.

Additionally, we conducted experiments without utilizing the

two RAPL power features. This resulted in a slight increase (1-2%)

in MAPE values across all ML models. RAPL power features cannot

be obtained on a per-thread or Thread ID (TID) basis. Therefore,

it is not possible to track the power contribution of individual

workloads using RAPL power features. Moreover, RAPL values

exhibit inconsistencies for certain server models, as reported by

Desrochers et al. [10]. Therefore, we opted not to incorporate RAPL
power features in the remainder of our evaluation.

4.2.2 Per-job Power Prediction for Co-Executed Workloads. We

now consider the challenging case where each co-executed work-

load’s power consumption is to be predicted. In particular, each co-

executed workload’s residual power consumption is first predicted,

and then the full-server power, obtained by adding the individual

workload power values and 𝑃𝑖𝑑𝑙𝑒 (via Eq. (5)), is compared with

the full-server ground truth power use. We train our models on

feature vectors from random pairs of non-System workloads from

Table 2. We then test the models on 8 pairs of System workloads.

This ensures that test workloads are separate from training.

Figure 2 shows our results for different pairs of co-executed

workloads. Here, the training data included only pairs of non-test
workloads from Table 2, representing the realistic case where test

workloads may not always be available for training. XGBoost per-

formed the best, with an average MAPE of 7.3%, followed by Ran-

dom Forest (8.9%), Decision Tree (12.3%), and SVR (14.9%). LR per-

formed poorly, with an average MAPE of 25%, highlighting the

linear model’s inability to account for resource contention when work-
loads are co-executed. We also explored the variation where the

predicted power consumed by other processes (𝑓 (®𝑥𝑏𝑔) term from

Section 3.2) was added to the predicted power of the workloads

to arrive at the full-server power prediction. However, this for-

mulation yielded slightly higher MAPE values, and was thus not

considered further.

We also conducted 5-fold cross-validation for our ML models by

training and testing on the dataset obtained by co-executing a pair

of workloads. In general, the prediction errors are lower than those

in Figure 2, since the test workloads comprise the same training

data. Based on average MAPE values, all models performed well,

with SVR (4.4%), RF (5.7%), NN (6.7%), Lasso (6.7%), DT (8.1%), and

XGBoost (9.7%) providing less than 10% error; even LR (6.9%) re-

sulted in low error under this cross-validation setting. This suggests
that the choice of ML model to employ also depends on the training
and test data overlap assumptions.

4.2.3 Background Processes as Third Workload. As mentioned ear-

lier, we explored another variation of our power model by consider-

ing all background processes as an additional workload co-executed

during the experiments. The idea behind this approach was that the

power model might be able to better segregate the power among

the active workloads if the background processes are grouped sep-

arately. The power prediction formulation hence becomes:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑖𝑑𝑙𝑒 + 𝑓 (®𝑥𝑤1) + 𝑓 (®𝑥𝑤2) + 𝑓 (®𝑥𝑏𝑔) (7)

However, the results were not impressive. XGBoost had the least

average MAPE of 20.9%, followed by RF (22.9%), NN (25.3%), and DT

(25.4%). We also tried another variation of this model without the

intercept term (𝛽0), but that resulted in much worse results (∼57%
average MAPE for RF, DT, and LR). We thus decided to not consider

this model variation for our evaluation.

4.2.4 Beyond Two Co-Executed Workloads. We next experimented

by testing on four co-executed workloads by also training on the

dataset obtained by co-executing four workloads. We ran 5 combi-

nations of four workload pairs and evaluated using “leave-one-out”

cross-validation (see Figure 3). For example, in Figure 3, when we

test on the Tensorflow + MNN + Memcached + Filebench work-

load combination (blue legend), then the remaining 4 workload

combinations are used for training.

All the ML models performed well except LR and Lasso. XG-

Boost and Random Forest had the least average MAPE of ∼10%.
LR performed much worse with ∼24% average MAPE. This again

shows that linear models are not well suited for co-executed work-
loads’ power prediction. Overall, XGBoost and Random Forest are the

185

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Debajyoti Halder, Manas Acharya, Aniket Malsane, Anshul Gandhi, & Erez Zadok

Neural Net XGBoost Linear Reg Lasso SVR Dec Tree Rnd Frst
Power Model

0

10

20

30

40

> 50

M
AP

E
(%

)

Tensorflow + MNN + Filebench + Memcached
Tensorflow + MNN + Stress + Filebench
MNN + Stress + Sysbench + Memcached
Tensorflow + MNN + Sysbench + Filebench
MNN + Filebench + Sysbench + Memcached

Figure 3: Prediction results when four workloads are co-
executed and residual server power is predicted as the sum
of predicted residual power of each workload.

best performing models with 10% or lower average MAPE in most

scenarios, showing that non-linear models are effective for per-job

power prediction.

4.2.5 Workload Classification. The workloads being executed on

a server can be classified by the resource(s) they stress. It may be

interesting to consider a modeling approach whereby we build a

powermodel for eachworkload class separately to gain accuracy. To

that end, we classified workloads into 3 classes: CPU-heavy, DRAM-

heavy, and Disk-heavy. We trained a different power model for each

class and tested it on a workload of the same class. We compared

this new approach of “workload classification” with the original

“all workloads for training” approach (except the one being tested).

In this experiment, we trained and tested on a single workload

execution scenario. The benchmark workloads used are the micro-

benchmarks from Table 2. Figure 4 shows that the prediction error

of the power model trained for specific workload classes is typically

worse than the original approach (3–7% difference). This suggests
that a single model trained on multiple workload classes can improve
power prediction accuracy over workload-specific models.

4.2.6 Feature Selection and Importance. To evaluate our feature

set, we employed the mutual information method from scikit-

learn to estimate the significance of each feature utilized in our

training, as outlined in Table 1. This method quantifies the depen-

dence between two variables and is instrumental in assessing the

information gain associated with each feature relative to the target

variable. We found that DRAM and CPU features had higher impor-

tance scores (e.g., LLC-loads, LLC-stores for DRAM and ref-cycles,

cycles for CPU), while Disk features (e.g., bytes and blocks) had the

lowest scores. We repeated our power predictions by omitting the

Disk features, but this resulted in slightly higher MAPE values, sug-

gesting that our feature list is adequate. We also utilized XGBoost

and Random Forest algorithms to determine feature importance,

obtaining similar results.

4.2.7 Analyzing the Per-Job Power Predictions. Thus far we evalu-
ated our per-job power predictions (obtained via Eq. (6)) by compar-

ing the sum of per-job powers with full-server powermeter readings

because there is no ground truth for per-job power consumption in

the co-executed setting. Nonetheless, we can analyze the trend in

per-job power predictions. We first compared the per-job predic-

tions obtained from the co-executed setting with the ground truth

residual power when the workload is run in isolation. As expected,

Neural Net XGBoost Linear Reg Lasso SVR Dec Tree Rnd Frst
Power Model

0

5

10

15

20

> 25

M
AP

E
(%

)

Workload classification
All workloads

Figure 4: Performance of power models when trained on
specific workload classes versus all workloads.

the former is lower than the latter, likely due to resource contention

and saturation. For example, the ground truth residual power of

Sysbench in isolation is about 63W. However, the predicted per-job

power of Sysbench when co-executed with Memcached and when

co-executed with Mobile Neural Network (MNN) is only about

46W and 50W, respectively. In both co-executions, the predicted

power of Memcached and MNN is also lower than their ground

truth isolated power.

We also compared the per-job power predictions when Ten-

sorFlow (TF) is co-executed with MongoDB and when TF is co-

executed with MNN. The predicted power for TF is 67W when

co-executed with MongoDB and 85Wwhen co-executed with MNN.

Since MongoDB is I/O intensive, we expect TF’s I/O to be slowed

downmuchmore when TF is co-executed withMongoDB compared

to when TF is co-executed with MNN; consequently, TF may have

fewer instructions to be run per second when co-executed with

MongoDB, lowering its power draw. The disk and CPU features

confirm this claim, providing some validation of our predictions.

5 CONCLUSION AND FUTUREWORK
Per-job power tracking is an important first step for incentivizing

sustainable computing practices among consumers and providers

of cloud data centers. While there is ample literature on power-

prediction techniques, there is little prior work on comparing dif-
ferent power-prediction models, especially under different workload
and model settings. Our evaluation results showed that non-linear

ML models, specifically XGBoost and Random Forest, provided

good prediction accuracy (≤ 10% MAPE). Even for SVR models,

we found that a non-linear kernel provided significantly higher

prediction accuracy than a linear kernel (∼92% lower MAPE). By

contrast, LR did not perform well (25% MAPE). As such, the choice

of ML model plays an important role in power prediction. The

choice of ML model also depends on the training and test data

assumptions. In cross-validation settings, almost all ML models

we experimented with performed quite well (less than 10% MAPE).

Interestingly, workload-specific power models did not provide good

accuracy; training across workload classes resulted in a non-trivial

6% accuracy gain.

ACKNOWLEDGMENTS
This work was supported in part by Dell-EMC, NetApp, Tintri,

Facebook, and IBM support; and NSF awards CNS-1750109, CNS-

1900706, CNS-2106263, CNS-2106434, CNS-2214980, andCCF-2324859.

186

Empirical Evaluation of ML Models for Per-Job Power Prediction ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Anthony, L., Kanding, B., and Selvan, R. Carbontracker: Tracking and pre-

dicting the carbon footprint of training deep learning models. In ICML Workshop
on Challenges in Deploying and monitoring Machine Learning Systems (2020).

[2] Apple. View energy consumption in Activity Monitor on Mac. https://support.

apple.com/en-gb/guide/activity-monitor/actmntr43697/mac.

[3] Barroso, L. A., and Hölzle, U. The Case for Energy-Proportional Computing.

IEEE Computer 40, 12 (2007), 33–37.
[4] Bertran, R., Becerra, Y., Carrera, D., Beltran, V., Gonzalez, M., Martorell,

X., Torres, J., and Ayguade, E. Accurate energy accounting for shared virtual-

ized environments using pmc-based power modeling techniques. In 2010 11th
IEEE/ACM International Conference on Grid Computing (2010), pp. 1–8.

[5] Bhanja, S., and Das, A. Impact of data normalization on deep neural network

for time series forecasting. ArXiv (2018).

[6] Cloud Native Computing Foundation. Kubernetes Efficient Power Level

Exporter (Kepler). https://sustainable-computing.io, 2022.

[7] Colmant, M., Kurpicz, M., Felber, P., Huertas, L., Rouvoy, R., and Sobe, A.

Process-level power estimation in vm-based systems. In Proceedings of the Tenth
European Conference on Computer Systems (New York, NY, USA, 2015), EuroSys

’15, Association for Computing Machinery.

[8] Cooper, Brian. Yahoo! Cloud Serving Benchmark. https://github.com/

brianfrankcooper/YCSB, 2021.

[9] David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R., and Le, C. RAPL:

memory power estimation and capping. In Proceedings of the 2010 ACM/IEEE
International Symposium on Low Power Electronics and Design (ISPLED) (2010),
pp. 189–194.

[10] Desrochers, S., Paradis, C., and Weaver, V. M. A Validation of DRAM RAPL

Power Measurements. In Proceedings of the Second International Symposium on
Memory Systems (Alexandria, VA, USA, 2016), pp. 455–470.

[11] Dhiman, G., Mihic, K., and Rosing, T. A system for online power prediction in

virtualized environments using gaussian mixture models. In Design Automation
Conference (2010), pp. 807–812.

[12] Dutt, A., Rachuri, S. P., Lobo, A., Shaik, N., Gandhi, A., and Liu, Z. Evaluating

the energy impact of device parameters for dnn inference on edge. In Proceedings
of the 14th International Green and Sustainable Computing Conference (IGSC’23)
(Toronto, Canada, 2023).

[13] Fieni, G., Rouvoy, R., and Seinturier, L. SmartWatts: Self-Calibrating Software-

Defined Power Meter for Containers. In Proceedings of the 20th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Internet Computing (2020), pp. 479–488.

[14] Fieni, G., Rouvoy, R., and Seiturier, L. SelfWatts: On-the-fly Selection of

Performance Events to Optimize Software-defined Power Meters. In Proceedings
of the 21st International Symposium on Cluster, Cloud and Internet Computing
(2021), pp. 324–333.

[15] Gandhi, A., Ghose, K., Gopalan, K., Hussain, S., Lee, D., Liu, D., Liu, Z., Mc-

Daniel, P., Mu, S., and Zadok, E. Metrics for sustainability in data centers.

In Proceedings of the 1st Workshop on Sustainable Computer Systems Design and
Implementation (HotCarbon’22) (San Diego, CA, USA, July 2022), USENIX.

[16] Guo, N., Gui, W., Chen, W., Tian, X., Qiu, W., Tian, Z., and Zhang, X. Using

improved support vector regression to predict the transmitted energy consump-

tion data by distributed wireless sensor network. EURASIP Journal on Wireless
Communications and Networking 2020, 1 (2020), 120.

[17] Husain Bohra, A. E., and Chaudhary, V. VMeter: Power modelling for virtual-

ized clouds. In Proceedings of the 2010 IEEE International Symposium on Parallel
Distributed Processing, Workshops and Phd Forum (IPDPSW) (2010), pp. 1–8.

[18] Inria, University of Lille. PowerAPI. https://powerapi.org, 2023.

[19] Jarus, M., Oleksiak, A., Piontek, T., and Weglarz, J. Runtime power usage

estimation of HPC servers for various classes of real-life applications. Future
Generation Computer Systems 36 (2014), 299–310.

[20] Jay, M., Ostapenco, V., Lefèvre, L., Trystram, D., Orgerie, A.-C., and Fichel,

B. An experimental comparison of software-based power meters: focus on CPU

and GPU. In Proceedings of the 23rd IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (Bangalore, India, 2023), pp. 1–13.

[21] Kansal, A., Zhao, F., Liu, J., Kothari, N., and Bhattacharya, A. A. Virtual ma-

chine power metering and provisioning. In Proceedings of the 1st ACM Symposium
on Cloud Computing (Indianapolis, IN, USA, 2010), SoCC ’10, pp. 39–50.

[22] King, Colin. stress-ng. https://manpages.ubuntu.com/manpages/xenial/man1/

stress-ng.1.html, 2023.

[23] Krishnan, B., Amur, H., Gavrilovska, A., and Schwan, K. Vm power metering:

Feasibility and challenges. SIGMETRICS Perform. Eval. Rev. 38, 3 (jan 2011), 56–60.

[24] Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T. Quantifying the carbon

emissions of machine learning. arXiv preprint arXiv:1910.09700 (2019).
[25] Lin, W., Shi, F., Wu, W., Li, K., Wu, G., and Mohammed, A.-A. A taxonomy and

survey of power models and power modeling for cloud servers. ACM Comput.
Surv. 53, 5 (2020).

[26] Nethercote, Nicholas. What does the OS X Activity Monitor’s “Energy Impact”

actually measure? https://blog.mozilla.org/nnethercote/2015/08/26/what-does-

the-os-x-activity-monitors-energy-impact-actually-measure/.

[27] PACE Lab, Stony Brook University. Replication Package. https://github.com/

PACELab/sassy-metrics-data-code, 2023.

[28] Petit, B. Scaphandre. https://github.com/hubblo-org/scaphandre.

[29] Phoronix Media. Phoronix Test Suite. https://www.phoronix-test-suite.com/,

2023.

[30] Phung, J., Lee, Y. C., and Zomaya, A. Y. Modeling System-Level Power Con-

sumption Profiles Using RAPL. In 2018 IEEE 17th International Symposium on
Network Computing and Applications (NCA) (2018), pp. 1–4.

[31] Schmidt, V., Goyal, K., Joshi, A., Feld, B., Conell, L., Laskaris, N., Blank, D.,

Wilson, J., Friedler, S., and Luccioni, S. CodeCarbon: Estimate and Track

Carbon Emissions from Machine Learning Computing. https://mlco2.github.io/

codecarbon/motivation.html, 2021.

[32] Smith, J. W., Khajeh-Hosseini, A., Ward, J. S., and Sommerville, I. Cloudmon-

itor: Profiling power usage. In Proceedings of the 2012 IEEE Fifth International
Conference on Cloud Computing (2012), pp. 947–948.

[33] WattsUp. WattsUp? Pro. https://arcb.csc.ncsu.edu/~mueller/cluster/arc/wattsup/

metertools-1.0.0/docs/meters/wattsup/manual.pdf.

[34] Witkowski, M., Oleksiak, A., Piontek, T., and Wundefinedglarz, J. Practical

Power Consumption Estimation for Real Life HPCApplications. Future Generation
Computer Systems 29, 1 (2013), 208–217.

[35] Xiao, P., Hu, Z., Liu, D., Yan, G., and Qu, X. Virtual machine power measuring

technique with bounded error in cloud environments. Journal of Network and
Computer Applications 36, 2 (2013), 818–828.

A APPENDIX: EMPIRICAL DATA SHOWING
THE POWER CONSUMPTION OF
CO-EXECUTEDWORKLOADS VERSUS THE
SUM OF POWER CONSUMPTION OF
INDIVIDUALWORKLOADS

0 200 400
Time (seconds)

0

100

200

P
ow

er
(W

at
ts
)

Powerackermann + Powerpi

Powerackermann+pi

(a) CPU load with CPU load

0 200 400
Time (seconds)

0

50

100

150

200

P
ow

er
(W

at
ts
)

Powerackermann + Powermem

Powerackermann+mem

(b) CPU load with MEM load

Figure 5: Residual power (after subtracting idle power) when
workloads are co-executed versus sum of residual powers
when workloads are run in isolation.

We conducted experiments using stress-ng micro-benchmarks [22]

to investigate the difference in power consumption of co-executed

and individual workloads. We observed a large difference (see Fig-

ure 5(a)) between the sum of residual power consumption of two

CPU-bound micro-benchmarks (ackermann and pi) when run in-

dividually and the residual power consumption when these two

micro-benchmarks are run together. Residual power is the server

power with idle power subtracted from it.

Figure 5(a) shows, in blue, the sum of residual power consumption

of two CPU-bound micro-benchmarks (ackermann and pi) when

run individually; in orange, we see the residual power consump-

tion when these two micro-benchmarks are run together. We see

a similar difference (see Figure 5(b)) even if we run a CPU-bound

micro-benchmark next to a memory-bound one. The large differ-

ence between the two lines shows that the power consumption

profile of a job depends on other concurrent jobs as there may be

resource saturation and contention when jobs co-execute.

187

https://support.apple.com/en-gb/guide/activity-monitor/actmntr43697/mac
https://support.apple.com/en-gb/guide/activity-monitor/actmntr43697/mac
https://sustainable-computing.io
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://powerapi.org
https://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html
https://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html
https://blog.mozilla.org/nnethercote/2015/08/26/what-does-the-os-x-activity-monitors-energy-impact-actually-measure/
https://blog.mozilla.org/nnethercote/2015/08/26/what-does-the-os-x-activity-monitors-energy-impact-actually-measure/
https://github.com/PACELab/sassy-metrics-data-code
https://github.com/PACELab/sassy-metrics-data-code
https://github.com/hubblo-org/scaphandre
https://www.phoronix-test-suite.com/
https://mlco2.github.io/codecarbon/motivation.html
https://mlco2.github.io/codecarbon/motivation.html
https://arcb.csc.ncsu.edu/~mueller/cluster/arc/wattsup/metertools-1.0.0/docs/meters/wattsup/manual.pdf
https://arcb.csc.ncsu.edu/~mueller/cluster/arc/wattsup/metertools-1.0.0/docs/meters/wattsup/manual.pdf

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Debajyoti Halder, Manas Acharya, Aniket Malsane, Anshul Gandhi, & Erez Zadok

Table 3: Illustration of our hyper-parameter tuning using Grid Search. Tuned values are highlighted in bold.

XGBoost SVR Decision Tree Random Forest Neural Network
learning_rate: [0.01,

0.03, 0.1, 0.5]
n_estimators: [100,

200, 300, 900]
max_depth: [3, 5, 6]
min_child_weight:

[1, 3, 5]
subsample: [0.6, 0.8,
1.0]

colsample_bytree:

[0.6, 0.8, 1.0]

C: [0.1, 1, 10, 100]
kernel: [linear, rbf,
poly]

gamma: [scale, auto,
0.01, 0.1, 1]

epsilon: [0.1, 0.2, 0.5,
1.0]

max_depth: [None, 5, 10, 15,

20]
min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]
max_features: [auto, sqrt,

log2]
max_leaf_nodes: [None, 10,
20, 30]

min_impurity_decrease:

[0.0, 0.1, 0.2]

n_estimators: [100, 200, 300,
500]

max_depth: [None, 5, 10, 20,
30]

min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]
max_features: [’auto’, ’sqrt’,
’log2’]

bootstrap: [True, False]
max_leaf_nodes: [None, 10,

20, 50]

activation: [ReLU, ELU,
tanh]

solver: [adam, sgd]
learning_rate_init: [0.001,

0.01, 0.1, 1]

B APPENDIX: EMPIRICAL DATA SHOWING
THE DIFFERENCE BETWEEN FULL-SERVER
MONITORED POWER AND RAPL POWER
VALUES

0 50 100 150 200 250 300
Time (seconds)

50

100

150

200

250

Po
we

r (
W

at
ts

)

Monitored
RAPL Pkg
RAPL RAM
RAPL Pkg+RAM

(a) Sysbench

0 50 100 150 200 250 300
Time (seconds)

0

50

100

150

200

250

Po
we

r (
W

at
ts

)

Monitored
RAPL Pkg
RAPL RAM
RAPL Pkg+RAM

(b) Memcached

Figure 6: Power values reported by Intel RAPL [9] and the
full-server power meter when running (a) Sysbench, and (b)
Memcached.

While RAPL power values can serve as ground truth for CPU

and/or DRAM power consumption, they are not accurate indicators

of full-server power, as shown in Figure 6. We empirically show

this shortcoming with Sysbench and Memcached workloads. In

general, across workloads, we found that the sum of CPU package

and DRAM power values for RAPL is 30–50% lower than full-server

monitored power values. Further, within a workload execution, the

ratio of full-server to RAPL power values varies significantly, by as

much as 1.1–1.7× for the workloads we experimented with. This

is to be expected as RAPL does not include power consumed by,

for example, the disks, motherboard, network, or non-integrated

GPU(s).

C APPENDIX: HYPER-PARAMETER TUNING
All ML models we experimented with were first tuned via Grid

Search to identify the best hyper-parameter values. Table 3 shows

the hyper-parameter tuning details for five ML models (XGBoost,

SVR, DT, RF, and NN), along with the best values chosen. For XG-

Boost, parameters such as learning rate, number of estimators, and

maximum depth were adjusted to find a balance between model

complexity and accuracy. SVR tuning focused on the regularization

parameter C, kernel type, kernel coefficient (gamma), and epsilon

(for epsilon-SVR model). For kernel type, our experiments showed

that the RBF (Radial Basis Function) kernel had the best prediction

accuracy. RF and DT had similar tuning to prevent overfitting while

maintaining model depth. For RF, we also considered the number

of estimators (300 in our case) for better accuracy. For NN, we used

the Multi-layer Perceptron regressor from scikit-learn with ReLU

activation and three hidden layers; the three hidden layers had size

of 512, 16, and 16 neurons. For LR, we experimented with and with-

out intercept. Including intercept, as mentioned earlier, gave better

results. We also tried Ridge regression as an alternative to LR and

Lasso, but its prediction accuracy was worse (5–6% higher MAPE

than LR and Lasso), so we do not include it in our evaluation. For

regularization, since Ridge regression did not work well, we had

the alpha hyper-parameter set to 0.1 for Lasso (L1 regularization).

188

FootPrinter:Quantifying Data Center Carbon Footprint
Dante Niewenhuis
d.niewenhuis@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

Sacheendra Talluri
s.talluri@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

Alexandru Iosup
a.iosup@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

Tiziano De Matteis
t.de.matteis@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

ABSTRACT
Data centers have become an increasingly significant contributor to
the global carbon footprint. In 2021, the global data center industry
was responsible for around 1% of the worldwide greenhouse gas
emissions. With more resource-intensive workloads, such as Large
Language Models, gaining popularity, this percentage is expected
to increase further. Therefore, it is crucial for data center service
providers to become aware of and accountable for the sustainability
impact of their design and operational choices. However, reduc-
ing the carbon footprint of data centers has been a challenging
process due to the lack of comprehensive metrics, carbon-aware
design tools, and guidelines for carbon-aware optimization. In this
work, we propose FootPrinter, a first-of-its-kind tool that supports
data center designers and operators in assessing the environmental
impact of their data center. FootPrinter uses coarse-grained opera-
tional data, grid energy mix information, and discrete event simula-
tion to determine the data center’s operational carbon footprint and
evaluate the impact of infrastructural or operational changes. Foot-
Printer can simulate days of operations of a regional data center
on a commodity laptop in a few seconds, returning the estimated
footprint with marginal error. By making this project open source,
we hope to engage the community in the development of method-
ologies and tools for systematically assessing and exploring the
sustainability of data centers.

CCS CONCEPTS
• Hardware → Impact on the environment; Renewable en-
ergy; • Computing methodologies→ Agent / discrete models.

KEYWORDS
Carbon Footprint, Carbon Emission, Data Center, Simulation

ACM Reference Format:
Dante Niewenhuis, Sacheendra Talluri, Alexandru Iosup, and Tiziano De
Matteis. 2024. FootPrinter: Quantifying Data Center Carbon Footprint. In
Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3629527.3651419

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651419

0

10000

Av
ai

la
bl

e
En

er
gy

(k
W

h)

Energy Type
green grey

30/09 07/10 14/10 21/10 28/10
Time [d]

0

200

Ca
rb

on
 In

te
ns

ity
(g

CO
2/

kW
h)

Figure 1: The energy mix and carbon intensity of the energy
grid in the Netherlands during the month of October 2023
from the ENTSO-E Transparency Platform1. The top graph
shows the energy mix during the month into green and non-
green energy. The bottom graph shows the resulting carbon
intensity of the grid.

1 INTRODUCTION
Climate change is a significant social challenge today, affecting
various aspects of our daily lives [34]. In 2015, world leaders reached
a breakthrough with the Paris Agreement, which aims “to limit the
temperature increase to 1.5°C above pre-industrial levels." [31]. To
achieve this goal, the European Union (EU) has established a 55%
reduction in greenhouse gas emissions by 2030 for all its member
states [12].

Data centers significantly contribute to the global carbon foot-
print [13], accounting for 1% of global greenhouse gas emissions in
2021 [24]. As a result of demands from governments and users [30],
and financial considerations, data center operators have been work-
ing to reduce their carbon footprint. The recent energy price cri-
sis and sustainability efforts (e.g., through green bond emissions)
have made operational expenses a primary cost factor for data
centers [36].

1https://transparency.entsoe.eu/dashboard/show

189

https://doi.org/10.1145/3629527.3651419
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3651419
https://transparency.entsoe.eu/dashboard/show

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Dante Niewenhuis, Sacheendra Talluri, Alexandru Iosup, & Tiziano De Matteis

So far, data center designers and operators have been focusing
mainly on improving their power efficiency. Data centers already
use more than 1% of the global energy consumption [28], and some
estimate this will rise to as much as 8% in 2030 [3]. Despite the
improvements in energy efficiency, aggregate energy usage has in-
creased in the last 15 years [7]. Moreover, efficiency improvements
have slowed down significantly in recent years [38]. A bigger prob-
lem, however, is that optimizing energy does not directly reduce
the carbon footprint. The carbon emitted by a data center depends
not just on the amount of energy used but also on the type. For
instance, Figure 1 shows how the grid energy mix and its carbon
intensity can change continuously over time.

Reducing the carbon footprint of a data center is a challenging
process. There is no consensus on measuring carbon emissions [19],
and there is a lack of carbon-aware design tools and guidelines for
carbon-aware optimization [18]. These challenges have resulted
in many companies still relying on rule-of-thumb reasoning [4],
which has led to carbon-inefficient practices, such as significant
overprovisioning of resources [20]. Improving the carbon footprint
has been even more difficult for smaller data centers [23], which
often lack insight into tenant workloads and their provided en-
ergy mix. Besides the technical challenges, significant costs are
involved. Data centers operate on a large scale, making experimen-
tation costly and time-consuming. Making uninformed decisions
can also have a significant economic impact. Data center projects
have been stopped in countries like the Netherlands based on vague,
qualitative statements about their potential climate impact2.
In this work, we make three contributions:

(1) We discuss what information data center operators need to quan-
tify and optimize their operational carbon footprint.Measuring
a data center’s energy consumption requires that operators
invest in hardware and software tools. Attributing this to indi-
vidual applications is complex and requires even more tooling.
Therefore, we suggest using coarse-grained execution metrics,
as a convenient yet effective way of assessing the data center’s
energy consumption.

(2) We introduce FootPrinter3, a data center discrete simulator based
on the OpenDC4 framework. FootPrinter takes as input the
hardware configuration of a data center and workload traces
and uses simulation to determine the corresponding energy
footprint. The energy profile is combined with the energymix of
the location region to calculate the operational carbon footprint
of the data center when it runs the given workload.

(3) We validate FootPrinter using a wall-socket energy trace from
SURF, the Dutch national supercomputing center, showing that
the simulated data center has the same energy usage as the data
center running the same workload in the real world.

With FootPrinter, we aim to contribute with a tool for data center
designers and operators to reason about the environmental impact
and associated costs of their infrastructures and plan for appropriate
measures to improve their sustainability.

2https://www.datacenterknowledge.com/meta-facebook/scorned-meta-data-center-
holland-met-all-environmental-standards
3https://github.com/atlarge-research/FootPrinter
4https://opendc.org/

2007 2010 2015 2020 2022
Year

1

2

Av
er

ag
e

PU
E

Optimal

Figure 2: The average Power Usage Effectiveness (PUE) of 669
data centers from 2007 to 2022 [14]. The dotted line shows
the optimal value of 1.0.

2 BACKGROUND
The carbon footprint of a data center is characterized by two

types of carbon emission: the embodied carbon footprint and the op-
erational carbon footprint. Embodied carbon is the carbon emitted
from manufacturing and production. Operational carbon footprint
is the CO2 emissions caused by energy usage during operations. In
this work, we focus on reducing the operational carbon footprint
of data centers.

2.1 Power Usage Effectiveness
In recent years, much focus has been placed on improving the effi-
ciency of data centers. The most commonly used metric for energy
efficiency is Power Usage Effectiveness (PUE). PUE is calculated
using Equation 1:

𝑃𝑈𝐸 =
𝐸𝑇

𝐸𝐼𝑇
(1)

In which 𝐸𝑡 and 𝐸𝐼𝑇 denote the total energy used by the data
center and the energy used by the IT components of the data center.
In an optimal data center, no energy is required for redundant tasks,
using all energy for the IT equipment doing the computation. This
results in a PUE of 1.0. However, while many data centers have
been able to optimize their PUE, with for instance Google getting
close to 1.1 5, the aggregate energy consumption of data centers
has still increased over the last 15 years [7]. One reason for this
is the rebound effect, which states that if the energy required to
perform a task (and thus its price) decreases, the number of tasks
performed will increase [40]. Another reason is that the rate of
improvement of PUE has slowed down significantly in recent years.
Figure 2 shows the average PUE of 669 data centers during the
period of 2007 to 2022 [14]. While great improvements were made
between 2007 and 2013 (from 2.5 to 1.6), recent years did not bring
any more significant improvements, with the lowest average PUE
of 1.55 being achieved in 2022.

We suggest two possible reasons for this slowdown of improve-
ment. First, as the PUE is already highly optimized, it is becoming
increasingly difficult to optimize it further. Second, the shift to hy-
perscale data centers had a significant impact on the average PUE.
Because this shift is nearly finished, it is unclear where significant
improvements will come from [7].

5https://www.google.com/about/datacenters/efficiency/

190

https://www.datacenterknowledge.com/meta-facebook/scorned-meta-data-center-holland-met-all-environmental-standards
https://www.datacenterknowledge.com/meta-facebook/scorned-meta-data-center-holland-met-all-environmental-standards
https://github.com/atlarge-research/FootPrinter
https://opendc.org/
https://www.google.com/about/datacenters/efficiency/

FootPrinter: Quantifying Data Center Carbon Footprint ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

2.2 Carbon Intensity
While PUE is a good metric to determine infrastructure energy
efficiency, it is not taking everything into account. PUE does not
consider the energy efficiency of applications and workloads [43].
PUE also completely ignores the type of energy used. The source
of energy can have an enormous impact on the carbon emitted. In
some cases, energy sourced from renewable sources, such as wind
or solar, can emit up to 20x less CO2 compared to traditional en-
ergy sources, such as coal [22]. The Carbon Intensity of an energy
source defines the amount of carbon emitted per unit of energy
used. Many data centers do, however, not use energy from a single
energy source, but get their energy from the grid. Energy provided
by the grid is often gathered from many different energy sources
with different carbon intensities. The carbon intensity of the grid
is calculated by aggregating the different energy sources in Equa-
tion 2:

𝐶𝐼𝑔 =
∑︁
𝑠∈𝑆

𝐶𝐼𝑠
𝐸𝑠

𝐸𝑔
(2)

In which 𝐶𝐼𝑠 is the carbon intensity of energy source 𝑠 , 𝐸𝑠/𝐸𝑔 is
the share of energy that 𝑠 contributes to the grid, and 𝑆 is the set of
all available energy sources. Green energy is primarily gained from
natural phenomena, such as wind or sunlight. This results in a con-
tinuously changing mix of available energy (see Figure 1). During
this time, the ratio of green and non-green energy varied signif-
icantly. As a result, the carbon intensity of the grid also changes
significantly over time (100 to 400 gCO2/kWh). This means that to
minimize the carbon footprint of a data center, not only the amount
of energy used is important, but also when this energy is used.

2.3 Operational Footprint
The operational carbon footprint is characterized by the carbon
emitted when the system is running. The operational carbon foot-
print can be calculated by combining the carbon intensity of the
data center 𝐶𝐼𝑑 (gCO2/kWh) and the operational energy of the data
center 𝐸𝑜𝑝 (kWh) as defined in Equation 3:

𝐶𝑜𝑝 = 𝐶𝐼𝑑𝐸𝑜𝑝 (3)
We assume that the carbon intensity of the energy used by a data

center is proportional to the carbon intensity of the grid (𝐶𝐼𝑑 = 𝐶𝐼𝑔).
Some data centers have special energy contracts providing them
direct access to specific types of energy6. However, these data
centers still have to resort to using energy from the grid, when not
enough energy is available [1]. In this work, we focus on the carbon
footprint of a data center. However, several other metrics for data
center sustainability exist [35].

2.4 Simulation
FootPrinter uses discrete-time simulation to estimate the carbon
footprint of a data center in a time and energy-aware manner. Using
simulation for data center research is not new. Simulators such as
Grid/CloudSim [9], SimGrid [10], and iCanCloud [32] have demon-
strated the ability to simulate complex operations at cluster and data

6https://www.datacenterdynamics.com/en/news/meta-signs-renewable-energy-
deal-in-arizona-with-orsted/

Data
Center Metrics Changed

Data Center

1 2

34

Figure 3: A method of determining the impact of making
changes to a data center. 1) Determine initial performance, 2)
Change data center infrastructure and/or operations based
on metrics and goals, 3) Determine the performance of the
changed data center, and when requirements are met 4) Con-
solidate the changes in the data center. The red lines highlight
the challenging steps.

center levels. In this work, we use OpenDC, a trace-based discrete
data center simulation framework [29]. OpenDC uses real-world
workload traces to drive simulation. A workload trace describes
when jobs get submitted and their computational requirements.
More advanced workload traces also define their computational
demand over time. OpenDC replays the workload on a specified
data center and allows users to explore "what-if" scenarios. Foot-
Printer uses these features and extends them to compute the energy
required to run the workload on a user-specified data center and
derive its corresponding carbon footprint.

3 PROBLEM STATEMENT
Reducing the carbon footprint of a data center is a challenging

task. Due to a lack of carbon-aware tooling, data center design-
ers and operators need to decide between different options with
limited insight into their effects [18]. Therefore, determining how
to change the data center infrastructure and operations is often a
process of trial and error, in which new experiments are executed
based on the results of previous experimentation until the imposed
requirements are met (see Figure 3). Using a similar approach when
working with data centers is ineffective due to the time, energy, and
monetary costs involved. Collecting energy metrics on the level
of individual servers or server components requires significant
investments in hardware and software, such as power meters for
measurement and software to process data and storage. The more
detailed the information required, the more power meters, storage,
and computing are needed. Furthermore, the energy usage of a data
center can assist the operator in identifying problems and areas of
improvement, such as idle VMs, or inefficient resource management.
It does, however, not provide enough information to determine the
effect of changes made to address the identified problems. This
insight is vital to determine where to invest the available budget
and engineering time. Small real-world experiments followed by
analysis are often used to quantify efficacy (see Figure 3). However,
this feedback loop might be slow because of the long execution
time of experiments, or even unfeasible due to economic reasons.

FootPrinter enables a convenient approach to analyzing and op-
timizing the carbon footprint of a data center. Through the use
of discrete simulations, it allows the user to consider several sce-
narios, keeping costs and operational impact low. FootPrinters’
stakeholders are data center designers, who architect the data center
infrastructure, and operators who run the data center operations.

191

https://www.datacenterdynamics.com/en/news/meta-signs-renewable-energy-deal-in-arizona-with-orsted/
https://www.datacenterdynamics.com/en/news/meta-signs-renewable-energy-deal-in-arizona-with-orsted/

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Dante Niewenhuis, Sacheendra Talluri, Alexandru Iosup, & Tiziano De Matteis

We present three use cases that showcase the difficulties faced by
these stakeholders. In the remainder of the paper, we elaborate
on how FootPrinter can currently be utilized to tackle the first
two, while UC-Hardware is utilized to discuss how FootPrinter’s
capabilities can be expanded.
UC-Footprint Operational carbon footprint: Knowing the opera-
tional carbon footprint of a data center is an essential part of
evaluating its effectiveness. Determining the operational carbon
footprint requires knowledge about both the energy usage and
the carbon intensity of the used energy sources. As discussed pre-
viously, properly monitoring energy usage requires specialized
hardware and software.

UC-Location Selecting a location: The location of a data center can
have a big impact on its operational carbon footprint due to the
available energy mix. Choosing the right location is challenging
for both data center designers and operators. Designers need to
decide where to build new data centers. Operators must decide
where to execute submitted jobs when accessing multiple data
centers. In both cases, insight into the effect of location on the
operational carbon footprint is required.

UC-Hardware Selecting hardware upgrades: A designer responsi-
ble for upgrading a data center hardware has to make choices
within a limited budget. With a wide range of hardware op-
tions, deciding what to install can be difficult. To make informed
decisions, designers must understand the impact of hardware
changes.

4 FOOTPRINTER
We propose FootPrinter, an energy-aware discrete data center simu-
lator based on the OpenDC framework. FootPrinter takes as input
the hardware configuration of a data center and workload traces,
and uses simulation to determine the energy footprint. The energy
footprint is combined with the energy mix of the data center’s
region to determine the operational carbon footprint of the data
center during the execution of the given workloads.

Figure 4 shows the architecture of FootPrinter and illustrates
how it could be used by data center operators. Using the FootPrinter
starts at the real data center I . Over time, different workloads 1
are submitted to the servers 2 , and the operations software 3 is
used to decide when, where, and how these workloads are executed.
The activity of the data center is monitored during operations
and recorded. To use FootPrinter, three pieces of information are
required as input data II :
4 Workload traces that describe when jobs are submitted and hard-

ware requirements of each job. The trace also describes the
computational demand over time. FootPrinter is designed to
work with traces of any sample frequency. However, provid-
ing traces with higher frequency will result in more precise
results.

5 Hardware and environment specifications that describe the hard-
ware used by the datacenter. To determine the carbon foot-
print, it is also important to define where a data center is
located.

6 Operational techniques that define how and when jobs are run.
Important factors are the scheduling and resource allocation
policies.

(IV) Output

(II) Input data

(I) Data Center (User)

(III) FootPrinter

Hardware
Specification

Operational
Technique

Event-Driven
Simulation

Workload
Traces

Energy
Sampler

Sustainability
Predictor

4

5

6

A B

C

ServersWorkloads Operations
Software

Sustainability
Report

Performance
Report

D E

1 2
3

Figure 4: A diagram of the FootPrinter functionality. Four
areas are defined: The Data Center which is controlled by
the user I , the input data gathered from the data center II ,
The FootPrinter which simulated the input data III , and the

output IV .

The input data is sent to the FootPrinter to replay. The Foot-
Printer architecture III consist of the following components:

A The Event-Driven Simulator replays the given workload traces
on the given data center configuration. During the run, the
simulator is sampled for performance metrics and energy
usage. The frequency of sampling can be chosen to best fit
the current experiment. Higher frequency will result in more
precision at a cost of increasing the simulation time.

B The Energy Sampler determines the carbon intensity of the
grid while the simulation is run. Whenever the event-driven
simulator is sampled, the carbon intensity of the grid is
needed. The energy mix of the grid is sampled using the
Python API7 of the ENTSO-E Transparency Platform8.

C The Sustainability Predictor aggregates the results of the sim-
ulation into sustainability metrics, such as the total carbon
emitted and the carbon emission over time. These metrics
can be used to determine the operational carbon footprint
of the data center during the workload.

FootPrinter generates two types of output IV . First, the Per-
formance Report D shows the performance of the data center
during the provided workload. Examples of performance metrics
are the time of completion, or average CPU utilization. Next to
the performance of the data center, a sustainability report E is
made. Examples of sustainability metrics are the energy usage, or
the carbon emitted. Designing data centers is a difficult process,
in which often improvements in sustainability are connected to
decreases in performance. FootPrinter reports both sides to provide
the data center operators with a complete insight.

7https://github.com/EnergieID/entsoe-py
8https://transparency.entsoe.eu/dashboard/show

192

https://github.com/EnergieID/entsoe-py
https://transparency.entsoe.eu/dashboard/show

FootPrinter: Quantifying Data Center Carbon Footprint ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

20

25

5A

Power Draw (kW)

0

100

200

5B

Energy Carbon Intensity (gCO2/kWh)

08/10 10/10 12/10 14/10
Time (h)

0

2500

5000

5C

Carbon emission (gCO2/h)

Figure 5: The Carbon emission of a workload over time,
determined using FootPrinter. Graph 5A shows the power
draw over time. Graph 5B shows the carbon intensity of the
grid during the workload. Graph 5C combines the two other
graphs, showing the carbon emission during the workload.

5 EXPERIMENTS
This section demonstrates how FootPrinter can be used in different
use cases from section 3. The accuracy of FootPrinter is validated
by comparing it to an empirically measured energy usage trace.

5.1 Operational Carbon Footprint
We use FootPrinter to determine the operational carbon footprint of
a data center (UC-Footprint). To illustrate the process, we simulate
a workload trace gathered from the SURF Lisa9 cluster, an HPC
data center in the Netherlands. The workload consists of 7,850 jobs
executed over seven days. The duration of the jobs ranges from less
than an hour to several days. The CPU demand is sampled at a 30-
second interval for each job in the trace. The workload is run on a
data center comprising 277 physical machines. FootPrinter replays
this trace on a mid-range laptop (Intel Core I7-8750H Processor10)
in 10 seconds. This allows for rapid experimentation mentioned in
section 3.

Figure 5 depicts the process of determining operational car-
bon footprint using FootPrinter. Figure 5A shows the simulator-
determined power draw of the data center during the workload,
sampled every 30 seconds. The graph depicts the power draw of the
entire data center. However, FootPrinter can also provide similar
graphs for specific nodes or jobs. The aggregate power draw varies
in the range of 16 to 28 kW. The energy usage at a sample can be
9https://www.surf.nl/en/lisa-computing-cluster-extra-computing-power-for-
research
10https://ark.intel.com/content/www/us/en/ark/products/134906/intel-core-i7-
8750h-processor-9m-cache-up-to-4-10-ghz.html

07/10 08/10 09/10 10/10 11/10 12/10 13/10 14/10
Time [h]

0.0

0.5

1.0

Ca
rb

on
 E

m
iss

io
n

(g
CO

2/
h)

1e4
Germany Netherlands Belgium France

Figure 6: The carbon emission during the same workload
simulated executed on the same data center located in four
different locations.

determined by multiplying the power draw and the time since the
previous sample. Figure 5B depicts the carbon intensity of the grid
sampled from ENTSO-E. The difference in carbon intensity dur-
ing the chosen period is significant, ranging between 100 and 400
gCO2/h. Figure 5C depicts the carbon emission during the work-
load. Carbon emission at a sample can be calculated by multiplying
the energy usage at a sample with the carbon intensity. The carbon
emission is primarily influenced by the carbon intensity, due to the
much higher variability in the carbon intensity compared to the
power draw. This demonstrates the importance of measuring the
carbon footprint directly, instead of just energy usage.

5.2 Selecting location
FootPrinter can be used to compare the impact of building or ex-
panding the data center infrastructure in multiple locations (UC-
Location). Figure 6 depicts the effect of the data center location on
its carbon emission. The workload introduced in subsection 5.1 is
replayed on the same data center in different locations. France and
Belgium perform much better than the Netherlands and Germany.
This is because France and Belgium source around half of their
energy from nuclear power plants emitting almost no carbon. The
Netherlands and Germany, however, rely more on energy sources
such as coal, which is very carbon intensive.

5.3 Validation
To quantify the accuracy of our simulator, we compare the power
draw of a workload determined by the simulator, to the real-world
power draw of the same workload. We use the same workload
as used in subsection 5.1. Figure 7 shows the simulated power
draw determined by FootPrinter and the real-world power draw.
We determine the accuracy of the estimation using three different
metrics. Each metric is calculated separately for all points, the
points in which FootPrinter underestimates (underestimation error),
and the points in which FootPrinter overestimates the power draw
(overestimation error).

The first metric of estimation accuracy is the Mean Absolute
Percentage Error (MAPE), a popular measure of the accuracy of
forecastingmethods.MAPE is commonly used to determine forecast
accuracy because of its intuitive interpretation in terms of relative
error [16]. MAPE is a relative error measure that uses absolute
values to keep the positive and negative errors from canceling one
another out [33] and is calculated using Equation 4:

193

https://www.surf.nl/en/lisa-computing-cluster-extra-computing-power-for-research
https://www.surf.nl/en/lisa-computing-cluster-extra-computing-power-for-research
https://ark.intel.com/content/www/us/en/ark/products/134906/intel-core-i7-8750h-processor-9m-cache-up-to-4-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/134906/intel-core-i7-8750h-processor-9m-cache-up-to-4-10-ghz.html

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Dante Niewenhuis, Sacheendra Talluri, Alexandru Iosup, & Tiziano De Matteis

08/10 10/10 12/10 14/10
Time (h)

0

10

20

Po
we

r D
ra

w
(k

W
)

Ground Truth FootPrinter

Figure 7: The power draw of a data center during a given
workload simulated by the FootPrinter tool compared to the
actual Power Draw of the data center.

𝑀𝐴𝑃𝐸 [%] = 1
𝑛

𝑛∑︁
𝑡=0

|
𝑃𝑡 − 𝑃 ′𝑡

𝑃𝑡
| × 100 (4)

In which 𝑃𝑡 and 𝑃 ′𝑡 are the actual and simulated power draw at
sample 𝑡 and 𝑛 is the number of samples. Comparing FootPrinter
to the ground truth results in a MAPE total error of 3.15%, underes-
timation error of 3.19%, and overestimation error of 2.93%.

The second metric of prediction accuracy is the Normalized
Absolute Differences (NAD). NAD describes the total error of the
prediction divided by the sum of the ground truth and is calculated
using Equation 5:

𝑁𝐴𝐷 [%] =
∑𝑛
𝑡=0 |𝑃𝑡 − 𝑃 ′𝑡 |∑𝑛

𝑡=0 𝑃𝑡
× 100 (5)

In which 𝑃𝑡 and 𝑃 ′𝑡 are the actual and simulated power draw at
sample 𝑡 and 𝑛 is the number of samples. Comparing FootPrinter
to the ground truth results in a NAD total error of 3.17%, underesti-
mation error of 3.22%, and overestimation error of 2.83%.

Finally, we look at the distribution of the errors. Figure 8 shows
the percentage of time points with an error less than the given
threshold. Over half of the points have an error less than 3%, and
93% an error less than 6%.

6 RELATEDWORK
The research community has built many high-quality simulators
that provide a rich set of features to build upon [6, 8]. CloudSim [9] is
the closest to OpenDC, the simulator used in this paper. CloudSim
offers a number of single-feature simulators such as CloudAna-
lyst [39], iFogSim [21], and WorkflowSim [11]. However, the single
focus of these simulators makes it challenging to combine without
extensive engineering. In contrast, OpenDC is a flexible general
purpose simulator that supports various different features. Building
FootPrinter op OpenDC guarenties support for a varied applictions.

Extending simulators to estimate the carbon footprint of a data
centers is not a novel idea. In their paper from 2022, Song et al. dis-
cuss over 100 papers working on data center carbon footprint in the
last ten years, in which 75% used simulators in their experiment [37].
Most of the works discussed extend third party simulators to esti-
mate carbon footprint. The Most popular simulator for this purpose
is Cloudsim [15, 25, 42], but other simulators, such as SimGrid [5],

0 2 4 6 8 10
Error Threshold (%)

0

50

100

Po
in

ts
 w

ith
in

Th
re

sh
ol

d
(%

)

Total error
Underestimation
Overestimation

Figure 8: The distribution of the error of samples. Each point
represents the percentage of samples with an error less than
the specified threshold.

EcoMultiCloud [2], and iFogSim [41], are also used. Because of the
single-feature nature of the simulators used, most of these tools
are very specialized for their specific purpose. In contrast, Foot-
Printer is more general purpose. Another distinction is that many
tools focus on single green energy sources, such as solar [26, 27],
or wind [17]. FootPrinter is not dependent on any specific type of
energy source.

7 CONCLUSION
This work introduces FootPrinter, a first-of-its-kind tool that uses
simulation to determine the operational carbon footprint of a data
center. FootPrinter replays workload traces to determine the en-
ergy usage and carbon emission during the workload execution.
FootPrinter is designed to work with any trace granularity to make
it accessible to all data center operators. We have validated Foot-
Printer by comparing the simulated energy usage to the real-world
energy usage. FootPrinter can simulate energy usage with a Mean
Average Percentage Error of less than 3.15%.

We discussed three use cases highlighting challenges for data cen-
ter designers and operators who want to evaluate the sustainability
impact of their actions. In this paper, we showed how FootPrinter
can be used to determine operational carbon footprint and compare
data center locations. FootPrinter is an open-source tool and can
be extended to support more use cases and provide more insights.
We are already actively working on supporting hardware upgrades
and their impact on performance and carbon footprint. Addition-
ally, we are working on adding support for more elements that can
influence the energy usage of a data center, such as temperature
and humidity. Finally, while FootPrinter currently quantifies the
operational carbon emissions of a data center, we believe it can be
easily extended to also incorporate embodied carbon emissions.

ACKNOWLEDGMENTS
This work is supported by EU Horizon Graph Massivizer (g.a.
101093202) and EUMSCA CloudStars projects (g.a. 101086248). This
research is partly supported by a National Growth Fund through
the Dutch 6G flagship project “Future Network Services”. We wish
to thank SURF for the valuable support.

REFERENCES
[1] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj

Chakkaravarthy, David Brooks, and Carole-Jean Wu. 2023. Carbon Explorer: A

194

FootPrinter: Quantifying Data Center Carbon Footprint ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Holistic Framework for Designing Carbon Aware Datacenters. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 118–132.
https://doi.org/10.1145/3575693.3575754

[2] Abada Ahmed and Marc St-Hilaire. 2018. Renewable Energy Curtailment via
Incentivized Inter-datacenter Workload Migration. 143–157. https://doi.org/10.
1007/978-3-319-94295-7_10

[3] Anders S. G. Andrae and Tomas Edler. 2015. On Global Electricity Usage of
Communication Technology: Trends to 2030. Challenges 6, 1 (2015), 117–157.
https://doi.org/10.3390/challe6010117

[4] Georgios Andreadis, FabianMastenbroek, Vincent van Beek, andAlexandru Iosup.
2021. Capelin: Data-Driven Capacity Procurement for Cloud Datacenters using
Portfolios of Scenarios – Extended Technical Report. arXiv:2103.02060 [cs.DC]

[5] Gagangeet Singh Aujla and Neeraj Kumar. 2018. SDN-based energy management
scheme for sustainability of data centers: An analysis on renewable energy
sources and electric vehicles participation. J. Parallel Distrib. Comput. 117, C (jul
2018), 228–245. https://doi.org/10.1016/j.jpdc.2017.07.002

[6] Ilyas Bambrik. 2020. A Survey on Cloud Computing Simulation and Modeling.
SN Computer Science 1, 5 (2020), 249.

[7] Noman Bashir, David Irwin, Prashant Shenoy, and Abel Souza. 2022. Sustainable
Computing – Without the Hot Air. arXiv:2207.00081 [cs.CY]

[8] James Byrne, Sergej Svorobej, Konstantinos M. Giannoutakis, Dimitrios Tzovaras,
Peter J. Byrne, Per-Olov Östberg, Anna Gourinovitch, and Theo Lynn. 2017. A
Review of Cloud Computing Simulation Platforms and Related Environments.
In CLOSER 2017 - Proceedings of the 7th International Conference on Cloud Com-
puting and Services Science, Porto, Portugal, April 24-26, 2017, Donald Ferguson,
Víctor Méndez Muñoz, Jorge S. Cardoso, Markus Helfert, and Claus Pahl (Eds.).
SciTePress, 651–663.

[9] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and
Rajkumar Buyya. 2011. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience 41, 1 (2011), 23–50.

[10] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. 2014. Versatile, scalable, and accurate simulation of distributed applications
and platforms. J. Parallel and Distrib. Comput. 74, 10 (2014), 2899–2917. https:
//doi.org/10.1016/j.jpdc.2014.06.008

[11] Weiwei Chen and Ewa Deelman. 2012. WorkflowSim: A toolkit for simulating
scientific workflows in distributed environments. In 8th IEEE International Con-
ference on E-Science, e-Science 2012, Chicago, IL, USA, October 8-12, 2012. IEEE
Computer Society, 1–8.

[12] European Commission. 2020. Stepping up Europe’s 2030 climate ambition In-
vesting in a climate-neutral future for the benefit of our people. https://eur-
lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52020DC0562

[13] ACM Technology Council. 2021. Computing and climate change. https://doi.
org/doi/pdf/10.1145/3483410

[14] J. Davis, D. Bizo, A. Lawrence, O. Rogers, M. Smolaks, L. Simon, and D. Donnellan.
2022. Uptime Institute Global Data Center Survey 2022. Uptime Institute.

[15] Inès De Courchelle, Tom Guérout, Georges Da Costa, Thierry Monteil, and Yann
Labit. 2019. Green energy efficient scheduling management. Simulation Modelling
Practice and Theory 93 (2019), 208–232. https://doi.org/10.1016/j.simpat.2018.09.
011 Modeling and Simulation of Cloud Computing and Big Data.

[16] Arnaud de Myttenaere, Boris Golden, Bénédicte Le Grand, and Fabrice Rossi.
2016. Mean Absolute Percentage Error for regression models. Neurocomputing
192 (2016), 38–48. https://doi.org/10.1016/j.neucom.2015.12.114 Advances in
artificial neural networks, machine learning and computational intelligence.

[17] Xiaowen Dong, Taisir El-Gorashi, and Jaafar Elmirghani. 2011. Green IP over
WDM Networks: Solar and Wind Renewable Sources and Data Centres. 1–6.
https://doi.org/10.1109/GLOCOM.2011.6134175

[18] Mariam Elgamal, Doug Carmean, Elnaz Ansari, Okay Zed, Ramesh Peri, Srilatha
Manne, Udit Gupta, Gu-Yeon Wei, David Brooks, Gage Hills, and Carole-Jean
Wu. 2023. Carbon-Efficient Design Optimization for Computing Systems. In
Proceedings of the 2nd Workshop on Sustainable Computer Systems (Boston, MA,
USA) (HotCarbon ’23). Association for Computing Machinery, New York, NY,
USA, Article 16, 7 pages. https://doi.org/10.1145/3604930.3605712

[19] Anshul Gandhi, Dongyoon Lee, Zhenhua Liu, Shuai Mu, Erez Zadok, Kanad
Ghose, Kartik Gopalan, Yu David Liu, Syed Rafiul Hussain, and Patrick Mcdaniel.
2023. Metrics for Sustainability in Data Centers. SIGENERGY Energy Inform. Rev.
3, 3 (oct 2023), 40–46. https://doi.org/10.1145/3630614.3630622

[20] James Glanz. 2012. Power, Pollution and the Internet. https://www.nytimes.com/
2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-
industry-image.html

[21] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.
2017. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments.
Software: Practice and Experience 47, 9 (2017), 1275–1296.

[22] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David
Brooks, and Carole-JeanWu. 2022. ACT: designing sustainable computer systems

with an architectural carbon modeling tool. In Proceedings of the 49th Annual
International Symposium on Computer Architecture (New York, New York) (ISCA
’22). Association for Computing Machinery, New York, NY, USA, 784–799. https:
//doi.org/10.1145/3470496.3527408

[23] IEA. 2017. Digitalisation and Energy. https://www.iea.org/reports/digitalisation-
and-energy

[24] IEA. 2022. Data Centres and Data Transmission Networks.
[25] Chao Li, Rui Wang, Depei Qian, and Tao Li. 2016. Managing Server Clusters on

Renewable Energy Mix. ACM Trans. Auton. Adapt. Syst. 11, 1, Article 1 (feb 2016),
24 pages. https://doi.org/10.1145/2845085

[26] Chao Li, Wangyuan Zhang, Chang-Burm Cho, and Tao Li. 2011. SolarCore: Solar
energy driven multi-core architecture power management. In 2011 IEEE 17th
International Symposium on High Performance Computer Architecture. 205–216.
https://doi.org/10.1109/HPCA.2011.5749729

[27] Longjun Liu, Hongbin Sun, Yang Hu, Jingmin Xin, Nanning Zheng, and Tao Li.
2015. Leveraging distributed UPS energy for managing solar energy powered
data centers. (02 2015). https://doi.org/10.1109/IGCC.2014.7039150

[28] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey.
2020. Big Tech Gets Caught Up in Europe’s Energy Politics. https://www-
science-org.vu-nl.idm.oclc.org/doi/10.1126/science.aba3758

[29] Fabian Mastenbroek, Georgios Andreadis, Soufiane Jounaid, Wenchen Lai, Jacob
Burley, Jaro Bosch, Erwin van Eyk, Laurens Versluis, Vincent van Beek, and
Alexandru Iosup. 2021. OpenDC 2.0: Convenient Modeling and Simulation of
Emerging Technologies in Cloud Datacenters. In 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). 455–464. https:
//doi.org/10.1109/CCGrid51090.2021.00055

[30] Rich Miller. 2021. The Sustainability Imperative: Green Data Centers
and Our Cloudy Future. https://www.datacenterfrontier.com/special-
reports/article/11428454/the-sustainability-imperative-green-data-centers-
and-our-cloudy-future

[31] United Nations. 2015. The Paris Agreement. https://www.un.org/en/
climatechange/paris-agreement

[32] Alberto Núñez, Jose Vázquez-Poletti, Agustín Caminero, Gabriel Castañé, Jesus
Carretero, and Ignacio Llorente. 2012. ICanCloud: A Flexible and Scalable Cloud
Infrastructure Simulator. Journal of Grid Computing 10 (03 2012), 185–209. https:
//doi.org/10.1007/s10723-012-9208-5

[33] Oracle. 2014. Working with Planning: MAPE. https://docs.oracle.com/en/cloud/
saas/planning-budgeting-cloud/pfusu/insights_metrics_MAPE.html#GUID-
C33B0F01-83E9-468B-B96C-413A12882334

[34] Interfovernmental panel on climate change. 2022. IPCC PRESS RE-
LEASE. https://www.ipcc.ch/report/ar6/wg2/downloads/press/IPCC_AR6_
WGII_PressRelease-English.pdf

[35] V. Reddy, B. Setz, G. K. Rao, G. Gangadharan, and M. Aiello. 2017. Metrics for
Sustainable Data Centers. IEEE Transactions on Sustainable Computing 2, 03 (jul
2017), 290–303. https://doi.org/10.1109/TSUSC.2017.2701883

[36] April Roach and Ewa Krukowska. 2022. Recalibrating global data center energy-
use estimates. https://www.bnnbloomberg.ca/big-tech-gets-caught-up-in-
europe-s-energy-politics-1.1782670

[37] Jie Song, Peimeng Zhu, Yanfeng Zhang, and Ge Yu. 2022. Versatility or validity:
A comprehensive review on simulation of Datacenters powered by Renewable
Energy mix. Future Generation Computer Systems 136 (11 2022), 326–341. https:
//doi.org/10.1016/j.future.2022.06.008

[38] Petroc Taylor. 2023. Data center average annual power usage effectiveness (PUE)
worldwide 2007-2023. https://www.statista.com/statistics/1229367/data-center-
average-annual-pue-worldwide/

[39] Bhathiya Wickremasinghe, Rodrigo N. Calheiros, and Rajkumar Buyya. 2010.
CloudAnalyst: A CloudSim-Based Visual Modeller for Analysing Cloud Com-
puting Environments and Applications. In 24th IEEE International Conference on
Advanced Information Networking and Applications, AINA 2010, Perth, Australia,
20-13 April 2010. IEEE Computer Society, 446–452.

[40] Jackson Woodruff, David Schall, Michael F.P. O’Boyle, and Christopher Woodruff.
2023. When Does Saving Power Save the Planet?. In Proceedings of the 2nd
Workshop on Sustainable Computer Systems (Boston, MA, USA) (HotCarbon ’23).
Association for Computing Machinery, New York, NY, USA, Article 20, 6 pages.
https://doi.org/10.1145/3604930.3605719

[41] Chenhan Xu, Kun Wang, Peng Li, Rui Xia, Song Guo, and Minyi Guo. 2020. Re-
newable Energy-Aware Big Data Analytics in Geo-Distributed Data Centers with
Reinforcement Learning. IEEE Transactions on Network Science and Engineering
7, 1 (2020), 205–215. https://doi.org/10.1109/TNSE.2018.2813333

[42] Minxian Xu and Rajkumar Buyya. 2020. Managing renewable energy and carbon
footprint in multi-cloud computing environments. J. Parallel and Distrib. Comput.
135 (2020), 191–202. https://doi.org/10.1016/j.jpdc.2019.09.015

[43] Runlin Zhou, Yingjie Shi, and Chunge Zhu. 2013. AxPUE: Application level
metrics for power usage effectiveness in data centers. In 2013 IEEE International
Conference on Big Data. 110–117. https://doi.org/10.1109/BigData.2013.6691705

195

https://doi.org/10.1145/3575693.3575754
https://doi.org/10.1007/978-3-319-94295-7_10
https://doi.org/10.1007/978-3-319-94295-7_10
https://doi.org/10.3390/challe6010117
https://arxiv.org/abs/2103.02060
https://doi.org/10.1016/j.jpdc.2017.07.002
https://arxiv.org/abs/2207.00081
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1016/j.jpdc.2014.06.008
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52020DC0562
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52020DC0562
https://doi.org/doi/pdf/10.1145/ 3483410
https://doi.org/doi/pdf/10.1145/ 3483410
https://doi.org/10.1016/j.simpat.2018.09.011
https://doi.org/10.1016/j.simpat.2018.09.011
https://doi.org/10.1016/j.neucom.2015.12.114
https://doi.org/10.1109/GLOCOM.2011.6134175
https://doi.org/10.1145/3604930.3605712
https://doi.org/10.1145/3630614.3630622
https://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
https://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
https://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
https://doi.org/10.1145/3470496.3527408
https://doi.org/10.1145/3470496.3527408
https://www.iea.org/reports/digitalisation-and-energy
https://www.iea.org/reports/digitalisation-and-energy
https://doi.org/10.1145/2845085
https://doi.org/10.1109/HPCA.2011.5749729
https://doi.org/10.1109/IGCC.2014.7039150
https://www-science-org.vu-nl.idm.oclc.org/doi/10.1126/science.aba3758
https://www-science-org.vu-nl.idm.oclc.org/doi/10.1126/science.aba3758
https://doi.org/10.1109/CCGrid51090.2021.00055
https://doi.org/10.1109/CCGrid51090.2021.00055
https://www.datacenterfrontier.com/special-reports/article/11428454/the-sustainability-imperative-green-data-centers-and-our-cloudy-future
https://www.datacenterfrontier.com/special-reports/article/11428454/the-sustainability-imperative-green-data-centers-and-our-cloudy-future
https://www.datacenterfrontier.com/special-reports/article/11428454/the-sustainability-imperative-green-data-centers-and-our-cloudy-future
https://www.un.org/en/climatechange/paris-agreement
https://www.un.org/en/climatechange/paris-agreement
https://doi.org/10.1007/s10723-012-9208-5
https://doi.org/10.1007/s10723-012-9208-5
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusu/insights_metrics_MAPE.html#GUID-C33B0F01-83E9-468B-B96C-413A12882334
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusu/insights_metrics_MAPE.html#GUID-C33B0F01-83E9-468B-B96C-413A12882334
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusu/insights_metrics_MAPE.html#GUID-C33B0F01-83E9-468B-B96C-413A12882334
https://www.ipcc.ch/report/ar6/wg2/downloads/press/IPCC_AR6_WGII_PressRelease-English.pdf
https://www.ipcc.ch/report/ar6/wg2/downloads/press/IPCC_AR6_WGII_PressRelease-English.pdf
https://doi.org/10.1109/TSUSC.2017.2701883
https://www.bnnbloomberg.ca/big-tech-gets-caught-up-in-europe-s-energy-politics-1.1782670
https://www.bnnbloomberg.ca/big-tech-gets-caught-up-in-europe-s-energy-politics-1.1782670
https://doi.org/10.1016/j.future.2022.06.008
https://doi.org/10.1016/j.future.2022.06.008
https://www.statista.com/statistics/1229367/data-center-average-annual-pue-worldwide/
https://www.statista.com/statistics/1229367/data-center-average-annual-pue-worldwide/
https://doi.org/10.1145/3604930.3605719
https://doi.org/10.1109/TNSE.2018.2813333
https://doi.org/10.1016/j.jpdc.2019.09.015
https://doi.org/10.1109/BigData.2013.6691705

Peeking Behind the Serverless Implementations and
Deployments of the Montage Workflow
Simon Triendl

csav3166@student.uibk.ac.at
University of Innsbruck

Department of Computer Science
Innsbruck, Tyrol, Austria

Sashko Ristov
sashko.ristov@uibk.ac.at
University of Innsbruck

Department of Computer Science
Innsbruck, Tyrol, Austria

ABSTRACT
The development of serverless scientific workflows is a complex
and tedious procedure and opens several challenges in how to
compose workflow processing steps as serverless functions and
how much memory to assign to each serverless function, which
affects not only the computing resources, but also the networking
communication to the cloud storage. Merging multiple processing
steps into a single serverless function (fusion) reduces the number
of invocations, but restricts the developer to assign the maximum
required memory of all fused processing steps, which may increase
the overall costs.

In this paper, we address the aforementioned challenges for the
widely usedMontage workflow.We created three differentworkflow
implementations (fine, medium, and coarse) for two cloud providers
AWS and GCP and deployed workflow functions with different
memory assignments 135MB, 512MB, and 1GB (function deploy-
ments). Our experiments show that many Montage functions run
cheaper and faster with more memory on both providers. Conse-
quently, selecting the most cost-effective memory configuration,
as opposed to the minimal memory, resulted in a reduction of the
makespan by 67.27% on AWS and 10.93% on GCP. Applying the
same to workflow implementations with fewer functions (coarse)
led to a further reduction in the makespan by 24.98 % on AWS and
12.96% on GCP, while simultaneously reducing the total cost by
5.33 % and 1.99 %, respectively. Surprisingly, the fastest implemen-
tation was the medium implementation executed on AWS.

CCS CONCEPTS
• Computer systems organization → Cloud computing.

KEYWORDS
cost, FaaS, performance, serverless, workflows.

ACM Reference Format:
Simon Triendl and Sashko Ristov. 2024. Peeking Behind the Serverless
Implementations and Deployments of the MontageWorkflow. In Companion
of the 15th ACM/SPEC International Conference on Performance Engineering
(ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3629527.3651420

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651420

1 INTRODUCTION
Serverless computing is a scalable and cost-effective execution envi-
ronment for data-intensive applications, such as scientific workflow
applications, whose complexity and scalability grow [18, 23]. Do-
main experts code processing steps as serverless functions and
orchestrate them into serverless workflows [2, 7, 9, 21, 31, 38, 45, 50].
Such workflows include complex applications from astrophysics
(e.g., Montage [5]), bioinformatics (e.g., BWA [27]), earthquake
simulations (e.g., Cybershake [29]), and many more.

Although the heterogeneous nature of federated clouds [3, 28,
34, 40, 44, 49] brings many benefits in terms of cost [14], execution
time [34, 38, 43], and scalability [22, 41], it raises several challenges.
First, developers may map the workflow processing steps in a fine-
grained manner, where each method of the workflow tasks may
be deployed as a separate serverless function or a coarse-grained
approach, in which multiple processing steps are merged in a sep-
arate serverless function. While the former approach offers the
highest level of granularity and usually minimizes the cost, the
latter usually improves the performance as it minimizes data trans-
fers and uses more memory, which often leads to higher costs. We
refer to each of these mappings as a workflow implementation. Once
the functions of the workflow are coded, they are deployed on the
selected provider and assigned with a specific amount of memory,
often known as function deployment.

In this paper, we peek behind the different Montage workflow
implementations and various function deployments to investigate
how they affect the overall cost and performance. We used two
cloud providers AWS and GCP and derived interesting conclusions.
The evaluation showed that many workflow functions benefit both
in terms of cost and performance when assigned withmorememory.
Moreover, the coarse implementations additionally reduce the over-
all cost while improving performance. Surprisingly, the medium
implementation of Montage achieved the fastest makespan on AWS.
While the workflow community [12] recommends that a workflow
orchestrator should make intelligent decisions about the placement
of workflow tasks across different sites in the continuum, our re-
sults show that the workflow orchestrator should consider fusion
and fission of the workflow tasks, as well as the assigned memory
to each newly created task.

The remaining part of the paper is organized in five sections. We
first present details for the Montage workflow and its processing
steps in Section 2. Further on, Section 3 presents various implemen-
tation and deployment challenges and how they affect performance
and cost. In Section 4, we evaluate several deployments of the Mon-
tage workflow functions and determine the cheapest and fastest
implementations on two providers AWS and GCP. In Section 5, we

196

https://orcid.org/0009-0002-3040-2740
https://orcid.org/0000-0003-1996-0098
https://doi.org/10.1145/3629527.3651420
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3629527.3651420

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Simon Triendl and Sashko Ristov

position our work compared to the related work and in Section 6,
we conclude the paper and present our plans for future work.

2 INTRODUCTION TO THE MONTAGE
WORKFLOW

Montage [5], created by the NASA/IPAC Infrared Science Archive,
is an open-source toolkit to assemble astronomical images into cus-
tom mosaics. It consists of multiple independent modules indended
to be used in a choreography that exploits the parallelization of
several processing steps. This orchestration of modules is com-
monly referred to as Montage workflow. The Montage workflow
is widely used by the scientist due to its high computation and
communication complexity [1, 2, 13, 23, 31–33].

At a high level, the processing steps to compute a mosaic in-
volve initially calculating the geometry of the mosaic, followed by
re-projecting the input images, stored in Flexible Image Transport
System (FITS) format. Subsequently, background radiation correc-
tion is applied to ensure uniformity across the mosaic. Finally, the
re-projected and background-corrected images are co-added to gen-
erate the mosaic.

The Montage toolkit implements all of these computations with
a higher granularity. Additionally, certain stages necessitate the
dynamic generation of input variables for subsequent stages. There-
fore, a naive fine-grained implementation comprises 19 stages.

(0)-(1) prepare mProjectPP I-II: Prepares the parameters for the
mProjectPP instances.

(2) mProjectPP: Performs parallel fast re-projection of the input
FITS files according to the region header file.

(3)-(6) prepare mDiffFit I-IV: Extracts the header information
from the input FITS files and computes a list of overlap-
ping images. Based on the overlaps, the parameters for the
mDiffFit and mFitPlane instances are created.

(7) mDiff: Performs parallel image difference between a pair of
re-projected images and creates a new FITS file.

(8) mFitPlane: Parallelly fits a plane to the FITS files generated
by mDiff.

(9) prepare mConcatFit: Prepares the parameters for mConcatFit.
(10) mConcatFit: Merges the multiple plane fit parameter into a

single file for mBgModel.
(11) mBgModel: Creates a background radiation model to deter-

mine a set of corrections stored in a table.
(12)-(13) prepare mBackground I-II: Prepares the corrections table

and the parameters for the mBackground instances.
(14) mBackground: Performs parallel corrections on the re-projected

input FITS files.
(15) mImgTbl: Extracts the header information from the corrected

FITS files and stores them in a table.
(16) mAdd: Co-add the corrected FITS files according to the header

region file.
(17) mShrink: Reduces the size of the co-added FITS file.
(18) mViewer: Converts the shrunk FITS file to a PNG or JPEG

format.

3 IMPLEMENTATION AND DEPLOYMENT
CHALLENGES

In this section, we discuss the challenges that developers face when
they decide which implementation of a workflow to use and which
function deployments of that implementation.

3.1 Deployment challenges
Cloud providers offer fine-grained configuration of RAM memory
to their serverless functions. Developers can deploy their functions
starting from 128MB up to tens of gigabytes, depending on the
provider. However, providers use different approaches for the CPU.
AWS claims that the CPU scales linearly as the assigned memory.
Azure configures the memory dynamically based on the need, while
GCP users can configure the CPU, as well, but are additionally
charged for the CPU resources.

Function deployments with more memory usually achieve bet-
ter performance [24] based on the Gustafson’s Law [16]. More-
over, function deployments on AWS with more than 1.5GB achieve
the maximum bandwidth of the underlying virtual machines [47],
thereby transferring data to the collocated storage faster than
the function deployments with lower memory [26, 48]. Still, the
speedup when increasing the resources are limited to the linear
speedup, often reaching the sublinear speedup.

3.2 Implementation challenges
The cost and performance of a workflow is affected by its implemen-
tations. We showed earlier that Montage comprises 19 processing
steps, some of which are nested in a parallel loop. If all processing
steps are merged in a single function, then the invocation overhead
will be minimized as the workflow calls a single function [35], but
in that case, the developers lose parallelism. Therefore, fusion of
the processing steps should be considered mainly for a sequence
of sequential processing steps. Unfortunately, providers limit the
size of the function codes, which additionally restricts the decision
how many processing steps to merge and deploy in a single func-
tion. Another challenge in the fusion of multiple processing steps
is the amount of memory that should be assigned to the equivalent
function. For instance, if a processing step 𝑝𝑠1 needs 128MB and
the subsequent processing step 𝑝𝑠2 requires 2GB, then the fused
function 𝑓12 also needs 2GB, which additionally may increase the
costs since the processing step 𝑝𝑠1 is assigned with more memory
than required.

4 EXPERIMENTAL DESIGN
In this section, we introduce our implementation and assess how
different function deployments and workflow implementations in-
fluence the cost and performance of the Montage workflow on the
two public cloud providers AWS and GCP. Our implementation
is written in Java, utilizing JDK version 17. We encapsulated each
Montage toolkit executable within a method, offering a high-level
interface for the parameters. Upon method invocation, the exe-
cutable is executed in a process. We utilized Montage version 6.0
for this study.

We devised three workflow implementations, denoted as the
fine, medium, and coarse implementations, as presented in Fig. 1.

197

Peeking Behind the Serverless Implementations and Deployments of the Montage Workflow ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

mBackground

mImgtbl

mAdd

mShrink

mView

mDiff

mFitPlane

prepare
mConcatFit

mConcatFit

mBgModel

prepare
mBackground I

prepare
mBackground II

prepare
mDiff I

prepare
mDiff II

prepare
mDiff III

prepare
mDiff IV

prepare
mProjectPP I

prepare
mProjectPP II

mProjectPP

Legend:

coarse
implementation

medium
implementation

fine
implementation parallelFor

Figure 1: Composition of coarse,medium and fine Montage
workflow implementations, depicted with solid, dashed, and
dotted rectangles, respectively.

The fine implementation (dotted boxes in Fig. 1) focuses on di-
viding the Montage computations with the highest granularity,
achieved by segregating each method invocation into individual
functions. The medium implementation (dashed boxes in Fig. 1)
reflects the employed workflow[17] that can be executed with the
xAFCL serverless workflow management system [38]. Lastly, the
coarse implementation (solid boxes in Fig. 1) targets a minimal
granularity approach, also used by Deelman [13] and Berriman [5].
All three implementations and their compositions run the same
work and provide the same output, but their computations are
grouped differently in serverless functions, leading to 19, 12, and 7
functions for the fine, medium, and coarse implementations, respec-
tively. Note that the functions marked with gray boxes are executed
multiple times using data parallelism. Also, there are other imple-
mentations of Montage that use 9 functions [31, 32], which we did
not consider since they are very similar to the coarse implementa-
tion.

4.1 Experiment setup
We deployed the functions of all three workflow implementations
on GCP as 2nd generation functions in the europe-west1 region,
and on AWS in the eu-central-1 region, as the closest regions to
University of Innsbruck to minimize the invocation overhead [35].
Each function was deployed with 135MB, 512MB, and 1GB of
memory. The usage of 135MB was necessary on GCP due to its
minimal memory assignment being 135MiB, roughly equivalent to
135MB. Each function was configured with the maximum timeout
duration to prevent premature failure. The storage, which were
respectively hosted on Amazon S3 and Google Cloud Storage, were

collocated in the same region for both platforms, based on the
recent reports to collocate the functions closer to the data [42, 43].

To conduct these experiments we used a custom workflow ex-
ecution engine written in Python. Parallelization was achieved
using a thread pool, with the number of workers regulating the
concurrency of the execution. Due to account limitations on both
providers, we set the concurrency level to 10 and the block size
to 1. This constraint does not affect the results, as the measured
execution time reflects the function’s internal wall clock time. Thus,
factors such as invocation latency and cold starts do not influence
the measurements.

Each workflow implementation, along with its corresponding
functions deployments, underwent 5 executions like in other recent
works [10, 17, 35], and the median execution time of each func-
tion was considered. For functions invoked in parallel, the median
execution time of all parallel instances was calculated and then
extrapolated to determine the total runtime. We choose the median
over the mean to mitigate the impact of outliers.

The runtime cost is calculated based on publicly available pricing
information from AWS1 and GCP2. Because the storage is collo-
cated, file transfer expenses are confined to the number of file
accesses (downloads and uploads). Both AWS3 and GCP4 adhere to
the same pricing model in this regard.

4.2 Memory impact
We compiled the runtime and its associated cost, excluding file trans-
fer expenses, for each function and function deployment within
the fine workflow implementation into a table. Our objective is to
identify deployments that minimize runtime costs. To make the
detection easier, we computed the cost for 1 million invocations
and highlighted the cheapest deployments in bold. Dash symbols
indicate that the deployment’s memory was insufficient to execute
the function.

4.2.1 AWS. In Table 1 we depicted the results for AWS. Observ-
ing the runtimes of the functions reveals that deployments with
higher memory result in a faster execution. While the cost scales
linearly with both runtime and memory assignment, some func-
tions experience a super-linear speedup due to increased memory
assignment [39]. Consequently, deployments with higher memory
become both more cost-effective and faster compared to their lower-
spec counterparts. Functions 2, 7-8, 11, and 14 highlight that this
phenomenon is not universal but rather dependent on the behavior
of each specific function. Notable are the functions 0, 1, 6, 12-13,
15, and 17, whose deployments with even 1GB dominate the other
deployments with less memory, both in terms of runtime and cost.
Function 6 experiences the highest impact running at just 0.77%
of the time and accounting for 5.76% of the cost compared to its
deployment with 135MB. When comparing the cost-optimal func-
tion deployments to deployments with minimal feasible memory,
we observe a reduction in makespan from 434.96 s to 142.33 s, rep-
resenting a decrease of 67.27 %. Simultaneously, the cost decreased
from $11.57 to $11.19, a reduction of 3.28 %.

1https://aws.amazon.com/lambda/pricing/
2https://cloud.google.com/run/pricing
3https://aws.amazon.com/s3/pricing/
4https://cloud.google.com/storage/pricing

198

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Simon Triendl and Sashko Ristov

Table 1: Runtime and cost for different deployments of the
fine workflow implementation on AWS.

f
Runtime (s) Cost ($) for 1M invocations

135MB 512MB 1024MB 135MB 512MB 1024MB
0 0.285 0.055 0.005 0.63 0.45 0.09
1 0.378 0.082 0.005 0.837 0.68 0.08
2 635.943 165.571 84.685 1409.00 1382.79 1412.97
3 - 18.054 7.152 - 150.78 119.33
4 - 7.559 2.187 - 63.13 36.49
5 - 4.859 0.921 - 40.58 15.36
6 11.462 2.830 0.088 25.39 23.63 1.46
7 2409.051 653.139 334.195 5337.54 5454.82 5576.06
8 613.759 159.886 80.283 1359.85 1335.32 1339.52
9 - 4.440 0.672 - 37.07 11.20
10 - 11.178 5.328 - 93.35 88.89
11 17.563 9.893 3.209 38.91 82.62 53.543
12 12.978 3.133 0.124 28.75 26.16 2.06
13 0.514 0.115 0.005 1.14 0.96 0.08
14 - 202.668 101.904 - 1692.61 1700.26
15 116.177 30.065 13.166 257.40 251.09 219.66
16 - 84.068 38.166 - 702.11 636.79
17 87.483 22.823 9.570 193.82 190.60 159.67
18 - 17.204 6.994 - 143.68 116.69

Table 2: Runtime and cost of different deployments of the
fine workflow implementation on GCP.

f
Runtime (s) Cost ($) for 1M invocations

135MB 512MB 1024MB 135MB 512MB 1024MB
0 0.04 0.005 0.006 0.43 0.91 1.63
1 0.085 0.007 0.005 0.43 0.91 1.63
2 - 210.939 115.112 - 1956.21 1916.01
3 - 8.151 5.672 - 75.31 93.34
4 - 4.568 3.57 - 42.24 58.95
5 - 1.878 1.324 - 17.45 22.92
6 1.302 0.190 0.235 6.05 1.83 4.91
7 - 247.796 158.587 - 2330.92 2770.85
8 - 84.89 54.162 - 906.47 923.61
9 1.886 1.683 1.059 8.21 15.61 18.01
10 - 25.667 18.254 - 236.03 299.68
11 - 4.516 2.811 - 42.24 47.49
12 1.384 0.361 0.304 6.05 3.67 6.55
13 0.03 0.005 0.005 0.43 0.91 1.63
14 - 214.309 126.167 - 1983.76 2112.52
15 - 8.863 6.334 - 81.73 104.80
16 - - 38.58 - - 632.12
17 - 23.909 13.083 - 220.41 214.52
18 - 10.436 6.294 - 96.43 103.17

4.2.2 GCP. Table 2 presents the results for GCP, which are com-
parable to, but not as pronounced as for AWS. Only functions 2,
12 and 17 demonstrate cheaper execution with higher memory de-
ployments. Note that the functions 12 and 17 do not experience
this effect on AWS. It is noteworthy that GCP rounds the execution
time to the nearest 100ms increment, which mitigates the speed-up
effect for short-running functions such as 0, 1, and 13. Furthermore,
GCP appears to be more restrictive with memory, as evidenced by

several functions that have sufficient memory on AWS but fail on
GCP. This is particularly apparent for function 16, which requires
a minimum of 1GB to execute. One possible reason for this dis-
crepancy may be that the ephemeral storage, used by the Montage
executables and their input files, scales with assigned memory on
GCP. In contrast on AWS, it is set by default to 512MB, which pro-
vides sufficient storage for most functions. While we still observe a
reduction in makespan comparing the cost-optimal deployments
with the minimal feasible memory deployments from 147.82 s to
131.67 s, equivalent to a 10.93 % reduction, the improvement is con-
siderably smaller compared to AWS.When we apply the same to the
runtime cost, we observe a reduction from $8.64 to $8.59, yielding
a negligible 0.05 % decrease.

4.3 Fine vs. Medium vs. Coarse
We further applied the same approach as described in Section 4.2 to
the medium and coarse implementations of the Montage workflow.

4.3.1 Cost-optimal memory configuration. The optimal function
deployments for cost are presented in Table 3, which indicates
that the optimal memory configuration for fused functions is not
necessarily equivalent to that of separated functions. Two such
examples can be seen when comparing AWS functions 7 and 8
in the medium and coarse implementations. While the separated
functions worked most cost-effectively with 512MB, the merged
function is optimal with 135MB. Conversely, for GCP, the exact
same functionswork optimally at 512MBwhen separated, but when
fused, they are optimal at 1GB. Another notable example is AWS
function 7 in both the fine and medium implementations. Despite
their equivalence, the optimal deployment shifts from 135MB in the
fine implementation to 512MB in the medium implementation. This
discrepancy may be attributed to variations in the performance of
the cloud provider. A similar effect is observed with GCP functions
15 and 18 in the fine and medium implementations. Increasing the
number of iterations may help mitigate such results in the future.

4.3.2 Makespan analysis. To assess the overall impact of the cost-
effective function deployments on the workflow implementations,
we computed the makespan of each workflow along with its asso-
ciated cost. Assuming no account-specific concurrency limit, we
determined the makespan with maximum concurrency for each
parallel function (2, 7, 8, and 14). Consequently, the makespan rep-
resents the total sum of all non-parallel function runtimes and the
maximum runtime of any parallel instances. The different workflow
implementations not only affect the optimal function deployments
but also influence the number of files that need to be transferred.
Fusing multiple sequential functions into one reduces file transfers,
thereby affecting the runtime and cost. Hence, we computed costs
both with and without factoring in file transfers. The makespan re-
sults are visually presented in Figure 2, while the cost is illustrated
in Figure 3. When analyzing the makespan on AWS, the medium
implementation proves to be the fastest, completing in 106.77 s,
which is 93.08% of the time taken by the coarse implementation
(114.70 s), and 75.02 % of the time taken by the fine implementation
(143.33 s). This result is supported by Table 3, where it is evident
that the medium implementation utilizes a function deployment
with either equal or higher memory assignment compared to the

199

Peeking Behind the Serverless Implementations and Deployments of the Montage Workflow ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Table 3: Cost optimal memory configurations in MB.

f Instances
AWS GCP

fine medium coarse fine medium coarse
0 1 1024 1024 512 135 135 1351 1 1024 135
2 30 512 512 512 1024 512 512
3 1 1024

1024 512

512

512 5124 1 1024 512
5 1 1024 512
6 1 1024 512
7 141 135 512 135 512 512 10248 141 512 512 512 512
9 1 1024 1024

512

135 512

512
10 1 1024 512
11 1 135

1024
512

102412 1 1024 512
13 1 1024 135
14 30 512 512 512 512 512 512
15 1 1024 1024

1024

512 1024

102416 1 1024 1024 1024 1024
17 1 1024 1024 1024 1024
18 1 1024 1024 512 1024

fine medium coarse

110

120

130

140

Workflow

M
ak
es
pa
n
(s)

AWS
GCP

Figure 2: Makespan of cost-optimal Montage implementa-
tions on AWS and GCP.

other implementations. The reason for the coarse implementation
being the second fastest may be attributed to the reduced number
of file transfers, coupled with the utilization of function deploy-
ments with either equal or less memory compared to the medium
implementation. The longer makespan in the fine implementation
can be explained by examining function 7, which has a deployment
of 135MB and its associated runtime in Table 1. Although executed
in parallel with 141 instances, its presence significantly impacts the
critical path, thus extending the makespan.

Contrary to AWS, on GCP, the coarse implementation executes
the fastest, completing in 114.61 s, which is 92.49% of the time
taken by the medium implementation (123.91 s) and 87.04 % of the
time taken by the fine implementation (131.67 s). While there are
minimal changes in the most cost-effective deployments between
the coarse and medium implementations, as depicted in Table 3,

fine medium coarse
8.0

10.0

12.0

14.0

Workflow implementation

Co
st
($
)f
or

1T
in
vo

ca
tio

ns

AWS Runtime GCP Runtime
AWS Total GCP Total

Figure 3: Runtime cost and total cost for 1000 invocations on
AWS and GCP.

their order may primarily be attributed to the reduced number
of file transfers in the coarse implementation. The discrepancy
between the medium and the fine implementation may result from
functions 9, 13, 15, and 18, each utilizing only a quarter of the
memory compared to the other implementations.

4.3.3 Analize the cost. When evaluating runtime cost, the coarse
implementation stands out as the most economical option followed
by the fine and the medium implementations on both providers.
The primary contributing factor is once again the number of file
transfers, which allows the coarse implementation to utilize func-
tion deployments with equal or less memory compared to the other
implementations, without decisively increasing the makespan. On
AWS, the coarse implementation is 6.71% cheaper than the fine,
whereas, on GCP, the difference is less pronounced, with the coarse
implementation only saving 1.90% in costs compared to the fine
implementation. We suspect that function 7-8 primarily contribute
to this discrepancy, as AWS employs a 135MB deployment com-
pared to GCP’s 1GB and the function is executed on 141 instances
in parallel. Examining the file transfer costs demonstrates that the
coarse implementation saves 2.25 % compared to the fine and 2.02 %
compared to the medium implementation. Since both AWS and
GCP utilize identical pricing structures, this finding is applicable
to both service providers. Evaluating the total cost reveals a 5.33 %
saving on AWS when comparing the fine to the coarse and a 1.99 %
cost saving on GCP.

Overall, the coarse implementation emerges as the most eco-
nomical choice on both providers. On GCP, it even achieves Pareto
optimality, dominating both the makespan and cost. Particularly
for data-intensive workflows like Montage, bundling computations
into single serverless functions, thereby reducing the necessity for
file transfers, substantially enhances cost efficiency. However, the
fact that the fine implementation is cheaper than the medium on
both providers indicates the potential for separation with a higher
granularity at the expense of a longer makespan.

200

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Simon Triendl and Sashko Ristov

4.4 Threats to validity
Whenever conducting experiments using public serverless providers
it is important to highlight their opacity with respect to their hard-
ware and software stack. This heterogeneity may lead to disparities
in performance, as noted by Maissen et al. [30] and Copik et al. [11].
Moreover, Container-as-a-Service (CaaS) is reported to be a cheaper
platform than FaaS for long running workflows and a hybrid ap-
proach with FaaS may circumvent service-specific limitations [8].
However, we used FaaS only since we evaluated a short-running
version of montage, which mainly benefits from FaaS. Another
contributing factor is the timeliness of the evaluation, as the cloud
provider experiences load at different points in time, which affects
performance, as reported by Kelly et al. [25]. Furthermore, our
approach relies on the cost-performance ratio currently offered
by the providers in the selected regions. It’s worth mentioning
that both AWS and GCP offer varied pricing for their services de-
pending on the region. Therefore, repeating these experiments in
different regions will likely yield divergent results. Finally, we ran
five repetitions, which may be insufficient for long-running cloud
applications, which can experience high variability in network traf-
fic [46]. However, all evaluatedMontage workflow implementations
are running for a few minutes.

5 RELATEDWORK
In this section we discuss various observations reported by the re-
searchers specifically for the Montage workflow and how serverless
functions, in general, are affected by various deployments of the
functions with different memory.

5.1 Observations for the Montage workflow
Early research was conducted by Jackson et al. [20], who evaluated
the applicability of scientific computing on AWS EC2. Humphrey et
al. [19] investigated a hybrid architecture, using in-house compu-
tational resources alongside virtual machines on Microsoft Azure.
Juve et al. [23] characterized various I/O reads and writes, peak
memory, and CPU utilization of all Montage tasks. Balis [4] imple-
mented Montage using the Hyperflow’s data-flow approach and a
high level of abstraction to run the workflow independently of the
underlying runtime environment. However, all the aforementioned
works used virtual machines as resources, in which the memory is
not fully assigned to the workflow tasks, but rather it is managed
by the guest operating system.

Hyperflow [31] evaluated that serverless implementations of
Montage are cheaper than the classical serverfull implementations
deployed on AWS EC2 virtual machines. However, the authors
also reported high variability in performance for the functions that
are nested in a parallel loop. Hautz et al. [17] reported that func-
tions run the computing part and download data faster using AWS
Lambda and S3, while GCP functions upload data faster on GCP
cloud storage. The authors used the implementation in the Abstract
Function Choreography Language [37] and executed the workflow
with the xAFCL [38] serverless workflow management system. We
used this implementation of the workflow in our evaluation as the
medium implementation.

5.2 Observations for FaaS deployments
Jonas et al. [22] reported huge delays when invokingmore functions
simultaneously. Ristov et al. [38] reported that the overall round trip
time is increased. Moreover, the spawn start affects the performance
of the functions [36].

FaaSt [34] analyzed the performance of various cloud providers
to the same data storage for BWA. Other researchers reported a
speedup when collocating the functions closer to the data rather
than moving data to the function [42, 43]. We followed the latter
approach and always collocated the functions together with the
storage within the same region.

SimLess [35] introduced a deterministic model for the overall
round trip time of serverless functions that are deployed across
multiple regions of the cloud provider. The model estimates the
overall round trip time in one region from the executions in another
region of the same function. SizeLess [15] used an ML approach to
estimate the function execution time by learning from running the
same function with 512MB. However, both approaches consider
a fixed function and workflow setup, while SimLess analyzed the
same implementation of the Montage, but still with a different
problem size.

6 CONCLUSION
In this paper, we conducted a series of experiments to investigate
how different serverless implementations of the Montage workflow
with various function deployments affect its makespan and cost.
Our investigation led to two important observations.

We first observed a superlinear speedup for some functions when
assigning them with more memory, which yielded that they dom-
inated their compatriots with less memory, both for the perfor-
mance and cost. This insight was mainly observed on AWS due to
the fine-grained pricing model down to 1ms compared to GCP’s
coarse-grained of 100ms. With this simple method, we were able
to reduce the overall makespan and cost by 67.27% and 3.28% on
AWS, respectively. On GCP, a smaller improvement was observed
with a 10.93 % reduction in makespan and a marginal reduction of
0.05 % in cost. Secondly, the coarse implementation improves both
performance and cost by 24.98% and 5.33% on AWS, and 12.96%
and 1.99 % on GCP. Surprisingly, on AWS, the medium implemen-
tation achieved the smallest makespan, further reducing the time
by 6.92% compared to the coarse implementation. However, this
improvement came at a disproportionately higher cost.

We believe that these results will be very valuable for the research
community. We will further extend our work in several directions.
We will first investigate other serverless workflows [6, 17] and with
more fine-grained memory setups. Further on, we will develop a
multi-objective scheduler that will determine the optimal setup for
the workflows across different providers, especially since our eval-
uation reported that none of the evaluated providers dominates the
other for all workflow functions. Finally, based on the decisions of
the scheduler, we will automatize the process of fusion of workflow
functions, their packaging, and deployment.

ACKNOWLEDGEMENT
This research received funding from Land Tirol, under the contract
F.35499.

201

Peeking Behind the Serverless Implementations and Deployments of the Montage Workflow ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Ali Al-Haboobi and Gabor Kecskemeti. 2021. Improving Existing WMS for Re-

duced Makespan of Workflows with Lambda. In Euro-Par 2020: Parallel Processing
Workshops: Euro-Par 2020 International Workshops, Warsaw, Poland, August 24–25,
2020, Revised Selected Papers 26. Springer, 261–272.

[2] Aitor Arjona, Pedro García López, Josep Sampé, Aleksander Slominski, and
Lionel Villard. 2021. Triggerflow: Trigger-based orchestration of serverless
workflows. Future Generation Computer Systems 124 (2021), 215–229. https:
//doi.org/10.1016/j.future.2021.06.004

[3] Y. Babuji, J. Bryan, R. Chard, K. Chard, I. Foster, B. Galewsky, D. S. Katz, and Z. Li.
2021. Federated Function as a Service for eScience. In 2021 IEEE 17th International
Conference on eScience (eScience). IEEE Computer Society, Los Alamitos, CA, USA,
251–252. https://doi.org/10.1109/eScience51609.2021.00046

[4] Bartosz Balis. 2016. HyperFlow: A model of computation, programming approach
and enactment engine for complex distributed workflows. Fut. Gen. Comp. Syst.
55 (2016), 147 – 162. https://doi.org/10.1016/j.future.2015.08.015

[5] G Bruce Berriman, Ewa Deelman, John C Good, Joseph C Jacob, Daniel S Katz,
Carl Kesselman, Anastasia C Laity, Thomas A Prince, Gurmeet Singh, and Mei-
Hu Su. 2004. Montage: a grid-enabled engine for delivering custom science-
grade mosaics on demand. In Optimizing scientific return for astronomy through
information technologies, Vol. 5493. SPIE, 221–232.

[6] Tekin Bicer, Xiaodong Yu, Daniel J. Ching, Ryan Chard, Mathew J. Cherukara,
Bogdan Nicolae, Rajkumar Kettimuthu, and Ian T. Foster. 2022. High-Performance
Ptychographic Reconstruction with Federated Facilities. In Driving Scientific and
Engineering Discoveries Through the Integration of Experiment, Big Data, and
Modeling and Simulation, Jeffrey Nichols, Arthur ‘Barney’ Maccabe, James Nutaro,
Swaroop Pophale, Pravallika Devineni, Theresa Ahearn, and Becky Verastegui
(Eds.). Springer International Publishing, Cham, 173–189.

[7] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, Christopher S. Meiklejohn, and Xiangfeng
Zhu. 2022. Netherite: Efficient Execution of Serverless Workflows. Proc. VLDB
Endow. 15, 8 (apr 2022), 1591–1604. https://doi.org/10.14778/3529337.3529344

[8] Krzysztof Burkat, Maciej Pawlik, Bartosz Balis, Maciej Malawski, Karan Vahi,
Mats Rynge, Rafael Ferreira da Silva, and Ewa Deelman. 2021. Serverless Con-
tainers – Rising Viable Approach to Scientific Workflows. In 2021 IEEE 17th
International Conference on eScience (eScience). 40–49. https://doi.org/10.1109/
eScience51609.2021.00014

[9] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue
Cheng. 2020. Wukong: A Scalable and Locality-Enhanced Framework for Server-
less Parallel Computing. In Proceedings of the 11th ACM Symposium on Cloud
Computing (SoCC ’20). ACM, 1–15. https://doi.org/10.1145/3419111.3421286

[10] Henri Casanova, Rafael Ferreira da Silva, Ryan Tanaka, Suraj Pandey, Gautam
Jethwani, William Koch, Spencer Albrecht, James Oeth, and Frédéric Suter. 2020.
Developing accurate and scalable simulators of production workflow manage-
ment systems with wrench. Future Generation Computer Systems 112 (2020),
162–175.

[11] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. 2021. SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing. In Proceedings of the 22nd International Middleware Conference
(Québec city, Canada) (Middleware ’21). Association for Computing Machinery,
New York, NY, USA, 64–78. https://doi.org/10.1145/3464298.3476133

[12] Rafael Ferreira Da Silva, Rosa M. Badia, Venkat Bala, Debbie Bard, Peer-Timo
Bremer, Ian Buckley, Silvina Caino-Lores, Kyle Chard, Carole Goble, Shantenu
Jha, Daniel S. Katz, Daniel Laney, Manish Parashar, Frederic Suter, Nick Tyler,
Thomas Uram, Ilkay Altintas, Stefan Andersson, William Arndt, Juan Aznar,
Jonathan Bader, Bartosz Balis, Chris Blanton, Kelly Rosa Braghetto, Aharon Bro-
dutch, Paul Brunk, Henri Casanova, Alba Cervera Lierta, Justin Chigu, Taina
Coleman, Nick Collier, Iacopo Colonnelli, Frederik Coppens, Michael Crusoe,
Will Cunningham, Bruno De Paula Kinoshita, Paolo Di Tommaso, Charles Dou-
triaux, Matthew Downton, Wael Elwasif, Bjoern Enders, Chris Erdmann, Thomas
Fahringer, Ludmilla Figueiredo, Rosa Filgueira, Martin Foltin, Anne Fouilloux,
Luiz Gadelha, Andy Gallo, Artur Garcia Saez, Daniel Garijo, Roman Gerlach,
Ryan Grant, Samuel Grayson, Patricia Grubel, Johan Gustafsson, Valerie Hayot-
Sasson, Oscar Hernandez, Marcus Hilbrich, AnnMary Justine, Ian Laflotte, Fabian
Lehmann, Andre Luckow, Jakob Luettgau, KetanMaheshwari, MotohikoMatsuda,
Doriana Medic, Pete Mendygral, Marek Michalewicz, Jorji Nonaka, Maciej Paw-
lik, Loic Pottier, Line Pouchard, Mathias Putz, Santosh Kumar Radha, Lavanya
Ramakrishnan, Sashko Ristov, Paul Romano, Daniel Rosendo, Martin Ruefenacht,
Katarzyna Rycerz, Nishant Saurabh, Volodymyr Savchenko, Martin Schulz, Chris-
tine Simpson, Raul Sirvent, Tyler Skluzacek, Stian Soiland-Reyes, Renan Souza,
Sreenivas Rangan Sukumar, Ziheng Sun, Alan Sussman, Douglas Thain, Mikhail
Titov, Benjamin Tovar, Aalap Tripathy, Matteo Turilli, Bartosz Tuznik, Hubertus
Van Dam, Aurelio Vivas, Logan Ward, Patrick Widener, Sean Wilkinson, Justyna
Zawalska, and Mahnoor Zulfiqar. 2023. Workflows Community Summit 2022: A
Roadmap Revolution. https://doi.org/10.5281/ZENODO.7750670

[13] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good.
2008. The cost of doing science on the cloud: The Montage example. In SC ’08:

Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. 1–12. https:
//doi.org/10.1109/SC.2008.5217932

[14] Juan J. Durillo, Radu Prodan, and Jorge G. Barbosa. 2015. Pareto tradeoff schedul-
ing of workflows on federated commercial Clouds. Simulation Modelling Practice
and Theory 58 (2015), 95–111. https://doi.org/10.1016/j.simpat.2015.07.001

[15] Simon Eismann, Long Bui, Johannes Grohmann, Cristina L Abad, Nikolas Herbst,
and Samuel Kounev. 2021. Sizeless: Predicting the optimal size of serverless
functions. arXiv preprint arXiv:2010.15162 (2021).

[16] John L. Gustafson. 1988. Reevaluating Amdahl’s Law. Commun. ACM 31, 5 (May
1988), 532–533. https://doi.org/10.1145/42411.42415

[17] Mika Hautz, Sashko Ristov, and Michael Felderer. 2023. Characterizing AFCL
Serverless Scientific Workflows in Federated FaaS. In International Workshop on
Serverless Computing (WoSC ’23). ACM, Bologna, Italy, 24–29. https://doi.org/10.
1145/3631295.3631397

[18] Michael T Heath. 2018. Scientific Computing: An Introductory Survey, Revised
Second Edition. SIAM.

[19] Marty Humphrey, Zach Hill, Catharine van Ingen, Keith Jackson, and Youngryel
Ryu. 2011. Assessing the Value of Cloudbursting: A Case Study of Satellite Image
Processing on Windows Azure. In 2011 IEEE Seventh International Conference on
eScience. 126–133. https://doi.org/10.1109/eScience.2011.26

[20] Keith R. Jackson, Krishna Muriki, Lavanya Ramakrishnan, Karl J. Runge, and
Rollin C. Thomas. 2011. Performance and cost analysis of the Supernova factory
on the Amazon AWS cloud. Sci. Program. 19, 2–3 (apr 2011), 107–119. https:
//doi.org/10.1155/2011/498542

[21] Aji John, Kristiina Ausmees, Kathleen Muenzen, Catherine Kuhn, and Amanda
Tan. 2019. SWEEP: Accelerating Scientific Research Through Scalable Serverless
Workflows. In IEEE/ACM International Conference UCC Companion. ACM, New
Zealand, 43–50.

[22] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: Distributed computing for the 99%. In Symposium on
Cloud Computing. 445–451.

[23] Gideon Juve, Ann Chervenak, Ewa Deelman, Shishir Bharathi, Gaurang Mehta,
and Karan Vahi. 2013. Characterizing and Profiling Scientific Workflows. Fut.
Gen. Comp. Syst. 29, 3 (March 2013), 682–692. https://doi.org/10.1016/j.future.
2012.08.015

[24] Daniel Kelly, Frank Glavin, and Enda Barrett. 2020. Serverless Computing: Be-
hind the Scenes of Major Platforms. In IEEE International Conference on Cloud
Computing (CLOUD). 304–312. https://doi.org/10.1109/CLOUD49709.2020.00050

[25] Daniel Kelly, Frank Glavin, and Enda Barrett. 2020. Serverless Computing: Behind
the Scenes of Major Platforms. In 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD). 304–312. https://doi.org/10.1109/CLOUD49709.2020.00050

[26] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Server-
less Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427–444. https:
//www.usenix.org/conference/osdi18/presentation/klimovic

[27] Heng Li and Richard Durbin. 2010. Fast and accurate long-read alignment with
Burrows–Wheeler transform. Bioinformatics 26, 5 (2010), 589–595.

[28] Zhuozhao Li, Ryan Chard, Yadu Babuji, Ben Galewsky, Tyler J. Skluzacek, Kirill
Nagaitsev, Anna Woodard, Ben Blaiszik, Josh Bryan, Daniel S. Katz, Ian Foster,
and Kyle Chard. 2022. funcX: Federated Function as a Service for Science. IEEE
Trans. on Parallel and Distributed Systems 33, 12 (2022), 4948–4963. https://doi.
org/10.1109/TPDS.2022.3208767

[29] Philip Maechling, Ewa Deelman, Li Zhao, Robert Graves, Gaurang Mehta, Nitin
Gupta, John Mehringer, Carl Kesselman, Scott Callaghan, David Okaya, Hunter
Francoeur, Vipin Gupta, Yifeng Cui, Karan Vahi, Thomas Jordan, and Edward
Field. 2007. SCEC CyberShakeWorkflows—Automating Probabilistic Seismic Hazard
Analysis Calculations. Springer London, London, 143–163. https://doi.org/10.
1007/978-1-84628-757-2_10

[30] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. 2020. FaaS-
dom: A Benchmark Suite for Serverless Computing. In Proceedings of the 14th
ACM International Conference on Distributed and Event-Based Systems (Montreal,
Quebec, Canada) (DEBS ’20). Association for Computing Machinery, New York,
NY, USA, 73–84. https://doi.org/10.1145/3401025.3401738

[31] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela.
2020. Serverless execution of scientific workflows: Experiments with HyperFlow,
AWS Lambda and Google Cloud Functions. Future Generation Computer Systems
110 (2020), 502–514. https://doi.org/10.1016/j.future.2017.10.029

[32] RolandMathá, Sasko Ristov, Thomas Fahringer, and Radu Prodan. 2020. Simplified
Workflow Simulation on Clouds based on Computation and Communication
Noisiness. IEEE Transactions on Parallel and Distributed Systems 31, 7 (2020),
1559–1574. https://doi.org/10.1109/TPDS.2020.2967662

[33] Maciej Pawlik, Pawel Banach, andMaciejMalawski. 2020. Adaptation of workflow
application scheduling algorithm to serverless infrastructure. In Euro-Par 2019:
Parallel Processing Workshops: Euro-Par 2019 International Workshops, Göttingen,
Germany, August 26–30, 2019, Revised Selected Papers 25. Springer, 345–356.

[34] Sashko Ristov and Philipp Gritsch. 2022. FaaSt: Optimize makespan of serverless
workflows in federated commercial FaaS. In 2022 IEEE International Conference on

202

https://doi.org/10.1016/j.future.2021.06.004
https://doi.org/10.1016/j.future.2021.06.004
https://doi.org/10.1109/eScience51609.2021.00046
https://doi.org/10.1016/j.future.2015.08.015
https://doi.org/10.14778/3529337.3529344
https://doi.org/10.1109/eScience51609.2021.00014
https://doi.org/10.1109/eScience51609.2021.00014
https://doi.org/10.1145/3419111.3421286
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.5281/ZENODO.7750670
https://doi.org/10.1109/SC.2008.5217932
https://doi.org/10.1109/SC.2008.5217932
https://doi.org/10.1016/j.simpat.2015.07.001
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/3631295.3631397
https://doi.org/10.1145/3631295.3631397
https://doi.org/10.1109/eScience.2011.26
https://doi.org/10.1155/2011/498542
https://doi.org/10.1155/2011/498542
https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1109/CLOUD49709.2020.00050
https://doi.org/10.1109/CLOUD49709.2020.00050
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1109/TPDS.2022.3208767
https://doi.org/10.1109/TPDS.2022.3208767
https://doi.org/10.1007/978-1-84628-757-2_10
https://doi.org/10.1007/978-1-84628-757-2_10
https://doi.org/10.1145/3401025.3401738
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1109/TPDS.2020.2967662

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Simon Triendl and Sashko Ristov

Cluster Computing (CLUSTER ’22). IEEE, Heidelberg, Germany, 182–194. https:
//doi.org/10.1109/CLUSTER51413.2022.00032

[35] Sashko Ristov, Mika Hautz, Christian Hollaus, and Radu Prodan. 2022. SimLess:
Simulate Serverless Workflows and Their Twins and Siblings in Federated FaaS.
In 2022 ACM SoCC ’22: ACM Symposium on Cloud Computing (SoCC ’22). ACM,
San Francisco, CA, USA, 323–339. https://doi.org/10.1145/3542929.3563478

[36] Sashko Ristov, Christian Hollaus, and Mika Hautz. 2022. Colder Than the Warm
Start and Warmer Than the Cold Start! Experience the Spawn Start in FaaS
Providers. InWorkshop on Advanced Tools, Programming Languages, and PLat-
forms for Implementing and Evaluating Algorithms for Distributed Systems (Ap-
PLIED ’22). ACM, Salerno, Italy, 35–39. https://doi.org/10.1145/3524053.3542751

[37] Sasko Ristov, Stefan Pedratscher, and Thomas Fahringer. 2021. AFCL: An Abstract
Function Choreography Language for serverless workflow specification. Fut.
Gen. Comp. Syst. 114 (2021), 368 – 382.

[38] Sasko Ristov, Stefan Pedratscher, and Thomas Fahringer. 2023. xAFCL: Run Scal-
able Function Choreographies Across Multiple FaaS Systems. IEEE Transactions
on Services Computing 16, 1 (2023), 711–723. https://doi.org/10.1109/TSC.2021.
3128137

[39] Sasko Ristov, Radu Prodan, Marjan Gusev, and Karolj Skala. 2016. Superlinear
speedup in HPC systems: Why and when?. In 2016 Federated Conference on
Computer Science and Information Systems (FedCSIS). 889–898.

[40] Josep Sampe, Pedro Garcia-Lopez, Marc Sanchez-Artigas, Gil Vernik, Pol Roca-
Llaberia, and Aitor Arjona. 2021. Toward Multicloud Access Transparency in
Serverless Computing. IEEE Soft. 38, 1 (2021), 68–74. https://doi.org/10.1109/MS.
2020.3029994

[41] J. Sampe, M. Sanchez-Artigas, G. Vernik, I. Yehekzel, and P. Garcia-Lopez. 2021.
Outsourcing Data Processing Jobs with Lithops. IEEE Transactions on Cloud
Computing (Nov. 2021), 1–1. https://doi.org/10.1109/TCC.2021.3129000

[42] Biswajeet Sethi, Sourav Kanti Addya, Jay Bhutada, and Soumya K. Ghosh.
2023. Shipping Code towards Data in an Inter-Region Serverless Environ-
ment to Leverage Latency. J. Supercomput. 79, 10 (mar 2023), 11585–11610.
https://doi.org/10.1007/s11227-023-05104-7

[43] Christopher Peter Smith, Anshul Jindal, Mohak Chadha, Michael Gerndt, and
Shajulin Benedict. 2022. FaDO: FaaS Functions and Data Orchestrator for Multiple

Serverless Edge-Cloud Clusters. In 2022 IEEE 6th International Conference on Fog
and Edge Computing (ICFEC). 17–25. https://doi.org/10.1109/ICFEC54809.2022.
00010

[44] Ion Stoica and Scott Shenker. 2021. From Cloud Computing to Sky Computing.
InWorkshop on Hot Topics in Operating Systems (HotOS ’21). ACM, Ann Arbor,
Michigan, 26–32. https://doi.org/10.1145/3458336.3465301

[45] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth Lanka.
2020. Sequoia: Enabling Quality-of-Service in Serverless Computing. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing (SoCC ’20). ACM, Virtual
Event, USA, 311–327. https://doi.org/10.1145/3419111.3421306

[46] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Reller-
meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. 2020. Is Big Data
Performance Reproducible in Modern Cloud Networks?. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20). USENIX
Association, Santa Clara, CA, 513–527. https://www.usenix.org/conference/
nsdi20/presentation/uta

[47] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios
Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020. INFINICACHE: ex-
ploiting ephemeral serverless functions to build a cost-effective memory cache.
In Proceedings of the 18th USENIX Conference on File and Storage Technologies
(FAST’20). USENIX Association, Santa Clara, CA, USA, 267–282.

[48] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking behind the Curtains of Serverless Platforms. In USENIX
Annual Technical Conference. Boston, MA, USA, 133–145.

[49] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil Bhardwaj,
Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker,
and Ion Stoica. 2023. SkyPilot: An Intercloud Broker for Sky Computing. In
Symposium on Networked Systems Design and Implementation (NSDI 23). USENIX,
Boston, MA, 437–455.

[50] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2021. Restructuring
Serverless Computing with Data-Centric Function Orchestration. arXiv preprint
arXiv:2109.13492 (2021).

203

https://doi.org/10.1109/CLUSTER51413.2022.00032
https://doi.org/10.1109/CLUSTER51413.2022.00032
https://doi.org/10.1145/3542929.3563478
https://doi.org/10.1145/3524053.3542751
https://doi.org/10.1109/TSC.2021.3128137
https://doi.org/10.1109/TSC.2021.3128137
https://doi.org/10.1109/MS.2020.3029994
https://doi.org/10.1109/MS.2020.3029994
https://doi.org/10.1109/TCC.2021.3129000
https://doi.org/10.1007/s11227-023-05104-7
https://doi.org/10.1109/ICFEC54809.2022.00010
https://doi.org/10.1109/ICFEC54809.2022.00010
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3419111.3421306
https://www.usenix.org/conference/nsdi20/presentation/uta
https://www.usenix.org/conference/nsdi20/presentation/uta

Towards a Workload Trace Archive for Metaverse Systems
Radu Aps,an∗

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

R.Apsan@student.vu.nl

Damla Ural∗
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

D.Ural@student.vu.nl

Paul Daniëlse∗
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
P.E.G.Danielse@student.vu.nl

Vlad-Andrei Cursaru∗
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
V.Cursaru@student.vu.nl

Eames Trinh∗
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
E.V.T.Trinh@student.vu.nl

Jesse Donkervliet∗
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

J.J.R.Donkervliet@vu.nl

Alexandru Iosup
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

A.Iosup@vu.nl

ABSTRACT
Recent years have seen a resurgence of societal interest in Meta-
verses and virtual reality (VR), with large companies such as Meta
and Apple investing multi-billion dollars into its future. With the
recent developments in VR hardware and software, understanding
how to operate these systems efficiently and with good perfor-
mance becomes increasingly important. However, studying Meta-
verse and VR systems is challenging because publicly available
data detailing the performance of these systems is rare. Moreover,
collecting this data is labor-intensive because VR devices are end-
user devices that are driven by human input. In this work, we
address this challenge and work towards a workload trace archive
for Metaverse systems. To this end, we design, implement, and
validate librnr, a system to record and replay human input on VR
devices, automating large parts of the process of collecting VR
traces. We use librnr to collect 106 traces with a combined runtime
of 7 hours from state-of-the-art VR hardware under a variety of
representative scenarios. Through analysis of our initial results,
we find that power use of VR devices can increase by up to 29%
depending on the location of the VR device relative to the user-
defined play area, and show that noticeable performance degrada-
tion can occur when network bandwidth drops below 100Mbps.
Encouraging community adoption of both librnr and the emerging
trace archive, we publish both according to FAIR data principles
at https://github.com/atlarge-research/librnr.

CCS CONCEPTS
• Human-centered computing → Virtual reality; • Networks
→ Network measurement.

∗These authors contributed equally to this work.

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651421

0 2 4 6 8 10
Power use [W]

Not
configured

Roomscale

Stationary

Edge of
stationary

Pl
ay

 a
re

a

Figure 1: Meta Quest Pro power use when using different
play area configurations.

KEYWORDS
metaverse, virtual reality, online gaming, workload traces, perfor-
mance analysis, real-world experiments, FAIR data, open science

ACM Reference Format:
Radu Aps,an, Damla Ural, Paul Daniëlse, Vlad-Andrei Cursaru, Eames Trinh,
Jesse Donkervliet, and Alexandru Iosup. 2024. Towards a Workload Trace
Archive for Metaverse Systems. In Companion of the 15th ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE ’24 Companion), May
7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3629527.3651421

1 INTRODUCTION
Over the past decade, there has been an increasing and steady
resurgence in interest in the topics of virtual reality (VR) and the
Metaverse, with prominent examples including Meta’s $36 billion
investment towards building a metaverse [13], and Apple’s entry
into the VR market by releasing a $3,500 consumer VR device in
February 2024 [4]. The concept of a Metaverse was introduced more
than three decades ago [22], and, although community consensus
on a definition is still lacking, presents a vision for a novel and
fundamentally different way for people to interact with computers
and each other. In this vision, many operations that today require
a mouse and keyboard are performed using VR devices, which
commonly consist of a head-mounted display (HMD) and a pair
of hand-held controllers. If successful, a metaverse holds great po-
tential to benefit society at large across a wide range of application

204

https://orcid.org/0009-0005-1460-7465
https://orcid.org/0009-0004-9284-8320
https://orcid.org/0009-0006-7873-9704
https://orcid.org/0009-0004-0015-3645
https://orcid.org/0009-0003-7179-6106
https://orcid.org/0000-0002-3067-6402
https://orcid.org/0000-0001-8030-9398
https://github.com/atlarge-research/librnr
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3629527.3651421
https://doi.org/10.1145/3629527.3651421

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Radu Aps,an et al.

domains. For example, a metaverse can benefit medicine [6, 30],
mental health [11], construction [2], and law enforcement [20] by
improving professional collaborative environments.

For a metaverse to realize its potential and gain large-scale soci-
etal adoption, it must provide good performance and energy effi-
ciency under a wide range of use cases. For example, the VR devices
that users use to interact with a metaverse have stringent require-
ments on latency and energy efficiency. Specifically, devices must
display a new frame to the user roughly every 14ms to meet the
performance requirement of 72 frames per second, and reduce the
probability of motion sickness [25], while providing a battery life
in the order of hours.

However, although there has been increasing interest in the topic,
understanding the performance and overall behavior of VR systems
remains challenging for two important reasons. First, there is a
lack of publicly available traces that allow researchers to study the
behavior of these systems. The collection and analysis of traces
is a common and important approach in computer systems to im-
prove understanding of system behavior, and has been successfully
applied in a wide range of application domains including cloud
computing [7], workflow scheduling [23], and online gaming [12].
Second, collecting traces for VR systems is labor-intensive because
VR systems are end-user devices. Similar to smartphones, their
realistic workloads consist of applications that respond to human
inputs, which are challenging to automate realistically.

Although there exists work that focuses on the performance
of metaverse-related technologies, these studies typically focus
on the performance of individual subsystems, such as the motion-
to-photon latency [27], or propose new techniques to improve
performance, for example through computational offloading [8, 29].

In this work, we make an important step towards a workload
trace archive for metaverse systems, allowing both researchers and
developers to better understand the behavior of these state-of-the-
art systems. For example, Figure 1 shows a simplified result based
on traces collected as part of this work, and shows that the power
use of VR device is affected by the play area and VR positioning.
To this end, we design librnr, a novel open-source tool that simpli-
fies and partially automates the collection of both user-input and
performance-measurement traces. We use librnr to obtain traces
from a variety of VR devices and deployment scenarios, and present
surprising preliminary results on the behavior of state-of-the-art
VR hardware.

Our key contributions are:

C1 We design and implement librnr, a novel system to record
and replay user-input traces on state-of-the-art VR hard-
ware (Section 3). librnr is designed to be compatible with
most state-of-the-art VR applications out of the box, without
modifying the application. librnr captures traces in an open
format, allowing researchers to analyze user and system
behavior.

C2 We validate, through real-world experiments, the accuracy
and overhead of librnr, and show that librnr can replay hu-
man inputs with high accuracy without introducing signifi-
cant performance overhead (Section 4).

C3 We use librnr to bootstrap a workload trace archive for meta-
verse systems (Section 5). We obtain VR system traces from

App

App

user input

frames

frames

framesuser input user input
1

1 2

3

3

Player

Player
Figure 2: Two common operational models for metaverse
applications, linking a user’s VR device (left) to a more pow-
erful device (right) for computational offloading. In the two
modes, control operations and rendered frames are sent via
wire (top) or wirelessly (bottom), respectively.

two popular VR devices under a range of network condi-
tions, while exposed to the same (human input) workload.
We analyze our traces and present novel insights into the
behavior of VR systems.

C4 We publish librnr, and the collected traces, as open-source
artifacts according to FAIR research principles, on Github:
https://github.com/atlarge-research/librnr/tree/trace_files_and_
report/traces.

2 BACKGROUND
In this section, we present a client-centric model for modern meta-
verse systems and discuss important properties relevant to this
work. We present a visual overview of our model in Figure 2.

Our model starts with a user (or player) of the metaverse system,
who interacts with the system through a VR device (labeled 1
in Figure 2). The VR device typically consists of a HMD and hand-
held controllers. The HMD contains displays that show the user a
three-dimensional virtual world. The HMD also tracks movements
of itself and the hand-held controllers. Together with occasional
user button-presses, these control commands (or controls) are sent
from the VR device to the host.

The host (3) is a machine either close to the user or deployed in a
cloud environment and is responsible for simulating and rendering
the metaverse application (or app), and takes the received controls
as inputs for its simulation. The app performs a simulation iteration
and renders a new frame at a fixed rate. For VR applications, the
frame rate is typically 72 or 90Hz. The applicationmust consistently
produce frames at this rate to maintain good performance. Lower
frame rates are noticeable to users and induce motion sickness [25].
Each rendered frame is sent back to the HMD to be displayed to
the user, giving the user the illusion of being in a different space.

Depending on how the user sets up their system, controls and
frames are sent via a wire or a WiFi router (2). Both deployment
methods have advantages and are common. Because the app must
respond to user controls in real-time, and frames must be delivered
to the HMD at a high rate, data must be exchanged with both low
latency (i.e., in the order of milliseconds) and high bandwidth (i.e.,
in the order of 100Mbps). When using a wired setup, these require-
ments are relatively simple to guarantee. When using a WiFi router,
meeting these requirements is more challenging, and depends on
the quality of the WiFi router of the user. However, a wireless setup

205

https://github.com/atlarge-research/librnr/tree/trace_files_and_report/traces
https://github.com/atlarge-research/librnr/tree/trace_files_and_report/traces

Towards a Workload Trace Archive for Metaverse Systems ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

librnrTrace

Host Device

Interacts With Data Transfer

OpenXR
Config

Researcher

Player
6

Game

VR

Controllers

frames

user input

frames

1

2

3

4

5

7

user input
+ metrics

Figure 3: Design overview of librnr.
allows the user to move while using the device without worrying
about the length of the cable.

3 DESIGN AND IMPLEMENTATION
In this section, we present the design of librnr. We discuss system
requirements and give an overview of its design and implementa-
tion.
3.1 System Requirements
We identify here important system requirements for librnr:

R1 librnr’s system traces must include important system-level
metrics for VR applications, allowing users to analyze system
behavior under different scenarios.

R2 librnr must support a wide range of state-of-the-art VR de-
vices. To construct a workload trace archive that provides
a large amount of diverse traces, librnr needs to support a
wide variety of VR devices and software applications.

R3 While replaying user-input traces, the timing accuracy of
events must be in the order of 10s of milliseconds, or up to
approximately 10 frames, to ensure the resulting application
and system behavior remain the same across replays.

R4 librnr should not introduce significant performance over-
head. The traces recorded and replayed with librnr should
be representative of real-world usage.

3.2 Design and Implementation Overview
Figure 3 presents our design for librnr. We design librnr (4) for
two types of users: players and researchers. Players can use librnr
to record VR input traces. Doing so only requires them to set librnr
to recording mode in a configuration file (1). Afterwards, they can
interact with the VR device as usual. Applications (7) typically
obtain user-input information by polling the VR device for the
location and orientation of the headset (5) and controllers (6), and
button-press events. When the player starts an application, librnr
starts intercepting these calls and writes the values to a trace file.

Researchers can use librnr to replay user-input traces (2) and
collect system traces while controlling the environment (e.g., by
limiting available network bandwidth) or the system under test (e.g.,

by using different VR headsets). This allows the researcher to obtain
a large amount of system traces through user emulation, automating
the most labor-intensive part of obtaining traces for VR systems.
When playing back a trace, the researcher sets librnr to replay
mode through its configuration file and starts the corresponding
application. Once the application starts, it will start polling the VR
device for user input. However, in replaymode, librnr will overwrite
the values obtained from the VR device with values read from the
user-input trace, sending previously recorded user inputs to the
application.

In both recording and replaying mode, librnr captures important
system-level metrics by sampling system performance counters
on both the host and VR device at a frequency of 1Hz (partially
addresses Requirement R1). For both devices, these metrics include
the information commonly available under the Linux /proc file-
system, while for the VR device librnr additionally collects metrics
such as the number of frames per second, the amount of time spent
on rendering frames, and battery usage data.

We implement librnr as an API layer in OpenXR. We choose
OpenXR because it (3) is a modern, open-source standard and
API, backed by the majority of major VR device manufacturers,
which provides an abstraction layer between applications and the
VR device (addresses Requirement R2). Such an abstraction is useful
for two important reasons. First, it allows application developers
to support a wide variety of VR devices without creating separate
implementations of their applications. Second, it allows VR manu-
facturers to release new VR devices that are backwards-compatible
with existing applications without additional engineering effort.
OpenXR supports so-called API layers, which are side-loaded li-
braries that can intercept calls made through the OpenXR API.

4 VALIDATION OF LIBRNR
In this section, we present a preliminary validation of Require-
ments R3 and R4 from librnr’s design (Section 3.1) through real-
world experiments. We validate librnr using two setups, PC-A
running the Meta Quest Pro (MQP) and PC-B running the Meta
Quest 2 (MQ2). For the full experimental setup, see Section 5.1.

Overall, we find:

V1 librnr can replay traces with a median delay of 14ms, or 1
frame, and the delay remains stable over time (Section 4.1).
High timing accuracy addresses Requirement R3, and is im-
portant for creating reproducible input behavior.

V2 librnr does not introduce significant performance overhead (Sec-
tion 4.2). Low performance-overhead addresses Requirement R4,
and is important for collecting representative traces from
metaverse systems.

4.1 Replay Timing Accuracy (Requirement R3)
We design librnr to enable researchers to better understand the
behavior of different metaverse systems and environments. To this
end, it is important that replaying the same input trace results in
the same system workload. In this section, we validate this behavior
through a real-world experiment in which we compare the times-
tamps of the events in the recorded trace with those obtained during
replay. Overall, we find that librnr’s timing is highly accurate, and
meets Requirement R3. We visualize this result in Figure 4.

206

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Radu Aps,an et al.

150 125 100 75 50 25 0 25
Error [ms](a)

0 20 40 60 80 100 120
Elapsed time [s]

100

0

Er
ro

r [
m

s]

(b)

Figure 4: Timing accuracy (i.e., error) of librnr as a statistical
summary (top plot) and over time (bottom plot).

0 2 4 6 8
Power use [W]

baseline
record
replayM

od
e

MQP

0 2 4 6 8
Power use [W]

baseline
record
replayM

od
e

MQ2

Figure 5: librnr energy overhead on Meta Quest Pro (MQP)
and Meta Quest 2 (MQ2).

Figure 4a shows the inaccuracy of timed events while replaying
a user-input trace, and reveals that the time difference (i.e., error)
is mostly stable between 1ms and 16ms, or approximately 0 and
1 frames, based on a frame rate of 72Hz. The horizontal axis shows
the error between when an event was originally recorded, and when
it is replayed by librnr. When the error is positive, it indicates that
the replay is behind the original recording, and vice versa. Closer to
zero is better. The box shows the 25th, 50th, and 75th percentiles, and
the whiskers extend up to 1.5 times the inter-quartile range (IQR).
The diamonds show all remaining outliers. The plot shows that half
of the observed error values (inside the box) have an error between
1ms and 16ms, and that the median error value is 15ms, or 1 frame.

However, the figure shows significant outliers of up to -153ms, or
-11 frames. To investigate these outliers, we visualize the system’s
behavior over time in Figure 4b. The horizontal axis shows the
progression of time during the experiment, the vertical axis shows
the error, and the blue curve shows the error over time. The figure
shows that the spikes are both rare and isolated events and are
caused by the slight error we see throughout the replays.

4.2 System Overhead (Requirement R4)
In this section, we present initial results towards validating the
system overhead of librnr on both the VR and host devices using
real-world experiments. Although we analyze overhead on power
use, GPU utilization, and CPU utilization, we focus in this section
on the former two. The results for the CPU utilization are similar
to those observed for the GPU utilization.

Figure 5 shows the overhead of power consumption when using
librnr with two highly-popular VR devices: the MQP and the MQ2.
The figure shows that librnr’s power-usage overhead is generally
insignificant. The left and right plots in the figure show the power
use for the MQP and MQ2 respectively. The horizontal axes show
the power use of the VR device, and the vertical axes show the
alternative experiment setups. Baseline indicates measurements
performed without using librnr, whereas record and replay indicate
measurements performed while librnr is recording or replaying a
user-input trace, respectively. The boxes summarize the behavior

0 10 20 30 40 50
GPU usage [%]

baseline
record
replayM

od
e

PC-A (running Quest Pro)

0 10 20 30 40 50
GPU usage [%]

baseline
record
replayM

od
e

PC-B (running Quest 2)

Figure 6: librnr GPU-usage overhead on the two PCs. PC-A
is the setup running Windows 11, PC-B is the setup running
Windows 10. See §5.1 for exact specifications.

Table 1: Overview of experimental hardware specifications.
Hardware PC-A PC-B

OS Windows 11 Windows 10
CPU AMD Ryzen 5 7600X AMD Ryzen 5 7600X
GPU GeForce RTX 3080 GeForce RTX 4070
WiFi 802.11ax 802.11ax

Headsets MQ2 MQP

Released 2019 2022
CPU Snapdragon XR2 Snapdragon XR2+
Battery 3640 mAh 5348 mAh
WiFi WiFi 6 WiFi 6E

across 6, 6, and 60 traces of approximately 4 minutes per trace for
the baseline, record, and replay setups, respectively.

The figure shows that, in most configurations tested, the power
use of the device is highly similar. Using librnr on the MQ2, the max-
imum difference between mean power usage across the baseline,
record, and replay setups is 0.07W. The setups also show similar
distributions, with the maximum difference between the minimum
and maximum power usage across setups on the MQ2 being 0.17W.

Similar trends can be observed for the MQP. The maximummean
power usage difference across the three modes is 0.29W, and the
difference between the minimum andmaximum power usage across
setups on the MQP is 0.36W.

Figure 6 shows librnr overhead on GPU utilization, and shows
that librnr does not incur significant overhead in any of the setups
tested. The figures show the GPU utilization when using librnr on
the MQP (left) and the MQ2 (right). The horizontal axes show the
GPU usage, and the vertical axes show the experiment setup. The
boxes show the 25th, 50th, and 75th percentiles, and the boxwhiskers
extend up to 1.5 times the IQR. Grey circles with a black border
indicate outliers. From the figure, we observe that the distributions
of GPU usage are highly similar across all setups. Specifically, the
largest difference between the depicted percentiles is 3.84 percent-
age points, between 75th and 25th percentiles on the PC-A running
MQP, with librnr in replay mode. We also observe a high number
of outliers across all setups, ranging from 19.47% to 53.71%.

5 RESULTS
Using the user-input traces collected with librnr, we conduct pre-
liminary real-world experiments on two highly popular VR devices
across a variety of environments.

We summarize our experiments in Table 2, and derive the fol-
lowing Main Findings:
MF1 VR power use is significantly affected by the location of the

VR and the user-defined play area (Section 5.2). Changing

207

Towards a Workload Trace Archive for Metaverse Systems ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Table 2: Experiment overview.

Section Experiment Traces Bandwidth limit Devices

Recordings Replays [Mbps]

§5.2 Effect of play area settings on energy use 1 25 - PC-B + MQP, PC-B + MQ2
§5.3 Limiting bandwidth effects on VR 2 24 30, 50, 80, 100 PC-A + MQP, PC-B + MQ2
§5.4 VR performance comparison when offloading 4 40 - PC-A + MQP, PC-A + MQ2

0 2 4 6 8 10
Power use [W]

Not
configured

Roomscale

Stationary
Edge of

stationary

Pl
ay

 a
re

a

MQP

0 2 4 6 8 10
Power use [W]

MQ2

Figure 7: Effect of play area settings on power consumption
for the Quest Pro (MQP) and Quest 2 (MQ2) VR devices.

the play area settings and VR location can increase mean
power use by up to 29% and 17%, for the MQP and MQ2,
respectively.

MF2 Frame rate is significantly affected by available network
bandwidth (Section 5.3). For example, user experience signif-
icantly deteriorates when using the MQ2 if network band-
width is limited to 80Mbps.

MF3 There is no significant difference in performance between
the MQP and MQ2 (Section 5.4). Although the MQP is a
flagship device and the MQ2 a budget-friendly device, their
performance is similar when offloading to a remote machine.

5.1 Experiment Setup
We conduct our experiments using two representative host devices
and two popular VR devices, the Meta Quest Pro (MQP), a state-
of-the-art VR device designed for professional applications [17],
and Meta Quest 2 (MQ2), the best-selling VR device worldwide [5],
whose hardware specifications are listed in Table 1. The VR devices
are connected to a host device to offload application simulation
and rendering. The video frames and user inputs are sent to and
from the VR devices through a 5GHz WiFi router, which provides
a bandwidth of up to 1200Mbps.

We use the application Beat Saber as our workload throughout
our experiments. Games represent a significant part of the VR
market [1], and Beat Saber is one of the best-selling VR games
worldwide, with over 4million copies sold.

5.2 VR Play Area Settings Affect VR Power Use
The play area settings and VR positioning significantly affect the
power use of VR devices, increasing the mean power use by up
to 29% when the VR is on the edge of the play area. The Oculus
software allows two play area modes: stationary mode with a preset
circular play area and roomscale mode which allows the user to
draw the play area using the controller. Finally, there is the option
to disable the play area setting [16] under developer options.

Figure 7 shows the energy consumption for two VR devices,
the MQP and MQ2, under the different play area configurations.
The horizontal axes show the power use of the device, and the
vertical axes show the play area configurations used during the

0 10 20 30 40 50 60 70 80
Frames per second

400
100

80
50
30Ba

nd
w

id
th

 li
m

it
[M

bp
s]

Figure 8: Effect of bandwidth limits on Meta Quest 2 frames
per second (FPS). Larger FPS is better, the red dotted line
marks the minimum recommended frame rate (i.e. 72 FPS).

0 10 20 30 40 50 60 70
Frames per second

10
0

10
1

10
2

10
3

Pr
ob

ab
ilit

y
D

en
si

ty

400 Mbps
100 Mbps
80 Mbps
50 Mbps
30 Mbps

Figure 9: Cumulative probability density function for the
frames per second (FPS) onMetaQuest 2. Below the red dotted
line is the 99th percentile (i.e., 10−2).

experiment. The boxes show the 25th, 50th, and 75th percentiles,
and the white diamonds mark the mean. The lowest mean power
use of the MQP is 6.7W, when using a stationary play area with
the VR device placed in the middle. Although changing the play
area type to roomscale or turning it off does not significantly affect
its power use, placing the VR on the edge of the stationary play
area increases its power use by up to 29% to 8.6W. We see a similar
trend on the MQ2, consuming the least average power of 5.8W for
the stationary play area, with the average power increasing by up
to 17% when moving the device to the stationary play area edge.

We find that this difference occurs due to the VR device blending
the game frames with the live feed from the onboard cameras. This
is a safety feature of the device that prevents the user from walking
outside the user-determined play area. We recommend that for the
most energy-efficient experience, users should remain in the center
of the defined play area.

5.3 Limiting Bandwidth Leads to Sudden
Performance Degradation

Increasingly limiting the network bandwidth available for stream-
ing video from the host to the VR device leads to sudden perfor-
mance degradation.

Figure 8 shows this result. The horizontal axis shows the number
of frames per second, and the vertical axis shows the bandwidth lim-
its used in the experiment. The boxes show the 25th, 50th, and 75th
percentiles, and the white diamond marks the mean. The vertical
red-dashed line indicates 72 frames per second, which is the target

208

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Radu Aps,an et al.

0 10 20 30 40 50 60 70
VR frames per second

MQ2

MQPVR
 d

ev
ic

e

(a)
0 2 4 6 8

VR power use [W]

MQ2

MQPVR
 d

ev
ic

e

(b)
0 10 20 30 40 50 60

PC GPU usage [%]

MQ2

MQPVR
 d

ev
ic

e

(c)
0 3 6 9 12
PC CPU usage [%]

MQ2

MQPVR
 d

ev
ic

e

(d)
Figure 10: Comparison in workload offloading between Meta Quest 2 (MQ2) and Meta Quest Pro (MQP) using the PC-A setup.
See §5.1 for device specifications.

frame rate. The plot shows that for bandwidth limits of 400Mbps
and 100Mbps, overall performance meets the 72 frames per sec-
ond (FPS) target, with outliers down to 60 FPS. However, bandwidth
limits of 80Mbps and below introduce significantly lower outliers,
down to 10 FPS (!) for a bandwidth limit of 30Mbps.

Figure 9 presents a reverse cumulative distribution function (CDF)
of the same data, allowing us to analyze the tail of the distribution in
more detail. The horizontal axis shows the frames per second (FPS),
and the horizontal axis shows the fraction of FPS samples. The
horizontal red-dashed line indicates the 99th percentile. The 99th
percentile is relevant because the system must maintain stable
performance over time. The figure shows that for both 400Mbps
and 100Mbps bandwidth limits, the 99th percentile is 70 FPS and
72 FPS respectively (the corresponding curves intersecting the red
dashed line). However, for bandwidth limits of 80Mbps and below,
the performance is significantly worse, with the 99th percentile
frame rate being 25 FPS, 25.9 FPS, and 25 FPS for bandwidth limits
of 30Mbps, 50Mbps, and 80Mbps respectively. This sudden drop
in performance indicates that existing video streaming software
for VR systems imposes a clear lower limit on available network
bandwidth.

5.4 VR Performance Similar across Devices
When Offloading

In this experiment, we compare the performance of the MQP and
MQ2. We find that, when offloading the application to a remote
machine, the performance of both devices is highly similar. This
result is shown in Figure 10.

Figure 10a shows that the performance of both devices is highly
similar. The horizontal axis shows the number of frames per sec-
ond (FPS) displayed to the user, and the vertical axis shows the two
VR devices. The vertical red-dashed line shows the performance
target of 72 FPS. The plots show that for both the MQ2 and the
MQP, the performance is stable at 72 FPS, with outliers down to
roughly 60 FPS. Because the frame rates are highly similar, and both
devices have roughly the same screen resolution, this indicates that
the visual quality on both devices is similar.

Figure 10b shows that the power use of both devices is compa-
rable under this setup. The horizontal axis shows the power use
of the VR device, and the vertical axis shows the two VR devices.
For both devices, the power usage is stable, with the maximum
inter-quartile range (IQR) being 0.2W, and no outliers outside 1.5
times the IQR. The mean power use is 7.2W and 6.5W for the MQP
and the MQ2 respectively. Although the MQ2 performs 10% better,
we conclude that the energy efficiency of both devices is similar.

Figures 10c and 10d show the GPU and CPU usage of the offload-
ing target (i.e., PC-A). The figures show that the offloading target

requires a similar amount of resources to simulate and render the
offloaded application. On the horizontal axes, the figures show the
GPU and CPU usage respectively. On the vertical axes, the figures
show the two VR devices. For both resources, the usage is similar
across devices. The GPU usage is 39% and 35% for the MQP and
MQ2 respectively, and the CPU usage is 2% and 2.6% for the MQP
and MQ2 respectively. The reported CPU usage is the mean across
all 12 virtual cores. Based on this result, we conclude that both VR
devices have similar requirements for offloading target devices.

6 RELATEDWORK
Much related work in the VR research community analyzes device
performance under different conditions. Relatively to the body of
prior work, we focus on the complex interplay between VR offload-
ing, network conditions, performance, and energy use. Additionally,
we publish the collected traces and a novel system to partially au-
tomate VR trace collection.

Offloading. Q-VR is a novel system that reduces frame latency by
partially offloading frame rendering [26]. Similarly, Danhier et al.
design and implement a benchmark for video rendering for VR
devices using a custom rendering pipeline [9]. Several other studies
exist that investigate the impact of computational offloading across
the cloud continuum (e.g., differences between edge, local, and
cloud) [21, 29]. However, in contrast with this work, these studies
do not investigate the effects of network conditions on metrics such
as energy use when offloading to a local device.

Network Conditions. There are multiple studies that focus on an-
alyzing the network traffic and usage patterns associated with vari-
ous VR applications, such as video games [10, 15, 28] and social VR
platforms [3]. These studies typically focus on performance [3, 10],
user experience [15], and modeling network phenomena [10, 28].
We extend existing work by collecting a broad range of important
metrics to characterize the effect that network conditions have on
performance, energy use, and overall system behavior.

Energy Efficiency. In the field of energy-efficiency research, stud-
ies have investigated the energy use of gaming PCs [18, 19], VR
devices [14, 18], cloud gaming [18], and the metaverse [24]. Our
work is novel in its evaluation of the interplay between perfor-
mance, energy use, the system under test, and the deployment en-
vironment (e.g., network conditions), and the publication of traces
collected in these different scenarios.

7 CONCLUSION AND ONGOINGWORK
A metaverse, if successfully implemented, promises to fundamen-
tally change the way people interact with computers. To this end,
the industry is investing tens of billions of dollars to develop new
VR hardware and software, which are predicted to be the main way

209

Towards a Workload Trace Archive for Metaverse Systems ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

for users to interact with the metaverse. However, understanding
the performance of VR devices and their surrounding ecosystem in
practice remains challenging due to the lack of publicly available
system traces. In this work, we address this challenge by making
an important step towards a publicly-accessible workload trace
archive for metaverse systems. To this end, we design and imple-
ment librnr, a novel tool that partially automates the collection
of system traces. Through real-world experiments, we validate li-
brnr and study the behavior of two VR devices: the Meta Quest 2,
the best-selling VR device worldwide, and the Meta Quest Pro, a
state-of-the-art VR device designed for professional applications.
Through our experiments, we find that play area placement can
increase VR power usage by up to 1.9W, and that streaming video
to our VR devices with good performance requires at least 80Mbps
of bandwidth. Throughout our experiments, we collect a total of
11 input traces with a total duration of 40 minutes, and 112 system
traces with a total duration of 7 hours.

This article is part of ongoing work on a workload trace archive
for metaverse systems. To this end, we are working to add support
for reproducibility packages to librnr, and are collecting traces for
additional (types of) applications, VR devices, and deployments.

ACKNOWLEDGMENTS
This work is funded by a National Growth Fund through the Dutch
6G flagship project “Future Network Services,” the projects NWO
OffSense (OCENW.KLEIN.209), EU Graph-Massivizer, and Cloud-
Stars, and by structural funds from VU Amsterdam. We thank
Joshua Offermans for his exploration of synthetically generated
user-input traces.

REFERENCES
[1] 2024. Virtual Reality in Gaming Market Size | Global Analysis [2028].

https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-
gaming-market-100271 Accessed 2024-02-06.

[2] Pooya Adami, Patrick B. Rodrigues, Peter J. Woods, Burcin Becerik-Gerber, Lucio
Soibelman, Yasemin Copur-Gencturk, and Gale M. Lucas. 2021. Effectiveness of
VR-based training on improving construction workers’ knowledge, skills, and
safety behavior in robotic teleoperation. Adv. Eng. Informatics 50 (2021), 101431.

[3] Ahmad Alhilal, Kirill A. Shatilov, Gareth Tyson, Tristan Braud, and Pan Hui. 2023.
Network Traffic in theMetaverse: The Case of Social VR. In 43rd IEEE International
Conference on Distributed Computing Systems, ICDCS 2023 - Workshops, Hong
Kong, July 18-21, 2023. 109–114.

[4] Apple. 2023. Introducing Apple Vision Pro: Apple’s first spatial com-
puter. https://www.apple.com/newsroom/2023/06/introducing-apple-vision-
pro-apples-first-spatial-computer Accessed 2024-01-04.

[5] Martin Armstrong. 2023. Chart: Meta Leads the Way in VR Headsets. https:
//www.statista.com/chart/29398/vr-headset-kpis/ Accessed 2024-03-06.

[6] Patrick Carnahan, John Moore, Daniel Bainbridge, Gavin Wheeler, Shujie Deng,
Kuberan Pushparajah, Elvis C. S. Chen, John M. Simpson, and Terry M. Pe-
ters. 2020. Applications of VR medical image visualization to chordal length
measurements for cardiac procedures. In Medical Imaging 2020: Image-Guided
Procedures, Robotic Interventions, and Modeling, Houston, TX, USA, February 15-20,
2020, Vol. 11315. 1131528.

[7] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai,
China, October 28-31, 2017. 153–167.

[8] Vittorio Cozzolino, Leonardo Tonetto, Nitinder Mohan, Aaron Yi Ding, and Jörg
Ott. 2023. Nimbus: Towards Latency-Energy Efficient Task Offloading for AR
Services. IEEE Trans. Cloud Comput. 11, 2 (2023), 1530–1545.

[9] Martin Danhier, Karim El Khoury, and Benoît Macq. 2023. An Open-Source Fine-
Grained Benchmarking Platform for Wireless Virtual Reality. In Virtual Reality
and Mixed Reality - 20th EuroXR International Conference, EuroXR 2023, Rotterdam,
The Netherlands, November 29 - December 1, 2023, Proceedings, Vol. 14410. 115–121.

[10] Jesse Donkervliet, Matthijs Jansen, Animesh Trivedi, and Alexandru Iosup. 2023.
Can My WiFi Handle the Metaverse? A Performance Evaluation Of Meta’s Flag-
ship Virtual Reality Hardware. In Proceedings of the International Conference on
Performance Engineering, Coimbra, Portugal, April, 2023.

[11] Paul M.G. Emmelkamp and Katharina Meyerbröker. 2021. Virtual Reality Therapy
in Mental Health. Annual Review of Clinical Psychology 17, 1 (2021), 495–519.

[12] Yong Guo and Alexandru Iosup. 2012. The Game Trace Archive. In 11th Annual
Workshop on Network and Systems Support for Games, NetGames 2012, Venice,
Italy, November 22-23, 2012. 1–6.

[13] Business Insider. 2022. Charts: Meta’s Metaverse Spending Losses, Reality Labs,
VR,Mark Zuckerberg. https://www.businessinsider.com/charts-meta-metaverse-
spending-losses-reality-labs-vr-mark-zuckerberg-2022-10 Accessed 2024-01-04.

[14] Yue Leng, Jian Huang, Chi-Chun Chen, Qiuyue Sun, and Yuhao Zhu. 2020. Energy-
Efficient Video Processing for Virtual Reality. IEEE Micro 40, 3 (2020), 30–36.

[15] Yen-Chun Li, Chia-Hsin Hsu, Yu-Chun Lin, and Cheng-Hsin Hsu. 2020. Per-
formance Measurements on a Cloud VR Gaming Platform. In QoEVMA’20: Pro-
ceedings of the 1st Workshop on Quality of Experience (QoE) in Visual Multimedia
Applications, Seattle, WA, USA, October 16, 2020. 37–45.

[16] Meta. 2023. Set up your boundary for Meta Quest. https://www.meta.com/en-
gb/help/quest/articles/in-vr-experiences/oculus-features/boundary/ Accessed
2024-03-13.

[17] Meta. 2024. Meta Quest Pro: Premium mixed reality. https://www.meta.com/
quest/quest-pro/ Accessed 2024-03-13.

[18] Evan Mills, Norman Bourassa, Leo Rainer, Jimmy Mai, Arman Shehabi, and
Nathaniel Mills. 2019. Toward Greener Gaming: Estimating National Energy Use
and Energy Efficiency Potential. Comput. Games J. 8, 3-4 (2019), 157–178.

[19] NathanielMills and EvanMills. 2016. Taming the energy use of gaming computers.
Energy Efficiency 9, 2 (2016), 321–338.

[20] Markus Murtinger, Jakob Carl Uhl, Helmut Schrom-Feiertag, Quynh Nguyen,
Birgit Harthum, and Manfred Tscheligi. 2022. Assist the VR Trainer - Real-Time
Dashboard and After-Action Review for Police VR Training. In IEEE International
Conference on Metrology for Extended Reality, Artificial Intelligence and Neural
Engineering, MetroXRAINE 2022, Rome, Italy, October 26-28, 2022. 69–74.

[21] Baraka William Nyamtiga, Airlangga Adi Hermawan, Yakub Fahim Luckyarno,
Tae-Wook Kim, Deok-Young Jung, Jin Sam Kwak, and Ji-Hoon Yun. 2022. Edge-
Computing-Assisted Virtual Reality Computation Offloading: An Empirical Study.
IEEE Access 10 (2022), 95892–95907.

[22] Neal Stephenson. 1992. Snow Crash. Bantam Spectra Books.
[23] Laurens Versluis, Roland Mathá, Sacheendra Talluri, Tim Hegeman, Radu Prodan,

Ewa Deelman, and Alexandru Iosup. 2020. The Workflow Trace Archive: Open-
Access Data From Public and Private Computing Infrastructures. IEEE Trans.
Parallel Distributed Syst. 31, 9 (2020), 2170–2184.

[24] S, tefan Vlădut,escu and Georgiana Camelia Stănescu. 2023. Environmental Sus-
tainability of Metaverse: Perspectives from Romanian Developers. Sustainability
15, 15 (2023).

[25] Jialin Wang, Rongkai Shi, Wenxuan Zheng, Weijie Xie, Dominic Kao, and Hai-
Ning Liang. 2023. Effect of Frame Rate on User Experience, Performance, and
Simulator Sickness in Virtual Reality. IEEE Trans. Vis. Comput. Graph. 29, 5 (2023),
2478–2488.

[26] Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael B. Taylor, and Shuai-
wen Leon Song. 2021. Q-VR: system-level design for future mobile collaborative
virtual reality. In ASPLOS ’21: 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Virtual Event, USA,
April 19-23, 2021. 587–599.

[27] Jingbo Zhao, Robert S. Allison, Margarita Vinnikov, and Sion Jennings. 2017.
Estimating the motion-to-photon latency in head mounted displays. In 2017 IEEE
Virtual Reality, VR 2017, Los Angeles, CA, USA, March 18-22, 2017. 313–314.

[28] Sihao Zhao, Hatem Abou-zeid, Ramy Atawia, Yoga Suhas Kuruba Manjunath,
Akram Bin Sediq, and Xiao-Ping Zhang. 2021. Virtual Reality Gaming on the
Cloud: A Reality Check. In IEEE Global Communications Conference, GLOBECOM
2021, Madrid, Spain, December 7-11, 2021. 1–6.

[29] Ziehen Zhu, Xianglong Feng, Zhongze Tang, Nan Jiang, Tian Guo, Lisong Xu,
and Sheng Wei. 2022. Power-efficient live virtual reality streaming using edge
offloading. In Proceedings of the 32nd ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video, NOSSDAV 2022, Athlone, Ireland, 17
June 2022. 57–63.

[30] Paul Zikas, Antonis Protopsaltis, Nick Lydatakis, Mike Kentros, Stratos Geroniko-
lakis, Steve Kateros, Manos Kamarianakis, Giannis Evangelou, Achilleas Filippidis,
Eleni Grigoriou, Dimitris Angelis, Michail Tamiolakis, Michael Dodis, George
Kokiadis, John Petropoulos, Maria Pateraki, and George Papagiannakis. 2023.
MAGES 4.0: Accelerating the World’s Transition to VR Training and Democra-
tizing the Authoring of the Medical Metaverse. IEEE Computer Graphics and
Applications 43, 2 (2023), 43–56.

210

https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-gaming-market-100271
https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-gaming-market-100271
https://www.apple.com/newsroom/2023/06/introducing-apple-vision-pro-apples-first-spatial-computer
https://www.apple.com/newsroom/2023/06/introducing-apple-vision-pro-apples-first-spatial-computer
https://www.statista.com/chart/29398/vr-headset-kpis/
https://www.statista.com/chart/29398/vr-headset-kpis/
https://www.businessinsider.com/charts-meta-metaverse-spending-losses-reality-labs-vr-mark-zuckerberg-2022-10
https://www.businessinsider.com/charts-meta-metaverse-spending-losses-reality-labs-vr-mark-zuckerberg-2022-10
https://www.meta.com/en-gb/help/quest/articles/in-vr-experiences/oculus-features/boundary/
https://www.meta.com/en-gb/help/quest/articles/in-vr-experiences/oculus-features/boundary/
https://www.meta.com/quest/quest-pro/
https://www.meta.com/quest/quest-pro/

Towards Geo-Distributed Training of ML Models in a Multi-Cloud
Environment

Chetan Phalak
TCS Research, India

chetan1.phalak@tcs.com

Dheeraj Chahal
TCS Research, India
d.chahal@tcs.com

Manju Ramesh
TCS Research, India

manju.ramesh1@tcs.com

Rekha Singhal
TCS Research, India

rekha.singhal@tcs.com

ABSTRACT
Geo-distributed (GD) training is a machine-learning technique that
uses geographically distributed data for model training. Like Feder-
ated Learning, geo-distributed machine learning can provide data
privacy and also benefit from the cloud infrastructure provided
by many vendors in multiple geographies. However, GD training
suffers from multiple challenges such as performance degradation
due to cross-geography low network bandwidth and high cost of
deployment. Additionally, all major cloud vendors such as Amazon
AWS, Microsoft Azure, and Google Cloud Platform provide services
in several geographies. Hence, finding a high-performance as well
as cost-effective cloud service provider and service for GD training
is a challenge. In this paper, we present our evaluation of the perfor-
mance and cost associated with training models in multi-cloud and
multi-geography. We evaluate multiple deployment architectures
using computing and storage services from multiple cloud vendors.
The use of serverless instances in conjunction with virtual machines
for model training is evaluated in this study. Additionally, we build
and evaluate cost models for estimating the cost of distributed train-
ing of models in a multi-cloud environment. Our study shows that
the judicious selection of cloud services and architecture might
result in cost and performance gains.

CCS CONCEPTS
•Computingmethodologies→Model verification and valida-
tion; • Computer systems organization → Cloud computing.

KEYWORDS
Geo-distributed training, multi-cloud, cost model

ACM Reference Format:
Chetan Phalak, Dheeraj Chahal, Manju Ramesh, and Rekha Singhal. 2024.
Towards Geo-Distributed Training of ML Models in a Multi-Cloud Envi-
ronment. In Companion of the 15th ACM/SPEC International Conference on
Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3629527.3651422

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3651422

1 INTRODUCTION
Many large enterprises have their data servers located across the
globe to store their customer data. The conventional way of training
models in such scenarios involves collecting data at one data center
by transmitting over a wide area network (WAN). However, the
prevailing government regulations such as the General Data Protec-
tion Regulation (GDPR) enforce user data protection by restricting
enterprises from owning data rights [33]. Federated learning [15]
(FL) has emerged as a popular solution to address the problem of
data islands while preserving data privacy.

GD training based on FL involves training models using data re-
siding in multiple geographies. The need for GD training originates
from the distribution and partitioning of data in different regions
of the globe to preserve data privacy, government regulations, com-
pliance laws, etc. One of the popular approaches for distributed
learning is FedAvg [22] which involves local model training by each
client. All participating clients share the gradients with the server
which are aggregated and communicated back to each client. Local
clients use aggregated gradients to update their models. The model
training is a compute-intensive process and requires dedicated re-
sources such as Virtual Machines (VMs) or bare-metal machines
via IaaS offering on cloud. However, GD training imposes multiple
challenges such as

• Cost escalations due to frequent model sharing across ge-
ographies. Additionally, performance degradation and fluctu-
ations are expected as communication overwhelms the low
bandwidth of WAN between participating locations [12].

• Capacity planning is a challenge due to heterogeneity in
data sizes distributed across multiple locations. An optimal
distributed training architecture and placement of resources
such as client VMs, and storage services in various geogra-
phies is necessary for performance and cost advantages.

These challenges can be mitigated by judiciously choosing cloud
resources and services available from cloud vendors. All popular
cloud vendors have unique features such as configurations and
cost models for the corresponding services provided by them [26]
resulting in diverse performance and cost for a given workload.

All cloud service providers share cost models for their services.
However, multi-cloud deployment of an application results in com-
plex cost models. A robust cost for a multi-cloud deployment can
result in estimating the expenses for multiple deployment scenarios.

As discussed above, aggregators perform computations sporadi-
cally when gradients are available from all the clients. Serverless
instances are good options for running aggregators due to pay-as-
you-go cost model. Major Cloud Service Providers (CSPs) provide
serverless platforms known as Function-as-a-Service (FaaS) such as
AWS Lambda [3], Microsoft Azure functions [23], and Google func-
tions [10]. FaaS billing is based on pay-as-you-go such that you pay

211

https://doi.org/10.1145/3629527.3651422
https://doi.org/10.1145/3629527.3651422
https://doi.org/10.1145/3629527.3651422

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Chetan Phalak, Dheeraj Chahal, Manju Ramesh and Rekha Singhal

only for the actual uses of the resources, unlike IaaS where users are
charged for running instances even if they are idle. However, there
are a few limitations of serverless instances such as (a) peer-to-peer
(P2P) communication is not possible between serverless instances
and (b) Serverless instances do not have persistent storage. These
challenges can be addressed in FaaS using cloud storage services
such as AWS S3 [4], and Google Cloud Platform (GCP) storage [9].

Further improvements in performance and cost are possible by
using a hierarchical design of aggregators [5, 19, 29]. An intermedi-
ate layer is added to aggregate the gradients of the workers from a
region or geography before performing a global aggregation.

An in-depth understanding of the performance and cost of GD
training architecture in a multi-cloud environment is essential to
build an efficient system. Also, apriori knowledge of the system
performance and cost of deployment would be advantageous for
making judicious decisions. In this work, we analyze GD training
architectures using IaaS, FaaS, and storage services from AWS, Mi-
crosoft Azure, and Google Cloud Platform (GCP). We also propose a
and cost model for estimating the performance and cost of GD train-
ing in a multi-cloud and multi-geography environment. Succinctly,
our contribution is as follows

• We evaluate multiple Geo-distributed training architectures
using IaaS and FaaS services from multiple-cloud vendors.

• We study a hierarchical architecture for aggregating the
gradients using a serverless platform. An investigation of
the impact on performance and cost due to the placement of
the aggregator in a particular geography is presented.

• We present a model for estimating the cost of training using
multiple cloud services in a multi-cloud environment.

The rest of the paper is structured as follows. We discuss related
work in Section 2. Our architecture and its evaluation are discussed
in Section 3. We discuss our cost model in Section 4. The experimen-
tal setup and analysis are presented in Sections 5 and 6 respectively
followed by the conclusion in Section 7.

2 RELATEDWORK
Geo-distributed training is being explored by researchers in both
academia and industry [1] [12]. Several distributed training frame-
works employing data parallelism, like Horovod [30] and HOG-
WILD [27], have been created.. An efficient communication library
for distributed training of deep learning (DL) models in a public
cloud cluster is presented in [31]. Most of the large-scale distributed
training frameworks are designed for data distributed within a
data center or a region. In very recent work, a framework called
Multi-FedLS is proposed for reducing execution time and manag-
ing resources on a cloud for Federated Learning applications [6].
The framework provides insights into VM instance selection in
multi-cloud but does not consider FaaS serverless platforms.

Previous research has investigated gradient aggregation tech-
niques employing parameter servers [16] and all-reduce meth-
ods [18]. A GD training framework called Cloudless-Training based
on a parameter server-based approach is presented in [32]. Another
framework known as sky computing is designed to accelerate GD
computing in a federated learning [35]. Distributed GraphLab [20]
is an extension of GraphLab [21] and directly targets asynchronous,

dynamic, graph-parallel computation in the shared-memory set-
ting, which leads to network congestion reduction in distributed
ML training. However, the mentioned frameworks focus on perfor-
mance improvement in terms of latency and resource utilization in
multiple geographies but do not consider multi-cloud environments.
The acceleration of communication in a LAN and WAN environ-
ment for geo-distributed learning is presented in [1]. However, the
work is focused on geo-distributed training using a single cloud
data center in different geographies.

A framework called COSTA [7] is designed for cost monitor-
ing and managing the workload migration to the public cloud.
The placement of parameter servers in a wide-area network for
geo-distributed machine learning is discussed in [17]. Finding the
optimal data storage service in a multi-cloud environment using
optimization algorithms is presented in [28]. To the best of our
knowledge, there is no prior study on performance comparison
cost estimation for ML training using IaaS as well as FaaS cloud
services in a multi-cloud and multiple geography environment.

Nebula-I [34] is a framework for collaboratively training DL
models over remote heterogeneous clusters specifically GPU and
NPU connected via low-bandwidth. Nebula-I successfully helps to
launch training tasks over cloud but training the general model
is still a challenge. A geo-distributed ML system called Gaia [13]
decouples the intra and inter-communication between data centers
located in various geographies enabling different communication
and consistency models for each. The advantages of multi-cloud
deployment for AI workflows have been studied in [24–26]. How-
ever, it was primarily for inference workload which had different
characteristics as compared to the long-running model training
process.

Although few frameworks have been proposed for GD training,
very little is known about the performance and cost implications
in a serverless and multi-cloud environment. We believe that this
work is a pioneering effort to study the performance and cost trade-
offs in training models using IaaS, FaaS, and storage services from
multiple cloud vendors.

3 OUR ARCHITECTURE
In this section, we discuss the proposed architecture. As shown in
Fig. 1, GD training involves following steps

• (Step 1)Workers spread over multiple geographies or regions
fetch training data from storage and train the model on a
mini-batch from the data.

• (Step 2) On completion of the mini-batch, by all participating
workers share gradients or local models with the aggregator
or parameter server.

• (Step 3) The aggregator collects the data and sends back the
aggregated gradients or model to all the workers.

• (Step 4) Workers update their models and continue with the
next mini-batch of the data.

Training in Gradient Descent (GD) can be classified into central-
ized and de-centralized architectures. In a centralized architecture,
all the workers from different geographies send their model or
gradients to one master located in one of the geographies (Fig. 2).

212

Towards Geo-Distributed Training of ML Models in a Multi-Cloud Environment ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 1: GD training architecture

However, in a decentralized architecture, local updates are aggre-
gated in each geography and then also shared with the master for
global updates (Fig.2).

Figure 2: (a) Centralized architecture for GD training (b) De-
centralized architecture for GD training

We use LambdaML [14] framework developed for training small
ML/DL models in a distributed environment using a cloud server-
less platform and storage services specifically in AWS. We have
modified the original LambdaML framework to run workers on
VM for training large models as well as aggregators using server-
less instances in conjunction with storage services. Our modified
implementation of LamdaML supports a multi-cloud environment
allowing worker VMs, aggregator, and storage services to run on
AWS, Azure, and Google cloud platforms. We continue using server-
less instances for aggregation for cost savings and high scalability.

In our evaluation, we use an iterative training procedure called
FedAvg [22]. Each participating worker trains the model locally
and communicates its gradients to the serverless aggregator via
cloud storage service. The server aggregates the gradients received
from all the clients and synchronizes with all the workers in various
geographies.

Figure 3: Our architecture for multi-cloud GD training

Ourmulti-cloud GD training deployment architecture, illustrated
in Fig. 3, involves initializing VM instances across various geogra-
phies and clouds (AWS, Azure, and GCP) based on data storage ser-
vice locations and their respective CSPs. Each VM instance acts as

a worker, retrieving training data from associated cloud block stor-
age services like AWS S3, Azure storage, or GCP storage. Workers
share gradients with an aggregator via cloud storage service (GCP
storage or AWS S3) after completing one mini-batch of training
data. A serverless instance (GCP function or AWS Lambda) handles
gradient aggregation due to restrictions on persistent storage and
P2P communication in FaaS. The aggregated gradients are then
saved back into the storage service, and all workers update their
local models accordingly. This process repeats until convergence.

4 COST MODEL
In order to estimate the total cost of our architecture in a multi-
cloud environment for GD training, we developed cost model. The
total cost 𝐶 of multi-cloud geo-distributed training includes the
following components - cost for compute (𝐶𝐶𝑜𝑚𝑝𝑢𝑡𝑒) incurred by
workers and aggregator, cost for storing the gradients in storage
service (𝐶𝑆𝑡𝑜𝑟𝑎𝑔𝑒) and the cost for data transfer (𝐶𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟).
All the rates are cloud vendor-specific and vary with each region.

𝐶 = 𝐶𝐶𝑜𝑚𝑝𝑢𝑡𝑒 +𝐶𝑆𝑡𝑜𝑟𝑎𝑔𝑒 +𝐶𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (1)

4.1 Compute Cost
Compute cost (𝐶𝐶𝑜𝑚𝑝𝑢𝑡𝑒) includes cost due to workers VMs (𝐶𝐼𝑎𝑎𝑆)
and aggregator or FaaS (𝐶𝐹𝑎𝑎𝑆)

𝐶𝐶𝑜𝑚𝑝𝑢𝑡𝑒 = 𝐶𝐼𝑎𝑎𝑆 +𝐶𝐹𝑎𝑎𝑆 (2)

Compute cost for worker VMs (𝐶𝐼𝑎𝑎𝑆): The worker VMs are billed
for the entire duration for which it is used. The cost depends on
the type of machine, region, and the cloud provider. The cost for
IaaS or VMs for 𝑛 workers is given by

𝐶𝐼𝑎𝑎𝑆 =

𝑛∑︁
𝑖=1

𝑇𝑣𝑚_𝑖 ∗ 𝑅𝑣𝑚_𝑖 (3)

where 𝑇𝑣𝑚_𝑖 is the time taken for processing and 𝑅𝑣𝑚_𝑖 is the
cost rate for the 𝑖𝑡ℎ VM. Different cloud service providers offer
different configurations of virtual machines and the cost rates vary
for each cloud region. Compute cost for Aggregator (𝐶𝐹𝑎𝑎𝑆): Each
invocation of the aggregator FaaS function is billed for the memory
configured for the execution duration as follows:

𝐶𝐹𝑎𝑎𝑆 = 𝑇𝐹𝑎𝑎𝑆 ∗𝑀𝐺𝐵 ∗ 𝑅𝑚𝑒𝑚 (4)

where 𝑇𝐹𝑎𝑎𝑆 is the execution time of the function, 𝑀𝐺𝐵 is the
memory configured for the function and 𝑅𝑚𝑒𝑚 is the billing rate
(vendor and geography specific) per memory-time consumed.

4.2 Storage Cost
Storage service is billed for the size of the data stored and the
number of operations performed on the storage objects. These
operations include writes, reads, deletes, lists, etc. Each operation
has a unique billing rate.

Let𝑚 be the model or gradient size to be stored in the storage
service. Each worker writes a gradient file in the storage, and the
aggregator writes the final updated model to storage. Hence the
number of writes is 𝑛 + 1, where 𝑛 is the number of workers. As
mentioned in section 3, the aggregator gets triggeredwhen aworker

213

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Chetan Phalak, Dheeraj Chahal, Manju Ramesh and Rekha Singhal

writes local gradients to the storage. At each of these invocations of
the aggregator, it lists all files present in storage to checkwhether all
workers have written their gradients or not. Hence there are 𝑛 list
operations in each batch. The aggregator function reads the gradient
files from storage created by each of the workers. Similarly, each of
the workers reads the final aggregated gradients from the storage
resulting in 𝑛 ∗ 2 read operations. Each worker sends multiple read
requests to the storage service till the aggregated gradients are
saved by the aggregator and available for download. Although read
requests failed till the aggregated gradients were available, these
𝑙 read requests made to storage incur charges. Hence, there are
(𝑛 ∗ 2 + 𝑙) read requests billed. The aggregator deletes the 𝑛 model
files created by the workers and only the updated model remains
in the storage. Delete operations are free from all cloud providers.
The total cost for storage per iteration is given as,

𝐶𝑆𝑡𝑜𝑟𝑎𝑔𝑒 =𝑚 ∗ 𝑅𝑠𝑡 + ((𝑛 ∗ 2 + 𝑙) ∗ 𝑅𝑟𝑒𝑎𝑑𝑠) + (5)
((𝑛 + 1) ∗ 𝑅𝑤𝑟𝑖𝑡𝑒𝑠) + (𝑛 ∗ 𝑅𝑙𝑖𝑠𝑡𝑠)

where 𝑅𝑠𝑡 is the cost rate per GB per month. 𝑅𝑟𝑒𝑎𝑑𝑠 , 𝑅𝑤𝑟𝑖𝑡𝑒𝑠 , and
𝑅𝑙𝑖𝑠𝑡𝑠 are the rates of reads, writes, and lists respectively. Here Rate
is for 1000 requests and 𝑅𝑠𝑡 is the cost per GB per month.

4.3 Data transfer Cost
In a multi-cloud and multi-geography scenario, data is transferred
across clouds and geographies of various CSPs. Generally, all in-
coming traffic or ingress is free for all cloud providers. However,
all data transfers outside the cloud or geography are billed. The
data transfer is billed for the total size of the data. Based on the
cloud provider and geographies, either inter-geography or outward
traffic rates are applied for the data transfers.
Inter-cloud transfer: When traffic leaves a particular cloud to other
cloud providers or outside the internet, it is billed as per internet
egress or outward transfer rates of the source cloud geography. Cost
of Data transfer (𝐶𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟) during an iteration of multi-cloud
geo-distributed training consists of outward transfer from workers
(𝐶𝐷𝑇 _𝐼𝑎𝑎𝑆), aggregator (𝐶𝐷𝑇 _𝐹𝑎𝑎𝑆) and storage (𝐶𝐷𝑇 _𝑆𝑡𝑜𝑟𝑎𝑔𝑒).

𝐶𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 = 𝐶𝐷𝑇 _𝐼𝑎𝑎𝑆 +𝐶𝐷𝑇 _𝐹𝑎𝑎𝑆 +𝐶𝐷𝑇 _𝑆𝑡𝑜𝑟𝑎𝑔𝑒 (6)

Transfer from workers: Each worker writes the gradients of size𝑚
to the storage. The cost of data transfer for 𝑛 workers is

𝐶𝐷𝑇 _𝐼𝑎𝑎𝑆 =

𝑛∑︁
𝑖=1

𝑚 ∗ 𝑅𝑣𝑚_𝑖_𝑠𝑡 (7)

where 𝑅𝑣𝑚_𝑖_𝑠𝑡 is the cost rate of billing for transfer from the cloud
region of 𝑖𝑡ℎ VM to the storage cloud region.
Transfer from FaaS: Aggregator writes the updated model of size𝑚
to the storage

𝐶𝐷𝑇 _𝐹𝑎𝑎𝑆 =𝑚 ∗ 𝑅𝑎𝑔𝑔_𝑠𝑡 (8)

where 𝑅𝑎𝑔𝑔_𝑠𝑡 is the cost rate of billing for transfer from the cloud
region of the aggregator function to the storage cloud region.
Transfer from Storage: Aggregator reads the gradients from storage,
one gradient file (size 𝑚) per worker. Total 𝑛 gradient files are
transferred to the aggregator FaaS function. Additionally, each of

the 𝑛 workers fetches the updated gradients of size𝑚 from storage.

𝐶𝐷𝑇 _𝑆𝑡𝑜𝑟𝑎𝑔𝑒 = (𝑛 ∗𝑚 ∗ 𝑅𝑠𝑡_𝑎𝑔𝑔) + (
𝑛∑︁
𝑖=1

𝑚 ∗ 𝑅𝑠𝑡_𝑣𝑚_𝑖) (9)

where 𝑅𝑠𝑡_𝑎𝑔𝑔 is the cost rate of billing for transfer from the cloud
region of storage to the aggregator cloud region. 𝑅𝑠𝑡_𝑣𝑚_𝑖 is the
cost rate of billing for transfer from the storage cloud region to the
cloud region of 𝑖𝑡ℎ VM.

5 EXPERIMENTAL SETUP
We conducted a comprehensive study on the GD training archi-
tecture, focusing on two use cases: our in-house recommender
system (NISER) [11] using a Graph Neural Network Algorithm on
the diginetica [8] dataset and sentiment analysis employing LSTM
on the IMDB dataset. The recommender system is trained on 720K
sessions and 43K product items, generating 17MB gradients, while
sentiment analysis uses 50K movie reviews with 49MB gradients.

Models were trained in a distributed environment across Mum-
bai, London, Oregon, and Sydney. Workers ran on VMs from Ama-
zon EC2, GCP, and Azure with consistent configurations (2 cores,
8GB memory). FaaS instances from AWS Lambda and GCP func-
tion deployed gradient aggregators configured with 1GB memory.
Training data was fetched from AWS S3 storage, and gradients were
stored on S3 and GCP storage. Completion time and cost for one
mini-batch were recorded in all experiments, with cost calculated
using CSP billing services.

6 EXPERIMENTAL ANALYSIS
In this section, we perform an analysis of experiments conducted
by placing worker VMs and aggregators in various geographies
and clouds.

6.1 Data transfer bandwidths
We study the bandwidth available when data is transferred from
the worker VMs to a storage service. We consider 4 regions namely
London, Mumbai, Oregon, and Sydney resulting in a total of 16
combinations of source and destination. VMs are from AWS, Azure
and GCP. Storage services are from AWS and GCP. Hence for each
source-destination chosen, there are 6 combinations of VM-storage
service. Right side graph of Fig. 4 gives the bandwidth during an
inter-geographies transfer, while left side graph shows the band-
width when the source and destination are in the same geography.

• As expected, intra-region transfers have higher bandwidth
as compared to inter-region bandwidths

• For inter-region, the transfer to AWS S3 from any of the
three cloud worker VMs (AWS, Azure, GCP) has higher band-
widths than the transfer to GCP cloud storage (Fig. 4).

• For transfers within the same region, transfer to AWS S3 is
better than transferring to GCP cloud storage in the majority
of cases. The only exceptions are - GCP worker VM to GCP
cloud storage transfer in London and Oregon regions (Fig. 4).

214

Towards Geo-Distributed Training of ML Models in a Multi-Cloud Environment ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 4: Use case NISER: Upload bandwidth for gradient
transfer fromworker VM (AWS, Azure, GCP) in source region
to Storage service (AWS S3, GCP Cloud storage) in a same
and different geography.

6.2 Effect of cloud vendor and aggregator on
mini-batch time distribution

As previously mentioned, the total time for one mini-batch includes
worker training time, gradient uploading, aggregation time, and
aggregated gradient downloading. In this experiment, we inves-
tigate how aggregator placement and cloud vendor choice affect
each aspect of the total mini-batch time. Specifically, we conduct
experiments with all workers in GCP across four geographies: Lon-
don, Sydney, Mumbai, and Oregon. We measure the mini-batch
execution time using Google function and Google storage in each
of these locations (5a). The same experiment is then repeated with
VM workers in the AWS cloud across the same geographies, utiliz-
ing an AWS Lambda instance as an aggregator with AWS S3 storage
(5b). We observe the following

• The maximum time in a mini-batch completion is consumed
by the aggregator in waiting to receive gradients from all
the workers. This is due to the synchronization of workers
by the aggregator. This is followed by time spent in sending
the gradient from the workers to the aggregator and back.

• Minimum time per mini-batch is consumed when worker
VMs, aggregator, and associated storage reside in AWS cloud
(Fig.5b) and the maximum time is consumed when worker
VMs, aggregators, and storage are from GCP.

• While the total time to complete a mini-batch remains con-
stant within a specific cloud, the duration of each phase
varies based on aggregator placement. In Fig. 5a, although
the total mini-batch time remains around 14 seconds regard-
less of the aggregator’s region, there are significant varia-
tions in the time distribution across different stages when
the aggregator’s location is altered.

6.3 Effect of aggregator placement and cloud
vendor

In this experiment, we study the effect of aggregator placement
and the choice of cloud vendor on performance. In this set of ex-
periments, we choose worker VMs for model training in multiple
geographies but all from one cloud vendor at a time. However, the
aggregator for each of these experiments is chosen from a combina-
tion of AWS Lambda, and Google functions with AWS S3 and GCP
storage (GS). For example, Fig.6a shows data for worker VMs in
AWS distributed in four different geographies. The latency and cost

comparison is done by placing aggregator and storage combina-
tions (Lambda+S3, Lambda+GS, GCP+S3, and GCP+GS) in Mumbai,
London, Oregon, and Sydney. We observe the following:

• For both the use cases, we get minimum latency by placing
VMs in the GCP cloud and using Lambda and S3 for aggre-
gator and storage in Mumbai regions (Fig.6c and Fig.7c).

• For both the use cases, we get the minimum cost of deploy-
ment when placing all VMs in AWS and using Lambda and
S3 for aggregator and storage respectively in the Oregon
region (Fig. 6a and Fig. 7a).

• The choice of GCP function and GCP storage as aggregator
results in higher latency in most of the cases irrespective of
the cloud chosen for worker VMs.

• As expected, the use of worker VMs, aggregators, and storage
from the same CSP is cost-efficient. However, the same is
not true for the latency.

These observations can be attributed to the unique cost models
and available network bandwidth between cloud services as well
as cloud vendors.

6.4 Effect of aggregator hierarchy
In this experiment, we analyze how the aggregator’s placement
impacts the cost and performance of training models for the NISER
use case. Fig. 8 illustrates the cost and time required to complete
one mini-batch when using global and regional aggregators with
workers hosted in AWS and GCP clouds. It’s evident that having
a single global aggregator yields lower latency compared to an
architecture employing regional aggregators in each geography
alongside a global aggregator. This is mainly because, for a small
number of workers, network latency overhead outweighs aggregate
computation delays. Also, AWS Lambda instance as an aggregator
results in a lower latency as compared to the GCP function instances.
This is due to the higher compute capacity and network bandwidth
observed in AWS as compared to GCP.

In case we use multiple regional aggregators (Fig. 8), the gra-
dients are aggregated locally and transferred to storage. Hence,
the total cost of gradient transfer is due to aggregator to storage
transfer in each geography. Unlike the case of one global aggregator
where all VMs in each geography transfer data to global storage.
The difference between the overall cost for both of these deploy-
ments depends on participating geographies. For example, the cost
of using only a global aggregator is 50% higher than having regional
aggregators when the aggregator and storage are placed in London
(Fig. 8) in AWS. This is due to the reason that gradients are coming
to London aggregator and storage for aggregation from other ge-
ographies and VM egress cost is 5× and 4× higher in Sydney and
Mumbai respectively compared to London [2].

6.5 Cost Model Validation
To validate our cost model with use case NISER, we execute a multi-
regional training experiment. This involves deploying 4 workers
across distinct geographical regions utilizing AWS EC2 instances.
S3 bucket is used as an intermediate storage with Lambda serving
as an aggregator at one of the locations. Our experimentation en-
compassed 100 batches of training, during which we meticulously
track costs from AWS cost management console. Furthermore, we

215

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Chetan Phalak, Dheeraj Chahal, Manju Ramesh and Rekha Singhal

(a) (b) (c)

Figure 5: Use case NISER: Time split for mini-batch execution with various deployment scenarios. (a) Worker VMs (GCP),
Aggregator (GCP Functions) and Storage (GCP) (b) Worker VMs (AWS), Aggregator (AWS Lambda) and Storage (AWS S3) (c)
Worker VMs (GCP), Aggregator (AWS Lambda) and Storage (AWS S3)

(a) (b) (c)

Figure 6: Use case NISER - One mini-batch completion time comparison when worker VMs run in (a) AWS only (b) Azure
(c) GCP cloud. The aggregator (FaaS) and storage combinations are chosen from AWS and GCP and placed in one of the 4
geographies at a time in each of the three clouds

(a) Only AWS VMs (b) Only Azure VMs (c) Only GCP VMs

Figure 7: Use case Sentiment Analysis - One mini-batch completion time comparison when workers VMs run in (a) AWS only
(b) Azure (c) GCP cloud. The aggregator (FaaS) and storage combinations are chosen from AWS and GCP and placed in one of
the 4 geographies at a time in each of the three clouds

Figure 8: Use case NISER: Regional Aggregator Effect in AWS
and GCP

projected costs for an identical experimental configuration using
the cost model elucidated in section 4. Our cost model accurately
forecasts costs with a marginal error of less than 3.5%.

7 CONCLUSION
In this work, we presented our study on geo-distributed training
in a multi-cloud environment. We propose the use of serverless
functions as gradient aggregators in conjunction with storage ser-
vices from multiple CSPs. We study the performance of hierarchical
aggregator architecture. Our experiments show that the choice
of cloud vendor and placement of aggregators in geo-distributed
training has a significant effect on the performance and cost of
deployment. Additionally, we presented a cost model for estimating
the cost of one mini-batch training in a multi-cloud environment.
The proposed cost model predicts the cost of model training with a
significant accuracy. We believe that the proposed cost model can
be used for estimating the cost of a distributed training architecture
in a multi-cloud environment.

216

Towards Geo-Distributed Training of ML Models in a Multi-Cloud Environment ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Syeda Nahida Akter and Muhammad Abdullah Adnan. 2020. WeightGrad:

Geo-Distributed Data Analysis Using Quantization for Faster Convergence
and Better Accuracy. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (Virtual Event, CA, USA)
(KDD ’20). Association for Computing Machinery, New York, NY, USA, 546–556.
https://doi.org/10.1145/3394486.3403097

[2] Amazon. [n. d.]. AWS Data Transfer. Accessed Sept. 30, 2023. https://docs.aws.
amazon.com/cur/latest/userguide/cur-data-transfers-charges.html

[3] Amazon. [n. d.]. AWS Lambda. Accessed Apr. 12, 2023. https://aws.amazon.com/
lambda/

[4] Amazon. [n. d.]. AWS S3. Accessed Apr. 12, 2023. https://aws.amazon.com/s3/
[5] Christopher Briggs, Zhong Fan, and Peter Andras. 2020. Federated learning with

hierarchical clustering of local updates to improve training on non-IID data. In
2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–9.

[6] Rafaela C Brum, Maria Clicia Stelling de Castro, Luciana Arantes, Lúcia Maria
de A Drummond, and Pierre Sens. 2023. Multi-FedLS: a Framework for Cross-Silo
Federated Learning Applications on Multi-Cloud Environments. arXiv preprint
arXiv:2308.08967 (2023).

[7] Leandro Costa da Silva, Robson De Medeiros, and Nelson Rosa. 2023. COSTA: A
Cost-Driven Solution for Migrating Applications in Multi-Cloud Environments.
In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (Tallinn,
Estonia) (SAC ’23). Association for Computing Machinery, New York, NY, USA,
57–63. https://doi.org/10.1145/3555776.3577718

[8] GitHub. [n. d.]. Diginetica Dataset. Accessed Sept. 29, 2023. https://darel13712.
github.io/rs_datasets/Datasets/diginetica/

[9] Google. [n. d.]. Google Cloud Storage. Accessed Apr. 12, 2023. https://cloud.
google.com/storage

[10] Google. [n. d.]. Google Functions. Accessed Apr. 12, 2023. https://cloud.google.
com/functions

[11] Priyanka Gupta, Diksha Garg, Pankaj Malhotra, Lovekesh Vig, and Gautam M
Shroff. 2019. NISER: normalized item and session representations with graph
neural networks. arXiv preprint arXiv:1909.04276 (2019).

[12] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R.
Ganger, Phillip B. Gibbons, and OnurMutlu. 2017. Gaia: Geo-DistributedMachine
Learning Approaching LAN Speeds. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 629–647. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/hsieh

[13] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R
Ganger, Phillip B Gibbons, and Onur Mutlu. 2017. Gaia:{Geo-Distributed}
machine learning approaching {LAN} speeds. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). 629–647.

[14] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,
Ankit Singla, Wentao Wu, and Ce Zhang. 2021. Towards Demystifying Serverless
Machine Learning Training. In Proceedings of the 2021 International Conference
on Management of Data (Virtual Event, China) (SIGMOD ’21). Association for
Computing Machinery, New York, NY, USA, 857–871. https://doi.org/10.1145/
3448016.3459240

[15] Mashal Khan, Frank G. Glavin, and Matthias Nickles. 2023. Federated Learning
as a Privacy Solution - An Overview. Procedia Computer Science 217 (2023), 316–
325. https://doi.org/10.1016/j.procs.2022.12.227 4th International Conference on
Industry 4.0 and Smart Manufacturing.

[16] Mu Li, David G. Andersen, JunWoo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling Dis-
tributedMachine Learning with the Parameter Server. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 583–598. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/li_mu

[17] Yongyao Li, Chenyu Fan, Xiaoning Zhang, and Yufeng Chen. 2023. Placement
of parameter server in wide area network topology for geo-distributed machine
learning. Journal of Communications and Networks (2023).

[18] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William Dally. 2018. Deep
Gradient Compression: Reducing the Communication Bandwidth for Distributed
Training. https://openreview.net/pdf?id=SkhQHMW0W

[19] Lumin Liu, Jun Zhang, S. H. Song, and Khaled B. Letaief. 2020. Client-Edge-
Cloud Hierarchical Federated Learning. In 2020 IEEE International Conference on
Communications, ICC 2020 - Proceedings. https://doi.org/10.1109/ICC40277.2020.
9148862

[20] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M Hellerstein. 2012. Distributed graphlab: A framework for machine
learning in the cloud. arXiv preprint arXiv:1204.6078 (2012).

[21] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. 2014. Graphlab: A new framework for parallel machine
learning. arXiv preprint arXiv:1408.2041 (2014).

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 54), Aarti Singh and Jerry Zhu (Eds.). PMLR, 1273–1282. https://proceedings.
mlr.press/v54/mcmahan17a.html

[23] Microsoft. [n. d.]. Azure Functions,. Accessed Apr. 12, 2023. https://azure.
microsoft.com/en-in/services/functions/

[24] Chetan Phalak, Dheeraj Chahal, Manju Ramesh, and Rekha Singhal. 2023. mSIRM:
Cost-Efficient and SLO-aware ML Load Balancing on Fog and Multi-Cloud Net-
work. In Proceedings of the 13th Workshop on AI and Scientific Computing at Scale
using Flexible Computing. 19–26.

[25] Chetan Phalak, Dheeraj Chahal, and Rekha Singhal. 2023. SIRM: Cost efficient
and SLO aware ML prediction on Fog-Cloud Network. In 2023 15th International
Conference on COMmunication Systems & NETworkS (COMSNETS). IEEE, 825–829.

[26] Manju Ramesh, Dheeraj Chahal, and Rekha Singhal. 2023. Multicloud Deploy-
ment of AI Workflows Using FaaS and Storage Services. In 2023 15th Interna-
tional Conference on COMmunication Systems NETworkS (COMSNETS). 269–277.
https://doi.org/10.1109/COMSNETS56262.2023.10041365

[27] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In Advances
in Neural Information Processing Systems 24, Vol. 24. 693–701.

[28] Pankaj Sahu, Shubhro Roy, Mangesh Gharote, Sutapa Mondal, and Sachin Lodha.
2022. Cloud Storage and Processing Service Selection considering Tiered Pricing
and Data Regulations. In 2022 IEEE/ACM 15th International Conference on Utility
and Cloud Computing (UCC). 92–101.

[29] Mehdi Salehi Heydar Abad, E. Ozfatura, Deniz Gündüz, and Ozgur Ercetin. 2020.
Hierarchical Federated Learning ACROSS Heterogeneous Cellular Networks.
8866–8870. https://doi.org/10.1109/ICASSP40776.2020.9054634

[30] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018). arXiv:1802.05799
http://arxiv.org/abs/1802.05799

[31] Shaohuai Shi, Xianhao Zhou, Shutao Song, XingyaoWang, Zilin Zhu, Xue Huang,
Xinan Jiang, Feihu Zhou, Zhenyu Guo, Liqiang Xie, et al. 2021. Towards scalable
distributed training of deep learning on public cloud clusters. Proceedings of
Machine Learning and Systems 3 (2021), 401–412.

[32] Wenting Tan, Xiao Shi1, Cunchi Lv, and Xiaofang Zhao. 2023. Cloudless-
Training: A Framework to Improve Efficiency of Geo-Distributed ML Training.
arXiv:2303.05330 [cs.DC]

[33] Paul Voigt and Axel von dem Bussche. 2017. The EU General Data Protection
Regulation (GDPR): A Practical Guide (1st ed.). Springer Publishing Company,
Incorporated.

[34] Yang Xiang, Zhihua Wu, Weibao Gong, Siyu Ding, Xianjie Mo, Yuang Liu, Shuo-
huan Wang, Peng Liu, Yongshuai Hou, Long Li, et al. 2022. Nebula-I: A general
framework for collaboratively training deep learning models on low-bandwidth
cloud clusters. arXiv preprint arXiv:2205.09470 (2022).

[35] Jie Zhu, Shenggui Li, and Yang You. 2022. Sky Computing: Accelerating Geo-
distributed Computing in Federated Learning. arXiv preprint arXiv:2202.11836
(2022).

217

https://doi.org/10.1145/3394486.3403097
https://docs.aws.amazon.com/cur/latest/userguide/cur-data-transfers-charges.html
https://docs.aws.amazon.com/cur/latest/userguide/cur-data-transfers-charges.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://doi.org/10.1145/3555776.3577718
https://darel13712.github.io/rs_datasets/Datasets/diginetica/
https://darel13712.github.io/rs_datasets/Datasets/diginetica/
https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/functions
https://cloud.google.com/functions
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1016/j.procs.2022.12.227
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://openreview.net/pdf?id=SkhQHMW0W
https://doi.org/10.1109/ICC40277.2020.9148862
https://doi.org/10.1109/ICC40277.2020.9148862
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://doi.org/10.1109/COMSNETS56262.2023.10041365
https://doi.org/10.1109/ICASSP40776.2020.9054634
https://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
https://arxiv.org/abs/2303.05330

Hypergraphs: Facilitating High-Order Modeling of the
Computing Continuum

Dragi Kimovski
dragi.kimovski@aau.at
University of Klagenfurt

Klagenfurt, Austria

ABSTRACT
As contemporary computing infrastructures evolve to include di-
verse architectures beyond traditional von Neumann models, the
limitations of classical graph-based infrastructure and application
modelling become apparent, particularly in the context of the com-
puting continuum and its interactions with Internet of Things (IoT)
applications.

Hypergraphs prove instrumental in overcoming this obstacle
by enabling the representation of computing resources and data
sources irrespective of scale. This allows the identification of new
relationships and hidden properties, supporting the creation of a
federated, sustainable, cognitive computing continuum with shared
intelligence.

The paper introduces the HyperContinuum conceptual platform,
which provides resource and applications management algorithms
for distributed applications in conjunction with next-generation
computing continuum infrastructures based on novel von Neumann
computer architectures. The HyperContinuum platform outlines
high-order hypergraph applications representation, sustainability
optimization for von Neumann architectures, automated cogni-
tion through federated learning for IoT application execution, and
adaptive computing continuum resources provisioning.

KEYWORDS
Hypergraphs, Computing Continuum, Optimisation
ACM Reference Format:
Dragi Kimovski. 2024. Hypergraphs: Facilitating High-Order Modeling of
the Computing Continuum. In Companion of the 15th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’24 Companion), May
7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3629527.3651423

1 INTRODUCTION
The digital representation of the physical universe is a complex
task that requires understanding the concept of morphism first.
Morphism is a way to describe how different parts of a shape or
structure relate to each other mathematically. It was first introduced
by the French mathematician Henri Poincare in 1895 [1]. More than
seventy years later, in 1968, the American mathematician Haskell
Curry and logician William Alvin Howard applied this concept to

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651423

computer science. They described the Curry-Howard correspon-
dence, which shows that the proof of a computer system and the
model of computation are the same kind of mathematical object
[2]. This means we can model computer programs and systems as
directed graphs commonly used today to represent infrastructures,
data, and applications.

However, graphs have limitations when it comes to modelling
modern computing continuum infrastructures and their interactions
with Internet of Things (IoT) applications involving millions of data
sources, as they can not express the scale of the data sources or
application instances.

The problem of using graphs for modeling of distributed sys-
tems is further aggravated as researchers have recently integrated
novel computing architectures in the computing continuum beyond
the ones based on the traditional stored program von Neumann
model, where the programs and data are stored in a single operat-
ing memory [3]. These novel architectures use different production
processes, processing implementation, data representations and
distributed memory models, known as non-Von Neumann archi-
tectures. They range from power-efficient single-board Artificial
Intelligence (AI) accelerators to Quantum and Neuromorphic com-
puters [4, 5]. While these architectures hold great potential for
revolutionizing data processing and analysis in healthcare, trans-
portation, and entertainment, integrating them with established
cloud and edge computing paradigms remains challenging due to
significant architectural heterogeneity, data representation, com-
munication, and limited modelling tools. Unfortunately, extending
the computing continuum with non-Von Neumann architectures
causes multiple difficulties in application and infrastructure mod-
elling, resource provisioning and execution optimisation [6].

To address the complexity of the computing continuum and the
integration of non-Von Neumann architectures, we discuss the con-
cept of hypergraphs, powerful mathematical objects generalising
graphs [7], as potent tools for modelling. In hypergraphs, hyper-
edges can connect any number of hypervertices. Hypergraphs are
more expressive than pair-wise classical graphs, allowing us to
model the computing continuum and extreme-scale applications
as mathematical objects with higher-order, high-dimensional rela-
tions. They can represent computing resources and data sources,
regardless of their scale. Therefore, we can identify new relation-
ships between resources and data sources by abstracting from the
scale. For example, we can use a hypervertex to represent a set
of computing continuum resources and connect it with a hyper-
edge to another hypervertex representing various data sources,
regardless of their scale. By leveraging hypergraphs, we can expose
previously unknown relations between the resources and identify
hidden properties of the applications. To illustrate the benefits of

218

https://doi.org/10.1145/3629527.3651423
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3651423

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Dragi Kimovski

these modelling approaches, let us discuss an example, in which
a distributed application composed of three components intercon-
nected in a specific topology is deterministically deployed on a
given computing continuum infrastructure, which, in continuation,
is connected to multiple sensing devices that monitor the environ-
ment. This implies that for modelling the system using classical
graphs, we have to consider the application, infrastructure and
sensor graphs in isolation and only afterwards to identify their
interactions manually. On the other hand, we can model the ap-
plication, infrastructure, sensing devices, and environment using
hypergraphs as hyperedges. The hypervertices model the inter-
actions between these hyperedges. This allows us to move away
from the fixed size of the application and infrastructure and models
them nevertheless of the scale (how many components, instances,
infrastructures and sensing devices are available).

Therefore, the paper proposes the HyperContinuum concep-
tual platform for sustainable and scalable distributed applications
processing over computing continuum infrastructures based on a
hypergraph (HG) representation of the data, environment, infras-
tructure, and applications.

The paper has four sections. We first survey the related work in
Section 2. Afterwards, we present the proposed conceptual archi-
tecture in Section 3 and Section 4 concludes the paper.

2 RELATEDWORK
This section details the state-of-the-art optimisation of container
orchestration systems.

2.1 Hypergraph applications modelling and
sustainability analysis

The current application analysis approaches rely on pair-wise or-
dinary graphs or state machine representations to model the ap-
plications and the infrastructure below [7]. This limits their ap-
plication for highly adaptive and heterogeneous systems, such as
the computing continuum. From a performance point of view, the
classical workflow and hardware-specific optimization approaches
brought significant improvements in distributed applications execu-
tion, specifically in performance, energy management, and financial
cost [8]. Unfortunately, these approaches primarily support large
data centers with a relatively homogeneous set of resources with
static topologies and performance profiles. They lack functionality
for supporting complex application workflows, which can change
the structure and conditional execution branches based on the in-
put parameters and workload. Concretely, ordinary workflows and
dynamics (i.e., changing the number and content of vertices and
edges) lead to high variability in computational needs [9]. There-
fore, the hypergraph and hyperworkflow models can be intelli-
gently transformed into ordinary workflows for improved perfor-
mance prediction. They demonstrate they can enable conditional
algorithm/execution branch selection and advanced auto-scaling
techniques to ensure better performance. Furthermore, energy con-
sumption is a primary component of a computing infrastructure’s
total cost of ownership. Power consumption and thermal dissipation
limit the achievable peak performance with lower cost.

2.2 Hyperworkflow optimisation and cognition
with federated learning

Federated learning techniques where multiple decentralised devices
or nodes collaborate to train a shared model while keeping data
local to the devices [10]. It can be used to optimise hyperwork-
flows by improving the accuracy and efficiency of the model while
ensuring the privacy and security of data. In hyperworkflows opti-
mization, federated learning can be applied in several ways. One
approach is to use federated learning to optimise decision-making
processes in hyperworkflows, such as determining the next best
task or predicting execution outcomes. Another approach is to use
federated learning to improve the performance of machine learning
models used in workflows. State-of-the-art methods in federated
learning for workflow optimization involve advanced techniques
such as federated transfer learning and federated reinforcement
learning. These methods address challenges such as communication
overhead, data heterogeneity, and model convergence in federated
learning systems. Existing workflow management systems such
as Pegasus [11], Apollo [12], and Askalon are centralised systems
and either do not support machine learning (ML)-based workflow
execution optimization or utilise conventional and centralized ML
approaches. In such systems, ML systems are centralised, and work-
ers periodically send local updates about the workload to a set of
parameter servers, such as Tensorflow and traditional federated
learning systems [13].

2.3 Overlay infrastructure provisioning
The workloads in the distributed computing continuum are often
machine learning and data-intensive and have high requirements
for performance; deployment strategies, e.g., offloading, computing
close to data, and parallelizing the heavy tasks, are required due
to the constraints of capacity, time constraints, and energy [14].
Therefore, infrastructure provisioning and deployment planning
algorithms have been proposed based on critical paths, graph de-
composition, and potential data traffic [15]. Most of the early work
is based on data workflows with a deterministic performance model
of the components on a set of given computing nodes. The data
processing or machine learning workloads heavily depend on the
volume and availability of the data, which results in new challenges
to apply those existing approaches [16]. Machine learning-based
infrastructure provisioning and deployment management, e.g., rein-
forcement learning, has been proposed in the past years; however,
those approaches face challenges of low robustness when the work-
load patterns change.

3 CONCEPTUAL ARCHITECTURE
This section presents a conceptual architecture of the HyperCon-
tinuum framework.

The HyperContinuum high-level framework involves two con-
ceptual layers displayed in Figure 1, creating an automated, sustain-
able loop for managing distributed applications as hypergraphs over
the computing continuum with non-Von Neumann architectures:

• Hypergraph cognition layer covering the creation, optimisa-
tion and analysis of the hypergraphs;

219

Hypergraphs: Facilitating High-Order Modeling of the Computing Continuum ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 1: Conceptual life cycle of the
HyperContinuum framework.

• Federation and management of non-Von Neumann infras-
tructures layer that focuses on provisioning computing con-
tinuum resources as logical overlays.

The hypergraph cognition layer facilitates creating, analysing,
and optimising the applications’ hyperworkflows comprising per-
formance and energy models and optimization techniques. Hyper-
graph creation with sustainability and performance analysis analy-
ses the distributed application’s higher-order interactions with the
environment and infrastructure and represents it as the hypergraph
(See Figure 2a and b). Unlike classical approaches for managing
distributed applications, which model the applications in isolation
from the infrastructure and environment, we generalize the applica-
tions and the infrastructure as hypergraphs [17]. The hypergraphs
allow us to model the distributed application components and all
multi-dimensional interactions, including the interactions with the
environment. This enables us to use a more realistic representa-
tion of the application and its interaction with the environment.
Thereafter, as depicted in Figure 2c, when the data patterns and
directions of the interactions between the application and environ-
ment are known, the hypergraph is transformed into a directed
acyclic hypergraph (DAH). During the transformation from HG
to DAH multiple sustainability metrics are considered, including
energy wastage estimation by creating benchmarks for energy and
performance modelling of non-Von Neumann architectures. The
execution cognition, including the hypergraph transformation and
conditional execution, utilises an intelligent distributed approach
for cognitive optimization of the application DAH considering the
possibility for conditional execution of the application branches
based on external factors, such as users’ location and cached re-
sults [18]. Furthermore, it applies an intelligent data distribution
algorithm to only store the information of the applications and
users on trusted storage infrastructures, thus complying with the
data security standards [19]. Based on the workload, environmental
parameters, input data, and scale of the systems and application,
the system can transform the relevant part of the DAH to a directed
acyclic graph (DAG) specifically tailored for the given execution
depicted in Figure 2d.

The computing continuum federation and management of non-
Von Neumann infrastructures layer focuses on the execution aspect

Figure 2: Transformation from hypergraph to ordinary
graph.

of the DAH by providing automated configuration and provision-
ing of interoperable infrastructures and deployment. Federated
infrastructure knowledge management and overlay provisioning
enable provisioning over multiple computing continuum systems.
It enables the creation of an interoperable resources overlay that
includes heterogeneous hardware resources, including non-Von
Neumann hardware, across multiple computing continuum infras-
tructures by implementing novel infrastructure knowledge man-
agement algorithms and approaches [20]. In addition, the layer
manages the deployment of the given branches of the DAH as
DAG, making it interoperable with any existing system. Lastly, it
identifies suitable storage sites to create a virtualized distributed
data federation and provides continuous infrastructure and later
application monitoring [21].

4 CONCLUSION
This paper introduces a novel conceptual framework for modelling
of the computing continuum and IoT applications as hypergraphs,
with a primary focus on non-VonNeumann systems. The limitations
of classical graph-based modeling in accommodating diverse archi-
tectures beyond traditional von Neumann models are highlighted.
The utilization of hypergraphs emerges as a crucial solution, allow-
ing for the representation of computing resources and data sources
at any scale. This innovation facilitates the identification of new
relationships and hidden properties, laying the foundation for the
development of a federated and sustainable computing continuum.

The HyperContinuum conceptual platform describes novel con-
cepts for resource and applications management algorithms tailored
for distributed applications within next-generation computing con-
tinuum infrastructures based on novel von Neumann computer
architectures. The platform introduces the concepts for high-order
hypergraph applications representation, sustainability optimization
for von Neumann architectures, automated cognition through feder-
ated learning for IoT application execution, and adaptive computing
continuum resources provisioning. Overall, the HyperContinuum
platform not only discusses the challenges posed by diverse comput-
ing infrastructures but also sets the stage for the future development
of intelligent and sustainable systems. The paper underscores the
importance of embracing hypergraph-based models in shaping the
next era of computing, marking a significant step towards creating
a more efficient and interconnected computing environment.

REFERENCES
[1] Jiří Adámek, Horst Herrlich, and George Strecker. Abstract and concrete categories.

Wiley-Interscience, 1990.
[2] C-HL Ong and Charles A Stewart. A curry-howard foundation for functional

computation with control. In Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 215–227, 1997.

220

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Dragi Kimovski

[3] Antara Ganguly, Rajeev Muralidhar, and Virendra Singh. Towards energy effi-
cient non-von neumann architectures for deep learning. In 20th international
symposium on quality electronic design (ISQED), pages 335–342. IEEE, 2019.

[4] National Academies of Sciences. Quantum computing: progress and prospects.
2019.

[5] Dragi Kimovski, Roland Mathá, Josef Hammer, Narges Mehran, Hermann Hell-
wagner, and Radu Prodan. Cloud, fog, or edge: Where to compute? IEEE Internet
Computing, 25(4):30–36, 2021.

[6] Reza Farahani, Dragi Kimovski, Sashko Ristov, Alexandru Iosup, and Radu Prodan.
Towards sustainable serverless processing of massive graphs on the computing
continuum. In Companion of the 2023 ACM/SPEC International Conference on
Performance Engineering, pages 221–226, 2023.

[7] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed
hypergraphs and applications. Discrete applied mathematics, 42(2-3):177–201,
1993.

[8] Vincenzo De Maio and Dragi Kimovski. Multi-objective scheduling of extreme
data scientific workflows in fog. Future Generation Computer Systems, 106:171–
184, 2020.

[9] Björn B Brandenburg, John M Calandrino, and James H Anderson. On the
scalability of real-time scheduling algorithms on multicore platforms: A case
study. In 2008 Real-Time Systems Symposium, pages 157–169. IEEE, 2008.

[10] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
Brendan McMahan, et al. Towards federated learning at scale: System design.
Proceedings of machine learning and systems, 1:374–388, 2019.

[11] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny,
et al. Pegasus, a workflow management system for science automation. Future
Generation Computer Systems, 46:17–35, 2015.

[12] Fedor Smirnov, Behnaz Pourmohseni, and Thomas Fahringer. Apollo: Modular
and distributed runtime system for serverless function compositions on cloud,
edge, and iot resources. In Proceedings of the 1st Workshop on High Performance
Serverless Computing, pages 5–8, 2020.

[13] Guillem Ramirez-Gargallo, Marta Garcia-Gasulla, and Filippo Mantovani. Ten-
sorflow on state-of-the-art hpc clusters: a machine learning use case. In 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 526–533. IEEE, 2019.

[14] Dumitru Roman, Radu Prodan, Nikolay Nikolov, Ahmet Soylu, Mihhail Matskin,
Andrea Marrella, Dragi Kimovski, Brian Elvesæter, Anthony Simonet-Boulogne,
Giannis Ledakis, et al. Big data pipelines on the computing continuum: Tapping
the dark data. Computer, 55(11):74–84, 2022.

[15] Thang Le Duc, Rafael García Leiva, Paolo Casari, and Per-Olov Östberg. Machine
learning methods for reliable resource provisioning in edge-cloud computing: A
survey. ACM Computing Surveys (CSUR), 52(5):1–39, 2019.

[16] Ali Shahidinejad and Mostafa Ghobaei-Arani. Joint computation offloading
and resource provisioning for e dge-cloud computing environment: A machine
learning-based approach. Software: Practice and Experience, 50(12):2212–2230,
2020.

[17] João Paulo A Almeida. Model-driven design of distributed applications. In On
the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops: OTM Confed-
erated International Workshops and Posters, GADA, JTRES, MIOS, WORM, WOSE,
PhDS, and INTEROP 2004, Agia Napa, Cyprus, October 25-29, 2004. Proceedings,
pages 854–865. Springer, 2004.

[18] José Carlos Fonseca, Vincent Nélis, Gurulingesh Raravi, and Luís Miguel Pinho.
A multi-dag model for real-time parallel applications with conditional execution.
In Proceedings of the 30th Annual ACM Symposium on Applied Computing, pages
1925–1932, 2015.

[19] Lori M Kaufman. Data security in the world of cloud computing. IEEE Security &
Privacy, 7(4):61–64, 2009.

[20] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Adaptive resource con-
figuration for cloud infrastructure management. Future Generation Computer
Systems, 29(2):472–487, 2013.

[21] Polona Štefanič and Vlado Stankovski. Multi-criteria decision-making approach
for container-based cloud applications: the switch and entice workbenches.
Tehnički vjesnik, 27(3):1006–1013, 2020.

221

Resource Demand Profiling of Monolithic Workflows
Ivo Rohwer

ivo.rohwer@uni-wuerzburg.de
Julius-Maximilians-Universität

Würzburg
Würzburg, Germany

Maximilian Schwinger
maximilian.schwinger@dlr.de

German Aerospace Center (DLR)
Oberpfaffenhofen, Germany

Nikolas Herbst
nikolas.herbst@uni-wuerzburg.de
Julius-Maximilians-Universität

Würzburg
Würzburg, Germany

Peter Friedl
peter.friedl@dlr.de

German Aerospace Center (DLR)
Oberpfaffenhofen, Germany

Michael Stephan
michael.stephan@lrz.de
Leibniz Rechenzentrum
Garching, Germany

Samuel Kounev
samuel.kounev@uni-wuerzburg.de
Julius-Maximilians-Universität

Würzburg
Würzburg, Germany

ABSTRACT
We propose a novel approach for resource demand profiling of
resource-intensive monolithic workflows that consist of different
phases. Workflow profiling aims to estimate the resource demands
of workflows. Such estimates are important for workflow sched-
uling in data centers and enable the efficient use of available re-
sources. Our approach considers the workflows as black boxes, in
other words, our approach can fully rely on recorded system-level
metrics, which is the standard scenario from the perspective of data
center operators. Our approach first performs an offline analysis
of a dataset of resource consumption values of different runs of a
considered workflow. For this analysis, we apply the time series seg-
mentation algorithm PELT and the clustering algorithm DBSCAN.
This analysis extracts individual phases and the respective resource
demands. We then use the results of this analysis to train a Hidden
Markov Model in a supervised manner for online phase detection.
Furthermore, we provide a method to update the resource demand
profiles at run-time of the workflows based on this phase detection.
We test our approach on Earth Observation workflows that process
satellite data. The results imply that our approach already works in
some common scenarios. On the other hand, for cases where the
behavior of individual phases is changed too much by contention,
we identify room and next steps for improvements.

CCS CONCEPTS
• Software and its engineering→ Processmanagement; •Gen-
eral and reference → Cross-computing tools and techniques.

KEYWORDS
Phase Detection, HMM, Workflow Profiling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651425

ACM Reference Format:
Ivo Rohwer, Maximilian Schwinger, Nikolas Herbst, Peter Friedl, Michael
Stephan, and Samuel Kounev. 2024. Resource Demand Profiling of Mono-
lithic Workflows. In Companion of the 15th ACM/SPEC International Con-
ference on Performance Engineering (ICPE Companion ’24), May 7–11, 2024,
London, United Kingdom. ACM, New York, NY, USA, 4 pages. https://doi.
org/10.1145/3629527.3651425

1 INTRODUCTION
As the possibilities for collecting data increase year on year, the effi-
cient processing of these data volumes is becoming an ever-growing
challenge. A frequently used approach for processing large amounts
of data are scientific workflows. Data centers are trying to make
the best possible use of their available resources without causing a
decline in the quality of service. To achieve this, the prediction of
resource demands plays an important role, as these estimates are
the basis for workflow scheduling decisions. The simplest but often
used resource demand estimates focus on determining a worst-
case value for each workflow and do not take into account the
occurrence of different phases with different resource demands
within a workflow. On the other hand, some approaches use the
measured resource utilization history to predict the resource uti-
lization for a future time period of a specified fixed length. Even
more precise predictions are possible using approaches that predict
the resource demand of individual workflows taking into account
different phases. These approaches use unsupervised clustering
methods, such as k-means or Hidden Markov Models (HMMs). In
this paper, we present a new approach that enables supervised
training of a HMM by combining offline and online algorithms. In
this way, as few as just recorded systems-level metrics of about 30
executions are required as training data. Furthermore, we provide a
method that uses the online phase detection of the HMM to update
online the offline-created resource demand profiles.

The use of a method that predicts the resource demand of a
single workflow makes sense for monolithic workflows that have
such a high resource consumption that it is worth predicting each
individual workflow. We select as application domain Earth Obser-
vation (EO) workflows. EO workflows are scientific workflows that
process satellite data and, for example, are used to determine the
condition of forests [11], record the movement of Antarctic ice [2],
or monitor daily changes in global freshwater bodies [7]. Because
of the mentioned characteristics of EO workflows, we use them to

222

https://doi.org/10.1145/3629527.3651425
https://doi.org/10.1145/3629527.3651425
https://doi.org/10.1145/3629527.3651425

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Ivo Rohwer et al.

Resource Demand Profiles

We understand a resource demand profile to be an estimate
of the resource demands of a specific workflow over time.
The profile indicates for the workflow under consideration
how long it is expected to run at maximum and indicates
for each point in time during this period how high the
maximum resource demand is expected to be.

evaluate our approach. We consider the workflows as black boxes,
but we assume that we have a data set of resource consumption
values available for each individual workflow.

The remainder of this workshop paper is organized as follows:
In Section 2, we summarize related work. In Section 3, we describe
our approach and discuss the algorithms we chose for the individ-
ual steps of our approach. In addition, in Section 4, we show the
performed experiments and present the results. Finally, in Section
5, we give a conclusion and discuss future work.

2 RELATED WORK
In the following, we present briefly related work regarding our
approach. Workflow prediction for sets of applications There
are many workflow prediction approaches that use classic time
series prediction methods for resource demand prediction, like
for example, [10], [14] or [13]. This is not an ideal solution in the
scenario we consider, as most time series prediction approaches
are not designed to predict changepoints of time series, but rather,
like ARIMA or ARMA for example, assume that the time series
retains its statistical properties, which is precisely not the case
after a phase transition that can be seen as a change point of the
resource consumption time series. Different papers have also been
published in this area using HMMs, such as the work by Kahn et
al. [6]. They do take phases into account, but only to the extent
that they determine the current phase and predict the resource
demands of the next phase: The approach deals only with intervals
of fixed length (for example 15-minute intervals in their paper). In
addition, their approach assigns a phase only one of five possible
CPU utilization levels. In contrast, we model sequences of phases
of arbitrary lengths and resource demands. Furthermore, we adjust
flexibly our resource demand profiles based on the observed phase
lengths of already completed phases. Another example of the use
of HMMs for workflow prediction is the work of Adel et al. [1]. In
their approach, a HMM is trained for each resource, which is then
used to predict the utilization of the individual resource, whereby
they distinguish between four different load state classes. The goal
of their approach was to use the predictions for autoscaling. The
approach was tested successfully in a simulation.

Resource demand prediction of individual applications
Gupta et al. [5] proposed a relatively simple approach to phase-
based resource demand estimation based on the k-means algorithm.
This is used to cluster the time series into phases. Subsequently, a
phase transition table can be created based on these results. During
operation, the k-means algorithm is also used to identify the current
phase and then the upcoming phases are predicted using the transi-
tion table. Furthermore, in this approach, a table is created to track

the CPU utilization of phase combinations of different workflows
in order to make scheduling decisions based on this information.

Prats et al. [8] proposed an approach for phase-based prediction
of workflows using HMM to profile individual workloads. However,
unlike us, they train their HMM unsupervised, i.e., they also use it
to extract the phases from the time series of resource consumption
values. In contrast to this, we use deterministic algorithms to extract
the phases from these time series. With the labels created in this
way, we train the HMM in a supervised manner and use it for phase
detection and prediction.

This makes it possible to predict the phase progression of a
workflow from start to finish. This is not possible when using
the unsupervised approaches, as it is not possible to prevent two
separate segments in a run from being assigned to the same phase
type. However, this means that no start-to-finish predictions can
be derived from the phase transition tables resulting from these
segmentations, as circles are possible in the phase sequences.

3 APPROACH
As described in the introduction, the goal of our work is to create a
model for the resource demand estimation of monolithic workflows
that we regard as black boxes. We assume that a dataset of recorded
monitoring data from different example runs for a considered work-
flow type is available.

The first step is to divide the example runs from the data-set
into meaningful phases. This is done in our approach by the PELT
algorithm. Once the example runs are segmented into meaningful
phases, we have to determine which of these segments from dif-
ferent example runs belong to the same phase. It is not possible
to derive this information from the order of the phase segments,
since, for example, some phases can only occur optionally or can
be changed in their properties by contention. For this reason, we
use the DBSCAN clustering algorithm for this task. Each of the
resulting clusters represents one phase type. All identified phase
types can now be characterized in terms of their run durations and
resource demands. With this information, it is possible to estimate
the possible start and end dates of the individual phases. Based
on these estimates, a resource demand profile can be created for a
workflow, which gives at each point in time a maximum resource
demand value of all phases that could possibly be active at that
point in time.

Our approach aims to update the estimates of the start times of
the individual phases at the runtime of the individual workflow
instances. This makes it possible to significantly increase the ac-
curacy of the profiles: For example, if a phase of a workflow has a
high resource demand, the appropriate amount of resources must
be reserved for this phase for the entire time in which it may occur.
This time is usually significantly longer than the actual maximum
runtime of this phase, as we do not know exactly when this phase
actually will start. This means that in this case, the actual resource
demands of a workflow are significantly overestimated by the initial
resource demand profile. However, online phase recognition makes
it possible to narrow down the estimates of the start times of the re-
maining phases. With this information, the resource demand profile
can then be updated and the overestimation of resource demands
can be significantly reduced. For the task of online phase detection,

223

Resource Demand Profiling of Monolithic Workflows ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

we train a HMM in a supervised manner, based on this phase seg-
mentation and labeling. Our code and data artifacts are available
for reproducibility and reusability via a CodeOcean Capsule at [9].

3.1 Resource Demand Profile Creation
Our approach creates a resource demand profile at the start of a
workflow as well as at each recognized phase transition. The first
step of our resource demand profiling approach is to determine all
possible phase sequences that may follow the current phase. This
is done by evaluating the transition probability table of the HMM.

Each of these possible phase sequences is then considered in-
dividually. The minimum possible start time and the maximum
possible end time are calculated for each phase in each sequence.
We assume the minimum duration of a phase to be the mean du-
ration minus two standard deviations and the maximum length to
be the mean duration plus two standard deviations. The earliest
and the latest point in time at which a phase can possibly start in
a considered sequence is given by the sum of either the minimum
or the maximum lengths of all previous phases of this phase. Now,
it is possible to calculate for each phase sequence for any time
step all phases that can possibly occur at this time step. For each
time step, we can now calculate the maximum of all mean resource
consumption values plus two standard deviations of all phases that
may occur in this time step.

If these maximum values are calculated for all time steps of all
possible phase sequences that can follow from the current phase,
the final resource demand profile can be calculated as follows: For
each time step, we iterate through all values at this time step of
the different sequences and take the maximum value for this time
step. In this way, we can create an upper-bound estimation for the
future demand of a specific resource for the considered workflow.

4 PRELIMINARY EVALUATION
We evaluate our approach on the terrabyte platform [3, 4] hosted
at the Leibniz Rechenzentrum. As described in the introduction,
we profile EO workflows to test our approach. In the following, we
present the results of our experiments with the Multi-SAR work-
flow [12] regarding the memory consumption profile of this work-
flow. The Multi-SAR workflow processes data from radar satellites.
We consider a scenario where a set of Multi-SAR workflow in-
stances is to be executed concerning a certain memory limit. We
compare the results of ASAP (as soon as possible) scheduling of
these workflow instances in combination with different resource
demand profile types including our approach. We measure the total
execution times for the entire workflow set, i.e. the time span be-
tween the start of the first workflow instance and the end of the last
workflow instance. The following three profile types are compared
by us:

(1) Constant resource demand profiles, which contain a value
based on the maximum resource consumption of a workflow

(2) Static resource demand profiles, which are non-constant
and take into account the different resource demands of
individual phases but are not updated at the runtime of the
workflows

(3) Dynamic resource demand profiles, which are created by
our approach and are updated at the runtime of individual
workflow instances

The static profiles correspond to the initial profiles generated by
our model but are not updated at the runtime of the workflows.

In Table 1, the exact number of time steps required to complete 20
instances of the Multi-SAR workflow that were scheduled by ASAP
in combination with the three compared resource demand profile
types. As we can see, the time required in the case of constants
and static profiles does not differ significantly in the scenario un-
der consideration. In contrast, our approach seems to significantly
speed up the execution of the workflows: In this experiment, the
workflows were completed more than 23% faster without exceeding
the resource limit.

limit number of
workflow
instances

profiling ap-
proach

duration in
time steps

improvement
vs constant

200 GB 20 constant 650 -
200 GB 20 static 641 1.38%
200 GB 20 dynamic 499 23.23%

Table 1: The table shows the results of our experiments on
the terrabyte platform in terms of the time required for 20
workflow instances. The improvement is shown in compari-
son with the constant procedure.

The results of our experiments show that our approach works
for the memory consumption values of the Multi-SAR workflow.
However, additional experiments have shown that our approach
runs into problems if the behavior of individual phases is changed
too much by contention. This is especially the case with time series
of CPU data from multi-threaded workflows, as these time series
exhibit a high variance.

5 CONCLUSION AND FUTUREWORK
In this paper, we present an approach for phase-based workflow
profiling and online phase-detection for monolithic workflows. We
use offline time series segmentation and density-based clustering
to identify individual phases in a resource consumption value time
series dataset. Subsequently, we train a HMM for online phase de-
tection of the corresponding workflow. Furthermore, we present
a method to utilize this phase detection to adjust the generated
resource demand profiles at the runtime of the workflows. We
evaluate our approach using Earth Observation workflows. Our ex-
periments regarding memory consumption show that our approach
works well in scenarios where the behavior of individual phases is
not changed too much by contention.

However, if contention changes the behavior of individual phases
too much, our approach has problems creating a consistent phase
model. Here it seems to be a problem to call the PELT algorithm
with the same hyper-parameters for highly different time series.
Therefore, we aim to optimize our approach in this respect. In addi-
tion, further experiments are also needed, especially experiments
that combine our approach with more specialized scheduling algo-
rithms, in order to evaluate how well our approach would work in
practice.

224

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Ivo Rohwer et al.

ACKNOWLEDGMENTS
This research is funded by the Bavarian Research Institute for Digi-
tal Transformation (bidt), an institute of the Bavarian Academy of
Sciences and Humanities as part of the project ROOT: Real-time
earth Observation of fOrest dynamics and biodiversiTy (KON-22-
024).

REFERENCES
[1] Ahmed Adel and Amr El Mougy. 2022. Cloud Computing Predictive Resource

Management Framework Using Hidden Markov Model. In 2022 5th Conference on
Cloud and Internet of Things (CIoT). 205–212. https://doi.org/10.1109/CIoT53061.
2022.9766809

[2] Celia A. Baumhoer, Andreas J. Dietz, C. Kneisel, and C. Kuenzer. 2019. Automated
Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using
Deep Learning. Remote Sensing 11, 21 (2019). https://doi.org/10.3390/rs11212529

[3] Jonas Eberle, Maximilian Schwinger, and Julian Zeidler. 2023. Challenges in
the development of the EO Exploitation Platform terrabyte. In Proceedings of
the 2023 Conference on Big Data from Space (BiDS’23) – From foresight to impact
(Vienna, Austria). Publications Office of the European Union, 97–100. https:
//doi.org/10.2760/46796

[4] German Aerospace Center (DLR). [n. d.]. terrabyte. https://www.dlr.de/eoc/
terrabyte. Accessed: 2023-12-04.

[5] Piyush Gupta, Shashidhar G Koolagudi, Rahul Khanna, Mrittika Ganguli, and
Ananth Narayan Sankaranarayanan. 2015. Analytic technique for optimal work-
load scheduling in data-center using phase detection. In 5th International Confer-
ence on Energy Aware Computing Systems & Applications. IEEE, 1–4.

[6] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. 2012. Workload char-
acterization and prediction in the cloud: A multiple time series approach. In
2012 IEEE Network Operations and Management Symposium. 1287–1294. https:

//doi.org/10.1109/NOMS.2012.6212065
[7] Igor Klein, Ursula Gessner, Andreas J. Dietz, and Claudia Kuenzer. 2017. Global

WaterPack – A 250m resolution dataset revealing the daily dynamics of global
inland water bodies. Remote Sensing of Environment 198 (2017), 345–362. https:
//doi.org/10.1016/j.rse.2017.06.045

[8] David Buchaca Prats, Josep Lluís Berral, and David Carrera. 2017. Automatic
generation of workload profiles using unsupervised learning pipelines. IEEE
Transactions on Network and Service Management 15, 1 (2017), 142–155.

[9] Ivo Rohwer. 2024. Resource Demand Profiling of Monolithic Workflows. https:
//www.codeocean.com/. https://doi.org/10.24433/CO.0301206.v1

[10] Nilabja Roy, AbhishekDubey, andAniruddhaGokhale. 2011. Efficient Autoscaling
in the Cloud Using Predictive Models for Workload Forecasting. In 2011 IEEE 4th
International Conference on Cloud Computing. 500–507. https://doi.org/10.1109/
CLOUD.2011.42

[11] Frank Thonfeld, Ursula Gessner, Stefanie Holzwarth, Jennifer Kriese, Emmanuel
Canova, Juliane Huth, and Claudia Kuenzer. 2022. A First Assessment of Canopy
Cover Loss in Germany’s Forests after the 2018–2020 Drought Years. Remote
Sensing 14 (01 2022), 562. https://doi.org/10.3390/rs14030562

[12] Anna Wendleder, Daniel Abele, Martin Huber, Birgit Wessel, Dennis Kaiser, John
Truckenbrodt, Peter Friedl, Sandro Groth, Florian Fichtner, and Jonas Eberle. 2023.
Sentinel-1 Normalized Radar Backscatter processing on the High-Performance
Data Platform terrabyte. In IGARSS 2023. https://elib.dlr.de/196780/

[13] Da Yu Xu, Shan Lin Yang, and Ren Ping Liu. 2013. A mixture of HMM, GA, and
Elman network for load prediction in cloud-oriented data centers. Journal of
Zhejiang University: Science C 14, 11 (Nov. 2013), 845–858. https://doi.org/10.
1631/jzus.C1300109

[14] Qi Zhang, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu, Raouf Boutaba, and
Joseph L. Hellerstein. 2012. Dynamic Energy-Aware Capacity Provisioning for
Cloud Computing Environments. In Proceedings of the 9th International Conference
on Autonomic Computing (San Jose, California, USA) (ICAC ’12). Association for
Computing Machinery, New York, NY, USA, 145–154. https://doi.org/10.1145/
2371536.2371562

225

https://doi.org/10.1109/CIoT53061.2022.9766809
https://doi.org/10.1109/CIoT53061.2022.9766809
https://doi.org/10.3390/rs11212529
https://doi.org/10.2760/46796
https://doi.org/10.2760/46796
https://www.dlr.de/eoc/terrabyte
https://www.dlr.de/eoc/terrabyte
https://doi.org/10.1109/NOMS.2012.6212065
https://doi.org/10.1109/NOMS.2012.6212065
https://doi.org/10.1016/j.rse.2017.06.045
https://doi.org/10.1016/j.rse.2017.06.045
https://www.codeocean.com/
https://www.codeocean.com/
https://doi.org/10.24433/CO.0301206.v1
https://doi.org/10.1109/CLOUD.2011.42
https://doi.org/10.1109/CLOUD.2011.42
https://doi.org/10.3390/rs14030562
https://elib.dlr.de/196780/
https://doi.org/10.1631/jzus.C1300109
https://doi.org/10.1631/jzus.C1300109
https://doi.org/10.1145/2371536.2371562
https://doi.org/10.1145/2371536.2371562

12th International Workshop on Load Testing and Benchmarking
of Software Systems: LTB’24 Chairs’ Welcome

Marios Fokaefs
fokaefs@yorku.ca
York University
Toronto, Canada

Filipe Oliveira
filipe@redis.com

Redis
Lisbon, Portugal

Naser Ezzati-Jivan
nezzati@brocku.ca
Brock University

St.Catharines, Canada

ABSTRACT
It is our great pleasure to welcome you to the twelfth edition of
the International Workshop on Load Testing and Benchmarking
of Software Systems – LTB 2024, (https://ltb2024.github.io/). This
one-day workshop brings together software testing and software
performance researchers, practitioners, and tool developers to dis-
cuss the challenges and opportunities of conducting research on
load testing and benchmarking software systems, including theory,
applications, and experiences. LTB 2024 includes 2 keynote talks,
4 research papers, and 2 industry presentations. The topics cover
performance of serverless computing, performance and load test-
ing, performance-driven culture, workload generation, workload
tracing, benchmarking, and performance verification.

We warmly welcome attendees to attend our keynote, industry,
and research talks:

• [Keynote] Improving Software Quality Using AIOps. Wahab
Hamou-Lhadj (Professor of the Department of Electrical and
Computer Engineering at Concordia University).

• [Keynote] Scaling Performance Testing to Millions of Distinct
Results. David Daly (Staff Engineer – Developer Productivity
at MongoDB).

• [Industry] How to Sell Performance Test Results To a Diverse
Crowd. René Schwietzke (Xceptance).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651437

• [Industry] Performance Testing Transformation. Alexander
Podelko (Amazon).

• [Research] Fastcrypto: Pioneering Cryptography Via Continu-
ous Benchmarking. Konstantinos Chalkias, Jonas Lindstrøm,
Deepak Maram, Ben Riva, Arnab Roy, JoyWang, and Alberto
Sonnino.

• [Research] Overhead Comparison of Instrumentation Frame-
works. David Georg Reichelt, Lubomir Bulej, Reiner Jung,
and André van Hoorn.

• [Research] Exemplary Determination of Cgroups-Based QoS
Isolation for a Database Workload. Simon Volpert, Sascha
Winkelhofer, Stefan Wesner, Daniel Seybold, and Jörg Do-
maschka.

• [Research] Self-Service Performance Testing Platform for Au-
tonomous Development Teams. Oleksandr Kachur and Aleksei
Vasilevskii.

Putting together LTB’24 was a team effort. We first thank the au-
thors for providing the content of the program. We are grateful
to the program committee, who worked very hard in reviewing
papers and providing feedback to authors. Finally, we thank ICPE
for hosting our workshop.

We hope that you will find this program interesting and thought-
provoking and that the workshop will provide you with a valuable
opportunity to share ideas with other researchers and practitioners
from institutions around the world.
ACM Reference Format:
Marios Fokaefs, Filipe Oliveira, and Naser Ezzati-Jivan. 2024. 12th Interna-
tional Workshop on Load Testing and Benchmarking of Software Systems:
LTB’24 Chairs’ Welcome. In Companion of the 15th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’24 Companion), May
7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 1 page.
https://doi.org/10.1145/3629527.3651438

226

https://ltb2024.github.io/
https://doi.org/10.1145/3629527.3651438
https://doi.org/10.1145/3629527.3651438

Fastcrypto: Pioneering Cryptography Via Continuous
Benchmarking

Kostas Kryptos Chalkias
Mysten Labs

San Francisco, USA
kostas@mystenlabs.com

Jonas Lindstrøm
Mysten Labs

Aarhus, Denmark
jonas@mystenlabs.com

Deepak Maram
Mysten Labs

New York, USA
deepak@mystenlabs.com

Ben Riva
Mysten Labs
Tel Aviv, Israel

benriva@mystenlabs.com

Arnab Roy
Mysten Labs

San Francisco, USA
arnab@mystenlabs.com

Alberto Sonnino
Mysten Labs
London, UK

University College London
London, UK

alberto@mystenlabs.com

Joy Wang
Mysten Labs

New York, USA
joy@mystenlabs.com

ABSTRACT
In the rapidly evolving fields of encryption and blockchain technolo-
gies, the efficiency and security of cryptographic schemes signifi-
cantly impact performance. This paper introduces a comprehensive
framework for continuous benchmarking in one of the most pop-
ular cryptography Rust libraries, fastcrypto. What makes our
analysis unique is the realization that automated benchmarking
is not just a performance monitor and optimization tool, but it
can be used for cryptanalysis and innovation discovery as well.
Surprisingly, benchmarks can uncover spectacular security flaws
and inconsistencies in various cryptographic implementations and
standards, while at the same time they can identify unique oppor-
tunities for innovation not previously known to science, such as
providing a) hints for novel algorithms, b) indications for mix-and-
match library functions that result in world record speeds, and c)
evidences of biased or untested real world algorithm comparisons
in the literature.

Our approach transcends traditional benchmarking methods by
identifying inconsistencies in multi-threaded code, which previ-
ously resulted in unfair comparisons. We demonstrate the effec-
tiveness of our methodology in identifying the fastest algorithms
for specific cryptographic operations like signing, while revealing
hidden performance characteristics and security flaws. The process
of continuous benchmarking allowed fastcrypto to break many
crypto-operations speed records in the Rust language ecosystem.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652266

A notable discovery in our research is the identification of vul-
nerabilities and unfair speed claims due to missing padding checks
in high-performance Base64 encoding libraries. We also uncover
insights into algorithmic implementations such as multi-scalar el-
liptic curve multiplications, which exhibit different performance
gains when applied in different schemes and libraries. This was
not evident in conventional benchmarking practices. Further, our
analysis highlights bottlenecks in cryptographic algorithms where
pre-computed tables can be strategically applied, accounting for L1
and L2 CPU cache limitations.

Our benchmarking framework also reveals that certain algorith-
mic implementations incur additional overheads due to serializa-
tion processes, necessitating a refined ‘apples to apples’ compari-
son approach. We identified unique performance patterns in some
schemes, where efficiency scales with input size, aiding blockchain
technologies in optimal parameter selection and data compression.

Crucially, continuous benchmarking serves as a tool for ongoing
audit and security assurance. Variations in performance can signal
potential security issues during upgrades, such as cleptography,
hardware manipulation or supply chain attacks. This was evidenced
by critical private key leakage vulnerabilities we found in one of
the most popular EdDSA Rust libraries. By providing a dynamic
and thorough benchmarking approach, our framework empowers
stakeholders to make informed decisions, enhance security mea-
sures, and optimize cryptographic operations in an ever-changing
digital landscape.

CCS CONCEPTS
• Security and privacy → Cryptography; • Software and its
engineering → Software libraries and repositories; Software de-
velopment process management.

227

https://orcid.org/0000-0002-3252-9975
https://orcid.org/0000-0002-1989-3019
https://orcid.org/0000-0001-5324-6889
https://orcid.org/0009-0008-2192-1905
https://orcid.org/0009-0005-3770-9982
https://orcid.org/0000-0001-5337-4741
https://orcid.org/0009-0007-9002-3191
https://doi.org/10.1145/3629527.3652266

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Kostas Kryptos Chalkias et al.

ACM Reference Format:
Kostas Kryptos Chalkias, Jonas Lindstrøm, Deepak Maram, Ben Riva, Arnab
Roy, Alberto Sonnino, and Joy Wang. 2024. Fastcrypto: Pioneering Cryptog-
raphy Via Continuous Benchmarking. In Companion of the 15th ACM/SPEC
International Conference on Performance Engineering (ICPE ’24 Companion),
May 7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3629527.3652266

1 INTRODUCTION
Cryptography plays a pivotal role in safeguarding the integrity and
confidentiality of secure communication channels, decentralized
applications, digital identity and authentication systems, among the
others. In the last 10-15 years, the demand for secure and scalable
blockchain solutions caused an exponentially increased need for
comprehensive performance evaluations of the underlying cryp-
tographic components, such as digital signatures, zero knowledge
proofs, Merkle trees, regular or exotic encryption mechanisms,
multi-party computations and randomness beacons. It is believed
that blockchain research has advanced the cryptography space
rapidly [20], offering some of the most robust and fastest imple-
mentations that are now reused outside web3 as well.

Fastcrypto [24] is one of the most recent and modern Rust [23]
libraries focusing on high performance implementations of crypto-
graphic primitives, typically required by blockchain applications.
Although originally designed to provide all cryptographic func-
tionality for the Sui1 blockchain, it has been widely adopted by
the cryptographic community, and is currently used in at least 167
other projects2.

A few prominent examples of fastcrypto’s community usage
include the following: (1) DB3Network3, which is a lightweight, per-
manent JSON document database for Web3. It is designed to store
and retrieve data for decentralized applications built on blockchain
technology, (2) Rooch Network4, which is a fast, modular, secured,
developer-friendly infrastructure solution for building Web3 Native
applications, and (3) Fleek Network5, which facilitates the deploy-
ment and running of performant, geo-aware decentralized web and
edge services. These codebases typically use the base64, hashing,
and signature algorithms from fastcrypto.

In order tomeet the performance demands of a scalable blockchain
thatmust process thousands of transactions per second, fastcrypto
has been continuously and rigorously benchmarked through the
entire development process. This has informed decision-making,
in particular in the early stages of the development where many
crucial and largely irreversible choices had to be made.

This paper gives examples of some actionable insights acquired
through our benchmarking efforts while developing the fastcrypto
library. These insights have been leveraged for both the refinement
of the library itself, and the optimization of cryptographic opera-
tions within Rust and Move [11] language based blockchains. In
some cases this also led to changes in external libraries. It is our
hope that these insights may be useful for researchers or developers
working on performance critical systems.

1https://sui.io/
2https://github.com/MystenLabs/fastcrypto/network/dependents
3https://db3.network/
4https://rooch.network/
5https://fleek.network

Figure 1: Historic performance of a digital signature verifica-
tion using the ECDSA signature scheme over the secp256r1
curve.

2 METHOD
All cryptographic functions in the fastcrypto library are bench-
marked continuously as part of the library’s continuous integration
workflow6 and a report of the results are published online7. The re-
port is generated using the criterion crate [3] and when applicable,
functions are benchmarked with various input sizes and grouped
together with similar functions to enable comparisons. Benchmarks
are run sequentially and each measurement is run 100 times. The
report contains the mean and standard deviation of the observed
timings for further analysis. At the time of writing (January 2024),
the report contains 109 different benchmarks.

The report contains historic data, allowing the detection of im-
provements or regressions in performance. As an example, Figure 1
shows a plot from the published report of the performance of veri-
fying a digital signature using the ECDSA signature scheme over
the secp256r1 (aka P-256) curve. This function has been improved
several times which is reflected in the graph. These particular im-
provements are described in detail in section 3.1.3.

The data behind the report is published online in JSON format
and may be analyzed using any statistical analysis tool. We have
implemented a tool in Python8 to utilize statistical libraries such
as numpy [25] for more elaborate statistical analysis and plotting of
the data. All plots in this paper were generated using this Python
script.

6https://github.com/MystenLabs/fastcrypto/blob/main/.github/workflows/
benchmarking.yml
7https://mystenlabs.github.io/fastcrypto/benchmarks/criterion/reports/
8https://github.com/jonas-lj/fastcrypto-analyzer

228

https://doi.org/10.1145/3629527.3652266
https://sui.io/
https://github.com/MystenLabs/fastcrypto/network/dependents
https://github.com/MystenLabs/fastcrypto/blob/main/.github/workflows/benchmarking.yml
https://github.com/MystenLabs/fastcrypto/blob/main/.github/workflows/benchmarking.yml
https://mystenlabs.github.io/fastcrypto/benchmarks/criterion/reports/
https://github.com/jonas-lj/fastcrypto-analyzer

Fastcrypto: Pioneering Cryptography Via Continuous Benchmarking ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

To identify bottlenecks when the cryptographic functions in
fastcrypto are used elsewhere, we have made Dummy implemen-
tations of digital signatures and hash functions. These implementa-
tions use the same interfaces as the actual cryptographic functions
and can be used in place of these. They are not cryptographically
secure but are extremely fast, so when they are used in testing they
allow a developer to identify where cryptographic operations are a
bottleneck in their implementation.

3 CASE STUDIES
The continuous benchmarks have greatly influenced the decision-
making in the development of the fastcrypto library and in how
it is used in the Sui blockchain and later in other projects. In this
section, we outline some of the insights we achieved through the
benchmarks and their consequences for the development.

3.1 Picking the right dependencies and specs
3.1.1 Signature aggregation can be catalytic. The BLS signature
scheme [13] allows multiple signatures generated under different
public keys for the same message to be aggregated into a single
signature which is valid only if all the individual signatures are
valid [12]. In a blockchain setting, this has the potential to speed
up validators’ signature verification significantly, as it is possible
to aggregate signatures and batch the verification, instead of in-
dividually submitting and verifying many independent signature
payloads.

Signature schemes such as EdDSA and ECDSA are much faster
than BLS for individual signatures (see Figure 2), but do not pro-
vide the same performance gain when signatures are batched, so
choosing the right signature scheme requires careful assessment of
performance [21].

Our benchmarks (see Figure 3) show that there are a number
of signatures where verifying an aggregated BLS signature is the
fastest option compared to EdDSA, and that using the fastest avail-
able implementations of EdDSA [26] and BLS [30], the break-even
point is around 40-45 signatures.

Since BLS is used in the Sui blockchain to aggregate validators’
signatures, this implies that if there are more than 45 validators,
using BLS will be faster than EdDSA. At the time of writing, there
are 106 validators in Sui, meaning that verifying aggregated BLS is
about 2× faster than EdDSA, when all validators sign.

3.1.2 Hash functions - in themercy of hardware specs. In blockchains,
cryptographic hash functions are arguably the most used crypto-
graphic primitive, so even though they are relatively fast functions
they may eventually become a bottleneck.

The performance of all cryptographic hash functions are approxi-
mately linear in the input size for sufficiently large inputs, but there
are subtle differences in performance because the data is processed
in blocks of varying sizes and this difference is more noticeable for
small inputs. Sui originally used the Sha3-256 hash function that
Meta’s Libra [1] project originally utilized, but after benchmarking
alternatives it switched to Blake2b [6] which is almost 3× faster
and more zero knowledge proof friendly.

A plot of the benchmarks is shown in Figure 4. Note that Sha256
is the fastest hash function here, but this is not the case on all

Figure 2: Performance of signing and verifying a message
using various digital signature schemes. Secp256k1 and
Secp256r1 are variants of ECDSA.

Figure 3: Performance of batched verification of digital sig-
natures using the EdDSA and BLS signature schemes.

229

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Kostas Kryptos Chalkias et al.

Figure 4: Performance of cryptographic hash functions.

platforms. This is evident, for example, from the benchmarks pub-
lished by the Blake2 team9 which shows that Sha256 is more than
2× slower than Blake2b, but we have also observed this in our
benchmarks where the performance of Sha256 suddenly improved
significantly between two runs without any changes in the software.
We identified that this spike is due to recent updates in hardware
for the cloud runner, because some hardware vendors have special-
ized CPUs to support Sha256 instructions; but running purely in
software, Blake2b is faster.

We want to investigate this further and make our benchmarks
fairer and more consistent, but it emphasizes the importance of
benchmarking on a system similar to the production system be-
cause subtle differences (like CPU brand and model) can affect the
performance significantly.

3.1.3 Deserialization can be expensive in cryptography. Many mod-
ern blockchains enable cryptographic agility for account signature
key types. For instance in Sui blockchain, users may choose be-
tween a variety of signature schemes to sign their transaction10.
This allows them to pick their favorite hardware wallet or their
smartphone and store their keys securely. The default choice for the
Sui blockchain (and many others) is EdDSA [10] over the ed25519
curve which was chosen based on high performance, determinism,
adoption and standardization.

There are a few implementations of EdDSA in Rust, and compar-
ing two popular crates (libraries) ed25519-dalek [15] and ed25519-
consensus [26], which are backed by the same crypto arithmetic
library, revealed some unexpected results, namely that the prior
was much faster. Studying the source code closely showed that the
difference was almost exclusively due to the fact that public keys
in the latter are given in compressed serialized form, which is a
9https://www.blake2.net/
10https://docs.sui.io/guides/developer/sui-101/sign-and-send-txn

Figure 5: Relative performance improvement between using
𝑛 and 𝑛 − 1 random scalars to verify a batch of 𝑛 Ed25519
signatures.

representation where only one affine coordinate from the elliptic-
curve point is given, meaning that the other coordinate has to be
reconstructed before it can be used using a modular square root
computation. This decompression operation is not for free. Ac-
counting for this extra computation, the difference between the
two libraries were then negligible. Some important lessons from
this exercise are that a) we should be careful when comparing simi-
lar functions, (de)serialization can be expensive in cryptography,
and b) there is a reason why some cryptographic libraries prefer
one or the other, for instance the authors of ed25519-consensus
explained that their method is safer when receiving public keys
from the network, because the user does not need to take care of
invalid keys before invoking the signature.verify() function;
this is indeed a valid argument when keys are not cached or are
unknown (typically the case in blockchain transactions).

3.1.4 Asymptotic complexity does not always tell the truth. EdDSA
has a batched verification mode, where multiple signatures may be
verified in a batch, giving some speed-up if enough signatures are
verified together (see also section 3.1.1). While benchmarking this,
we found an untapped potential optimisation: Typically, batch veri-
fication of 𝑛 EdDSA signatures requires sampling 𝑛 random scalars,
but we found that 𝑛 − 1 is actually sufficient. For a small number
of signatures, this gives a small speed-up as shown in Figure 5;
this might make sense when we verify sponsored or atomic-swap
transactions, where two accounts sign over the same transaction
bytes.

3.2 Mix and Match Optimizations
3.2.1 Optimize ECDSA over the P-256 curve. As discussed in section
3.1.3 above, clients are allowed to choose among many signature

230

https://www.blake2.net/
https://docs.sui.io/guides/developer/sui-101/sign-and-send-txn

Fastcrypto: Pioneering Cryptography Via Continuous Benchmarking ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

schemes when signing their transactions, but it turns out that some
schemes are slower than others so to avoid that verifying signa-
tures of a particular scheme becomes a bottleneck for the entire
system, the signature schemes are benchmarked continuously. The
information from the benchmarks may be used to encourage users
to use the faster schemes, for example by using these schemes as
default choice in wallet implementations, but also to identify where
optimising an implementation will have the largest effect.

As an example, the ECDSA signature scheme [2] may be re-
alised over different elliptic curves. Two commonly used curves are
secp256k1 which is used by the Bitcoin11 and Ethereum blockchains
[31] and the secp256r1 or P-256 curve which was specified by NIST
and is used, for example, by the secure hardware on iPhone12. Both
of these are supported by the Sui blockchain and may be used by
clients to sign their transactions.

Besides the choice of curve, there is no difference in the proto-
cols for ECDSA over the two curves, but our benchmarks revealed
that the fastest implementation of ECDSA over secp256k1 [27] is
significantly faster than the fastest implementation of ECDSA over
P-256 [28]. This motivated us to develop a new implementation of
ECDSA over P-256 which uses a combination of faster elliptic curve
arithmetic from Arkworks library [4] with a new, fast multi-scalar
multiplication algorithm which requires some pre-computation.
The optimised implementation verification for ECDSA over the
P-256 curve is 5.5× faster, and is currently the fastest Rust imple-
mentation of ECDSA over the P-256 curve available.

Choosing the right number of pre-computed points for the multi-
scalar multiplication required careful benchmarking, see figure 6.
More pre-computed points (at least up to a certain limit) gives better
performance but takes time and space. For our implementation, we
use 256 points (each taking up 64 bytes) as default which gives a
68% improvement compared to not using multi-scalar multiplica-
tion at all and a 17.5% improvement compared to pre-computing
only 16 points. Increasing the precomputation further to, say, 512
points would only give an 1.3% performance improvement, and for
1024 points, performance regresses, so 256 points was chosen as
a compromise for our implementation. See Figure 6 for a plot of
performance over number of pre-computed points.

3.2.2 A faster Poseidon hash function. The Poseidon hash function
[16] is a hash function which is commonly used in zero-knowledge
applications because it is easy to compute inside a zero-knowledge
circuit. The Poseidon hash function is defined over a specific curve
construction, and you need to use the same construction as for the
zero-knowledge proof it is used in to get the performance benefit.

There are a few Rust implementations of the Poseidon hash,
but not all implementations support all curve constructions. For
our purpose, we needed to use the BN254 curve construction for
zkLogin13 [7] and only the poseidon-ark [5] crate supported this
construction.

Benchmarking the zkLogin flow end-to-end revealed that com-
puting the Poseidon hash took about 40% of the time so we decided

11https://en.bitcoin.it/wiki/Secp256k1
12https://developer.apple.com/documentation/cryptokit/p256/signing/
ecdsasignature
13https://sui.io/zklogin

Figure 6: Performance of windowed multi-scalar multipli-
cation with two points on Secp256r1 where one is known
in advance over the number of precomputed points. As a
reference, a naive computation without any precomputation
takes 175 µs.

to see if we could optimise it. We found that there are faster imple-
mentations of the Poseidon hash function in Rust in particular the
neptune [22] crate, but at the time the neptune crate only supported
the BLS12-377 curve construction and not the BN254 construction
we needed in zkLogin. Using neptune over BN254 required a few
changes to the implementation which we contributed by submit-
ting code to the official repository 14 before we could use it. The
resulting implementation is almost 70% faster cutting of 25% of the
total end-to-end flow for zkLogin (Figure 7).

3.2.3 Combining dependencies for optimal performance. Fastcrypto
supports non-interactive zero-knowledge proofs using the Groth16
zk-SNARK construction [18] over two popular curves, namely the
BN254 and BLS12-381 [8] curve constructions. Arkworks [4] have
implementations of Groth16 for both of these constructions, but
for the BLS12-381 construction the blst crate [30] provides a much
faster implementation of the curve arithmetic, but does not provide
any implementation of Groth16.

In fastcrypto we have combined Arkworks’ implementation
of Groth16 with the elliptic curve arithmetic from the blst crate to
create a Groth16 implementation over BLS12-381 that is almost 2×
faster than Arkworks implementation. To make this implementa-
tion efficient it was important to benchmark all steps of the algo-
rithm independently, in particular the data conversions necessary
to combine the blst and Arkworks libraries, to ensure that these con-
versions did not introduce a significant overhead. A performance

14https://github.com/lurk-lab/neptune/pull/236

231

https://en.bitcoin.it/wiki/Secp256k1
https://developer.apple.com/documentation/cryptokit/p256/signing/ecdsasignature
https://developer.apple.com/documentation/cryptokit/p256/signing/ecdsasignature
https://sui.io/zklogin
https://github.com/lurk-lab/neptune/pull/236

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Kostas Kryptos Chalkias et al.

Figure 7: Performance of computing the Poseidon hash over
the BN254 curve construction for 0-16 input points using the
fastcrypto implementation compared with the arkworks-rs
crate.

comparison of our implementation with Arkworks’ implementa-
tion is shown in Figure 8. Note that a full verification of a Groth16
zk-proof consists of processing the verification key and verifying
the proof, but the processing of the verification key only have to
happen once per circuit.

3.3 Errors and inconsistencies in dependencies
3.3.1 Bug in base64 implementations. Fastcrypto contains func-
tions to encode data to and from base64 which is a very commonly
used method to map binary data to ASCII characters, for example
for use for serialization purposes. Implementing this, we tested out a
few potential Rust crates to wrap in fastcrypto and benchmarked
them on different input sizes.

The benchmarks revealed unexpectedly significant differences in
performance between different libraries, and a closer study found
that the difference was caused by some of the libraries not handling
padding correctly. This inconsistency causes some libraries for
base64 encoding to be incompatible, which is very unfortunate
since base64 is often used for serialization and thus depends on
portability. It also allows an attack vector on some systems because
an attacker may utilize that different base64 strings are decoded into
the same data to leverage an attack. This finding and a thorough
description of the potential consequences has been published [14].

3.3.2 Exploitable vulnerability in EdDSA libraries. As previously
mentioned, fastcrypto compares many implementations of the
same signature schemes and then wraps the fastest or uses mix
and match or applies extra expert optimizations. We realized that
some exposed public functions for EdDSA signingwere significantly
slower than other implementations even when the libraries where

Figure 8: Performance our implementation of Groth16 zk-
proof verification vs. Arkworks’ implementation. The per-
formance is independent of the input size, as the plot also
shows.

backed by the same back-end arithmetic dependency. A closer look
resulted in identifying one of the most spectacular exploitable cryp-
tography vulnerabilities, not only in Rust, but as a domino effect in
dozens of cryptographic libraries, a potential vulnerability that was
featured in the news [9] and for which a RUSTSEC fix was issued
[29]. In short, many libraries, including the popular ed25519-dalek
expose a sign function that additionally takes the public key as an
input, and not only the private key and the message, which is the
typical architecture in digital signature APIs. The reason behind this
implementation design is speculated to be related to performance
optimizations, because that addition allowed the function to avoid
computing the public key (from the private) internally, and hence it
was faster due to avoiding deserialization and other operations we
highlighted in section 3.1.3. Note that exploiting such a function
could result in private key leakage, an attack that we published
as “Double Public Key Signing Function Oracle Attack on EdDSA
Software Implementations” [17].

3.3.3 Unwanted parallelization for BLS verification. As with the
base64 bug described above, surprising benchmark results are often
a hint that some libraries are behaving unexpectedly. In an earlier
version of fastcrypto, both BLS signature verification [13] over
the BLS12-381 and the BLS12-377 constructions [8] were supported.
However, BLS12-377, which used the Arkworks [4] implementation,
was significantly slower than BLS12-381 which uses the blst [30]
crate. Analysing this further, we noticed that blst by default allows
multi-threaded computations. However, when allowing BLS12-377
to do the same, we got a regression in performance. It is unclear
why this was the case, but the benefit of using multiple threads for

232

Fastcrypto: Pioneering Cryptography Via Continuous Benchmarking ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

BLS signatures is small (around 25% for blst), so if the threads are
not managed tightly the small potential improvement from using
multiple threads will be lost and performance will regress instead.

In our case, where the primary usage is to verify transaction
signatures on the Sui blockchain, we decided to only allow single-
threaded verification, because Sui is already a multi-threaded ap-
plication, and allowing multiple threads for signature verification
alone will complicate the thread management for Sui.

3.3.4 Unwanted parallelization for Groth16 proving. An important
dependency for zkLogin is rapidsnark [19], a software library that
leverages assembly code to speed up the process of generating a
Groth16 zero-knowledge proof. It is well known that proving is
one of the main remaining bottlenecks for zero-knowledge proofs.
In order to optimize as much as possible, rapidsnark provides a
server-like interface to process several requests at once. However,
our testing revealed that the results returned by the prover under
simultaneous requests was often erroneous. This was likely due to
improper handling of state between threads resulting in one of the
threads over-writing results of another.

Further inspection revealed that rapidsnark already utilizes avail-
able parallelism to generate a single zero-knowledge proof. Given
this scenario, we decided to modify the library to disable the multi-
request feature. We adopt a simpler strategy to handle simultaneous
requests: scale the deployment horizontally by adding multiple ma-
chines.

We leave it for future work to conduct thorough benchmarks to
identify if processing simultaneous requests on a single machine is
actually useful. We suspect that it may only be useful on machines
with a lot of parallelism or cores. Also note that when the number of
cores is not high, then there is a risk of performance regression, that
is, processing a request takes more time if there are simultaneous
requests than otherwise, which is undesirable in most user-facing
applications.

3.4 Continuous benchmarks
The life cycle of our primitives, from initial prototyping to pro-
duction readiness, extends over several months. The initial imple-
mentation is typically unoptimized, emphasizing simplicity and
accompanied by basic unit tests. Subsequent cycles focus on refin-
ing the primitive until it reaches a state suitable for performance
measurements. Various evaluations are integral to this process:

• Local Benchmarks. These involve extensive testing with a
diverse range of inputs. These benchmarks serve dual pur-
poses—facilitating rapid development and ensuring progress
across optimization cycles.

• Continuous Integration (CI) Tests. These tests are vital for
ensuring that any future changes do not introduce perfor-
mance regressions. They act as a safeguard against unin-
tended setbacks in the optimization journey. This step is
crucial as recent changes in sub-components of the library
can impact the performance of primitives implemented and
benchmarked in the past.

Continuous tests also guarantee accurate and up-to-date bench-
mark outcomes. They ensure that the latest performance measure-
ments are reported, even in primitives implemented and bench-
marked long ago.

4 CONCLUSION AND FUTUREWORK
In the development of the fastcrypto library, continuous bench-
marking has been a crucial tool in identifying bottlenecks and in
qualifying the decision-making, notably when choosing what proto-
cols and software libraries to use, but the benchmarks have in some
cases also revealed unexpected insights into the inner workings of
dependencies and even revealed critical bugs.

The benchmarks are published online and may also be used
by developers to compare implementations or to compare with
their own implementations. We have published a Python script
to analyse the published data 15, and we hope to integrate this
script with our continuous integration workflow, e.g. to detect
performance regressions automatically. The measurements show a
large variation, probably because they are run on a cloud service,
and we would also like to explore how to make measurements more
consistent.

All in all, continuous benchmarks are more than a performance
metric tool, it can be an excellent tool to identify vulnerabilities
and allow for novel protocol designs and even world record imple-
mentations.

REFERENCES
[1] Zachary Amsden, Ramnik Arora, Shehar Bano, Mathieu Baudet, Sam Blackshear,

Abhay Bothra, G Cabrera, C Catalini, K Chalkias, E Cheng, et al. 2019. The
libra blockchain. URl: https://developers. libra. org/docs/assets/papers/the-libra-
blockchain. pdf (2019).

[2] X9 ANSI. 1999. 62: public key cryptography for the financial services industry:
the elliptic curve digital signature algorithm (ecdsa). Am. Nat’l Standards Inst
(1999).

[3] Jorge Aparicio and Brook Heisler. 2024. criterion.rs: Statistics-driven micro-
benchmarking library. https://github.com/japaric/criterion.rs.

[4] Arkworks. 2024. arkworks-rs. https://github.com/arkworks-rs/.
[5] arnaucube. 2024. poseidon-ark. https://github.com/arnaucube/poseidon-ark.
[6] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian

Winnerlein. 2013. BLAKE2: simpler, smaller, fast as MD5. In Proceedings of the
11th International Conference on Applied Cryptography and Network Security
(Banff, AB, Canada) (ACNS’13). Springer-Verlag, Berlin, Heidelberg, 119–135.
https://doi.org/10.1007/978-3-642-38980-1_8

[7] Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Yan Ji, Jonas Lindstrøm,
Deepak Maram, Ben Riva, Arnab Roy, Mahdi Sedaghat, and Joy Wang. 2024.
zkLogin: Privacy-Preserving Blockchain Authentication with Existing Creden-
tials. arXiv:2401.11735 [cs.CR]

[8] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. 2003. Constructing Elliptic
Curves with Prescribed Embedding Degrees. In Security in Communication Net-
works, Stelvio Cimato, Giuseppe Persiano, and Clemente Galdi (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 257–267.

[9] Ben Dickson. 2022. Dozens of cryptography libraries vulnerable to pri-
vate key theft. The Daily Swig: https://portswigger.net/daily-swig/dozens-of-
cryptography-libraries-vulnerable-to-private-key-theft.

[10] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
2012. High-speed high-security signatures. Journal of Cryptographic Engineering
2, 2 (2012), 77–89. https://doi.org/10.1007/s13389-012-0027-1

[11] Sam Blackshear, Evan Cheng, David L Dill, Victor Gao, Ben Maurer, Todd
Nowacki, Alistair Pott, Shaz Qadeer, Dario Russi Rain, Stephane Sezer, et al.
2019. Move: A language with programmable resources. Libra Assoc (2019), 1.

[12] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps. In Advances in Cryptology —
EUROCRYPT 2003, Eli Biham (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
416–432.

[13] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the
Weil Pairing. In Advances in Cryptology — ASIACRYPT 2001, Colin Boyd (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 514–532.

[14] Konstantinos Chalkias and Panagiotis Chatzigiannis. 2022. Base64 Malleability
in Practice. In Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security (Nagasaki, Japan) (ASIA CCS ’22). Association for
Computing Machinery, New York, NY, USA, 1219–1221. https://doi.org/10.1145/
3488932.3527284

15https://github.com/jonas-lj/fastcrypto-analyzer

233

https://github.com/japaric/criterion.rs
https://github.com/arkworks-rs/
https://github.com/arnaucube/poseidon-ark
https://doi.org/10.1007/978-3-642-38980-1_8
https://arxiv.org/abs/2401.11735
https://portswigger.net/daily-swig/dozens-of-cryptography-libraries-vulnerable-to-private-key-theft
https://portswigger.net/daily-swig/dozens-of-cryptography-libraries-vulnerable-to-private-key-theft
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1145/3488932.3527284
https://doi.org/10.1145/3488932.3527284
https://github.com/jonas-lj/fastcrypto-analyzer

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Kostas Kryptos Chalkias et al.

[15] dalek cryptography. 2024. ed25519-dalek. https://github.com/dalek-
cryptography/ed25519-dalek.

[16] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge
Proof Systems. In USENIX Security Symposium. https://api.semanticscholar.org/
CorpusID:221069468

[17] Sam Grierson, Konstantinos Chalkias, and William J Buchanan. 2023. Double
Public Key Signing Function Oracle Attack on EdDSA Software Implementations.
arXiv preprint arXiv:2308.15009 (2023).

[18] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments.
305–326. https://doi.org/10.1007/978-3-662-49896-5_11

[19] iden3. 2024. rapidsnark. https://github.com/iden3/rapidsnark.
[20] Kostas Kryptos. 2023. Blockchain research has advanced systems and cryptogra-

phy. https://twitter.com/kostascrypto/status/1626983601572302848.
[21] Zhuolun Li, Alberto Sonnino, and Philipp Jovanovic. 2023. Performance of EdDSA

and BLS Signatures in Committee-Based Consensus. InWorkshop on Advanced
tools, programming languages, and PLatforms for Implementing and Evaluating

algorithms for Distributed systems.
[22] lurk-lab. 2024. neptune. https://github.com/lurk-lab/neptune.
[23] Nicholas D Matsakis and Felix S Klock. 2014. The rust language. ACM SIGAda

Ada Letters 34, 3 (2014), 103–104.
[24] Mysten Labs. 2024. fastcrypto. https://github.com/MystenLabs/fastcrypto.
[25] NumPy Team. 2024. Numpy. https://numpy.org.
[26] Penumbra. 2024. ed25519-consensus. https://github.com/penumbra-zone/

ed25519-consensus.
[27] Rust Bitcoin Community. 2024. rust-secp256k1. https://github.com/rust-bitcoin/

rust-secp256k1/.
[28] RustCrypto. 2024. p256. https://github.com/RustCrypto/elliptic-curves/tree/

master/p256.
[29] Rustsec. 2022. Double Public Key Signing Function Oracle Attack on ed25519-

dalek. RUSTSEC-2022-0093: https://rustsec.org/advisories/RUSTSEC-2022-0093.
[30] Supranational. 2024. blst. https://github.com/supranational/blst.
[31] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. , 32 pages.

234

https://github.com/dalek-cryptography/ed25519-dalek
https://github.com/dalek-cryptography/ed25519-dalek
https://api.semanticscholar.org/CorpusID:221069468
https://api.semanticscholar.org/CorpusID:221069468
https://doi.org/10.1007/978-3-662-49896-5_11
https://github.com/iden3/rapidsnark
https://twitter.com/kostascrypto/status/1626983601572302848
https://github.com/lurk-lab/neptune
https://github.com/MystenLabs/fastcrypto
https://numpy.org
https://github.com/penumbra-zone/ed25519-consensus
https://github.com/penumbra-zone/ed25519-consensus
https://github.com/rust-bitcoin/rust-secp256k1/
https://github.com/rust-bitcoin/rust-secp256k1/
https://github.com/RustCrypto/elliptic-curves/tree/master/p256
https://github.com/RustCrypto/elliptic-curves/tree/master/p256
https://rustsec.org/advisories/RUSTSEC-2022-0093
https://github.com/supranational/blst

Exemplary Determination of Cgroups-Based QoS Isolation for a
Database Workload

Simon Volpert
simon.volpert@uni-ulm.de

Ulm University
Institute of Information Resource Management

Ulm, Germany

Sascha Winkelhofer
sascha.winkelhofer@gini.net

Gini GmbH
Munich, Germany

Stefan Wesner
wesner@uni-koeln.de
University of Cologne
Cologne, Germany

Daniel Seybold
Jörg Domaschka

daniel.seybold@benchant.com
joerg.domaschka@benchant.com

BenchANT GmbH
Ulm, Germany

ABSTRACT
An effective isolation among workloads within a shared and possi-
bly contended compute environment is a crucial aspect for industry
and academia alike to ensure optimal performance and resource
utilization. Modern ecosystems offer a wide range of approaches
and solutions to ensure isolation for a multitude of different com-
pute resources. Past experiments have verified the effectiveness of
this resource isolation with micro benchmarks. The effectiveness of
Quality of Service (QoS) isolation for intricate workloads beyond
micro benchmarks however, remains an open question.

This paper addresses this gap by introducing a specific exam-
ple involving a database workload isolated using Cgroups from a
disruptor contending for CPU resources. Despite the even distri-
bution of CPU isolation limits among the workloads, our findings
reveal a significant impact of the disruptor on the QoS of the data-
base workload. To illustrate this, we present a methodology for
quantifying this isolation, accompanied by an implementation in-
corporating essential instrumentation through Extended Berkeley
Packet Filter (eBPF).

This not only highlights the practical challenges in achieving
robust QoS isolation but also emphasizes the need for additional
instrumentation and realistic scenarios to comprehensively evaluate
and address these challenges.

CCS CONCEPTS
•General and reference→Performance; •Computingmethod-
ologies → Modeling methodologies.

KEYWORDS
Isolation, Performance, eBPF, Benchmarking, Cloud, DBMS

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652267

ACM Reference Format:
Simon Volpert, SaschaWinkelhofer, StefanWesner, Daniel Seybold, and Jörg
Domaschka. 2024. Exemplary Determination of Cgroups-Based QoS Isola-
tion for a Database Workload. In Companion of the 15th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’24 Companion), May
7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3629527.3652267

1 INTRODUCTION
In the ever-evolving landscape of computing, the paradigm shift
toward cloud computing and larger-scaled compute environments
has revolutionized the way organizations deploy, manage, and uti-
lize computing resources. Cloud computing, in particular, offers
unparalleled scalability, flexibility, and cost-effectiveness, enabling
businesses and scientists to work on challenges that were unattain-
able without it [14, 17]. However, the shared nature of resources in
such environments introduces inherent challenges, necessitating
robust mechanisms to ensure isolation among disparate workloads
and tenants. These challenges can be imposed by the desire to con-
solidate physical hardware, overbooking or overcommitting as a
business model, or by misbehaving disruptive tenants acting as
“noisy neighbors”.

There is a wide range of solutions that aim to solve these iso-
lation challenges. One aspect towards a solution is various virtu-
alization technologies. These range from classic hypervisor-based
implementations over manifold container-based solutions towards
more recent developments in the concept of application sandbox-
ing. Many of them pursue different strategies to achieve adequate
isolation; however, they do share some commonalities. A frequently
used strategy is the utilization of Cgroups [7, 23].

Cgroups are provided by the Linux kernel. They enable an oper-
ator to distribute processes into groups and subsequently assign
resource limits to those groups. These mechanisms have proven to
work very well, specifically when solely observing the isolated and
limited resource. The patterns of resource usage of real-world ap-
plications are often more complex [5]. Their QoS is not necessarily
directly dependent on a few distinct resources, as it is a measure of
end-to-end performance that inherently involves any amount of
resources [4, 16].

235

https://orcid.org/0000-0002-4896-7830
https://orcid.org/0009-0003-4288-8407
https://orcid.org/0000-0002-7270-7959
https://orcid.org/0000-0002-7973-5485
https://orcid.org/0000-0002-5451-3480
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652267
https://doi.org/10.1145/3629527.3652267

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Simon Volpert et al.

In this paper, we focus on Cgroup-based CPU isolation. For this
specific case, we investigate whether one tenant’s QoS is impacted
by another disrupting tenant, even though their CPU limits are
evenly shared with no overbooking in place. With this, we aim at
answering the following two research questions:

RQ 1 (Isolationmeasurement). How can QoS isolation be chal-
lenged in complex deterministic scenarios?

RQ 2 (Cgroup sufficiency). Is Cgroup-based isolation enough
for reliant QoS isolation?

Answering these questions, we provide several contributions.
First, we provide a strategy to measure isolation between two ten-
ants considering the impact on QoS. Second, we suggest metrics
that quantify the degree of isolation. Finally, we provide a tool
developed for this work that enables low-overhead instrumentation
of compute resources for isolated process trees.

The remainder of this paper is structured as follows. In section 2
we discuss the fundamentals of this work. This includes eBPF profil-
ing, Cgroups and a discussion of isolation and its quantification for
QoS. This is followed by a description of the methodology applied
in section 3 and lays the foundation for the answer to RQ 1. The
methodology is followed by important details of the implemen-
tation in section 4. It gives a brief overview of the technologies
involved in the experimental setup and the workflow of measured
scenarios. The final results in section 5 discuss the observations
and in this process answers RQ 2. We close with a review of related
work in section 6 and a final summary in section 7.

2 BACKGROUND
This section describes important background aspects for the subse-
quent progression of this work. This includes low-overhead instru-
mentation, Cgroups, and isolation considerations.

2.1 Linux Profiling with eBPF
The Linux profiling subsystem efficiently gathers and collects per-
formance data, enabling developers and operators to pinpoint and
enhance resource utilization patterns. Retrieving these comes with
a performance penalty depending on the method of accessing it.

eBPF facilitates the execution of verified code within a dedicated
Virtual Machine (VM) integrated in the Linux kernel, extending the
capabilities of the original Berkeley Packet Filter (BPF) [13]. Beyond
executing functions upon receiving network packets, eBPF can
observe and respond to various event sources as part of the Linux
profiling subsystem, including Performance Monitoring Counters
(PMCs), tracepoints, and both kernel and user functions.

Although these events are not technically part of eBPF, it pro-
vides an accessible means of leveraging them. Specifically, the in-
strumentation and processing of profiling data directly within the
kernel space can reduce instrumentation overhead, since frequent
interactions with kernel and userspace are kept to a minimum.

The typical lifecycle of an eBPF program is depicted in fig. 1, as
presented by Gregg [6]. As depicted here, a typical first step is the
(i) generation of BPF byte-code by arbitrary eBPF tooling. Upon
this generation, the byte-code is (ii) loaded into the kernel for a
verifying step before being passed to the eBPF VM. For exchanging

data between Kernel- and userspace, the (iii) perf_output and (iii)
async read channels can be utilized.

verifier

BPF

maps

(b) kprobes

(a)
tracepoints

(c) uprobes
...

BPF
bytecode

statistics

per-event
data

(i) generate

(ii)
load

(iii)
perf output

(iii)
async read

𝐾𝑒𝑟𝑛𝑒𝑙𝑈𝑠𝑒𝑟

Figure 1: eBPF internals and Linux instrumentation accord-
ing to [6]

Within the scope of this work, we are employing instrumen-
tation on (a) Tracepoints. Tracepoints are static points of kernel
instrumentation [19], established and implemented by kernel devel-
opers to trigger an event upon a specific call. They also incorporate
hardware-specific counters, such as CPU cycles per core since boot
time.

eBPF based instrumentation is naturally tightly coupled with the
currently loaded Linux kernel. The BPF Type Format (BTF) aims to
improve the portability of eBPF based tools by providing a metadata
format, which encodes debug information related to the functions
and structures of the kernel referenced in the eBPF programs. The
profiling tool trac1, developed during this work, utilizes this format.
The tool itself is in an ongoing development phase.

This section only briefly outlines eBPF and Linux profiling, with
a more detailed exposition available in the previous work of fellow
authors [2, 20].

2.2 Cgroups
Control groups2 are a Linux feature that enables precise control
over the utilization of various system resources [8]. The Linux
kernel ensures that the processes assigned to such a group adhere
to the limits specified for the Cgroup. Additionally, Cgroups can
be unique, shared, and nested, essentially creating a hierarchical
structure.

Cgroups offer powerful measures to control, limit, and possibly
isolate resources. Used in conjunction with namespaces, they act
as an essential enabler for virtualization, particularly in the context
of container virtualization [20].

The Cgroups project underwent a significant restructuring effort,
resulting in the recent release of Cgroups v2. This effort was first
merged into the kernel with version 4.5 and is able to fully replace v1

1https://github.com/omi-uulm/trac
2https://man7.org/linux/man-pages/man7/cgroups.7.html

236

https://github.com/omi-uulm/trac
https://man7.org/linux/man-pages/man7/cgroups.7.html

Exemplary Determination of Cgroups-Based QoS Isolation for a Database Workload ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

since kernel version 5.6 [3]. At the time of writing, the list of Cgroup
controllers include (i) cpu, (ii) cpuset, (iii) freezer, (iv) hugetlb, (v)
io, (vi) memory, (vii) perf, (viii) pids, and (ix) rdma.

This work focuses on the usage of the (i) CPU controller imple-
mented by Cgroups v2. It enables setting a limit on the number of
CPU cycles per second.

2.3 Isolation Terminology
Isolation is a condition that occurs when two workloads share a
resource and compete for it. The degree to which they interfere
with each other characterizes isolation. If their influence on each
other is distinctive, the isolation is considered low, and vice versa.
This concept is discussed by several authors [10, 12, 22]. This study
follows the definition of isolation provided by Krebs et al. who
define:

Definition 1 (Isolation). Performance isolation is the ability of
a system to ensure that tenants working within their assigned quota
(i.e., abiding tenants) will not suffer performance degradation due to
other tenants exceeding their quotas (i.e., disruptive tenants).

In a similar context, particularly in cloud computing, the term
"noisy neighbor" is often used in related literature. This term refers
to a disruptive tenant that adversely affects another tenant. Accord-
ing to the definition provided by Longbottom [11], a noisy neighbor
is described as follows:

Definition 2 (Noisy Neighbor). A workload within a shared
environment is utilizing one or more resources in a way that it impacts
other workloads operating around it.

2.4 QoS Isolation Quantification
Performance degradation is a measure of how strong an abiding
workload𝑊𝑎 is affected by a disruptive workload𝑊𝑑 . It can be
determined as “performance loss rate” 𝐼𝑝𝑙𝑟 [9, 12, 18, 22].

𝐼𝑝𝑙𝑟 =
|𝑊𝑎1 −𝑊𝑎2 |

𝑊𝑎1
(1)

Here𝑊𝑎1 represents a workload in an undisrupted environment,
whereas𝑊𝑎2 represents the sameworkload impacted by a disruptive
workload𝑊𝑑 .

Krebs et al. extends this simple model with one specifically tar-
geted at QoS isolation determination [10]. We apply and slightly
adapt this model to fit our measured parameters.

Taking eq. (1) as a basis, we can determine the actual performance
ratio𝑞𝑊𝑎

and𝑞𝑊𝑏
by calculating 1−𝐼𝑝𝑙𝑟 . This leads to the simplified

eq. (2) and eq. (3).

𝑞𝑊𝑎
=

𝑊𝑎

𝑊𝑎𝑟𝑒𝑓

(2) 𝑞𝑊𝑑
=

𝑊𝑑

𝑊𝑑𝑟𝑒𝑓

(3)

Using eq. (2) and eq. (3) we can then determine the remaining
relative performance 𝜌 at a certain 𝑞𝑊𝑑

as 𝑞𝑊𝑎
.

𝜌 (𝑞𝑊𝑑
) = 𝑞𝑊𝑎

(4)

Table 1: Scenarios

name 𝑊𝑎 𝑙𝑎 𝑊𝑑 𝑙𝑑

(i) baseline 100 % 50 % 0 % 50 %
(ii) harmony 100 % 50 % 0-100 % 50 %

As Krebs et al. further states, these kind of values represent only
a distinct point where the disruption is to a specific degree. To
address this, we can try to reduce the resulting series of eq. (4) to a
single isolation metric 𝐼 .

An approach is to limit the number of samples 𝑞𝑊𝑑
to𝑚 equidis-

tant points and subsequently compute their arithmetic mean:

𝐼𝑎𝑣𝑔 =

∑
𝜌 (𝑞𝑊𝑑

)
𝑚

(5)

As this likely neglects the maximum amount of degradation,
we can further derive another metric that describes the maximum
isolation impact 𝐼𝑚𝑎𝑥 as follows:

𝐼𝑚𝑎𝑥 =
min(𝑞𝑊𝑎

)
arg min
𝑞𝑊𝑑

(𝑞𝑊𝑎
) (6)

Naturally, employing either eq. (5) or eq. (6) might overlook
the inherent curve of 𝐼𝑄𝑜𝑆 , potentially introducing a bias to the
outcome. Further considerations on deriving a metric that avoids
this are left for future work.

3 METHOD
This section presents the method behind the conducted experiments
and thus elaborates on the scenarios, instrumentation, and isolation
quantification. These aspects are adapted from previous work [20,
21].

Goal. As mentioned in section 1 we aim to measure the Cgroup
QoS isolation for the CPU resource. According to section 2.4 we
need at least two distinct measurements to analyze the isolation
capability of a technology. One being the reference workload in an
uncontended environment, and the other being the same workload
under contention.

Scenarios. As we are interested in whether a QoS-based isolation
is as high as a specific isolation for a certain resource, we choose
an appropriate isolation scenario. Earlier work has shown that this
is the case for fairly distributed resources where no overbooking,
overcommitting, or aggressive resource stealing happens [20, 21].
Volpert et al. show that this is particularly true for the “harmony”
scenario.

Therefore, this work analyzes the isolation of two scenarios: (i)
baseline and (ii) harmony. These are itemized in table 1

Here,𝑊𝑎 and𝑊𝑑 describe the workload performed within their
respective imposed limits 𝑙𝑎 and 𝑙𝑑 .𝑊𝑎 is considered static in both
scenarios and is instrumented regarding its consumed resources and
QoS status. It is further supposed to resemble a realistic workload
and is thus realized as a macro or synthetic benchmark [9]. For
the (ii) harmony scenario,𝑊𝑑 gradually increases over time and
is also instrumented for its consumed resources. Its purpose is to
specifically stress the single resource that is being isolated.

237

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Simon Volpert et al.

Instrumentation. Again, the resource instrumentation approach
follows the principles outlined in previous work by the authors [20,
21]. In summary, it is independent of isolation technology and
performed outside of the isolation group. This is achieved with
eBPF.

Isolation quantification. In section 2.4, we introduce and briefly
examine metrics for quantifying QoS isolation. Utilizing eBPF and
QoSmetrics reported by𝑊𝑎 we can quantify the isolation at specific
degrees of contention by𝑊𝑑 .

4 EXPERIMENT DESIGN
In this section, we describe the abstract workflows of the experi-
ments. These are followed by a presentation and reasoning behind
the choices for the tools and instrumentation points selected.

4.1 Experiment workflow
As described in section 3, the experimental workflow follows two
scenarios. The execution of a scenario is highlighted in fig. 2

Host

Isolation Group Isolation Group

𝑊𝑎 𝑊𝑑

Profile

g

External Storage

(𝑖𝑖𝑖) Profiling

(𝑖) S
paw

n

(𝑖𝑖) Exe
cute

(𝑖𝑣) Acquire

(𝑣) Store

Figure 2: Flow of an abstract measurement

The process begins with (i) the initialization of an isolation
group. In this phase, (ii) load is generated by𝑊𝑎 and𝑊𝑏 . The (iii)
profiling process on the host system is initiated concurrently. This
profiling monitors the isolation groups. Upon completion, data is
(iv) collected and (v) stored on external storage.

Each run takes 5 minutes and is repeated 3 times. After each
run, the whole physical systems are reset and pruned to guaran-
tee no unintended side effects by residue of past experiments and
improving reproducibility.

4.2 Approach and Implementation
The following briefly iterates over the actual implementation of the
method as described in section 3 is realized.

Load generation. As stated in section 3 we need two distinct
workloads𝑊𝑎 and𝑊𝑑 .𝑊𝑎 is supposed to act as a realistic work-
load. Here, we choose to run a YCSB3 benchmark on a remote
host against a Postgres database [1]. The throughput in operations
per second and thus the QoS workload𝑊𝑎 is determined for this

3https://github.com/brianfrankcooper/YCSB

databse. For the sake of simplicity, we choose an insert-only work-
load stressing the database for 5 minutes. In that 5 minutes, YCSB
tries to execute 100, 000, 000 inserts of 500 bytes with 90 threads.
After its run-time, it reports a list of all operations with timestamp
and latency. Operations per second can be derived by resampling to
a desired frequency and counting the operations. These operations
per second are considered to be the QoS metric of𝑊𝑎 .

The Postgres database is continually instrumented with respect
to its CPU cycles and operations per second. Its configuration is
generated by PGtune4 optimizing Postgres with half of the to-
tal resources available on the physical server as described in sec-
tion 5.1[15].
𝑊𝑑 is considered to be a micro benchmark that continuously

stresses the CPU. We use the stress-ng implementation to realize
that load. It is set up such that it increases its utilization over time,
until it fully utilizes its granted resources. To achieve a linear load
generation behavior, we partition this load generation into multiple
intervals with configurable resolution.

Assuming ideal isolation, the measures of both workloads resem-
ble a progression, as illustrated in 3.

𝑊𝑎

𝑊𝑑𝑖𝑑𝑒𝑎𝑙

𝑊𝑑𝑟𝑒𝑎𝑙

𝑡

𝑊

Figure 3: Load generation

Instrumentation. Since we focus on CPU isolation, we select an
instrumentation point as outlined in section 2.1 that gives a detailed
view on CPU utilization. Modern CPUs provide hardware-based
counters that report the cycles that are executed on each core. The
progression of the counters over time, along with the maximum
number of possible cycles per core, can be used to derive CPU
utilization.

In order to keep the instrumentation overhead as low as possible,
we opt to utilize eBPF instrumentation. This allows us to gain fine-
grained control over the sampling frequency and efficient profiling
inside the kernel space. To leverage eBPF instrumentation, we built
a profiling tool named “trac5”.

Trac allows to be attached onto a root process. This root process
and any process invoked by it are subsequently instrumented for
either CPU cycles, resident memory, disk I/O, or network I/O. The
gathering of those metrics happens inside the kernel space, where
they are collected in a datastructure, called a BPF map. After profil-
ing, these maps can be accessed by the user-space counterpart of
the profiling tool. The collected data are processed and presented
as CSV time series with a resolution of up to 1𝑚𝑠 .
4https://pgtune.leopard.in.ua/
5https://github.com/omi-uulm/trac

238

https://github.com/brianfrankcooper/YCSB
https://pgtune.leopard.in.ua/
https://github.com/omi-uulm/trac

Exemplary Determination of Cgroups-Based QoS Isolation for a Database Workload ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Isolation. To isolate processes with Cgroups, we leverage the
isolation tool “nsJail6”. NsJail is a Linux process isolation tool that
utilizes the Linux namespace subsystem, Cgroup resource limits,
and seccomp-bpf syscall filters to achieve process isolation.

In particular, we use the tool’s Cgroup capabilities to isolate the
stress-ng CPU load generator, as well as the Postgres database.

The stress-ng CPU load generator itself does not utilize other
system resources such as memory, disk I/O and network I/O. As a
consequence, we do not isolate these between workloads. Moreover,
memory, disk I/O, and network I/O utilized by the Postgres database
are negligible for the configuration and workload applied.

5 EVALUATION
This section systematically discusses the results of the evaluation
outlined in the sections before.

5.1 Evaluation Environment
The experimental configuration encompasses a pair of physical
servers, symmetrically arranged and equipped with identical com-
ponents. Both servers feature two Intel CPUs, specifically the “In-
tel(R) Xeon(R) CPU E5-2630 v3”, operating at a base clock frequency
of 2.40 GHz with 32 cores. Memory associated with these CPUs
totals 16 · 16 = 256 GiB of DDR4 memory clocked at 2133 MHz. The
physical storage disk for the database state is a Samsung SM843TN,
which exhibits a Input Output Operations Per Second (IOPS) per-
formance of 15, 000 for “random write” operations.

Communication for actual workload between all nodes is sepa-
rated and facilitated by Mellanox Technologies’ Network Interface
Card (NIC) from the “MT27800 ConnectX-5” family, capable of a
network throughput of 50 Gbit/s.

Figure 4 visualizes the interaction between the pair of physical
servers mentioned above. Here YCSB is responsible to generate and
control𝑊𝑎 (Postgres) from a remote host. We do so to limit possible
interference on𝑊𝑎 by the load generated by YCSB. The latter should
not be accounted for as it would act as a “noisy neighbor”.𝑊𝑑

generates its own workload and is not externally controlled.

Host A

Isolation Group Isolation Group

𝑊𝑎 𝑊𝑑

Host B

YCSB

𝑊𝑎

generation

𝑊𝑑

generation

Figure 4: Workload generation and controlling across hosts

The complete experiment set-up includes additional auxiliary
servers responsible for workflow automation. Notable involved
software components are itemized in table 2.

5.2 Results
In the following, we iteratively discuss the results of the scenar-
ios presented in table 1. Each scenario is represented by a plot.

6https://github.com/google/nsjail

name version note
Fedora CoreOS 39 Operating system version
Linux Kernel 6.5.6 Kernel used by the operating system

Fedora CoreOS
k3s v1.28.4 Rancher Kubernetes Distribution
Argo Workflow v3.5.4 The workflow engine to orchestrate

experiments and scenarios
trac 0.2.3 Profiling tool based on eBPF and

Aya
stress-ng 0.13.05 Load generator for CPU
YCSB 0.17.0 Macro benchmark for databaes
Postgres 15 SQL based Database management

engine
nsjail 3.4 Process isolation utilizing Linux

kernel functions
Table 2: Software version list

0 50 100 150 200 250 300
timestamp in 𝑠

0

50,000

100,000

150,000

200,000

𝑊
𝑎
in

op
s/
s

Figure 5: Baseline scenario

For the actual isolation metric determination we present an addi-
tional graph highlighting the impact on𝑊𝑎 QoS isolation at every
observed degree of stress imposed by the disruptive workload𝑊𝑑 .

Figure 5 visualizes the baseline scenario. The y-axis shows𝑊𝑎 in
operations per second at a given interval in seconds. As described
above, this information is provided by YCSB. As each experiment
is repeated multiple times and actual operations per second are
volatile, we adapted the visualization accordingly. Every measured
data point is plotted as a small circle resulting in a scatter plot. An
overlay as a smoothed thicker line highlights the trend of those data
points. The smoothing algorithm applied implements the Locally
Estimated Scatterplot Smoothing (LOESS) method. This results in
a trend for this baseline graph that settles roughly at 175, 000𝑜𝑝𝑠/𝑠 .

The visualization method for𝑊𝑎 in fig. 6 follows the same princi-
ple. However, the visualization of the disruptive workload𝑊𝑑 does
not apply said algorithm. Instead, it plots an overlays as the mean

239

https://github.com/google/nsjail

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Simon Volpert et al.

0 50 100 150 200 250 300
timestamp in 𝑠

0

50,000

100,000

150,000

200,000

𝑊
𝑎
in

op
s/
s

0

5

10

15

𝑊
𝑑
in

stressed
cores

Figure 6: Harmony scenario

of repeated runs, as these measurements are stable. Thus, the steps
of the gradually increasing disruptive workload are easily visible.

Adding this disruptive workload𝑊𝑑 has a significant impact on
the behavior of𝑊𝑎 . After an initial pausing duration of 100𝑠 we
can see an immediate degradation of 𝑜𝑝𝑠/𝑠 for𝑊𝑎 . This gets worse
as𝑊𝑑 reaches its full utilization and results in a degradation of𝑊𝑎

of almost 50%.
Most importantly, neither workload ever exceeds 50% of the

physical system capacity, as defined by its assigned CPU cycle limit.
This means that the CPU cycles isolation works well considering
the fact that no workload is able to exceed its limit. This is in direct
conflict of the 50% QoS degradation observed. It is evident that a
harmonic split of the seemingly available total resource of CPU
cycles can have an impact on each other’s CPU performance.

A more detailed visualization with a specific focus on the impact
on isolation is presented in fig. 7. Here, the x- and y-axes represent
the relative degradation ratio of the workload as defined in sec-
tion 2.4 with the dimension of time completely removed. Therefore,
this graph represents 𝑞𝑊𝑎

for every 𝑞𝑊𝑑
. Again, because of the

volatile nature of the measure points, we present the graph as a
trend overlay over a scatter plot. Here, we can see a slight change
in the degree of degradation above 50% of 𝑞𝑊𝑑

. What is also easily
visible here is that good isolation between𝑊𝑎 and𝑊𝑑 is represented
by a higher value, while worse isolation is represented by a lower
value within the interval of [0, 1]. In table 3 discrete interesting val-
ues of fig. 7 are presented. Taking into account the equidistant 𝑞𝑊𝑑

values in the interval [0.1, 0.9] of this table results in Iavg = 0.83
for eq. (5). Furthermore, we can also calculate Imax = 0.60. These
values are naturally different from each other, as they both describe
different properties of the isolation function 𝜌 .

The observations above lead to the following interpretation.

Interpretation. The reason behind the observation that𝑊𝑑 can
have such a huge impact on𝑊𝑎 even though they should not impact
each other can be manifold. However, two aspects seem to play an
important role here.

0 20 40 60 80 100
𝑞𝑊𝑑

in %

0

20

40

60

80

100

120

𝑞
𝑊

𝑎
in

%
Figure 7: Isolation impact

Table 3: Isolation metrics comparison

𝑞𝑊𝑎
in %

𝑞𝑊𝑑
in %

0.0 93.6
10.0 92.0
20.0 89.7
30.0 87.5
40.0 86.0
50.0 84.7
60.0 82.6
70.0 78.8
80.0 72.2
90.0 62.5
95.0 56.8

The system we execute our experiment on features two hyper-
threading enabled CPUs. Theoretically speaking, they are able to
fully utilize all logical cores with maximum cycles if the workload
fits. This was observed in previous work of the authors [20]. How-
ever, the workload in terms of QoS decreases significantly when the
actual physical cores are fully utilized. This assumption is indicated
by the slight change of slope in fig. 7 at 𝑞𝑊𝑑

≈ 50%. Although more
cycles could be utilized by the respective workloads while staying
within their cycle limit, they are not able to use them to maintain
their QoS.

Another limiting factor could be due to the saturation of only
loosely related resources in regard to CPU cycles. This could be due
to the overhead induced by process scheduling. Thus, CPU cycles

240

Exemplary Determination of Cgroups-Based QoS Isolation for a Database Workload ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

could be increasingly reserved for such essential tasks, leading to
even more starvation of𝑊𝑎 .

6 RELATEDWORK
A prevalent method for assessing the isolation capability involves
calculating the 𝐼𝑝𝑙𝑟 as outlined in eq. (1). In line with this approach,
previous studies commonly determine this on a per-resource ba-
sis [12, 18, 22, 23]. We extend these findings with considerations
regarding QoS.

Silva et al. reviewed the effectiveness of resource isolation for
QoS isolation in the past [16]. They state that providing QoS for
application performance requires more than just guaranteeing a
certain allocation of CPU, memory, or I/O resources. We support
their findings for the more recent Cgroups v2 and extend them with
further measurements and an isolation quantification model.

7 CONCLUSION
Over the course of this work, we designed and implemented a so-
phisticated experimental setup that allowed us to execute two work-
loads against each other in order to measure their isolation from
each other. We have deliberately chosen a very specific scenario,
where a synthetic “abiding” database under constant workload com-
petes against a “disruptive” stressor that utilizes the CPU as high
as possible.

We determine that those two workloads influence each other
even when their CPU limits are evenly shared across the available
resources without any overbooking. Neither workload exceeds its
limit, but the impact on the QoS of the abiding database is clearly
visible.

As a consequence, we can see that mere CPU isolation is insuffi-
cient for more complex workloads outside of micro-benchmarks
that try to escape them. Aspects like hyper-threading and CPU
scheduling overhead are CPU related resources that are not iso-
lated as probably expected. Applying these findings to real-world
scenarios requires in situ system tests to determine the actual im-
pact on QoS when co-locating tenants.

The results presented in this work can be considered as a first pre-
liminary step towards more effective QoS isolation. From this point
on we see various possible future directions. One is the configura-
tion of stricter isolation environments with limited hyper-threading
and possibly system call filtering mechanisms of sandboxes. An-
other direction could be the improvement of instrumentation to
pinpoint the actual saturated resource resulting in a drop in QoS.
Lastly, those considerations could be repeated for other Cgroup,
different isolation technologies or other workloads.

REFERENCES
[1] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing. ACM, Indianapolis Indiana USA,
143–154. https://doi.org/10.1145/1807128.1807152

[2] Jörg Domaschka, Simon Volpert, Kevin Maier, Georg Eisenhart, and Daniel
Seybold. 2023. Using eBPF for Database Workload Tracing: An Explorative
Study. In Companion of the 2023 ACM/SPEC International Conference on Perfor-
mance Engineering. ACM, Coimbra Portugal, 311–317. https://doi.org/10.1145/
3578245.3584313

[3] Chris Down. 2021. 5 Years of Cgroup v2: The Future of Linux Resource Control.
USENIX Association.

[4] CSRC Content Editor. [n. d.]. Quality of Service (QoS) - Glossary | CSRC.
https://csrc.nist.gov/glossary/term/quality_of_service.

[5] Siqian Gong, Beibei Yin, Zheng Zheng, and Kai-Yuan Cai. 2019. Adaptive Multi-
variable Control for Multiple Resource Allocation of Service-Based Systems in
Cloud Computing. IEEE Access 7 (2019), 13817–13831. https://doi.org/10.1109/
ACCESS.2019.2894188

[6] Brendan Gregg. 2017. Linux eBPF Tracing Tools.
https://www.brendangregg.com/ebpf.html.

[7] Leila Helali and Mohamed Nazih Omri. 2021. A Survey of Data Center Consol-
idation in Cloud Computing Systems. Computer Science Review 39 (Feb. 2021),
100366. https://doi.org/10.1016/j.cosrev.2021.100366

[8] Tejun Heo, J Weiner, V Davydov, L Thorvalds, P Parav, T
Klauser, S Hallyn, and K Khlebnikov. 2015. Control Group V2.
https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v2.rst.

[9] Samuel Kounev, Klaus-Dieter Lange, and Jóakim von Kistowski. 2020. Systems
Benchmarking: For Scientists and Engineers. Springer International Publishing,
Cham. https://doi.org/10.1007/978-3-030-41705-5

[10] Rouven Krebs, Christof Momm, and Samuel Kounev. 2012. Metrics and Tech-
niques for Quantifying Performance Isolation in Cloud Environments. In Pro-
ceedings of the 8th International ACM SIGSOFT Conference on Quality of Software
Architectures (QoSA ’12). Association for Computing Machinery, New York, NY,
USA, 91–100. https://doi.org/10.1145/2304696.2304713

[11] Clive Longbottom. 2017. The Evolution of Cloud Computing: How to Plan for
Change. BCS Learning & Development Ltd, Swindon, UK.

[12] Jeanna Neefe Matthews, Wenjin Hu, Madhujith Hapuarachchi, Todd Deshane,
Demetrios Dimatos, Gary Hamilton, Michael McCabe, and James Owens. 2007.
Quantifying the Performance Isolation Properties of Virtualization Systems. In
Proceedings of the 2007 Workshop on Experimental Computer Science - ExpCS ’07.
ACM Press, San Diego, California, 6–es. https://doi.org/10.1145/1281700.1281706

[13] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Ar-
chitecture for User-Level Packet Capture. In Proceedings of the USENIX Win-
ter 1993 Conference Proceedings on USENIX Winter 1993 Conference Proceedings
(USENIX’93). USENIX Association, USA, 2.

[14] Cristian Ruiz, Emmanuel Jeanvoine, and Lucas Nussbaum. 2015. Performance
Evaluation of Containers for HPC. In Euro-Par 2015: Parallel Processing Workshops
(Lecture Notes in Computer Science), Sascha Hunold, Alexandru Costan, Domingo
Giménez, Alexandru Iosup, Laura Ricci, María Engracia Gómez Requena, Vittorio
Scarano, Ana Lucia Varbanescu, Stephen L. Scott, Stefan Lankes, Josef Weiden-
dorfer, and Michael Alexander (Eds.). Springer International Publishing, Cham,
813–824. https://doi.org/10.1007/978-3-319-27308-2_65

[15] Daniel Seybold and Jörg Domaschka. [n. d.]. PostgreSQL - Configuration Tuning.
https://benchant.com/en/blog/postgresql-configuration-tuning.

[16] Marcio Silva, Kyung Dong Ryu, and Dilma Da Silva. 2012. VM Performance
Isolation to Support QoS in Cloud. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum. IEEE, Shanghai,
China, 1144–1151. https://doi.org/10.1109/IPDPSW.2012.140

[17] Ali Sunyaev and Ali Sunyaev. 2020. Cloud computing. Internet Computing:
Principles of Distributed Systems and Emerging Internet-Based Technologies (2020),
195–236.

[18] Xuehai Tang, Zhang Zhang, MinWang, YifangWang, Qingqing Feng, and Jizhong
Han. 2014. Performance Evaluation of Light-Weighted Virtualization for PaaS
in Clouds. In Algorithms and Architectures for Parallel Processing (Lecture Notes
in Computer Science), Xian-he Sun, Wenyu Qu, Ivan Stojmenovic, Wanlei Zhou,
Zhiyang Li, Hua Guo, Geyong Min, Tingting Yang, Yulei Wu, and Lei Liu (Eds.).
Springer International Publishing, Cham, 415–428. https://doi.org/10.1007/978-
3-319-11197-1_32

[19] Theodore Ts’o. [n. d.]. Event Tracing — The Linux Kernel documentation. https:
//docs.kernel.org/trace/events.html Accessed: 2023-02-27.

[20] Simon Volpert, Benjamin Erb, Georg Eisenhart, Daniel Seybold, Stefan Wesner,
and Jörg Domaschka. 2023. A Methodology and Framework to Determine the
Isolation Capabilities of Virtualisation Technologies. In Proceedings of the 2023
ACM/SPEC International Conference on Performance Engineering. ACM, Coimbra
Portugal, 149–160. https://doi.org/10.1145/3578244.3583728

[21] Simon Volpert, Sascha Winkelhofer, Stefan Wesner, and Jörg Domaschka. 2024.
An Empirical Analysis of Common OCI Runtimes’ Performance Isolation Ca-
pabilities. In Proceedings of the 2024 ACM/SPEC International Conference on Per-
formance Engineering. ACM, London United Kingdom. https://doi.org/10.1145/
3629526.3645044

[22] XingyuWang, Junzhao Du, andHui Liu. 2022. Performance and Isolation Analysis
of RunC, gVisor and Kata Containers Runtimes. Cluster Computing (Jan. 2022).
https://doi.org/10.1007/s10586-021-03517-8

[23] Miguel G. Xavier, Israel C. De Oliveira, Fabio D. Rossi, Robson D. Dos Passos,
Kassiano J. Matteussi, and Cesar A.F. De Rose. 2015. A Performance Isolation
Analysis of Disk-Intensive Workloads on Container-Based Clouds. In 2015 23rd
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing. 253–260. https://doi.org/10.1109/PDP.2015.67

241

https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3578245.3584313
https://doi.org/10.1145/3578245.3584313
https://doi.org/10.1109/ACCESS.2019.2894188
https://doi.org/10.1109/ACCESS.2019.2894188
https://doi.org/10.1016/j.cosrev.2021.100366
https://doi.org/10.1007/978-3-030-41705-5
https://doi.org/10.1145/2304696.2304713
https://doi.org/10.1145/1281700.1281706
https://doi.org/10.1007/978-3-319-27308-2_65
https://doi.org/10.1109/IPDPSW.2012.140
https://doi.org/10.1007/978-3-319-11197-1_32
https://doi.org/10.1007/978-3-319-11197-1_32
https://docs.kernel.org/trace/events.html
https://docs.kernel.org/trace/events.html
https://doi.org/10.1145/3578244.3583728
https://doi.org/10.1145/3629526.3645044
https://doi.org/10.1145/3629526.3645044
https://doi.org/10.1007/s10586-021-03517-8
https://doi.org/10.1109/PDP.2015.67

Self-Service Performance Testing Platform for Autonomous
Development Teams

Aleksei Vasilevskii
Performance & Observability Team

Wolt
Munich, Germany

aleksei.vasilevskii@wolt.com

Oleksandr Kachur
Performance & Observability Team

Wolt
Helsinki, Finland

alexander.kachur@gmail.com

ABSTRACT
In the modern fast paced and highly autonomous software devel-
opment teams, it’s crucial to maintain a sustainable approach to
all performance engineering activites, including performance test-
ing. The high degree of autonomy often results in teams building
their own frameworks that are not used consistently and may be
abandoned due to lack of support or integration with existing in-
frastructure, processes and tools.

To address these challenges, we present a self-service perfor-
mance testing platform based on open-source software, that sup-
ports distributed load generation, historical results storage and a
notification system to trigger alerts in Slack messenger. In addition,
it integrates with GitHub Actions to enable developers running
load tests as part of their CI/CD pipelines.

We’d like to share some of the technical solutions and the details
of the decision-making process behind the performance testing
platform in a scale-up environment, our experience in building
this platform and, most importantly, rolling it out to autonomous
development teams and onboarding them into the continuous per-
formance improvement process.

CCS CONCEPTS
• Software and its engineering → Software performance.

KEYWORDS
performance testing, continuous integration, microservices, au-
tonomous teams
ACM Reference Format:
Aleksei Vasilevskii and Oleksandr Kachur. 2024. Self-Service Performance
Testing Platform for Autonomous Development Teams. In Companion of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
’24 Companion), May 7–11, 2024, London, United Kingdom. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3629527.3652268

1 INTRODUCTION
Like many other software organizations developing cloud-native
applications, we at Wolt have chosen microservices architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652268

because of the high degree of autonomy in software engineering
teams, that enables feature development and short time to produc-
tion [14]. The downside is that as the size of the organization grows,
it becomes exponentially more difficult to maintain operational
visibility over a system consisting of hundreds of microservices
[5, 19]. This applies not only to functional aspects, but also to non-
functional requirements such as performance and scalability. In a
traditional organization, having a centralized performance team
responsible for these properties may still work, but in a dynamic
scale-up setup, where workloads are constantly increasing and team
staffing is lagging behind, the only viable solution is to distribute the
responsibility to the development teams [5]. However, this decision
can lead to divergent approaches and tools for performance testing,
with each team implementing its own framework that works best
for its particular use case, but may be far from the "global orga-
nizational optimum" [20]. In addition, the groundwork associated
with performance testing can be seen as "less important" by teams
under pressure to develop features, resulting in poor integration
with existing infrastructure and processes [5, 19]. The potential for
such artifacts to be reused by other teams, or to be collaborated
on and pushed toward a standardized platform, remains relatively
low, exacerbating silo problems caused by team communication
overhead [5, 6, 21].

Given these constraints, the scope of a dedicated performance
team is shifting more and more toward standardized tools, devel-
opment experience, knowledge sharing, and the definition of best
practices. Clearly, there are challenges to building a standardized
performance testing platform, but there are also benefits: reducing
engineering effort by streamlined teams, eliminating code duplica-
tion, empowering teams with the necessary tools and knowledge,
and accelerating time to market [21]. Continuous performance test-
ing integrated into CI/CD processes enables shorter feedback loops
for software changes. Ongoing platform support, common tooling,
and new feature development all increase team buy-in, making
performance testing a standard practice rather than an obscure
one-off activity.

2 REQUIREMENTS
The primary purpose of the performance testing platform is to
provide a unified way to conduct repeatable end-to-end system per-
formance tests on existing cloud-native infrastructure. The need to
implement an in-house platform stems from the fact that there is no
tool-agnostic open-source implementation that meets our require-
ments. Existing platforms are often product- or company-specific
[12], making it impossible to reuse them in a different environment.
Other solutions, however, may be too generic [11] and require the

242

https://doi.org/10.1145/3629527.3652268
https://doi.org/10.1145/3629527.3652268

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Vasilevskii and Kachur

implementation of missing components and integrations, which
can be as time-consuming as building a solution from scratch. More
specifically, the high-level requirements in our case were:

(1) Cloud-native, cost-effective and scalable solution.
(2) HTTP, WebSocket and gRPC traffic generation.
(3) Easily extensible and configurable.
(4) Support both manual tests and integrate into existing CI

pipelines.
(5) Automation for test execution and results evaluation.
(6) Long-term results storage with possibility to visualize trends.
(7) Results repeatability.
When it came to a build vs. buy decision, it was clear that no

existing SaaS solution could meet our needs in a cost-effective way.
On the other hand, building a tool from scratch wasn’t a viable
option: different teams were already using different tools, and the
longer it would take to release the first version of the framework,
the harder it would be to migrate existing tools [5].

There are many decent open-source performance testing tools
to integrate with, and this presents the next challenge: choosing
the right tool that meets our needs, but is also suitable for most
engineering teams [3]. Wolt is a multi-language environment with
the main programming languages being Python, Scala and Kotlin,
which makes it impossible to force a tool with a specific language
(e.g. Locust), while tools that lack one (e.g. ab) or are mostly GUI
based (e.g. JMeter) and do not provide the required level of flexibil-
ity. Another hard requirement is load generation efficiency at high
throughput levels, reaching up to 10k RPS. In addition, the tool of
choice should provide decent real-time reporting that is easy to un-
derstand and use for comparison, integration capabilities for CI/CD
pipelines, observability tools and Kubernetes, and extensibility.

Considering all of the above requirements, Gatling seemed like
the optimal choice, see Table 1. Most of the engineers were already
familiar with one of the JVM languages, and the learning curve for
mastering a framework with expressive DSL built on top of Scala
was relatively flat. On the technical side, Gatling convinced us
with reasonable load generation efficiency, measurement precision,
extensibility, and a wide range of supported protocols [8].

During the early development stages of our performance test-
ing platform, we noticed that test results were showing significant
variations that can be attributed to the cloud environment itself
[9, 10]. Since we wanted to measure the actual performance charac-
teristics of our services in shared Kubernetes clusters, the only way
to improve the repeatability of the measurements was to increase
the minimum test duration to collect enough data for a statistically
meaningful measurement during each execution [18].

3 ARCHITECTURE
We now present the high-level architecture of our solution. As
shown in Figure 1, it consists of a Gatling-based load generation
application (wolt-load-test), a results storage and analysis mod-
ule (Witness), custom GitHub Actions to trigger tests from CI/CD
pipelines and Argo Workflows to schedule tests on Kubernetes.

The load test can be triggered either automatically by calling the
corresponding GitHub Action in a CI/CD pipeline or manually by a
user via the Argo WebUI or CLI. In both cases, an Argo Workflow is
triggered to start a Kubernetes job with the wolt-load-test workload

Figure 1: High-level architecture.

in the target cluster [13]. The wolt-load-test uses a custom reporter
module to send live data to Datadog via the Statsd protocol [7].
Once a load test is complete, the framework generates a report,
persists it to an AWS S3 bucket, and sends a summary of the test
run to our custom results management module, Witness.

Witness stores the summary of the test run in MongoDB, sends
a notification to a predefined Slack channel, and provides a REST
API that can be consumed for further automated processing.

3.1 Load Generation
We use a custom wrapper around the open-source Gatling tool
for load generation, which reduces the learning curve for develop-
ers and provides features for a smoother development experience
such as standard service-to-service authentication, integration with
observability tools (e.g. logs, metrics, traces), and test data man-
agement. At its core, the framework provides load test definition
templates with multiple levels of hierarchy that can be easily com-
bined. At the top of this hierarchy is a Simulation that defines load
levels and durations across one or more Scenarios. Each Scenario
combines Requests from one or more Services into a sequential
execution chain. A Service contains basic configuration elements
such as target host, name, and description, and bundles Requests for
ease of navigation. Finally, a Request combines request templates
with test data providers - Feeders [8].

In addition to standard Gatling feeders, we also implemented cus-
tomRedis-based feeders that supportmore advanced data structures
such as hashmaps and that can be used to store shared or TTLed
data. This effectively reduced the amount of memory required for
wolt-load-tests with extremely large datasets, and enabled the han-
dling of auto-expiring JWT tokens used for authentication.

The wolt-load-test has its own repository and a CI/CD pipeline
that packages all load simulations in an executable JAR, creates a
Docker image around this JAR and publishes it to an AWS ECR
repository for deployment to respective environments. The load test

243

Self-Service Performance Testing Platform for Autonomous Development Teams ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

dispatch is handled by Argo Workflows, an open source container-
native workflow engine for orchestrating parallel jobs on Kuber-
netes implemented as a Kubernetes CRD [1]. This engine was al-
ready in place for scheduling other types of jobs, so it was natural
to reuse the existing infrastructure.

Our primary observability platform is Datadog, but Gatling does
not integrate with it out of the box. To get around this limitation
and avoid the overhead of maintaining a fork of Gatling, we created
custom runtime monitoring for load tests by implementing a Statsd
protocol reporter using the Byte Buddy framework. Byte Buddy
is a code generation and manipulation library for creating and
modifying Java classes during the runtime of a Java application and
without the help of a compiler, which is widely used in Java Agents
of APM and observability tools [23]. To instrument the Gatling
code and make the instrumentation as lightweight as possible, we
created our own Java Agent. The agent was included in the manifest
of the executable JAR in the Launcher-Agent-Class to be launched
before the main method of the application is invoked, see Listing 1.

Listing 1: Maven configuration for loading Agent.
<transformers>

<transformer implementation="ManifestResourceTransformer">

<manifestEntries>

<Main-Class>io.gatling.app.Gatling</Main-Class>

<Premain-Class>com.wolt.Agent</Premain-Class>

<Can-Retransform-Classes>true</Can-Retransform-Classes>

<Launcher-Agent-Class>com.wolt.Agent</Launcher-Agent-Class>

</manifestEntries>

</transformer>

</transformers>

In this configuration, the JVM first attempts to invoke the agent-
main method on the agent class, as shown in Listing 2.

Listing 2: Agentmain implementation.
public static void agentmain(String args, Instrumentation inst) {

ByteBuddyAgent.install();

new AgentBuilder.Default()

.with(AgentBuilder.Listener.StreamWriting.toSystemOut()

.withTransformationsOnly())

.type(named(Transformers.STATS_ENGINE.label))

.transform(Transformers.STATS_ENGINE.transformer)

.type(named(Transformers.RESULT_PROCESSOR.label))

.transform(Transformers.RESULT_PROCESSOR.transformer)

.installOn(inst);

Our agent uses Byte Buddy Advice to transform the Gatling
classes and inject the custom code for Statsd monitoring. The high-
level workflow of the agent is shown as a sequence diagram in
Figure 2.

With this agent in place, we were able to send real-time test
data to Datadog and provide an integrated developer experience
for both load test results and system-under-test metrics, traces, and
profiling data in one place. A dashboard with live test data is shown
in Figure 3.

The results we got with the custom agent were quite promising,
and we found a few more uses for it. In our reporting pipeline,
we relied on Gatling reports, which contain statistics calculated
over the entire duration of a load test, including a ramp-up and
a steady load period. In some cases, e.g. when running tests in
CI/CD pipelines, it’s extremely beneficial to calculate statistics over
measurements taken only in the second phase, during the steady

Figure 2: Sequence diagram for custom runtime monitoring.

load period. This filters out the cold-start effects that occur in re-
cently deployed applications, and the measurement results are more
accurate, reliable, and repeatable. We initially considered develop-
ing a custom simulation log processor, but this would have meant
rewriting the logic already present in Gatling and introducing a
potentially recurring maintenance effort. Instead, we decided to
write another ByteBuddy Advice that would skip all data before a
specified timestamp during the native Gatling report processing
step, see Listing 3.

Listing 3: Advice for skipping ramp-up period.
public class ResultHolderAdvice {

@Advice.OnMethodEnter(skipOn = Advice.OnNonDefaultValue.class)
public static boolean skipRecordProcessing(

@Advice.FieldValue("minTimestamp") Long startTime,

@Advice.Argument(value = 0, readOnly = false) Object o) {

if (o instanceof RequestRecord r) return r.start() < startTime;

if (o instanceof GroupRecord r) return r.start() < startTime;

if (o instanceof ErrorRecord r) return r.timestamp() < startTime;

if (o instanceof UserRecord r) return r.timestamp() < startTime;

return true;
}

}

We found another useful application for the Byte Buddy Agent.
At the end of each test, wolt-load-test reports a summary of the
results to our storage service - Witness. Instead of developing and
maintaining separate scripts that are not part of the main code-
base, we decided to implement yet another Advice attached to
io.gatling.charts.report.ReportsGenerator that makes an appropri-
ate HTTP call to Witness once the report data is available.

3.2 Test Execution
In our setup, load tests are run as pods in a shared Kubernetes cluster.
This allows us to simulate service-to-service traffic in the exact same
environment used by our applications, including concurrency of
resource allocation, possible network shenanigans, etc. [19]. At
the same time, we benefit from using existing infrastructure for
configuration and secret management, resources provisioning, and
generate no additional maintenance overhead. The downside of this
approach is the potential for load generation to interfere with other
workloads - or vice versa - the common “noisy neighbor problem”

244

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Vasilevskii and Kachur

Figure 3: Wolt-load-test Live Dashboard.

[24]. This is mitigated by applying anti-affinity rules to specific
pods, and by exposing the Kubernetes resource configuration for
the wolt-load-test pod as part of the test run configuration. The
latter enables a more granular resource management: regular CI
load tests get the bare minimum to run, while larger production-
sized workloads can allocate much more resources. Actual usage
can be monitored using the standard Kubernetes dashboards in
Datadog.

One of the alternatives we considered was an external load gen-
eration point, such as a separate Kubernetes cluster dedicated to
running load test workloads. This would allow us to exercise all
components along the external path, including firewalls, external
load balancers, etc. However, this would come at a significant cost,
both in terms of running an additional Kubernetes cluster and the
traffic between the clusters. Given the rate limiters and firewall
rules set on the external route, this initiative would require even
more effort to invest in workarounds, so it was left out of the scope
for now.

Starting a test execution with our solution is possible in several
ways. The simplest and most straightforward is to trigger an Argo
Workflow via WebUI or CLI by specifying several run parameters,
such as simulation class name, maximum target load level, ramp-up
and test durations, and some optional custom parameters. It’s also
possible to specify how many pods should be scheduled for a given
workload - we call them shards - and how much resource should
be allocated to each shard.

In fact, the original implementation had no sharding support
and was quite simple: it just started a single pod with the desired
simulation and post-processing step.

After running this setup for some time, we realized that con-
ducting load tests from a single pod can produce results of insuf-
ficient quality in terms of connection patterns, load distribution,
and resource allocation. Since Argo Workflows also supports more
sophisticated DAGs, we split the simple two-step "run test - collect
results" job into a multi-step workflow. This newworkflow included
a preparation step to transform input data and generate a common
test run ID, a fan-out step to launch multiple wolt-load-test pods
in parallel, and a post-processing step to collect and combine all
results into an aggregated test report, as shown in Figure 4. This
change not only allowed for more accurate load generation, but also

greatly improved the scalability characteristics of our load testing
platform, making it suitable for conducting large-scale performance
tests.

Figure 4: Argo Workflow for wolt-load-test with multiple
shards.

There is a caveat to the fan-out approach: the start times of the
pods may not be perfectly synchronized due to possible scheduling
delays in Kubernetes. However, in practice, these delays are usually
insignificant and can be ignored for most tests. To further miti-
gate this, we are considering having a dedicated pool of nodes for
running load tests and introducing a synchronization checkpoint
during test startup.

Integrating performance testing into services’ CI/CD pipelines
was as simple as writing a reusable GitHub Action that triggers the
appropriate Argo Workflows. This allowed engineering teams to
store load test configurations in their respective service-under-test

245

Self-Service Performance Testing Platform for Autonomous Development Teams ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

GitHub repositories and have full control over how and when they
run load tests in CI.

A special case is the production environment: in some cases, it’s
the only environment where meaningful performance measure-
ments can be made due to size, cost, or data volume constraints
[19]. In order to support the performance testing in production, we
had to implement additional safety measures to avoid any negative
impact on the live system, to remain compliant, and to provide au-
ditability of production changes. To this end, the production Argo
Workflow instance was hardened to prevent users from running
workflows via the WebUI or CLI. Instead, a pull request to a central
GitHub repository and a config deployment is required to start any
type of load test in production. The downside of this approach, of
course, is the reduced user experience compared to the interactive
WebUI, but it was accepted by the engineering community as a
reasonable compromise.

3.3 Data Store and Feedback Loop
Upon completion of the test, a Gatling report is generated by wolt-
load-test and stored in an S3 bucket with a unique run ID. Searching
and exploring reports directly in the S3 bucket was acceptable in the
early stages of adoption with a relatively small number of reports,
but proved to be quite cumbersome in the long run. Unfortunately,
there are no established open-source results tracking tools that
would meet our needs and provide all the integrations we were
looking for. So we decided to develop our own service that would
simplify the management of test results. To reduce the resource
footprint and keep the service minimalistic, we chose Golang as
the programming language. Since the concept of test results and
the expected access patterns fit well into the document-oriented
paradigm, we chose MongoDB for the storage layer.

Listing 4: Data structure representing a test report.
type GatlingReport struct {

ID primitive.ObjectID `bson:"_id" json:"id,omitempty"`
SimulationName string `json:"simulation_name,omitempty"`
ServiceName string `json:"service_name,omitempty"`
StartedAt int64 `json:"started_at,omitempty"`
Version string `json:"version,omitempty"`
Tag string `json:"tag,omitempty"`
Params SimulationParams `json:"params,omitempty"`
Stats GatlingStats `json:"stats,omitempty"`
Assertions AssertionsResult `json:"assertions,omitempty"`

}

The initial Witness implementation included an HTTP REST
interface to accept test result summaries with all aggregated per-
request and global statistics: response time percentiles, assertions,
request and failure rates, along with test metadata that allowed
each test run to be uniquely identified [18]. The latter included
run ID, simulation class name, load profile details such as max RPS
and duration, test start timestamp, service name, version, and tags -
see Listing 4. This information is used to group test runs by type
for historical comparisons, for example, to distinguish between
CI-triggered runs, low-, medium-, and high-load tests, and so on.

Just keeping this information inWitness and providing an HTTP
REST interface to read it didn’t add much value by itself. Not many
people outside of the performance team were using it. To get more
traction, we introduced some integrations, the most important of

which is a Slack bot: Witness sends a notification to a predefined
Slack channel when a test starts, and another message when a test
finishes. The latter provides a brief summary and links to relevant
information, as shown in Figure 5, which can be used as an initial
entry point for detailed analysis based on the metrics, tracing, logs,
and profiling information available in Datadog.

Figure 5: Witness run summary in Slack.

This message also provides historical values for that specific
combination of simulation class name, load profile, and tag, as well
as assertion evaluation results - if any are defined for the simulation.
If there are any assertion failures, an additional alert message is
generated. This Slack integration has been extremely useful for
engineering teams to get an early indication of performance degra-
dation when running load tests as part of their CI/CD pipelines. As
a side effect, the Witness Slack channel now acts as a global log of
all performance tests, with quick links to all relevant details.

On the other hand, searching for messages in Slack and manually
comparing them was not ideal for evaluating long-term trends for
specific simulations. To address this, Witness was enhanced with a
Statsd integration with Datadog to plot measurement trends.

4 ORGANIZATIONAL CHALLENGES
One of the biggest challenges with the self-service performance test-
ing platform was not on the technical side of things, but rather on
the organizational side. With multiple development teams having
a different vision [5, 6, 19, 21] of how performance testing should
look like and what tools should be used, and given the high degree
of autonomy in these teams, it was not possible to force any one
solution. A much better approach was to first build a foundation by
making it as easy and straightforward to use as possible, integrating
it with existing processes and infrastructure, and providing the core
functionality common to all teams and departments.

In our case, the first step was to make the framework cloud-
native, running as a container in Kubernetes with standard infras-
tructure tools, as opposed to the more common practice of spinning
up dedicated EC2 instances for load testing. The next step was to
integrate authentication and user management, which had been an
integral part of the first release of the platform. With this feature
set as a solid foundation, we began to seek out teams that were
maintaining their own load tests and interviewed them about their

246

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Vasilevskii and Kachur

pain points and desired improvements. By implementing these in
our platform, we were able to gradually migrate their homegrown
solutions to the common platform. Using this gradual adoption
approach and promoting the platform in internal meetings and
workshops, wolt-load-test/Witness became the de facto standard
for running load tests across the company.

A special case were teams using non-JVM based languages for
development, such as Python or Javascript. These teams were un-
derstandably reluctant to introduce an entirely new language just
for the sake of writing tests. To make it a success story, we provided
even more support and guidance to get started, more concrete refer-
ence test implementations, and finally, more thorough PR reviews.
In the end, the benefits of having great developer experience, tool-
ing support, and a fully integrated solution outweighed the burden
of setting up the project and learning the few bits and pieces of
Gatling DSL and Scala.

The best part that both product engineering and the performance
teams like about the established collaboration is that there’s no
gatekeeping or heavy reliance on the framework maintainers, since
all engineering teams own their load testing code and can run any
experiments they want. CI checks on pull requests ensure that the
platform is always in a runnable state, and for complex changes or
larger feature requests, engineering teams can always get support
from the performance team [21].

The rollout of the testing platformwas accompanied by a detailed
set of guidelines and best practices for systematically addressing
performance activities. These guidelines were marketed internally
as a "Performance Engineering Framework" with actionable items
and tracking for individual teams.

The overall methodology of platform adoption at Wolt can be
described in the following steps:

(1) The performance team reaches out to development teams
that are not yet onboarded to discuss their needs. This activ-
ity can be scheduled on a regular basis for specific teams to
increase their engagement. The ultimate goal is to make de-
velopment teams proactive and ensure that they go through
this process on their own, without external requests. Alter-
natively, development teams can contact the performance
team with support requests.

(2) The two teams work through the action items in the "Perfor-
mance Engineering Framework" and determine if the service
should be enrolled for the platform. This depends primarily
on the service’s APIs, expected load and criticality, as well
as any third-party dependencies, data volumes, and overall
complexity.

(3) If a service is deemed eligible for enrollment, the two teams
evaluate how well it fits into the existing feature set of the
platform. If any deficiencies are identified, the performance
team proceeds with the implementation of new features.

(4) Once all requirements are met, the development team im-
plements load tests and bindings for integration into their
CI/CD process. The entire process is well documented with
many examples and detailed step-by-step instructions. If
the development team has little or no prior experience with
the platform, the performance team can support them with
thorough reviews of the changes or draft PRs.

(5) Once the initial implementation is complete, the develop-
ment team gains full ownership of their load tests and can
evolve them as needed. If questions arise during the evalu-
ation of the results, the performance team can assist with
root cause analysis.

In rare cases, some services may be excluded in step 2. This
usually happens for applications that do not fit well into the current
platform paradigm, such as stream processing applications [11]. For
these applications, alternative solutions can be considered, such
as canary releases or traffic mirroring in production to evaluate
performance without impacting real users [4, 22].

Ultimately, addressing these organizational challenges influ-
enced the way engineers approached load testing and helped foster
a healthy performance engineering culture, making performance
testing a standard part of the development process rather than an
obscure one-off exercise. Other notable impacts include freeing up
engineering resources by retiring existing scattered testing solu-
tions, improving the efficiency of resource allocation in the cloud
and reducing associated costs based on performance testing results,
and increasing reliability KPIs in various parts of the Wolt system.

5 RELATEDWORK
At the time we started developing the platform, there were a few
similar end-to-end performance testing tools and publications. How-
ever, most of them either target a specific technology or provide a
different subset of features.

One example is the MongoDB’s Distributed Systems Infrastruc-
ture [12]. This framework is used to conduct fully automated per-
formance testing in a CI environment for MongoDB clusters, as
well as to provision and deploy the clusters. While it has some
similarities to our solution, such as the cloud-native approach and
support for both manual and automated CI benchmarks, it can only
be used to generate loads for MongoDB and integrates only with
the Evergreen CI system [16].

Dell Technology uses JaaS - JMeter as a Service - a performance
testing solution built on top of JMeter, Docker, Elastic and Axon -
to validate Dell servers before shipping them to customers [17]. It
provides distributed load generation for multiple workloads, includ-
ing HTTP and database traffic, live dashboards and results storage.
JaaS does not support running tests natively in Kubernetes and
does not provide automated results analysis in the feedback loop.

Theodolite is a framework for benchmarking the scalability of
cloud-native applications, running on Kubernetes. It automates the
benchmarking process by deploying the system under test (SUT)
on a Kubernetes cluster, generating load on the SUT, and collecting
performance metrics during load generation [11]. This advanced
framework is similar to our solution in many ways, and it provides
a set of out-of-the-box benchmarks for streaming processing appli-
cations such as Apache Kafka Streams and Apache Flink. For all
other types of traffic generation - including HTTP and gRPC - it
requires a custom implementation to be provided externally. Test
execution is triggered by deploying a custom resource definition
(CRD) to a Kubernetes cluster, which is similar to our approach
of using Argo Workflows to schedule load generating pods. The
distinguishing feature of Theodolite is how it runs isolated experi-
ments for different load intensities and provisioned resources for

247

Self-Service Performance Testing Platform for Autonomous Development Teams ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

the SUT. It provides a set of search strategies to evaluate possible
combinations of resources and loads based on configurable service
level objectives (SLOs). To store and analyze results, it utilizes a
persistent volume, a Grafana server, and a set of Jupyter notebooks.

6 FUTUREWORK AND CONCLUSION
The platform we have presented in this submission, is still a work
in progress and there are several features and improvements in the
works.

One of these improvements touches on the currently used thresh-
old based alerts via assertions: these tend to be flaky, and we have
considered using one of the change-point detection algorithms
to introduce outlier detection and reduce false positives, e.g. by
implementing E-Divisive with Means or similar approaches [15].

In addition, we plan to collect aggregated statistics on application-
side metrics such as CPU and memory utilization, profiling and
tracing data, etc. and bundle them with the results summary to
provide resource utilization comparisons and regression analysis.

Developer experience with the platform can be further enhanced
by introducing an interactive integration with Slack, e.g. by pro-
viding an easy way to re-run a failed load test directly from the
Slack message (party implemented), or by introducing a chat bot
functionality to manage load tests without the need for the Argo
WebUI or CLI.

Another improvement to the developer experience is planned
integration with the internal development portal based on Back-
stage [2]. This would allow performance measurement data to be
embedded into a service health scorecard, to track the progress on
"Performance Engineering Framework" action items and provide a
single point of entry for all interactions with the platform directly
from Backstage.

To address the scheduling delays, completely separate load gen-
eration from the system under test, and have a way to stress all
components via external endpoints, we had considered setting up
an additional Kubernetes cluster dedicated to load testing. However,
this would add significant fixed costs and maintenance overhead. At
this point, we don’t have a specific use case that would justify this
effort, but we may revisit this idea in the future. A more efficient
solution would be to have a dedicated pool of nodes for running
load tests and introduce a synchronization checkpoint.

In this submission, we have presented our solution for a self-
service performance testing platform for microservices. This is
a scalable, fully integrated performance testing framework built
from open-source components by a platform performance engi-
neering team that has been widely adopted in a large engineering
organization.

REFERENCES
[1] Argo. 2018. Argo Workflows. https://argo-workflows.readthedocs.io
[2] Backstage. 2020. What is Backstage? https://backstage.io/docs/overview/what-

is-backstage
[3] Chris Baeckstrom. 2021. Comparing K6, Gatling and JMeter. https://www.

redline13.com/blog/2022/09/comparing-k6-gatling-and-jmeter/
[4] Jeremy J. Carroll, Pankaj Anand, and David Guo. 2021. Preproduction Deploys:

Cloud-Native Integration Testing. arXiv:2110.08588 [cs.NI]
[5] Adrian Cockcroft. 2016. Microservices workshop. https://www.slideshare.net/

adriancockcroft/microservices-workshop-craft-conference
[6] Melvin E. Conway. 1968. How Do Committees Invent? Datamation (April 1968).

http://www.melconway.com/research/committees.html
[7] Datadog. 2015. DogStatsD. https://docs.datadoghq.com/developers/dogstatsd/
[8] Gatling. 2013. Gatling. https://gatling.io/docs/gatling/
[9] Mohammad Hajjat, Ruiqi Liu, Yiyang Chang, T. S. Eugene Ng, and Sanjay Rao.

2015. Application-specific configuration selection in the cloud: Impact of provider
policy and potential of systematic testing. In 2015 IEEE Conference on Computer
Communications (INFOCOM). 873–881. https://doi.org/10.1109/INFOCOM.2015.
7218458

[10] Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary Lou
Soffa. 2019. A statistics-based performance testing methodology for cloud appli-
cations. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery,
New York, NY, USA, 188–199. https://doi.org/10.1145/3338906.3338912

[11] Sören Henning and Wilhelm Hasselbring. 2021. Theodolite: Scalability Bench-
marking of Distributed Stream Processing Engines in Microservice Architectures.
Big Data Research 25 (July 2021), 100209. https://doi.org/10.1016/j.bdr.2021.
100209

[12] Henrik Ingo and David Daly. 2020. Automated system performance testing at
MongoDB. In Proceedings of the workshop on Testing Database Systems (SIGMOD-
/PODS ’20). ACM. https://doi.org/10.1145/3395032.3395323

[13] Kubernetes. 2020. Kubernetes Documentation Concepts Workloads Workload Man-
agement Jobs. https://kubernetes.io/docs/concepts/workloads/controllers/job/

[14] James Lewis and Martin Fowler. 2014. Microservices. https://martinfowler.com/
articles/microservices.html

[15] Mark Leznik, Md Shahriar Iqbal, Igor Trubin, Arne Lochner, Pooyan Jamshidi,
and André Bauer. 2022. Change Point Detection for MongoDB Time Series
Performance Regression. In Companion of the 2022 ACM/SPEC International
Conference on Performance Engineering (Bejing, China) (ICPE ’22). Association
for Computing Machinery, New York, NY, USA, 45–48. https://doi.org/10.1145/
3491204.3527488

[16] MongoDB. 2017. Evergreen. https://www.mongodb.com/blog/post/testing-
linearizability-jepsen-evergreen-call-me-continuously

[17] Vishnu Murty. 2023. Distributed WorkLoad Generator for Performance & Load
Testing Using Opensource Technologies. https://raw.githubusercontent.com/
ltb2023/ltb2023.github.io/master/slides/LTB23_VMurty.pdf

[18] Alessandro Vittorio Papadopoulos, Laurens Versluis, André Bauer, Nikolas Herbst,
Jóakim von Kistowski, Ahmed Ali-Eldin, Cristina L. Abad, José Nelson Amaral,
Petr Tůma, and Alexandru Iosup. 2021. Methodological Principles for Repro-
ducible Performance Evaluation in Cloud Computing. IEEE Transactions on
Software Engineering 47, 8 (2021), 1528–1543. https://doi.org/10.1109/TSE.2019.
2927908

[19] Matt Ranney. 2016. What I Wish I Had Known Before Scaling Uber to 1000 Services.
https://www.youtube.com/watch?v=kb-m2fasdDY

[20] Tanya Reilly. 2022. The Staff Engineer’s Path: A Guide For Individual Contributors
Navigating Growth and Change. O’Reilly Media.

[21] M. Skelton, M. Pais, and R. Malan. 2019. Team Topologies: Organizing Business and
Technology Teams for Fast Flow. IT Revolution. https://books.google.fi/books?
id=oFdRuAEACAAJ

[22] Cindy Sridharan. 2018. Testing in Production, the safe way. https://copyconstruct.
medium.com/testing-in-production-the-safe-way-18ca102d0ef1

[23] Rafael Winterhalter. 2014. Why runtime code generation? https://bytebuddy.net
[24] Ailin Yang. 2022. “Noisy Neighbors” Problem in Kubernetes. https:

//www.intel.com/content/www/us/en/developer/articles/technical/noisy-
neighbors-problem-in-kubernetes.html

248

https://argo-workflows.readthedocs.io
https://backstage.io/docs/overview/what-is-backstage
https://backstage.io/docs/overview/what-is-backstage
https://www.redline13.com/blog/2022/09/comparing-k6-gatling-and-jmeter/
https://www.redline13.com/blog/2022/09/comparing-k6-gatling-and-jmeter/
https://arxiv.org/abs/2110.08588
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
http://www.melconway.com/research/committees.html
https://docs.datadoghq.com/developers/dogstatsd/
https://gatling.io/docs/gatling/
https://doi.org/10.1109/INFOCOM.2015.7218458
https://doi.org/10.1109/INFOCOM.2015.7218458
https://doi.org/10.1145/3338906.3338912
https://doi.org/10.1016/j.bdr.2021.100209
https://doi.org/10.1016/j.bdr.2021.100209
https://doi.org/10.1145/3395032.3395323
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/3491204.3527488
https://doi.org/10.1145/3491204.3527488
https://www.mongodb.com/blog/post/testing-linearizability-jepsen-evergreen-call-me-continuously
https://www.mongodb.com/blog/post/testing-linearizability-jepsen-evergreen-call-me-continuously
https://raw.githubusercontent.com/ltb2023/ltb2023.github.io/master/slides/LTB23_VMurty.pdf
https://raw.githubusercontent.com/ltb2023/ltb2023.github.io/master/slides/LTB23_VMurty.pdf
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1109/TSE.2019.2927908
https://www.youtube.com/watch?v=kb-m2fasdDY
https://books.google.fi/books?id=oFdRuAEACAAJ
https://books.google.fi/books?id=oFdRuAEACAAJ
https://copyconstruct.medium.com/testing-in-production-the-safe-way-18ca102d0ef1
https://copyconstruct.medium.com/testing-in-production-the-safe-way-18ca102d0ef1
https://bytebuddy.net
https://www.intel.com/content/www/us/en/developer/articles/technical/noisy-neighbors-problem-in-kubernetes.html
https://www.intel.com/content/www/us/en/developer/articles/technical/noisy-neighbors-problem-in-kubernetes.html
https://www.intel.com/content/www/us/en/developer/articles/technical/noisy-neighbors-problem-in-kubernetes.html

Overhead Comparison of Instrumentation Frameworks
David Georg Reichelt

Lancaster University Leipzig

Leipzig, Saxony, Germany

Lubomír Bulej

Charles University

Prague, Czech Republic

Reiner Jung

Kiel University

Kiel, Germany

André van Hoorn

Universität Hamburg

Hamburg, Germany

ABSTRACT
Application Performance Monitoring (APM) tools are used in the

industry to gain insights, identify bottlenecks, and alert to issues

related to software performance. The available APM tools generally

differ in terms of functionality and licensing, but also in monitoring

overhead, which should be minimized due to use in production

deployments. One notable source of monitoring overhead is the

instrumentation technology, which adds code to the system under

test to obtain monitoring data.

Because there are many ways how to instrument applications,

we study the overhead of five different instrumentation technolo-

gies (AspectJ, ByteBuddy, DiSL, Javassist, and pure source code

instrumentation) in the context of the Kieker open-source moni-

toring framework, using the MooBench benchmark as the system

under test. Our experiments reveal that ByteBuddy, DiSL, Javassist,

and source instrumentation achieve low monitoring overhead, and

are therefore most suitable for achieving generally low overhead

in the monitoring of production systems.

However, the lowest overhead may be achieved by different

technologies, depending on the configuration and the execution

environment (e.g., the JVM implementation or the processor ar-

chitecture). The overhead may also change due to modifications

of the instrumentation technology. Consequently, if having the

lowest possible overhead is crucial, it is best to analyze the over-

head in concrete scenarios, with specific fractions of monitored

methods and in the execution environment that accurately reflects

the deployment environment. To this end, our extensions of the

Kieker framework and the MooBench benchmark enable repeated

assessment of monitoring overhead in different scenarios.

CCS CONCEPTS
• General and reference→ Performance; • Software and its
engineering→ Software performance; Software maintenance
tools.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00

https://doi.org/10.1145/3629527.3652269

KEYWORDS
software performance engineering, benchmarking, performance

measurement, monitoring overhead

ACM Reference Format:
David Georg Reichelt, Lubomír Bulej, Reiner Jung, and André van Hoorn.

2024. Overhead Comparison of Instrumentation Frameworks. In Companion
of the 15th ACM/SPEC International Conference on Performance Engineering
(ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3629527.3652269

1 INTRODUCTION
Understanding application performance at runtime requires collect-

ing metrics such as response times, resource usage, or error rates

during application execution. When applied to production environ-

ments, this process is referred to as performance monitoring [19].

While monitoring can be done at different levels, including business,

application, and the infrastructure, we focus on the application level

in this work.

Because performance monitoring is often orthogonal to features

delivering value to application users, it is common to implement

monitoring as a cross-cutting concern using instrumentation, i.e.,

by inserting instructions into software that explicitly create mon-

itoring records associated with relevant performance events. An

alternative method for obtaining information about application

performance is sampling, in which the system periodically collects

snapshots of generic (e.g., code location being executed, stack traces,

memory consumption) or application-specific metrics (e.g., request

queue depth, average response time) exposed through a suitable

framework (e.g., JMX beans).

While sampling allows controlling the trade-off between (a fixed)

overhead and accuracy by setting the sampling period, instrumen-

tation producing explicit records of relevant events is generally

more flexible, because it can produce data usable for both monitor-

ing and tracing. However, the overhead of instrumentation-based

monitoring is much more variable and potentially more difficult to

control. In this paper, we focus on the baseline overhead due to the

use of a particular instrumentation technology.

During instrumentation, monitoring code (probe) is inserted into
the monitored application to create monitoring records correspond-

ing to various events occurring during application execution. The

injection of probes can be achieved using different instrumentation

technologies. The instrumentation process, depicted in Figure 1,

is generally driven by a application monitoring frameworks, such

as OpenTelemetry or Kieker, which also determine the instrumen-

tation technology used to insert probes into system under test.

249

https://orcid.org/0000-0002-1772-1416
https://orcid.org/0000-0002-4573-6084
https://orcid.org/0000-0002-5464-8561
https://orcid.org/0000-0003-2567-6077
https://doi.org/10.1145/3629527.3652269
https://doi.org/10.1145/3629527.3652269

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom David Georg Reichelt, Lubomír Bulej, Reiner Jung, & André van Hoorn

System under Test

Probe Code

AspectJ ByteBuddy DiSL Javassist
Source

Instrumentation

Instrumentation Technology

Monitoring Framework

Kieker OpenTelemetry

Figure 1: Instrumentation Process for Monitoring Frame-
works

In this paper, we compare the overhead of different instrumen-

tation technologies using the Kieker [5] monitoring framework.

In addition, we compare the measured overhead to the overhead

of OpenTelemetry using its default instrumentation technology

ByteBuddy.

The instrumentation can be done at compile time, at applica-

tion start time, using a javaagent with a premain method, or at

application runtime, using an agentmain method. In this work, we

compare the monitoring overhead that is introduced due to compile-

time or application start-time instrumentation. The overhead of

dynamic instrumentation has already been examined [6].

By comparing the monitoring overhead of the instrumenta-

tion technologies AspectJ
1
, ByteBuddy

2
, DiSL [11], Javassist

3
, and

source code instrumentation, we find that (1) There are significant

differences using the instrumentation technologies, e.g., using As-

pectJ creates up to 30 % more overhead than directly instrumenting

the source code, (2) source code instrumentation has the lowest

overhead in our benchmarking executions, (3) OpenTelemetry has

significantly higher overhead, that is not caused by its instrumenta-

tion technology ByteBuddy, and (4) all technologies scale linearly

with the call tree depth. Furthermore, our extensions of the Kieker

framework and the MooBench benchmark enable repeated assess-

ment of monitoring overhead, e.g., in case the underlying JVM or

the instrumentation technologies are changed.

This paper is structured as follows. We first provide a brief

overview of the instrumentation technologies, the application mon-

itoring framework, and the benchmark used. Then we present our

experimental setup and results, which we subsequently compare to

related work. Finally, we give a summary and an outlook.

2 FOUNDATIONS
In this section, we first provide an overview of the instrumentation

technologies that are the subject of this study. We then describe the

Kieker monitoring framework used to carry out the comparison

and the information collected for monitoring purposes. Finally, we

describe the benchmark used as the system under test.

1
https://eclipse.dev/aspectj/

2
https://bytebuddy.net/

3
https://www.javassist.org/

2.1 Instrumentation Technologies
In this work, we use five instrumentation technologies: Source

instrumentation, AspectJ, ByteBuddy, DiSL, and Javassist. Source

instrumentation operates directly on the source code and trans-

forms it into instrumented source code. Subsequent compilation

produces instrumented bytecode which is executed by the JVM.

Source code instrumentation requires access to the source code and

is language-specific, and generally need to be done at application

compile time. The other technologies employ bytecode manipulation
and insert instrumentation code directly into the bytecode of appli-

cation classes, producing instrumented bytecode to be executed by

the JVM. This approach is (mostly) language-agnostic and offers

increased flexibility compared to source instrumentation.

Frameworks such as AspectJ, ByteBuddy, and Javassist support

compile time instrumentation, i.e., instrumentation is performed

prior to application execution using bytecode that is either down-

loaded or produced by compilation. An alternative is to perform in-

strumentation at application load time, which completely decouples

instrumentation from the build process. This is done using instru-

mentation API provided by the JVM, usually through a javaagent
with a premain method which triggers bytecode transformation of

the classes being loaded by the JVM. This approach is supported by

all of the above mentioned frameworks. The different instrumenta-

tion processes are summarized in Figure 2.

Source Code

Source Code

(Instrumented)

Bytecode

(Instrumented)

JVM

Bytecode

Bytecode

(Instrumented)

JVM

Separate main

ByteBuddyAspectJ

Javassist

Bytecode

(Instrumented)

JVM with -javaagent

premain

ByteBuddyAspectJ

JavassistDiSL

DiSL VM

Instrumentation

Figure 2: Instrumentation Options: Source Code, Compile
Time and Load Time

Source Instrumentation. The most direct way of injecting moni-

toring probes is by adding them to the source code of an application.

Listing 1 shows this in a simplified way: In the original code of

myMethod, obtaining the start time, obtaining the end time, and

passing this information to a MonitoringController is added.

Listing 1: Manual Instrumentation Example
public void myMethod () {

long tin = System.nanoTime ();

....

long tout = System.nanoTime ();

250

https://bytebuddy.net/
https://www.javassist.org/

Overhead Comparison of Instrumentation Frameworks ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

MONITORING_CONTROLLER.newOperationExecution(

tin , tout , "MyClass.myMethod ()");

}

Manual instrumentation is time-consuming and error-prone, and

reduces the maintainability of the source code. Therefore, we de-

veloped a tool for automated injection of monitoring probes in

Java source code.
4
This reduces the monitoring overhead signif-

icantly [16]. While source code instrumentation can reduce the

monitoring overhead, it cannot be used in cases where only the

bytecode (and not the source code) is available. This includes cases

where other programming languages have been used, e.g., Scala

or Kotlin. This disadvantage could be fixed by implementing the

source instrumentation for other languages.

AspectJ. AspectJ was developed to support the modular imple-

mentation of crosscutting concerns, i.e., concerns that need to be

addressed in different modules. This is called aspect-oriented pro-

gramming [8]. AspectJ builds on advices that consist of pointcuts
(patterns describing when the pointcut is activated) and advice bod-

ies (the code that should be executed on a matching pointcut). The

usability of AspectJ for implementation of domain requirements

that are crosscutting concerns is controversial [13]. Nevertheless,

its usability for logging and monitoring is indisputable. Internally,

AspectJ uses BCEL
5
for low-level adaptation of bytecode.

ByteBuddy. ByteBuddy aims to make the adaptation of byte code

possible without knowledge of its format. Thereby, it makes it

possible to support various use cases of bytecode manipulation

for security, logging, or performance monitoring. Especially, the

OpenTelemetry API reference implementation relies on ByteBuddy.

Internally, AspectJ uses ASM
6
for low-level adaptation of bytecode.

DiSL. DiSL7 (Domain-specific language for instrumentation) was

developed primarily for dynamic program analysis [11]. DiSL allows

selecting any region of the bytecode for instrumentation, in contrast

to AspectJ’s model, which only allows the selection of specific

points, e.g., operation starts. DiSL also supports synthetic local

variables, which facilitate passing of information between advice

code in the scope of a single method, e.g., collecting operation

start and end times, and passing the operation duration along with

context information to the application performance monitoring

framework for recording.

Internally, DiSL uses the ASM
8
library that provides a low-level

interface for bytecode manipulation. During load time instrumen-

tation, DiSL uses a separate VM to execute the instrumentation

logic which processes the application classes loaded by the VM

in which the application executes. This eliminates perturbations

in the application VM caused by the instrumentation logic using

common classes that may be subject to instrumentation (due to

their use by the application).

Javassist. Javassist9 is a Java bytecode manipulation library [2].

It supports changing the bytecode by the specification of adapted

bytecode and source code. By adding a javagent and adding a

4
https://github.com/kieker-monitoring/kieker-source-instrumentation

5
https://commons.apache.org/proper/commons-bcel/

6
https://asm.ow2.io/license.html

7
https://gitlab.ow2.org/disl/disl

8
https://asm.ow2.io/

9
https://www.javassist.org/

main

𝑚𝑒𝑡ℎ𝑜𝑑

(𝑡, 𝑑)
𝑚𝑒𝑡ℎ𝑜𝑑

(𝑡, 𝑑 − 1)
...

𝑚𝑒𝑡ℎ𝑜𝑑

(𝑡, 1)
𝑚𝑒𝑡ℎ𝑜𝑑

(𝑡, 0)

Figure 3: Call Tree of MooBench, from: [16]

ClassTransformer (which is a class from java.lang), monitoring

libraries can interact with the class loading mechanism. Since byte-

code manipulation needs a thorough knowledge of the structure of

bytecode itself, libraries like Javassist can ease this process. How-

ever, the usage of Javassist also requires the (indirect) definition of

bytecode manipulation. Checking the instrumentation source at

compile-time (like with AspectJ aspects or DiSL instrumentation

definitions) is not possible.

2.2 Kieker
Application performance monitoring (APM) frameworks contain

a library and an agent that are responsible for data acquisition.
10

There are both open-source APM tools, such as Kieker [5] and

OpenTelemetry
11
, and closed-source APM tools, such as Dynatrace

APM
12

and the DataDog agent.
13

While their implementation de-

tails differ, they are all able to obtain operation execution data,

such as operation start and end times, operation signature, and

operation’s position in the call tree.

Our prior study on the overhead of these frameworks shows

that Kieker has the lowest overhead among the open-source tools

[15]. Kieker’s OperationExecutionRecord contains, next to the

timing information, the execution operation index (eoi) and the

execution stack size (ess), which make it possible to reconstruct the

call tree. In this work, we compare how much overhead different

instrumentation technologies cause to collect the data needed to

create the OperationExecutionRecord.

2.3 MooBench
Moobench is a benchmark that compares the overhead of differ-

ent APM frameworks and their configurations [20]. To measure

the overhead for each operation execution, MooBench calls its

monitoredMethod recursively for a given call tree depth. In the

leaf node, a busy waiting is executed, which simulates calculations.

The structure of the MooBench call tree is depicted in Figure 3.

Performance measurement is subject to non-determinism be-

cause of a number of factors. Some, such as other processes running

on the same system or CPU frequency and voltage scaling can be

mitigated by platform configuration. Other factors such as differ-

ences in memory layout between different runs of the workload

(in different processes) need to be addressed by the measurement

process. Experiments involving platforms such as the Java or JavaS-

cipt VM need to account for the effects of just-in-time compilation

and garbage collection. A rigorous measurement process must col-

lect data from multiple experiment runs, each time using a new

(managed language) VM process. Within each run, the measured op-

eration needs to be repeated enough times to get past the warm-up

10
https://openapm.io/

11
https://opentelemetry.io/

12
https://www.dynatrace.com/de/platform/application-performance-monitoring/

13
https://docs.datadoghq.com/agent/

251

https://github.com/kieker-monitoring/kieker-source-instrumentation
https://commons.apache.org/proper/commons-bcel/
https://asm.ow2.io/license.html
https://gitlab.ow2.org/disl/disl
https://asm.ow2.io/
https://www.javassist.org/
https://openapm.io/
https://www.dynatrace.com/de/platform/application-performance-monitoring/
https://docs.datadoghq.com/agent/

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom David Georg Reichelt, Lubomír Bulej, Reiner Jung, & André van Hoorn

benchmark

benchmark-kieker-

source

benchmark-kieker-

AspectJ

benchmark-kieker-

ByteBuddy

benchmark-kieker-

Javassist

benchmark-OT-

instrumented

Kieker-java-

aspectj

Kieker-java-

source

Kieker-java-

ByteBuddy

Kieker-java-

DiSL

Kieker-java-

Javassist

OpenTelemetry-java

-ByteBuddy

OpenTelemetry-java

-DiSL

OpenTelemetry-java

-source

Kieker-java-

AspectJ (Compile)

Kieker-java-

ByteBuddy (Compile)

Kieker-java-

Javassist (Compile)

tools

frameworks

Figure 4: Architecture of MooBench (Green: Added by us,
Yellow: Future extension options)

phase (dominated by just-in-time compilation) to collect samples

representing the expected operation durations. The averages of

operation durations obtained from individual runs then provide

basis for statistical analysis, e.g., a comparison using the two-sided

t-test [4].

MooBench allows comparing different frameworks and execu-

tion environments using a rigorous measurement process. Each

framework/execution environment combination contains a single

folder, e.g., Kieker-java and Kieker-Python with a script to execute

measurements. Each script contains configuration parameters for

the respective framework, including the name, the command line

parameters, and the environment variables.

MooBench also aims to identify the causes of the overhead, as-

suming that monitoring overhead emerges from instrumentation

overhead, data collection, and the writing of data [21]. To this end,

MooBench supports performance measurements using multiple

configurations: Baseline (without any instrumentation), instrumen-

tation only (with deactivated monitoring), monitoring with no log-
ging (data is not written to data sink), and full monitoring (writes

data to a sink, e.g., binary file, TCP receiver, Zipkin server).

3 BENCHMARKING
In this section, we first describe how we implemented the bench-

mark changes. Afterwards, we describe our configurations for

benchmark execution. Based on this, we describe the results of

the MooBench performance comparison. Finally, we discuss the

scalability of the overhead.

3.1 Benchmark Adaptation
To benchmark the different instrumentation technologies, load-

time and compile-time instrumentations for each instrumentation

technology, the decision of how to handle deactivated monitoring,

and the adaptation of the benchmark were necessary. These are

described in the following.

Load-time Instrumentation. Kieker already supports the AspectJ

instrumentation and contains a subproject for automated source

instrumentation. Therefore, we additionally implemented probes

for ByteBuddy, DiSL, and Javassist. To do so, we started providing

separate JARs for each instrumentation

(kieker-bytebuddy, kieker-disl, and kieker-javassist), as a
kieker-aspectj-jar was already provided before.

To create a javaagent, the premain needs to specifywhat should
be donewhen the agent is started. AspectJ contains its own premain
implementation which handles the instrumentation of classes ac-

cording to joinpoint specification in aop.xml. Because ByteBuddy
and Javassist require users to implement the instrumentation proce-

dure on their own, we implemented a javaagent for each of them.

Since the other technologies do not provide a method for joinpoint

specification, we use the previously existing Kieker method pattern

definition to specify methods that should be instrumented and pass

it to the agents through the KIEKER_SIGNATURES environment vari-

able. Both agents only support the OperationExecutionRecord,
as this record is also used for the other MooBench implementations.

Compile-Time Instrumentation. Source instrumentation naturally

happens at compile-time. To get to know whether the load-time

weaving or the bytecode created by the instrumentation technology

is causing overhead, we additionally created Kieker main methods

that instrument an existing JAR using AspectJ, ByteBuddy and

Javassist. Afterwards, these are used by specifically tailored bench-

mark configurations.

Deactivated Monitoring. One challenge is the need to support

deactivation of monitoring at runtime, either fully or for selected

methods. AspectJ and ByteBuddy allow to return directly from

the instrumentation methods, and thereby execute the unchanged

original method. Because that is not possible with the source instru-

mentation, we copy the original method body into a branch that is

executed when monitoring is disabled or when the monitoring of

the method is deactivated. In the case of Javassist and DiSL, we use

a separate monitoring class (OperationExecutionDataGatherer)
that the instrumentation code calls on operation start and operation

end. When monitoring is disabled, the operation start invocation

returns null, indicating to the instrumentation code that the oper-

ation end invocation is not necessary. Otherwise it returns a object

(FullOperationStartData) representing operation data needed

to create a monitoring record, which the instrumentation passes to

the operation end invocation.

Listing 2: Exit Handling in DiSL and Javassist
@SyntheticLocal

static FullOperationStartData data;

@Before(marker = BodyMarker.class ,

scope = "MonitoredClass *.*")

public static void beforemain(

final KiekerStaticContext c) {

data = OperationExecutionDataGatherer

252

Overhead Comparison of Instrumentation Frameworks ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

.operationStart(c.operationSignature ());

}

@After(marker = BodyMarker.class ,

scope = "MonitoredClass *.*")

public static void aftermain () {

if (data != null) {

OperationExecutionDataGatherer

.operationEnd(data);

}

}

For Javassist, another option is to obtain all monitoring data at

the beginning of the method call (including the start time) and to

only add the monitoring data if monitoring is enabled. This leads

to heavily increased overhead for deactivated monitoring (0.55 `𝑠 ,

instead of 0.06`𝑠) and to slightly decreased overhead for enabled

monitoring (2.42 `𝑠 instead of 2.55`𝑠). This is a good option if all

instrumented classes have activated monitoring. If monitoring is

deactivated (and might be activated again later), this increases the

overhead. Since the other frameworks do not have this option, we

did not consider this implementation variant further to have a fair

comparison between all frameworks.

MooBench Adaptation. Based on these changes, we modified

MooBench to support all instrumentation technologies. Before

our refactoring, only framework-language combinations were sup-

ported, i.e., Kieker-java, Kieker-python, inspectIT-java, and Open-

Telemetry-java. After our refactoring, we added the instrumenta-

tion technology for every framework, e.g., we renamed the old

Kieker-java to Kieker-java-aspectj and additionally implemented

Kieker-java-bytebuddy. Since ByteBuddy and Javassist provide their

bytecode instrumentation directly, we could reuse most of the code.

For DiSL, we needed to call the DiSL starter Python script in every

benchmark call. The adapted architecture of MooBench is depicted

in Figure 4.

3.2 Execution Configuration
After extending the benchmark, we executed it with two environ-

ment configurations: An i7-4770 running Ubuntu 22.04 and Open-

JDK 11, and a Raspberry Pi 4 running Debian 11 with OpenJDK 11.

While using the Raspberry Pi might yield measurement values that

are different from typical business application deployments, they

have the advantage of being reproducible for other researchers due

to their standardization and affordability [9]. For each environment

configuration, we ran two experiments: The measurement of the

monitoring overhead and the measurement of the overhead
scalability.

For the monitoring overhead, we ran the experiments with

MooBench’s default parametrization (2 000 000 calls, zero time for

busy waiting, so the busy waiting part will only be two calls to

System.nanoTime(), a call tree depth of 10 and 30 seconds sleep

time), but set the number of VM starts to 30 (according to [4], who

recommends at least 30 VM starts to gather enough observations

for statistical testing).

For the overhead scalability, we also used the default configu-

ration and set the recursion depth to 2, 4, . . . , 128 to examine the

change of execution time with growing call tree size. To reduce

the benchmarking time, we only executed the benchmark on the

i7-4770. Our full measurement data are available as a dataset
14
.

While executing the experiments, we noticed that the execution

duration increased after a certain count of iterations. The effect

occurred on every technology. Based on technology and execution

environment, the threshold of iteration for this effect to start is

between 500 000 and 2 000 000 iterations. After more iterations, the

effect becomes stronger. We suspected memory and hard disk writ-

ing to be responsible for this effect. Therefore, we tried to change the

memory settings (using different configurations between -Xmx2g
and -Xmx10g). Regardless of the memory settings, the effect stayed

the same. When reducing hard disk writing by setting a maximum

file number that Kieker should write to,
15

we could eliminate this

effect. The runtime for this effect is depicted in Figure 5 (with a very

strong increase after 5 000 000, and a barely visible effect occurring

earlier). Therefore, we set the maxLogFiles and will keep this for

MooBench’s future default configuration.

 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

 0 2.5×106 5×106 7.5×106

D
u
ra

ti
o
n
 µ

s

Iteration

maxLogFiles=100
Default

Figure 5: Average Duration per Iteration With and Without
Setting maxfiles

3.3 Monitoring Overhead
Table 1 depicts the monitoring overhead for the different technol-

ogy framework combinations for load-time instrumentation, and

Table 2 depicts the monitoring overhead for Kieker for compile-time

instrumentation. Overhead in the MooBench context means execu-
tion time caused by monitoring. Therefore, the measured duration is

the measured duration of empty method executions with monitor-

ing. For AspectJ, this would mean full monitoring causes roughly

3.30 `𝑠 overhead (=3.35`𝑠−0.05`𝑠) on 10 method calls, indicating an

overhead of 0.33 `𝑠 per node. In a production environment where

methods themselves take time, the absolute overhead is expected to

stay roughly the same (in the same execution environment), but the

relative overhead will be significantly lower. The overhead depends

on whether monitoring is deactivated, configured for execution

without logging, or fully activated.

DeactivatedMonitoring. For deactivatedmonitoring, OpenTeleme-

try creates a higher overhead than Kieker (at least factor 10). This

overhead does not seem to be caused by ByteBuddy, since Kieker’s

ByteBuddy probe causes much lower overhead. The overhead for

14
https://doi.org/10.5281/zenodo.10607598

15-Dkieker.monitoring.writer.filesystem.FileWriter.maxLogFiles

253

https://doi.org/10.5281/zenodo.10607598

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom David Georg Reichelt, Lubomír Bulej, Reiner Jung, & André van Hoorn

a deactivated AspectJ probe is notably higher than for ByteBuddy,

DiSL, Javassist, and source instrumentation (roughly factor 3). Byte-

Buddy, DiSL, Javassist, and source instrumentation do not have

statistically significant differences for compile-time weaving on the

i7-4770. On Raspberry Pi, AspectJ compile-time instrumentation

is slower than load-time. The remaining technologies differ only

slightly.

No Logging. In this configuration the monitoring records are

stored into a queue that discards them [14]. The performance in

this configurations gives an indication how much of the overhead

stems from the data collection itself. This configuration is only

available for the Kieker probes. In this configuration, AspectJ has

a significantly higher overhead than the other instrumentation

technologies, and source instrumentation has a significantly lower

overhead than all other instrumentation technologies. Surprisingly,

we see that ByteBuddy has significantly higher overhead in its

compile-time variant than its load-time variant on the Raspberry

Pi. Since exactly the same final bytecode is executed, we assume

that this is caused by different internal optimizations of the JVM,

which won’t necessarily occur in a production system.

Full Monitoring. In this configuration, the monitoring records

are passed on to the application monitoring framework. Compared

to OpenTelemetry, Kieker allows collecting traces with a lower

overhead. Similarly to no logging and deactivated monitoring config-
urations, we see that AspectJ’s full instrumentation creates higher

overhead than source instrumentation, ByteBuddy, DiSL, and Javas-

sist. As for no logging, we see that source instrumentation has the

lowest overhead, which comes at the cost of requiring the source

code. For the comparison of ByteBuddy, DiSL, and Javassist, we

see that their ranking changes depending on whether load-time

or compile-time instrumentation is used, and whether execution

happens on a the Raspberry Pi or the i7-4700. Therefore, we assume

that these differences are caused by different internal optimizations

of the JVM, which might be different in production systems.

Looking at these values, we can infer that source instrumentation

is the best variant if the source code is available, and that Byte-

Buddy, DiSL, and Javassist are good candidates for low overhead.

Nevertheless, the overhead depends on the execution infrastructure,

indicating that comparisons of instrumentation technologies for

different software might differ.

It is also notable that the values measured for the baseline config-

uration are nearly the same as in our previous experiments [15], but

the values for the full monitoring configuration changed (i7-4470

Kieker: Mean was 3.4, OpenTelemetry: 6.8). Since Kieker did not

have significant changes in its code base, we assume that this is

caused by optimizations that happened either in used libraries or in

the execution environment, including the JVM (which we updated

from OpenJDK 8 to OpenJDK 11) and the Linux Kernel.

3.4 Overhead Scalability
Figure 6 shows the overhead evolution with increasing call tree

depth. It shows a nearly linear increase, which indicates that no in-

strumentation technology causes serious problems such as memory

leaks. We observe that OpenTelemetry (with its ByteBuddy-based

Benchmark Mean Standard Mean Standard

Deviation Deviation

i7-4770 Raspberry Pi

Baseline 0.05 0.00 0.16 0.00

Kieker-java

-aspectj (deactivated) 0.21 0.00 0.93 0.01

-aspectj (nologging) 1.68 0.02 5.63 0.12

-aspectj (full) 3.35 0.07 12.69 2.21

-bytebuddy (deactivated) 0.07 0.00 0.31 0.01

-bytebuddy (nologging) 1.08 0.01 3.42 0.09

-bytebuddy (full) 2.61 0.13 8.10 0.47

-disl (deactivated) 0.07 0.00 0.31 0.02

-disl (nologging) 1.21 0.01 3.94 0.11

-disl (full) 2.75 0.18 8.30 0.67

-javassist (deactivated) 0.06 0.00 0.27 0.01

-javassist (nologging) 1.16 0.01 4.01 0.14

-javassist (full) 2.58 0.17 8.25 0.58

OpenTelemetry-java

-bytebuddy (deactivated) 3.28 0.15 14.29 0.52

-bytebuddy (full) 4.98 0.18 22.41 1.13

Table 1: Monitoring Overhead for Load Time Technologies
(in `𝑠)

Benchmark Mean Standard Mean Standard

Deviation Deviation

i7-4770 Raspberry Pi

Baseline 0.05 0.00 0.16 0.01

Kieker-java

-aspectj (deactivated) 0.22 0.00 1.17 0.05

-aspectj (nologging) 1.66 0.02 5.88 0.19

-aspectj (full) 3.35 0.12 13.75 3.63

-bytebuddy (deactivated) 0.06 0.00 0.27 0.01

-bytebuddy (nologging) 1.17 0.02 3.83 0.17

-bytebuddy (full) 2.53 0.12 8.44 0.89

-javassist (deactivated) 0.06 0.00 0.27 0.01

-javassist (nologging) 1.17 0.01 3.84 0.13

-javassist (full) 2.50 0.06 8.19 0.58

-sourceinstrumentation

(deactivated) 0.07 0.00 0.28 0.01

(nologging) 1.04 0.01 3.30 0.11

(full) 2.32 0.15 7.20 0.55

Table 2: Monitoring Overhead for Compile Time Technolo-
gies (in `𝑠)

probes) has a significantly higher overhead. With Kieker, we ob-

serve that AspectJ is slower for all tested call tree depths. For source

instrumentation, we see a slightly smaller standard deviation and

slightly lower average duration than the bytecode instrumentation

technologies.

For performance monitoring, warmup performance is also rele-

vant, as a user might want to detect performance anomalies early

in the runtime of an application. Figure 7 shows the evolution of

the warmup performance. Here, the steady-state performance is

254

Overhead Comparison of Instrumentation Frameworks ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100 120 140

D
u
ra

ti
o
n
 µ

s

Call Tree Depth

OpenTelemetry
ByteBuddy

AspectJ
DiSL

Source Instr.

Figure 6: Steady State Performance on i7-4770

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100 120 140

D
u
ra

ti
o
n
 µ

s

Call Tree Depth

OpenTelemetry
ByteBuddy

AspectJ
DiSL

Source Instr.

Figure 7: Warmup Performance on i7-4770

mainly repeated, with even lower differences between ByteBuddy,

DiSL, and Javassist.

4 RELATEDWORK
Related work to the overhead analysis of instrumentation tech-

nologies for APM exists in three fields: Analysis of the monitoring

overhead of APM tools, analysis of the overhead instrumentation

itself, and analysis of overhead of instrumentation for different

infrastructures.

4.1 Overhead of APM Tools
Performance and regression benchmarking are a widespread prac-

tice for monitoring tools. OpenTelemetry
16

and the monitoring

tool GlowRoot
17

provide own benchmarks for their tools. However,

comparisons of monitoring tools or of their instrumentation tech-

nologies rarely exist. ByteBuddy itself provides a comparison of

ByteBuddy, cglib, Javassist, and Java proxies in their basic tutorial.
18

They find that based on different use cases, different instrumenta-

tion technologies are faster. Therefore, it is necessary to compare

the instrumentation technologies in the context of their usage in

monitoring, as we did in this work.

Okanovic et al. [12] already examined the use of AspectJ and

DiSL on Kieker. While they pursued the same goal, they did not

16
For example https://opentelemetry.io/blog/2023/perf-testing/ — OpenTelemetry has

a huge suite of benchmarks for different languages.

17
https://glowroot.org/overhead.html

18
https://bytebuddy.net/#/tutorial

persistently implement their changes into the Kieker code. Addition-

ally, they used a self-implemented benchmark instead of MooBench

and did not examine how manual instrumentation performs in

comparison to AspectJ and DiSL.

Banda analyzedOpenTelemetry’s performance overhead,
19
which

resulted in a commit measuring the span processing overhead.
20

In

his work, he compared the performance of different queue types

(e.g., ArrayBlockingQueue and ConcurrentLinkedQueue) with dif-
ferent configurations. He did this only for the exporting part, i.e., he

created spans inside of a jmh benchmark. Therefore, in contrast to

this work, he focused on the factor of the data processing, whereas

we use a benchmark that includes the data creation, data processing,

and writing, and focus on the instrumentation part.

Shatnavi et al. [17] examine the monitoring overhead for three

human resources and financial management systems, including

their web UIs. The systems are built on GWT-Spring, and the in-

strumentation is done using OpenTelemetry. They evaluate the

overhead of a baseline and two usage scenarios of their systems. In

their setup, they do not find an overhead of the frontend agent as

the frontend is executed at the users’ site. Furthermore, they find an

overhead of about 3 %-4 % at one backend component and an unac-

ceptable overhead in another component; therefore, they decide to

exclude instrumentation for serialization parts of the application.

4.2 Overhead of Instrumentation
Chukri et al. [18] present the BISM (Bytecode-Level Instrumentation

for Software Monitoring) tool that allows, like DiSL, to instrument

source code. They compare the monitoring overhead with AspectJ

and DiSL using the DaCapo benchmark suite and find that BISM

creates a lower overhead than both of them. Since the tool is not

publicly available, a comparison to BISM is not possible.

Horký et al. [7] use DiSL to obtain performance measurements of

performance unit tests. While they also apply DiSL for performance

measurement, they focus on the evaluation of performance unit

test measurements and do not evaluate the overhead caused by the

instrumentation.

Horký et al. [6] examine the monitoring overhead by dynamic

instrumentation, with dynamic instrumentation implemented us-

ing DiSL. They assume that the monitoring overhead emerges from

probe presence, the (byte)code manipulation, the optimization, and

the data storage. This is different from our approach since they

inject probes dynamically, while Kieker’s probes are in the code

all the time and are enabled or disabled through variable values.

Furthermore, they use the SPEC-jbb2015 benchmark instead of

MooBench. Additionally, for their measurement, they consider

the recursive call as one method call and only send one method

call record, whereas Kieker considers each invocation of recur-

sive calls as a single method call record and sends these as single

OperationExecutionRecord. Finally, they find that dynamic in-

strumentation using dynamic injection of probes is a promising

and overhead-reducing approach for dynamic monitoring. Since

they only used DiSL as instrumentation technology, one further

work would be to use the instrumentation technologies we used in

19
https://doordash.engineering/2021/04/07/optimizing-opentelemetrys-span-

processor/

20
https://github.com/open-telemetry/opentelemetry-java/commit/

23ce8fe3929d98aaaa63ab8d5d7ab2b99dcea85b

255

https://opentelemetry.io/blog/2023/perf-testing/
https://glowroot.org/overhead.html
https://bytebuddy.net/#/tutorial
https://doordash.engineering/2021/04/07/optimizing-opentelemetrys-span-processor/
https://doordash.engineering/2021/04/07/optimizing-opentelemetrys-span-processor/
https://github.com/open-telemetry/opentelemetry-java/commit/23ce8fe3929d98aaaa63ab8d5d7ab2b99dcea85b
https://github.com/open-telemetry/opentelemetry-java/commit/23ce8fe3929d98aaaa63ab8d5d7ab2b99dcea85b

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom David Georg Reichelt, Lubomír Bulej, Reiner Jung, & André van Hoorn

this work. Thereby, it could be checked whether instrumentation

overhead can be reduced further, e.g., by using Javassist.

4.3 Overhead of Instrumentation for Different
Infrastructures

Bruening et al. [1] build DynamoRIO, which enables instrumenta-

tion at the processor operation level. They compare it to Intel’s Pin

tool that also allows to instrument applications at the processor

operation level. Using SPEC CPU2006, they find that DynamoRIO

has an overhead of 21 %, whereas Pin has an overhead of 11 %.

Wasabi is an instrumentation technology for Web Assembly

(wasm) [10]. Lehmann and Pradel define it and examine its overhead

using the PolyBench benchmark suite that was originally developed

for benchmarking wasm itself. Based on the instrumented call, they

find that overhead might vary from 2% up to factor 163 when

instrumenting all assembler commands.

For Python, Eghbali and Pradel define DynaPyt for program

analysis [3]. They find that the overhead varies between 20% and

factor 16.

All experiments on other languages were done using predefined

benchmarks, whereas we used a benchmark specifically suited

for monitoring overhead. Therefore, the results are not directly

comparable. One possible future work would be to apply the probes

we created to JVM benchmarks in order to examine the overhead.

5 SUMMARY
In this work, we extended the MooBench benchmark to compare

different instrumentation technologies. We compared five instru-

mentation technologies for the instrumentation framework Kieker:

AspectJ, ByteBuddy, DiSL, Javassist, and source instrumentation.

We found that AspectJ creates the highest overhead for all configu-

rations, and source instrumentation creates lower overhead in most

configurations. For ByteBuddy, DiSL, and Javassist, one or another

is faster, depending on the configuration.

In our experiments, we focused on instrumentation that can be

enabled and disabled at runtime, thus making adaptive monitoring

possible. A static instrumentation that decides on program startup

which methods should be instrumented typically has lower over-

head. In use cases where this is possible, static probes should be

used to obtain minimal overhead.

Reducing the overhead of instrumentation remains a challenge

since available technologies change, and, therefore, the most effi-

cient instrumentation technology might change. In future work, we

plan to execute our measurements on more heterogeneous hard-

ware and repeat the measurements with future versions of underly-

ing technologies, e.g., newer JVMs or JVMs from different vendors.

Furthermore, MooBench’s current implementation focuses on

the overhead in terms of CPU time consumption to measure the

method execution duration. An extension for other aspects of the

overhead (e.g., throughput, CPU, and/or memory usage) and the

overhead of measuring different things (e.g., the overhead of jersey

for HTTP request processing) would be an important extension in

order to minimize performance measurement overhead overall.

Besides monitoring, there are other use cases for instrumenta-

tion technologies, including data serialization, logging, mocking,

and testing. In this work, we focused on performance for monitor-

ing overhead and, therefore, measured the overhead for changing

monitored methods. For other use cases, other aspects of instru-

mentation, like class creation, might be more important. Therefore,

promising future work is also the creation of an instrumentation

technology benchmark covering other use cases of instrumentation.

Acknowledgement This work is supported by the German

Research Foundation (DFG): Project “SustainKieker” (HO 5721/4-1

and HA 2038/11-1).

REFERENCES
[1] Derek Bruening, Qin Zhao, and Saman Amarasinghe. 2012. Transparent dynamic

instrumentation. In Proc. 8th ACM SIGPLAN/SIGOPS Conf. on Virtual Execution
Environments. 133–144.

[2] Shigeru Chiba and Muga Nishizawa. 2003. An easy-to-use toolkit for efficient

Java bytecode translators. In Proc. Int. Conf. on Generative Programming and
Component Engineering. Springer, 364–376.

[3] Aryaz Eghbali andMichael Pradel. 2022. DynaPyt: A dynamic analysis framework

for Python. In Proc. 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 760–771.

[4] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous

Java Performance Evaluation. ACM SIGPLAN Notices 42, 10 (2007), 57–76.
[5] Wilhelm Hasselbring and André van Hoorn. 2020. Kieker: A monitoring frame-

work for software engineering research. Software Impacts 5 (2020), 100019.
[6] Vojtěch Horký, Jaroslav Kotrč, Peter Libič, and Petr Tůma. 2016. Analysis of

Overhead in Dynamic Java Performance Monitoring. In Proc. 7th ACM/SPEC Int.
Conf. on Performance Engineering. ACM, 275–286.

[7] Vojtěch Horký, Peter Libič, Lukáš Marek, Antonin Steinhauser, and Petr Tůma.

2015. Utilizing Performance Unit Tests To Increase Performance Awareness. In

Proc. 6th ACM/SPEC Int. Conf. on Performance Engineering. ACM, 289–300.

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G Griswold. 2001. An overview of AspectJ. In Proc. 15th European Conf.
on Object-Oriented Programming. Springer, 327–354.

[9] Holger Knoche and Holger Eichelberger. 2018. Using the Raspberry Pi and

Docker for Replicable Performance Experiments: Experience Paper. In Proc. 8th
ACM/SPEC Int. Conf. on Performance Engineering. 305–316.

[10] Daniel Lehmann and Michael Pradel. 2019. Wasabi: A framework for dynami-

cally analyzing webassembly. In Proc. 24th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems. 1045–1058.

[11] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and

Zhengwei Qi. 2012. DiSL: A domain-specific language for bytecode instrumenta-

tion. In Proc. 11th Int. Conf. on Aspect-oriented Software Development. 239–250.
[12] Dušan Okanović, Milan Vidaković, and Zora Konjović. 2013. Towards perfor-

mance monitoring overhead reduction. In Proc. 11th IEEE Int. Symposium on
Intelligent Systems and Informatics. 135–140.

[13] Adam Przybyłek. 2018. An empirical study on the impact of AspectJ on software

evolvability. Empirical Software Engineering 23, 4 (2018), 2018–2050.

[14] David Georg Reichelt, Reiner Jung, and André van Hoorn. 2023. More is Less in

Kieker? The Paradox of No Logging Being Slower Than Logging. In Proc. 14th
Symposium on Software Performance.

[15] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2021. Overhead

Comparison of OpenTelemetry, inspectIT and Kieker. In Proc. 12th Symposium
on Software Performance.

[16] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2023. Towards

Solving the Challenge ofMinimal OverheadMonitoring. InComp. 14th ACM/SPEC
Int. Conf. on Performance Engineering. 381–388.

[17] Anas Shatnawi, Bachar Rima, Zakarea Alshara, Gabriel Darbord, Abdelhak-

Djamel Seriai, and Christophe Bortolaso. 2023. Telemetry of Legacy Web Ap-

plications: An Industrial Case Study. (2023). https://hal.science/hal-04344518/

document

[18] Chukri Soueidi, Marius Monnier, and Yliès Falcone. 2023. Efficient and expressive

bytecode-level instrumentation for Java programs. International Journal on
Software Tools for Technology Transfer 25, 4 (2023), 453–479.

[19] Jan Waller. 2015. Performance Benchmarking of Application Monitoring Frame-
works. Ph. D. Dissertation. Kiel University, Germany.

[20] Jan Waller, Nils Christian Ehmke, and Wilhelm Hasselbring. 2015. Including

Performance Benchmarks into Continuous Integration to Enable DevOps. ACM
SIGSOFT Software Engineering Notes 40, 2 (3 2015), 1–4.

[21] J. Waller and W. Hasselbring. 2012. A Comparison of the Influence of Different

Multi-Core Processors on the Runtime Overhead for Application-Level Monitor-

ing. In Proc. Int. Conf. on Multicore Software Engineering, Performance, and Tools.
Springer, 42–53.

256

https://hal.science/hal-04344518/document
https://hal.science/hal-04344518/document

9th Workshop on Challenges in Performance Methods for
Software Development: WOSP-C’24 Chairs’ Welcome

Luca Traini
luca.traini@univaq.it
University of L’Aquila

Department of Information Engineering, Computer
Science, and Mathematics

L’Aquila, Italy

Heng Li
heng.li@polymtl.ca

Polytechnique Montréal
Computer and Software Engineering

Montréal, Canada

ABSTRACT
We are pleased to welcome you to the 9th Workshop on Challenges
in Performance Methods for Software Development – WOSP-C
2024 (https://wosp-c.github.io/wosp-c-24/). This year’s edition con-
tinues its tradition of being the forum for discussions on novel and
unresolved challenges in the field of software performance engi-
neering. The primary areas of interest for the workshop remain
consistent with previous editions, but the scope of this year’s edi-
tion has been extended to include additional novel topics. WOSP-C
2024 will cover topics such as performance assurance processes,
the interplay between performance and privacy, green software,
performance modeling, and simulation, among others.

We warmly welcome attendees to attend our keynote, and re-
search talks:

• [Keynote] 25+ years of software performance: from integrated
system modeling to ML-based analysis, what’s next? Vittorio
Cortellessa (University of L’Aquila).

• [Keynote] Closing the Loop: Building Self-Adaptive Software
for Continuous Performance Engineering. Marin Litoiu (York
University).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651438

• [Work-in-Progress Paper] Green Software Metrics. Andreas
Brunnert.

• [Short Paper] Privacy-Preserving Sharing of Data Analytics
Runtime Metrics for Performance Modeling. Jonathan Will,
Dominik Scheinert, Seraphin Zunzer, Jan Bode, Cedric Kring
and Lauritz Thamsen.

• [Full Paper] HetSim: A Simulator for Task-based Scheduling
on Heterogeneous Hardware. Marcel Lütke Dreimann, Birte
Friesel and Olaf Spinczyk.

• [Full Paper] Approximating Fork-Join Systems via Mixed
Model Transformations. Rares Dobre, ZifengNiu andGiuliano
Casale.

• [Full Paper] Establish a Performance Engineering Culture in
Organizations. Josef Mayrhofer.

Putting together WOSP-C 2024 was a team effort. We first thank
the authors for providing the content of the program. We are grate-
ful to the program committee, who worked very hard to review
papers and provide feedback to the author.s Finally, we thank ICPE
for hosting our workshop.

We hope that you will find this program interesting and thought-
provoking and that the symposium will provide you with a valuable
opportunity to share ideas with other researchers and practitioners
from institutions around the world.

ACM Reference Format:
Luca Traini and Heng Li. 2024. 9th Workshop on Challenges in Perfor-
mance Methods for Software Development: WOSP-C’24 Chairs’ Welcome.
In Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/3629527.3651438

257

https://wosp-c.github.io/wosp-c-24/
https://doi.org/10.1145/3629527.3651438
https://doi.org/10.1145/3629527.3651438

Closing the Loop: Building Self-Adaptive Software
for Continuous Performance Engineering

Marin Litoiu
 Electrical Engineering and Computer Science Department, School of IT

York University
 Totonto, Ontario, Canada

 mlitoiu@yorku.ca

ABSTRACT
Cloud computing and cloud-native platforms have rendered
runtime environments more malleable. Simultaneously, the
growing demand for flexible and agile software applications and
services has driven the emergence of self-adaptive architectures.
These architectures, in turn, facilitate software performance
modeling, tuning, optimization, and scaling in a continuous
manner, blurring the boundary between development-time and
run-time. Self-adaptive software employs feedback loop
controllers inspired by control theory or variations of the
Monitoring-Analysis-Planning-Acting (MAPE) architecture.
Whether implemented in a centralized or decentralized manner,
most controllers utilize performance models that are learned or
tuned at run-time. This shift implies that software is designed to
be observable and controllable during execution, presupposing
the co-design of software applications and their runtime
controllers.

This talk commences with a succinct overview of the evolution of
self-adaptive software, accentuating key milestones along the
journey. Subsequently, recent advancements in software
performance modeling at runtime and the role of learning-enabled
performance management during software operation are
presented.

Two recent works are highlighted: one focusing on constructing
robust performance models to sustain continuous operation and
deployment of cloud-native software, and the other on utilizing
multimodal models for performance anomaly detection. The
former supports cloud operations like continuous deployment of
co-located applications, migration, consolidation of services, or
scaling in response to workloads or interferences. The latter is
tailored to support performance anomaly detection, localization,
and identification of root causes, facilitating swift remediation of
faults using generative AI. The final segment of the talk delves
into current challenges in developing self-adaptive systems,

presenting insights from a recent survey on the state of self-
adaptive software in the industry and the challenges perceived by
practitioners.

CCS CONCEPTS
•Software and its engineering •Software and its
engineering~Software organization and properties~Extra-
functional properties~Software performance

KEYWORDS
Self-adaptive software systems, self-optimization, software
performance, performance models, cloud computing, machine
learning, generative AI

ACM Reference format:

Marin Litoiu. 2024. Closing the Loop: Building Self-Adaptive Software for
Continuous Performance Engineering, Keynote, In WOSP-C 2024,
Proceedings of ICPE '24 Companion, May 7–11, 2024,London, United
Kingdom, 2 pages, https://doi.org/10.1145/3629527.3652910

BIOGRAPHY
Marin Litoiu is a Professor of Software
Engineering in the Department of
Electrical Engineering and Computer
Science and in the School of
Information Technology, York
University. He is also a Fellow of the
Canadian Academy of Engineering.
Dr. Litoiu leads the Adaptive Software
Research Lab and focuses on making
large software systems more versatile,

resilient, energy-efficient, self-healing and self-optimizing. His
research won many awards including the IBM Canada CAS
Research Project of the Year Award, the IBM CAS Faculty Fellow
of the Year Award for his “impact on IBM people, processes and
technology,” three Best Paper Awards and two Most Influential
Paper Awards. Prior to joining York University, Dr. Litoiu was a
Research Staff member with the Centre for Advanced Studies in
the IBM Toronto Lab where he led the research programs in
software engineering and autonomic computing. He received the
Canada NSERC Synergy Award for Innovation in recognition for
these collaborative university/industry activities. He was also

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
ICPE '24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652910

258

mailto:mlitoiu@yorku.ca
https://doi.org/10.1145/3629527.3652910

recipient of the IBM Outstanding Technical Contribution Award
for his research vision on Cloud Computing. Dr. Litoiu is one of
the founders of the SEAMS Symposium series—ACM/IEEE
Software Engineering for Adaptive and Self-Managing Systems.
Dr. Litoiu is also the Scientific Director of “Dependable Internet of
Things Applications (DITA),” an NSERC CREATE program.

ACKNOWLEDGMENTS
This work has been supported by IBM Centre for Advances
Studies, National Science and Engineering Research Council of
Canada and Ontario Research Fund- Research Excellence.

REFERENCES
[1] Sarda Komal, Namrud Zakeya, Rouf Raphael, Ahuja Harit, Rasolroveicy

Mohammadreza, Litoiu Marin, Shwartz Larisa, and Watts Ian. 2023. ADARMA
Auto-Detection and Auto-Remediation of Microservice Anomalies by
Leveraging Large Language Models. In Proceedings of the 33rd Annual
International Conference on Computer Science and Software Engineering
(CASCON '23). IBM Corp., USA, 200–205.

[2] T. Zheng, C. M. Woodside and M. Litoiu, “Performance Model Estimation and
Tracking Using Optimal Filters,” in IEEE Transactions on Software Engineering,
vol. 34, no. 3, pp. 391-406, May-June 2008, doi: 10.1109/TSE.2008.30.

[3] Y. Rouf, J. Mukherjee and M. Litoiu, “Towards a Robust On-line Performance
Model Identification for Change Impact Prediction,” 2023 IEEE/ACM 18th
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), Melbourne, Australia, 2023, pp. 68-78, doi:
10.1109/SEAMS59076.2023.00018.

[4] D. Weyns, M.Litoiu et al., “Towards Better Adaptive Systems by Combining
MAPE, Control Theory, and Machine Learning,” 2021 International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
Madrid, Spain, 2021, pp. 217-223, doi: 10.1109/SEAMS51251.2021.00036.

[5] D. Weyns, M. Litoiu et al.. 2023. Self-Adaptation in Industry: A Survey. ACM
Trans. Auton. Adapt. Syst. 18, 2, Article 5 (June 2023), 44 pages.
https://doi.org/10.1145/3589227

[6] R. Rouf, M. Rasolveicy, M Litoiu et al., InstantOps: A Joint Approach to System
Failure Prediction and Root Cause Identification in Microservices Cloud-
Native
Applications, Proceedings of ACM/SPEC ICPE 2024, London, UK, May 2024.

[7] K. Sarda, Z. Narud, M. Litoiu et al. KubePlaybook: A Repository of Ansible
Playbooks for Kubernetes Auto-Remediation with LLMs, Proceedings of
ACM/SPEC ICPE 2024, London, UK, May 2024.

[8] de Lemos, R. et al. (2013). Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M.
(eds) Software Engineering for Self-Adaptive Systems II. Lecture Notes in
Computer Science, vol 7475. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-35813-5_1

ICPE Companion '24 , May 7–11, 2024, London, United Kingdom Marin Litoiu

259

https://doi.org/10.1145/3589227

25+ years of Software Performance:
From Integrated System Modelling to ML-based Analysis,

What’s Next?
Vittorio Cortellessa

vittorio.cortellessa@univaq.it
University of L’Aquila

Italy

ABSTRACT
A new era has been opened at the end of last century in the perfor-
mance analysis research area, when an explicit and independent
role has started to be given to software in performance analysis
of computing systems. Indeed, software has moved from being a
monolithic element, strictly dependent on the platform where it
is deployed and exclusively aimed at producing values to param-
eterize a platform model, to become an independent model itself,
with its own components and interactions. This change has im-
pacted all fields of this research area, such as: modeling languages,
processes for analysis and synthesis of software models, platform
model parameterization, performance model solution techniques,
interpretation of results, benchmarking and performance testing. It
has also represented one of the triggers that lead to the birth of a
research community around the computing system performance
issues strictly related to software aspects. Indeed, in 1998 the first
ACM Workshop on Software and Performance (WOSP) took place,
with the aim of getting together researchers and practitioners of
software area with the ones of the performance area, so to offer a
playground where different skills and expertise could join and origi-
nate a new vision on the role of software in performance assessment.
This talk attempts to reconstruct the road of software performance
research that has started at the time of the first WOSP event in 1998
down to today events (i.e., ICPE conference, WOSP-C and other
workshops). The spirit of the talk is to observe the evolution of this
research area, including successful and (apparently) unsuccessful
directions. Some promising directions will be tentatively sketched
by “standing on the shoulders of giants”.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
ware verification and validation; Systemmodeling languages.

KEYWORDS
Software Performance, Model-Driven Engineering, Performance
Testing, Benchmarking.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652884

ACM Reference Format:
Vittorio Cortellessa. 2024. 25+ years of Software Performance: From Inte-
grated SystemModelling toML-based Analysis,What’s Next?. InCompanion
of the 15th ACM/SPEC International Conference on Performance Engineering
(ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom. ACM, New
York, NY, USA, 1 page. https://doi.org/10.1145/3629527.3652884

SHORT BIO
Vittorio Cortellessa is Professor at the Department of Computer Sci-
ence and Engineering, and Mathematics of University of L’Aquila.
He had received his Ph.D. in Computer Science at University of
Roma Tor Vergata in 1995. Between 1996 and 1999 he held postdoc
positions at the same institution and at European Space Agency.
In 2000 and 2001 he has been Research Assistant Professor at the
Computer Science and Electrical Engineering Department of West
Virginia University. Since 2022 he is at University of L’Aquila. His
main research interests are in the areas of Software Performance,
Software Reliability, and Model-Driven Engineering. He has pub-
lished more than 120 papers on international conferences and jour-
nals in these areas, and he has co-authored a monographic book
on Software Performance. He has served and serves in program
committees and editorial boards of conference and journals in the
Software Engineering domain. He is currently Co-Chair of the
Steering Committee of ACM/SPEC International Conference on
Performance Engineering (ICPE) and member of the Steering Com-
mittee of IEEE International Conference on Software Architecture
(ICSA). More information at: http://people.disim.univaq.it/cortelle/.

ACKNOWLEDGEMENTS
This work is fully supported by Italian Government (Ministero
dell’Università e della Ricerca, PRIN 2022 PNRR): “RECHARGE:
monitoRing, tEsting, and CHaracterization of performAnce Re-
GrEssions” (cod.P2022SELA7).

260

https://orcid.org/0000-0002-4507-464X
https://doi.org/10.1145/3629527.3652884
https://doi.org/10.1145/3629527.3652884

HetSim: A Simulator for Task-based Scheduling on
Heterogeneous Hardware

Marcel Lütke Dreimann
Universität Osnabrück
Osnabrück, Germany

marcel.luetkedreimann@uos.de

Birte Friesel
Universität Osnabrück
Osnabrück, Germany
birte.friesel@uos.de

Olaf Spinczyk
Universität Osnabrück
Osnabrück, Germany

olaf@uos.de

ABSTRACT
Server hardware is becoming more and more heterogeneous, with
an increasingly diverse landscape of accelerators such as GPUs,
FPGAs, or novel processing-in-memory (PIM) technologies. De-
signing and evaluating scheduling algorithms for these is far from
trivial due to accelerator-specific setup costs, compute capabilities,
and other characteristics. In fact, many existing scheduling simula-
tors only consider some of these characteristics, or only support a
specific sub-set of accelerators. To overcome these challenges, we
present HetSim, a modular simulator for task-based scheduling on
heterogeneous hardware. HetSim enables research on online and
offline scheduling and placement strategies for modern compute
platforms that combine CPU cores with multiple GPU, FPGA, and
PIM accelerators. It is efficient, fair, and compatible with a variety
of common workload descriptions, output metrics, and visualiza-
tion tools. We use HetSim to reproduce results from Alebrahim
and Ahmad, and examine how accelerator characteristics affect
the performance of various scheduling strategies. Our results in-
dicate that ignoring accelerator characteristics during simulation
is often detrimental, and that the ideal scheduling algorithm for
a given workload may depend on available accelerators and their
characteristics. HetSim is available as open-source software.

CCS CONCEPTS
• General and reference → Evaluation; Experimentation; •
Software and its engineering → Scheduling; Memory manage-
ment; •Human-centered computing→ Visual analytics; • Com-
puting methodologies → Discrete-event simulation.

KEYWORDS
Simulator, Heterogeneous Hardware, Scheduling

ACM Reference Format:
Marcel Lütke Dreimann, Birte Friesel, and Olaf Spinczyk. 2024. HetSim:
A Simulator for Task-based Scheduling on Heterogeneous Hardware. In
Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3629527.3652275

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652275

1 INTRODUCTION
Server hardware has become more and more heterogeneous over
recent years. In addition to many-core processors, it can now also
include multiple GPUs or FPGAs. Moreover, new processing-in-
memory technologies such as UPMEM PIM are emerging and be-
coming available for end users. Each of these accelerators has its
own characteristics and limitations: it can achieve outstanding per-
formance on workloads that it was designed for while being of
limited use in other cases.

One common limitation is the need to allocate a CPU core for
setup purposes. Consider the trace of PolyBench’s 2mm OpenCL
benchmark [11] shown in Fig. 1. Even though the benchmark target
is a GPU, OpenCL first spends 200ms with CPU-only setup func-
tions. The workload itself (mm2_kernel2) makes up less than 25%
of execution time 1 and is the only component that actually uses
the GPU.

Hence, setup cost is far from negligible when designing or evalu-
ating scheduling algorithms. This also applies to other accelerators.
For instance, dynamic offloading with FPGAs relies on costly dy-
namic reconfiguration, and executing tasks on UPMEM PIM is also
far from instantaneous [9].

Similarly, accelerators can use dedicated memory or share it with
CPU cores. The former may require data transfers between main
memory and accelerator memory. This heterogeneity and diver-
sity of execution components poses new challenges for scheduling
and placement decisions. Depending on the software layer where
they are implemented, these can affect developers of operating sys-
tems, database management systems, language runtimes, or even
applications.

Currently, integrating accelerators into applications is usually
up to application developers. Novel system software like MxTask-
ing [16] and userspace frameworks like StarPU [4] aim to help
them with this task. These projects rely on tasks as control flow ab-
stractions and offer a unified framework for programming different
kinds of accelerators. They also deal with scheduling decisions that
come up if tasks can be executed on several different accelerators.
The increasing complexity and heterogeneity of accelerators leads
to increasing complexity in dealing with these decisions.

The contributions of this paper are three-fold.
• We provide a discussion of challenges that designers and
performance evaluation methods of scheduling strategies
for heterogeneous hardware face (Section 3).

• We present HetSim, a simulator for task execution on het-
erogeneous hardware (Section 4). It is capable of evaluating

1While clBuildProgram latency can be reduced by using pre-compiled GPU binaries in
this particular example, the discrepancy between setup cost (CPU) and execution time
(GPU) remains.

261

https://orcid.org/0009-0007-2426-4798
https://orcid.org/0000-0002-0688-9440
https://orcid.org/0000-0001-9469-2367
https://doi.org/10.1145/3629527.3652275
https://doi.org/10.1145/3629527.3652275

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Marcel Lütke Dreimann, Birte Friesel, and Olaf Spinczyk

Figure 1: Execution trace of PolyBench’s 2mm OpenCL benchmark [11] on an integrated Intel UHD Graphics Xe GPU. The
benchmark uses 16 execution units; the trace has been extracted by the OpenCL Intercept Layer [3].

scheduling algorithms on user-defined hardware platforms
without the need for real-world measurements. In addition
to a set of built-in workloads, it also accepts workload def-
initions provided by users or by existing DAG workload
generators. An optional event log containing task phases
and memory transfers allows for user-friendly visualization
with existing tools such as Perfetto. With HetSim, we are
able to reproduce results from Alebrahim and Ahmad.

• WeuseHetSim to examine how accelerator-specific overhead
affects the performance of different scheduling strategies
(Section 5).

The next section examines related work and outlines the gaps
that HetSim aims to fill. We then cover our three contributions (see
above) and conclude in Section 6.

2 RELATEDWORK
The literature offers a variety of scheduling simulators for a diverse
set of use cases.

Suranauwarat presents a simulator that exclusively deals with
single-CPU scheduling algorithms [20]. It is meant to be used for
educational purposes and comes with graphical animations, but
does not support heterogeneous hardware.

Realtss focuses on evaluating real-time CPU scheduling poli-
cies without having to implement them in a real-time operating
system [8]. It has education and research in mind.

ScSF is intended for simulation-based high-performance com-
puting (HPC) scheduling research [18]. It offers tools for workload
modeling and generation, system simulation, comparative workload
analysis, and experiment orchestration.

SimGrid simulates distributed applications in grid environments [7].
It focuses on communication rather than computation, with latency-
and bandwidth-bound links between nodes and bandwidth sharing
in case of simultaneous transfers. While it can handle heteroge-
neous hardware, its host resource does not support accelerator-
specific behavior. Moreover, it measures performance based on
floating-point operations per second (FLOPS). We will explain the
drawback of this metric in Section 3.5.

Due to SimGrids’s detailed communication simulation and ease
of use, several simulators build on top of its API. For instance,
Alea focuses on event-based scheduling of heterogeneous jobs on
heterogeneous resources with dynamic runtime changes [14]. It
gathers information about resource status and simulation results,
which can be visualized later.

Even though many simulators can gather statistics and offer
visualizations, none that we are aware of support heterogeneous
hardware with accelerator-specific behavior. They do not consider
setup or reconfiguration costs, and only provide limited statistics
and simulator output. Moreover, many simulators have been tailor-
made for specific classes of scheduling strategies or hardware com-
ponents, limiting their re-usability. Our contribution, HetSim, fills

these gaps by dealing with accelerator-specific attributes in ar-
bitrary schedules and hardware components. Combined with its
support for third-party workload generation and visualization tools,
this makes it more flexible than existing simulators.

3 DESIGN AND EVALUATION CHALLENGES
As mentioned in the introduction, modern frameworks for the man-
agement of heterogeneous computing resources use a control flow
abstraction called tasks: self-contained units of work that cannot
be preempted. The advantage of tasks over traditional abstractions
such as POSIX threads or GPU/PIM kernels is their simplicity, which
allows for having a unified control flow model for all supported
accelerators.

While this addresses one common issue when dealing with het-
erogeneous accelerators, task-based scheduling algorithms still face
a variety of challenges.Wewill now discuss the fivemost prominent
ones that we have identified: memory heterogeneity, accelerator
heterogeneity, task setup, driver frameworks, and the hardware
model.

3.1 Memory Heterogeneity
While most accelerators come with dedicated memory, they can
also share memory and even the last-level cache with the CPU – in-
tegrated GPUs such as Intel’s UHD 630 are a prominent example for
this. Additionally, only some accelerators with dedicated memory
support direct memory access (DMA). So, a task will incur different
amounts of data transfer overhead depending on where it is sched-
uled. At the same time, in both cases, subsequent tasks scheduled
on the same accelerator may benefit from already-present data or
warm caches. So, the performance of an individual task depends
not just on its own schedule, but also on the schedule of preceding
tasks that access shared data. Grouping those onto accelerators
with a shared cache can improve performance or save energy [10].

3.2 Accelerator Heterogeneity
Accelerators are not one-size-fits-all devices: GPUs excel at parallel
tasks that access shared memory, whereas UPMEM PIM works best
with embarrassingly parallel workloads without synchronization or
shared memory [17]. Executing a task on an unsuitable accelerator
may result in worse performance than just running it on a CPU
core [9]. Scheduling strategies have to take this into account, and
simulators must be aware of it as well in order to provide useful
results. This is a balance act between general-purpose algorithms
and simulators that assume anything is supported anywhere, and
the more complex task of encoding and utilizing knowledge about
the specific properties of each accelerator.

262

HetSim: A Simulator for Task-based Scheduling on Heterogeneous Hardware ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

3.3 Task Setup
Many accelerators rely on CPU support just like conventional pe-
ripheral devices. A CPU core has to allocate (part of) the accelerator,
transfer the task’s program code and possibly data, start the task,
and handle communication (e.g. waiting for the task to finish and
retrieving results). Both scheduling strategies and simulators must
take this reliance on CPU cores into account, especially for short
tasks where the setup time may exceed actual task execution (cf.
Fig. 1). This is another balance act: depending on a task’s attributes,
using a less suitable accelerator or plain CPU execution may still
be faster than the incurred CPU-bound setup cost.

3.4 Driver Frameworks
All accelerators that we are aware of rely on an accelerator-specific
driver framework in order to execute tasks. Vendors recommend
their own software for optimal performance, e.g. CUDA2, OneAPI3,
or the UPMEM SDK4. However, when updates are applied to this
software, the accelerator characteristic may change. Driver opti-
mizations can reduce execution time on the accelerator, or affect
the setup time of a task. If scheduling algorithms are to be evaluated
on real hardware within a scheduling framework, the scheduling
framework must implement the interfaces to all possible drivers.
While OpenCL comes close by providing a standard (including a
programming language) that encompasses a variety of accelerator
types, some features and novel technologies such as UPMEM PIM
are missing.

3.5 Hardware Model
Scheduling algorithms and simulators rely on a hardware model
to determine the suitability of a given accelerator for a given task.
While metrics such as clock frequency or FLOPS may work well in
homogeneous settings (e.g. scheduling tasks on a CPU with slow
efficiency and fast performance cores), they are insufficient for
our purpose. Different accelerators may use different architectures,
and thus respond differently to heavy use of branch instructions,
vector operations, synchronization, shared memory accesses, and
similar. For instance, GPUs tend to work well with floating point
math but suffer from branching-induced performance penalties,
whereas UPMEM PIM excels at integer vector operations [12]. So,
actual accelerator performance is a function of the type of task it
executes, and not just its instruction count or a related numeric
metric. FLOPS and frequency, as used by e.g. SimGrid, capture none
of these nuances.

When dealing with dedicated memory, data transfer overhead
must be considered as well. The interconnect used for data transfer
typically has a well-defined latency and throughput. However, if
multiple data transfers are executed on a single interconnect at the
same time, the bandwidth is shared.

4 HETSIM OVERVIEW
We now present our main contribution: HetSim, an event-based,
discrete scheduling simulator that addresses the aforementioned
challenges. It follows amodular design to allow for easy adjustments
2https://developer.nvidia.com/cuda-toolkit
3https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
4https://sdk.upmem.com/

and extensions. Fig. 2 shows its main components and how they
interact with each other.

The Accelerator base class implements common functionality
and checks, such as per-task memory allocations or determining
whether a given task actually has an implementation for this accel-
erator. Its derived classes implement accelerator-specific behavior.
Each Accelerator instance references a single MemoryPool that
represents the accelerator’s memory and implements data object
allocation and movement. Multiple accelerators can share the same
memory pool to represent shared memory environments.

The Environment class stores a list of all accelerators (populated
by ModelLoader) andworkload tasks (generated by TaskSetGenerator).
Each Task has a list of dependencies and accessed data objects; a
single data object can be referenced by multiple tasks. Lastly, the
simulator provides a Profiler that keeps track of all task phases
and memory transfers. The resulting statistics can be printed on
the console or saved in Google’s trace format5.

The following subsections describe how HetSim supports the
analysis of scheduling and placement strategies for heterogeneous
systems. We will cover workload generation, the simulation process
itself, and simulation output.

4.1 Workload Generation
When evaluating scheduling algorithms, it is important to ensure
that workloads resemble a wide range of real-world applications
and contain randomized components to identify systematic errors
in scheduling strategies. At the same time, it is desirable to obtain
deterministic simulation results for debugging and reproduction
purposes.

HetSim achieves both by providing a set of random number gen-
erators that can alter workload attributes, and storing the random
seeds and other workload parameters of each simulation run in
a Config object (cf. Fig. 2). Randomizable attributes include the
amount and size of data objects accessed by a task, its expected
runtime, and its set of supported accelerators. Each simulation
run can be reproduced by loading the associated hardware model
description and configuration into a subsequent HetSim invocation.

On top of this, HetSim supports four different types of task sets.
It can also simulate mixed workloads that combine multiple task
set types.

Random task sets make use of all possible characteristics an ap-
plication can have, including data (de)allocation and dependencies
between tasks. The latter can be disabled if the increased scheduling
complexity caused by task dependencies is undesirable.

Database Queries often serve as motivation for heterogeneous
hardware, as database operators can benefit from significant perfor-
mance boosts by utilizing GPU, FPGA or PIM accelerators [5, 15, 19].
The task set is composed of query and aggregation tasks. Each query
task accesses the same large data object (the database) and allo-
cates a smaller data object for its result, and the aggregation tasks
combine those intermediate results into a single data object.

Directed Acyclic Graphs (DAGs) are often used for evaluating
scheduling strategies such as Heterogeneous Earliest Finish Time
(HEFT) [2, 13]. HetSim supports the DAG task set format of two

5https://docs.google.com/document/d/1CvAClvFfyA5R-
PhYUmn5OOQtYMH4h6I0nSsKchNAySU

263

https://developer.nvidia.com/cuda-toolkit
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://sdk.upmem.com/
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Marcel Lütke Dreimann, Birte Friesel, and Olaf Spinczyk

UPMEM

UPMEM behavior

FPGA

FPGA core behavior

GPU

GPU core behavior

CPU Core

CPU core behavior

Environment

Orchestrates all together

MemoryPool

Represents memory;
can move data objects

Data

Represents a data object
with its properties

Accelerator

Implements basic
accelerator behavior

1..*111..*

1 1..*
ModelLoader

Loads/stores model

1 1

TaskSetGenerator

Generates different sets
of tasks

Profiler

Collects scheduling and
memory events

111 1

Config

Loads/stores
configuration of simulator

11

Task

Represents a task with
its properties

1..*1..*

Figure 2: Overview over the most important simulator components.

existing tools: DAGGEN and Pegasus. DAGGEN generates synthetic,
random task graphs that are intended for CPU scheduling [21].
Pegasus workloads, on the other hand, are based on real scientific
workloads like RNA analysis or the characterization of earthquake
hazards [6]. In both cases, each graph node represents a task, and
each edge encodes a dependency between two tasks. DAGGEN
associates tasks with random computation costs, whereas Pegasus
workloads do not provide any runtime annotation. Hence, HetSim
generates new computation costs for accelerators according to the
provided simulator configuration, and annotates graph edges with
communication costs.

User-defined task sets allow for evaluating scheduling strate-
gies that are optimized for specific workloads, and for analyzing the
performance and acceleration potential of applications rather than
scheduling algorithms. Users can simulate applications that do not
yet make use of heterogeneous hardware with a fixed scheduling
strategy, and see how enabling the execution of tasks on specific
accelerators changes application runtime and resource utilization.

4.2 Simulation
HetSim is implemented as a C++ library. This way, developers can
easily port existing scheduling algorithms to the simulator, or im-
plement new algorithms that can later be used in real systems.
Additionally, it allows for the use of debugging tools to analyze
scheduling algorithms in detail. HetSim supports both online and
offline scheduling algorithms. It is available as open source software
and extensively documented, thus enabling developers to extend
its set of accelerators with custom implementations.

In addition to scheduling algorithm (C++) and task set (Sec. 4.1),
users must specify the simulated hardware platform. Such a plat-
form description consists of four elements: memory pools, acceler-
ator architectures, the accelerators themselves, and links between
memory pools. HetSim uses an XML format for platform descrip-
tions in order to remain flexible when it comes to supporting future
heterogeneous hardware platforms. Listing 1 shows an example;
we will now describe its four components in detail.

AMemoryPool represents main memory (DRAM), a specific
accelerator’s dedicated memory, or similar. The memory model is

<MemoryPool id="0" size="16384" />
<MemoryPool id="1" size="8192" />
<Architecture id="0" perf_min="1.0" perf_max="1.5" />
<Architecture id="1" perf_min="1.8" perf_max="2.0" />
<Accelerator id="0" archid="0" memorypool="0" type="CPUCore" setupcost="0"

dma="1" modelerror="0.0" poweridle="10.0" powerload="25.0" />
<Accelerator id="1" archid="0" memorypool="0" type="CPUCore" setupcost="0"

dma="1" modelerror="0.0" poweridle="10.0" powerload="25.0" />
<Accelerator id="2" archid="1" memorypool="1" type="GPU" setupcost="250" dma=

"0" modelerror="0.0" poweridle="20.0" powerload="100.0" />
<Link src="0" dst="1" speed="100" />
<Link src="1" dst="0" speed="100" />

Listing 1: Excerpt of a hardware platform description.

not limited to volatile RAM: it also supports persistent memory
such as Optane DCPMMs and SSDs. Each memory pool must have
a unique ID and a maximum size.

An Architecture encodes performance attributes of a specific
accelerator architecture, e.g. a specific GPU model. It has a unique
ID as well as minimum and maximum performance factors. HetSim
uses these to generate randomized computation costs based on the
interval defined by the abstract performance factors. Overlapping
performance ranges of architectures allow for non-linear computa-
tion costs. For example, consider two architecture with performance
ranges [1.0, 2.0] and [1.5, 2.5]. Tasks will most likely run faster on
the second architecture due to its larger performance factors. How-
ever, because of the overlap [1.5, 2.0], tasks can also be equally fast
or the first architecture can be faster than the second. This way,
HetSim can break out of simple FLOPS-based performance models
like the one used in SimGrid.

An Accelerator is a concrete compute unit instance, e.g. a CPU
core or an FPGA. It references an accelerator architecture and a
memory pool by ID, and also has its own ID. The type indicates
whether it is a CPU, GPU, FPGA, UPMEM, or other kind of acceler-
ator. Additional parameters indicate the absolute setup cost for a
task (recall Fig. 1), DMA support, model error, and power usage in
idle as well as under load.

The idea behind model error is that the expected execution times
of individual tasks may be inaccurate. To examine how suscepti-
ble a scheduling algorithm is to such inaccuracies, users can set

264

HetSim: A Simulator for Task-based Scheduling on Heterogeneous Hardware ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

modelerror to a value within [0.0, 1.0) that controls the dispersion
of actual task execution time around the expected execution time.
For instance, with modelerror="0.1", actual execution time can
be up to 10 % lower or higher than expected execution time.

The poweridle and powerload values are used by HetSim to
estimate the power consumption of each individual accelerator
and of the entire system. In order to define virtual accelerators,
the corresponding accelerator can be duplicated with the same
memorypool ID but a new accelerator ID.

Finally, each Link encodes a link between two memory pools
and its data transfer speed. Duplex communication is modeled by
two Link elements with individual bandwidths.

4.3 Statistics and Visualization
Adequate evaluation metrics and statistics as well as intuitive visu-
alization are crucial for understanding and analyzing scheduling
algorithms and application performance. HetSim supports a variety
of those.

Metrics. Given a set of accelerators 𝐴 and a schedule plan, HetSim
provides its simulated total execution time (makespan) as well as
the SLR, Speedup and Efficiency metrics from the literature [1].

SLR (Schedule Length Ratio) is often used to compare sched-
ules in a way that is independent of DAG topology. It divides the
makespan by the sum of task execution times on the critical path.
Hence, a better strategy has a lower SLR.

SLR(plan) = makespan(plan)∑
𝑡𝑖∈𝐶𝑃 min𝑎∈𝐴𝑤𝑡𝑖,𝑎

Speedup describes how much the schedule benefits from using
multiple accelerators. It divides the fastest sequential execution
time that can be achieved when scheduling all tasks on a single
accelerator by the makespan.

Speedup(plan) =
min𝑎∈𝐴

∑
𝑡𝑖∈𝑇 𝑤𝑡𝑖,𝑎

makespan(plan)
Efficiency, in turn, describes how well the scheduling algorithm

utilizes the accelerators. It is defined as the ratio of speedup over the
number of available accelerators |𝐴|. An efficiency of 1.0 indicates
that the total execution time of a task set is evenly split across all
available accelerators.

Efficiency(plan) = Speedup(plan)
|𝐴|

Task Phases and Visualization. HetSim records all memory transfers
and, for each task, which of the following phases it is currently in:

• Task setup
• Task blocked (waiting for dependency)
• Task blocked (waiting for setup)
• Setup blocked (accelerator busy)
• Data transfer
• Task execution

For each phase, it records start time, duration, and affected accel-
erator. For memory transfers, it also records the utilization of the
respective memory pool.

This allows HetSim to determine the accumulated time that each
accelerator has spent in the different task phases as well as its total
number of tasks and load. The recorded phases can be visualized

with Google’s Perfetto as shown in Fig. 3. Perfetto generates an
interactive plot similar to a Gantt diagram and provides utilities for
detailed analysis.

HetSim also determines the minimum, maximum, and average
wall-clock time that the machine running the simulation spent
making scheduling decisions. Simulation overhead is excluded from
this decision time. Thus, users can compare the overhead of different
scheduling algorithms.

5 EXAMPLE AND EVALUATION
We will now analyze four scheduling algorithms (three online, one
offline) to demonstrate the scientific usefulness, performance, and
correctness of HetSim. Those are heterogeneous Round Robin (hRR),
GreedyET, GreedyDS, and HEFT. Source code, data, and analysis
scripts are available at https://ess.cs.uos.de/git/artifacts/wosp-c-
2024-hetsim-artifacts.

hRR is a naïve adaptation of the Round Robin (RR) CPU sched-
uling algorithm for heterogeneous hardware. It does not consider
performance attributes, and simply iterates over all accelerators un-
til it has found one that is capable of executing the task. GreedyET
picks the accelerator with the shortest expected execution time, and
GreedyDS additionally takes data transfers and setup phases into
account. HEFT is an offline scheduling algorithm from the litera-
ture [2, 13]. All algorithms use CPU core 0 to run setup code for task
execution on a GPU or FPGA, if needed. An important distinction
is the ability to balance load across CPU cores and accelerators. In
contrast to hRR and HEFT, GreedyET and GreedyDS are not able
to do load balancing and might over-utilize preferred accelerators.

5.1 Performance of scheduling strategies
Our evaluation uses the Sipht6 Pegasus task set. It consists of 33
tasks with dependencies from the genome analysis / RNA transla-
tion domain. The hardware platform has eight CPU cores in two
different NUMA regions of 64 GiB each, an integrated GPU sharing
the memory with node 0, and a dedicated GPU and FPGA with 16
GiB of memory each. The link between the NUMA regions has a
bandwidth of 100 MB/s and all other links can transfer data with
25 MB/s.

We examine four configurations: a complexmodel with accelerator-
specific setup times, and a simple model without those. Both come
in two flavors: slow (little speedup provided by accelerators) and
fast (up to two times higher speedup). Table 1 lists the perfor-
mance intervals and setup costs, and Table 2 shows a HetSim con-
figuration excerpt for the complex models. In the simple cases,
min_fpga_reconf_time and max_fpga_reconf_time are set to 0.
We use the SLR metric from the literature to compare the strate-
gies. Note that this metric does not take setup costs into account
when calculating the critical path. An adjusted SLR definition for
heterogeneous hardware might be useful in the future.

On the simple model without setup costs, HEFT performs best
(see Fig. 4). As an offline algorithm, it has prior knowledge of all
tasks, so this is to be expected. Moreover, HEFT’s internal model is
close to our simple model, with the only exception being that HEFT
allows concurrency between memory transfers and task execution.

6https://pegasus.isi.edu/workflow_gallery/gallery/sipht/index.php

265

https://ess.cs.uos.de/git/artifacts/wosp-c-2024-hetsim-artifacts
https://ess.cs.uos.de/git/artifacts/wosp-c-2024-hetsim-artifacts
https://pegasus.isi.edu/workflow_gallery/gallery/sipht/index.php

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Marcel Lütke Dreimann, Birte Friesel, and Olaf Spinczyk

Figure 3: Small example simulator trace visualized by Perfetto.

Accelerator slow fast setup time
CPU Core [1.0, 1.0] [1.0, 1.0] 0
iGPU [0.8, 2.2] [0.8, 4.4] 100
dGPU [1.1, 3.6] [1.1, 7.2] 120
FPGA [1.2, 4.0] [1.2, 8.0] 90

Table 1: Performance intervals [perf_min, perf_max] and
setup times for “slow” and “fast” configurations.

Setting Setting
max_fpga_reconf_time 200 strict_exceptions 1
min_fpga_reconf_time 100 min_data_size 4
min_task_runtime 10 max_data_size 300
max_task_runtime 500 max_task_delay 0
partial_task_families 0 seed_uniform 3
min_data_objects 1 seed_task_runtime 1
max_data_objects 5 seed_data_size 2

Table 2: A simulator configuration that allows for FPGA re-
configuration. The seeds are different for each iteration.

In the slow flavor (left), hRR comes in second, and the greedy
strategies perform worst. HetSim output and Perfetto diagrams re-
veal that hRR benefits from load balancing, whereas the greedy
strategies execute all tasks on dGPU and FPGA and leave the
(slower) CPU and iGPU idle. In the fast flavor (right), on the other
hand, the greedy strategies outperform hRR. Here, hRR leaves ac-
celerators idle, as its round-robin algorithm treats eight (slow) CPU
cores and three (fast) accelerators as eleven equally fast compute
nodes.

Fig. 5 shows the impact of including setup costs in the models.
Now, hRR is best in both flavors, outperforming even the offline
HEFT approach. hRR prefers CPU cores (see above) and thus incurs
little CPU/FPGA setup costs, whereas HEFT chooses GPU or FPGA
execution without taking setup cost into account, degrading its
performance. Additionally, for HEFT and both greedy algorithms,
CPU core 0 is overloaded with setup code for GPU and FPGA tasks,
thus delaying their start. While GreedyET favors the FPGA due to
having the lowest execution time for most tasks, it still comes up
with a suboptimal schedule due to its high reconfiguration time.
GreedyDS performs better, but is still behind hRR and HEFT due
to its lack of load balancing and over-utilization of CPU core 0.
Overall, we see that mapping tasks to devices is far from trivial.

hRR GreedyET GreedyDS HEFT hRR GreedyET GreedyDS HEFT

2

3

4

5

6

Sc
he

du
le

 L
en

gt
h

Ra
tio

Figure 4: SLR for scheduling strategies without setup phases,
using slow (left) and fast (right) accelerators.

hRR GreedyET GreedyDS HEFT hRR GreedyET GreedyDS HEFT

10

20

30

Sc
he

du
le

 L
en

gt
h

Ra
tio

Figure 5: SLR for scheduling strategies with setup phases,
using slow (left) and fast (right) accelerators.

Any performance gains provided by an accelerator can easily be
nullified by its setup costs.

Another interesting insight is that the overall SLR of every algo-
rithm has increased in the fast flavor. This does not mean that the
makespan has increased, but rather that the length of the critical
path across the DAG was reduced. All of these findings could be
highly useful during research and development of scheduling and
placement strategies.

5.2 Costs of scheduling decisions
Of course, more complex scheduling decisions incur higher sched-
uling overhead. Fig. 6 shows the time per scheduling decision on
the Sipht task set, measured on the simulating machine. hRR, with
its lack of model usage, is fastest. GreedyET is five times slower,
and GreedyDS’s fine-grained approach results in an up to 20-fold
increase in overhead.

266

HetSim: A Simulator for Task-based Scheduling on Heterogeneous Hardware ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

hRR GreedyET GreedyDS
0

5000

10000

15000

20000

Ti
m

e
in

 n
s

Figure 6: Benchmark of scheduling algorithms with mini-
mum, maximum and average decision time measured on the
simulating machine (i7-11850H).

FAT=0.5 FAT=1 FAT=10
0

5

10

15

Sc
he

du
le

 L
en

gt
h

Ra
tio HEFT (Lit.)

PEFT (Lit.)
HEFT (HetSim)
PEFT (HetSim)

Figure 7: SLR results for HEFT and PEFT by Alebrahim and
Ahmad (annotated as “Lit.”) and Hetsim.

5.3 Simulation Correctness
To evaluate the correctness of HetSim, we used it to reproduce
HEFT and PEFT SLRs reported by Alebrahim and Ahmad. Those
build upon a hardware model with two processing units with dif-
ferent performance values for each task and without setup cost.
The input task sets were generated with DAGGEN with variable
levels of parallelism (“FAT” parameter). The HetSim reproduction
uses a hardware model consisting of two CPU cores with different
architectures and identical DAGGEN parameters. As Fig. 7 shows,
while absolute values differ slightly due to a different simulation
model, the relation between HEFT and PEFT remains the same.

When comparing HetSim’s plans with the example given by
Alebrahim and Ahmad, we see only a single difference. HetSim’s
simulation model does not allow memory transfer during task exe-
cution, while the HEFT and PEFT plan from the paper does.

5.4 Simulator performance
Lastly, we evaluated the performance of HetSim itself by using the
database query benchmark with the hRR algorithm. As Fig. 8 shows,
simulation time scales linearly with the number of tasks, with a
maximum of just 2.2 𝑠 for 500,000 tasks. Despite its single-threaded
implementation, HetSim is fast enough to simulate large task sets
in a reasonable amount of time. In practice, the simulation time was
not a limitation for us, as several simulations can run on different
cores at the same time.

1 51 101 151 201 251 301 351 401 451
Number of tasks in thousands

0.0

0.5

1.0

1.5

2.0

Ti
m

e
in

 s

Figure 8: Simulation time for large task sets on an i7-11850H.

6 CONCLUSION AND FUTUREWORK
We have presented HetSim, a scheduling simulator for heteroge-
neous hardware that allows developers to study and analyze sched-
uling algorithms for given workloads and hardware configurations.
We showed that it can help identify weaknesses of scheduling al-
gorithms. The simulator records statistics and allows visualization
of schedules by third-party tools. Furthermore, HetSim supports
benchmarking scheduling decisions to help developers evaluate the
performance overhead of complex algorithms. The simulator han-
dles large simulations with hundreds of thousands of tasks in only
a few seconds and can reproduce results from the literature. HetSim
is freely available at https://ess.cs.uos.de/git/software/hetsim under
an open source license. It can serve as a reusable evaluation tool
that removes the need for writing algorithm-specific simulators.

The development of HetSim is ongoing. We plan to handle con-
tention and bandwidth limitations if multiple data transfers happen
at the same time on a single link in our simulator. HetSim could also
use a real hardware model without abstract performance values
to estimate absolute execution times on real hardware instead of
time units. Furthermore, we plan to extend the possible use cases
of HetSim. For example, our simulator could also be used to auto-
matically explore the design space of scheduling strategies for a
given hardware model.

ACKNOWLEDGMENTS
Thework on this paper has been funded by theDeutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – 361498541,
502565817.

REFERENCES
[1] Wakar Ahmad, Bashir Alam, and Sahil Malik. 2019. Performance analysis of list

scheduling algorithms by random synthetic DAGs. In Proceedings of 2nd Inter-
national Conference on Advanced Computing and Software Engineering (ICACSE).
https://doi.org/10.2139/ssrn.3349016

[2] ShaikhahAlebrahim and Imtiaz Ahmad. 2017. Task Scheduling for Heterogeneous
Computing Systems. J. Supercomput. 73, 6 (jun 2017), 2313–2338. https://doi.
org/10.1007/s11227-016-1917-2

[3] Ben Ashbaugh. 2018. Debugging and Analyzing Programs Using the Intercept
Layer for OpenCL Applications. In Proceedings of the International Workshop
on OpenCL (Oxford, United Kingdom) (IWOCL ’18). Association for Computing
Machinery, New York, NY, USA, Article 14, 2 pages. https://doi.org/10.1145/
3204919.3204933

[4] Cédric Augonnet, Olivier Aumage, Nathalie Furmento, Raymond Namyst, and
Samuel Thibault. 2012. StarPU-MPI: Task Programming over Clusters ofMachines
Enhanced with Accelerators. In Recent Advances in the Message Passing Interface,
Jesper Larsson Träff, Siegfried Benkner, and Jack J. Dongarra (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 298–299.

[5] Alexander Baumstark, Muhammad Attahir Jibril, and Kai-Uwe Sattler. 2023.
Processing-in-Memory for Databases: Query Processing and Data Transfer. In

267

https://ess.cs.uos.de/git/software/hetsim
https://doi.org/10.2139/ssrn.3349016
https://doi.org/10.1007/s11227-016-1917-2
https://doi.org/10.1007/s11227-016-1917-2
https://doi.org/10.1145/3204919.3204933
https://doi.org/10.1145/3204919.3204933

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Marcel Lütke Dreimann, Birte Friesel, and Olaf Spinczyk

Proceedings of the 19th International Workshop on Data Management on New
Hardware (Seattle, WA, USA) (DaMoN ’23). Association for ComputingMachinery,
New York, NY, USA, 107–111. https://doi.org/10.1145/3592980.3595323

[6] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui Su,
and Karan Vahi. 2008. Characterization of scientific workflows. In 2008 Third
Workshop on Workflows in Support of Large-Scale Science. 1–10. https://doi.org/
10.1109/WORKS.2008.4723958

[7] H. Casanova. 2001. Simgrid: a toolkit for the simulation of application scheduling.
In Proceedings First IEEE/ACM International Symposium on Cluster Computing
and the Grid. 430–437. https://doi.org/10.1109/CCGRID.2001.923223

[8] Arnoldo Diaz, Ruben Batista, and Oskardie Castro. 2007. Realtss: a real-time
scheduling simulator. In 2007 4th International Conference on Electrical and Elec-
tronics Engineering. 165–168. https://doi.org/10.1109/ICEEE.2007.4344998

[9] Birte Friesel, Marcel Lütke Dreimann, and Olaf Spinczyk. 2023. A Full-System
Perspective on UPMEM Performance. In Proceedings of the 1st Workshop on
Disruptive Memory Systems (Koblenz, Germany) (DIMES ’23). Association for
ComputingMachinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3609308.
3625266

[10] Vıctor Garcıa, Juan Gomez-Luna, Thomas Grass, Alejandro Rico, Eduard Ayguade,
and Antonio J. Pena. 2016. Evaluating the effect of last-level cache sharing on
integrated GPU-CPU systems with heterogeneous applications. In 2016 IEEE
International Symposium on Workload Characterization (IISWC). 1–10. https:
//doi.org/10.1109/IISWC.2016.7581277

[11] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. 2012. Auto-tuning a high-level language targeted to GPU codes. In 2012
innovative parallel computing (InPar). Ieee, 1–10.

[12] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F.
Oliveira, and Onur Mutlu. 2022. Benchmarking a New Paradigm: Experimental
Analysis and Characterization of a Real Processing-in-Memory System. IEEE
Access 10 (2022), 52565–52608. https://doi.org/10.1109/ACCESS.2022.3174101

[13] Julien Herrmann, Loris Marchal, and Yves Robert. 2014. Memory-Aware List
Scheduling for Hybrid Platforms. In 2014 IEEE International Parallel & Distributed
Processing Symposium Workshops. 689–698. https://doi.org/10.1109/IPDPSW.

2014.80
[14] Dalibor Klusâcek and Hana Rudovâ. 2010. Alea 2: job scheduling simulator. ICST.

https://doi.org/10.4108/ICST.SIMUTOOLS2010.8722
[15] Mehdi Moghaddamfar, Christian Färber, Wolfgang Lehner, Norman May, and

Akash Kumar. 2021. Resource-Efficient Database Query Processing on FPGAs. In
Proceedings of the 17th International Workshop on Data Management on New Hard-
ware (Virtual Event, China) (DAMON ’21). Association for Computing Machinery,
New York, NY, USA, Article 4, 8 pages. https://doi.org/10.1145/3465998.3466006

[16] Michael Müller, Thomas Leich, Thilo Pionteck, Gunter Saake, Jens Teubner, and
Olaf Spinczyk. 2020. He..ro DB: A Concept for Parallel Data Processing on
Heterogeneous Hardware. In Architecture of Computing Systems – ARCS 2020,
André Brinkmann, Wolfgang Karl, Stefan Lankes, Sven Tomforde, Thilo Pionteck,
and Carsten Trinitis (Eds.). Springer International Publishing, Cham, 82–96.

[17] Joel Nider, Craig Mustard, Andrada Zoltan, John Ramsden, Larry Liu, Jacob
Grossbard, Mohammad Dashti, Romaric Jodin, Alexandre Ghiti, Jordi Chauzi,
and Alexandra Fedorova. 2021. A Case Study of Processing-in-Memory in off-
the-Shelf Systems. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, 117–130. https://www.usenix.org/conference/atc21/
presentation/nider

[18] Gonzalo P. Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya Ramakrishnan.
2018. ScSF: A Scheduling Simulation Framework. In Job Scheduling Strategies for
Parallel Processing, Dalibor Klusáček, Walfredo Cirne, and Narayan Desai (Eds.).
Springer International Publishing, Cham, 152–173.

[19] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2022. Query Processing
on Heterogeneous CPU/GPU Systems. ACM Comput. Surv. 55, 1, Article 11 (jan
2022), 38 pages. https://doi.org/10.1145/3485126

[20] Sukanya Suranauwarat. 2007. A CPU scheduling algorithm simulator. In 2007
37th Annual Frontiers In Education Conference - Global Engineering: Knowledge
Without Borders, Opportunities Without Passports. F2H–19–F2H–24. https://doi.
org/10.1109/FIE.2007.4417885

[21] Frédéric Suter and Sascha Hunold. 2013. Daggen: A synthetic task graph genera-
tor.

268

https://doi.org/10.1145/3592980.3595323
https://doi.org/10.1109/WORKS.2008.4723958
https://doi.org/10.1109/WORKS.2008.4723958
https://doi.org/10.1109/CCGRID.2001.923223
https://doi.org/10.1109/ICEEE.2007.4344998
https://doi.org/10.1145/3609308.3625266
https://doi.org/10.1145/3609308.3625266
https://doi.org/10.1109/IISWC.2016.7581277
https://doi.org/10.1109/IISWC.2016.7581277
https://doi.org/10.1109/ACCESS.2022.3174101
https://doi.org/10.1109/IPDPSW.2014.80
https://doi.org/10.1109/IPDPSW.2014.80
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8722
https://doi.org/10.1145/3465998.3466006
https://www.usenix.org/conference/atc21/presentation/nider
https://www.usenix.org/conference/atc21/presentation/nider
https://doi.org/10.1145/3485126
https://doi.org/10.1109/FIE.2007.4417885
https://doi.org/10.1109/FIE.2007.4417885

Privacy-Preserving Sharing of Data Analytics Runtime Metrics
for Performance Modeling

Jonathan Will
will@tu-berlin.de

Technische Universität Berlin
Berlin, Germany

Dominik Scheinert
dominik.scheinert@tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Seraphin Zunzer
zunzer@campus.tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Jan Bode
jan.bode@campus.tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Cedric Kring
c.kring@campus.tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Lauritz Thamsen
lauritz.thamsen@glasgow.ac.uk

University of Glasgow
Glasgow, United Kingdom

ABSTRACT
Performance modeling for large-scale data analytics workloads can
improve the efficiency of cluster resource allocations and job sched-
uling. However, the performance of these workloads is influenced
by numerous factors, such as job inputs and the assigned clus-
ter resources. As a result, performance models require significant
amounts of training data. This data can be obtained by exchanging
runtime metrics between collaborating organizations. Yet, not all
organizations may be inclined to publicly disclose such metadata.

We present a privacy-preserving approach for sharing runtime
metrics based on differential privacy and data synthesis. Our evalu-
ation on performance data from 736 Spark job executions indicates
that fully anonymized training data largely maintains performance
prediction accuracy, particularly when there is minimal original
data available. With 30 or fewer available original data samples,
the use of synthetic training data resulted only in a one percent
reduction in performance model accuracy on average.

CCS CONCEPTS
• Computing methodologies→ Distributed computing method-
ologies; • Information systems; • Security and privacy;

KEYWORDS
Distributed Dataflows, Resource Allocation, Performance Modeling,
Data Sharing, Data Privacy

ACM Reference Format:
Jonathan Will, Dominik Scheinert, Seraphin Zunzer, Jan Bode, Cedric Kring,
and Lauritz Thamsen. 2024. Privacy-Preserving Sharing of Data Analyt-
ics Runtime Metrics for Performance Modeling. In Companion of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE ’24
Companion), May 7–11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3629527.3652276

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652276

1 INTRODUCTION
Distributed dataflow systems, such as Apache Spark [16] and
Apache Flink [2] enable parallel data processing on large clusters of
commodity hardware by facilitating parallelization and error han-
dling. Here, performance models, which accurately estimate a job’s
runtime on various cluster setups, enable efficient job scheduling
and job-specific resource allocation [6, 14].

However, accurately modeling the performance of such data
processing jobs is challenging. Excluding unpredictable events like
hardware failures, various factors in the wider execution context
influence runtime behavior. These factors include data analytics
algorithm and job parameters, software versions, dataflow frame-
work parameters, input dataset characteristics, the cluster resources
provided, and possibly the interference of co-located jobs running
on the same cluster [5, 15]. Many of these factors may vary between
job executions. Therefore, due to the potentially high-dimensional
feature space, creating comprehensive performance models neces-
sitates access to substantial amounts of training data.

There are approaches for sharing execution-context-aware per-
formance metrics among collaborators [12, 15]. Nevertheless, this
approach to collaborative machine learning raises concerns about
data privacy, particularly for private sector companies who may
be reluctant to share such metadata with competitors. This applies
especially to certain characteristics of their processed datasets that
may disclose internal business information, such as a business’s
customer count.
Several methods have been proposed for achieving privacy in col-
laborative machine learning. These methods vary in effectiveness
depending on the specific application [3, 4, 7, 9, 10, 13]. One promis-
ing method for sharing training data while maintaining privacy is
differential privacy with data synthesis [9, 10].

In this paper, we introduce an automated method for privacy-
preserving collaborative performance modeling for dataflow work-
loads. Our approach involves obfuscating performance model train-
ing data using differential privacy through data synthesis. Addition-
ally, we assess and discuss the potential of this method to maintain
performance model accuracy when using synthetic training data.
We also measure the overhead associated with generating synthetic
performance data. For the evaluation, we use a dataset of 736 unique
Spark job executions.

269

https://doi.org/10.1145/3629527.3652276
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652276

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Jonathan Will et al.

2 RELATEDWORK
This section explains performance modeling of distributed dataflow
workloads and lays out privacy-preserving approaches to collabo-
ratively training machine learning models.

2.1 Dataflow Job Performance Modeling
The performance of distributed dataflow jobs is influenced by nu-
merous factors. These factors include the type and size of the allo-
cated cluster, software versions, along with certain job parameters
and dataset characteristics.

Previous works on cluster resource allocation establish perfor-
mance models for different cluster configurations to learn dataflow
job behavior. These models can be employed for automated sched-
uling or resource allocation decisions [5, 6, 11, 12, 14, 15].
Karasu [12] utilizes shared performance metrics to accelerate the
iterative optimization of given objectives like minimizing runtime
or carbon emissions.
C3O [15] shares models and performance metrics for a specific
job in a single repository. The repository maintainers annotate
all the job parameters and dataset characteristics that influence
performance.

While data sharing approaches can help solve the cold-start
problem of model-based performance optimization, a drawback of
these approaches is that participating organizations must be willing
to share metadata, including dataset characteristics, despite privacy
concerns.

2.2 Privacy in Collaborative Machine Learning
For achieving training data privacy, Liu et al. have identified the
following three general categories of approaches [8]:

1. Aggregation. Aggregation-based approaches for privacy in
collaborative machine learning involve participants independently
training models on their local data and sharing aggregated model
updates, such as gradients or statistics instead of raw data. One
prominent example is Federated Learning [7].

2. Encryption. Training with encrypted data has been demon-
strated to be effective for relatively simple models, like Naive Bayes
and decision trees [1]. Notable examples of encryption methods
include Secure Multi-Party Computation [4] and Homomorphic
Encryption [3].

3. Obfuscation. Various obfuscation techniques can be applied
to unencrypted training data, including adding noise or gener-
ating new data while maintaining statistical properties neces-
sary for training accurate models. Notable methods include Data
Anonymization [13] and Data Synthesis [9, 10].

We use an obfuscation-based approach since the other two cate-
gories of approaches have shortcomings that limit their applicability
to collaborative performance modeling of data analytics workloads.
Aggregation-based methods necessitate continuous cooperation of
several collaborators, which might not be feasible for rarely-used
data analytics jobs.
Encryption-based approaches can share training data, but the lim-
ited model viability of those approaches limit their applicability to
performance modeling of data analytics workloads.

3 APPROACH
This section outlines our obfuscation-based approach for privacy-
preserving collaborative performance modeling.

3.1 Idea Overview
The main aim of our approach is to share performance model train-
ing data for data analytics workloads between collaborating orga-
nizations. In order to incentivize data sharing, it is important to
anonymize meta information pertaining to a collaborator’s work-
loads. At the same time, the data must maintain the statistical
properties required for training accurate performance models, such
as an accurate relation between execution context and runtime.
We are presenting an automated method for collaborative perfor-
mance modeling of dataflow workloads while preserving privacy,
an overview of which is shown in Figure 1.

Public Performance
Metrics Repository

Performance
Model

Job Scheduler /
Resource Allocator

submit data
analytics job

run job

measure
performance

metrics

get relevant
training data

User

Privacy
Preservation
Technique

Cluster

Figure 1: High-level overview of privacy-preserving runtime
metrics sharing for collaborative performance modeling.

Example Use Case:
An online retailer regularly processes sales data and captures per-
formance metrics, including runtime and execution context, such
as the number of rows and columns processed and the public cloud
resources used. From this data, the retailer generates synthetic
datapoints that collaborators can use to train reasonably accurate
performance models. Yet, collaborators cannot derive sensitive in-
formation from the shared data, such as the number of sales pro-
cessed by a specific job or the total amount of sales processed during
a certain time period.

3.2 Data Obfuscation via Data Synthesis
To facilitate privacy-preserving sharing of performancemodel train-
ing data, we employ an obfuscation technique introduced as Data-
Synthesizer by Ping et al. [9]. This technique generates synthetic
data from the original dataset in two steps. Each step is represented
by a separate system module.

1) The DataDescriber captures the data types, correlations, and
distributions of the attributes in the original dataset and generates
a data summary.

2) The DataGenerator samples any specified number of synthetic
data points from the data distribution summary generated by
DataDescriber. Therefore, the synthetic data points differ from
the original data in terms of both quantity and content.

DataSynthesizer has been released as an open-source tool1.

1github.com/DataResponsibly/DataSynthesizer, accessed in January 2024

270

https://github.com/DataResponsibly/DataSynthesizer

Privacy-Preserving Collaborative Performance Modeling ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

4 EVALUATION
In this section, we assess the feasibility of our approach through
experimental evaluation. We measure the accuracy of performance
models trained with synthetic data and the overhead involved in
producing such data.

4.1 Experimental Setup
In the evaluation, we use the trace dataset and the performance
models published in C3O [15].

Trace Dataset.
The dataset contains Spark job executions for five distinct algo-
rithms that were tested across various cluster configurations in
Amazon EMR, a managed Spark service. The algorithms, namely
Sort, Grep, Linear Regression, K-Means, and Page Rank, were
executed on clusters of different sizes, with varying runtime-
influencing job parameters and input dataset characteristics. The
dataset comprises 36, 150, 140, 140, and 270 unique runtime experi-
ments for the aforementioned jobs, respectively.

Performance Models.
Weutilize the C3O performancemodeling system’s two default mod-
els: Gradient boosting and a model based on Ernest [14]. Typically,
gradient boosting displays higher accuracy, except in situations
with limited availability of training data, where the Ernest model
may have superior accuracy.
We evaluate the trained model’s accuracy with the mean absolute
percentage error (MAPE) metric. For example, if the predicted run-
time deviates by 20%, the MAPE will be expressed as 0.2.

Local Hardware.
We measured the overhead of generating synthetic data with
a Python script that ran single-threaded on an octa-core AMD
Ryzen 7 PRO 4750U processor (1.7-4.1 GHz, 8MB cache).

The full evaluation is available in a public code repository:
github.com/dos-group/pm-data-privacy

200 400 600 800 1000
Synthetic samples

0.0

0.1

0.2

0.3

0.4

M
AP

E

Sort

200 400 600 800 1000
Synthetic samples

0.0

0.1

0.2

0.3

0.4

M
AP

E

Grep

200 400 600 800 1000
Synthetic samples

0.0

0.1

0.2

0.3

0.4

M
AP

E

Linear Regression

200 400 600 800 1000
Synthetic samples

0.0

0.1

0.2

0.3

0.4

M
AP

E

K-Means

200 400 600 800 1000
Synthetic samples

0.0

0.1

0.2

0.3

0.4

M
AP

E

Page Rank

Ernest model: Original data
Ernest model: Synthetic data

Gradient boosting: Original data
Gradient boosting: Synthetic data

Figure 2: Synthetic training dataset size and resulting perfor-
mance model error compared to using the full original data.

4.2 Performance Modeling with Synthetic Data
A viable approach must allow for accurate performance model-
ing with synthetic data. We assess the performance model’s error
trained on original and synthetic data in various scenarios.

Synthetic Training Data Size and Performance Model Accuracy.

First, we investigate how the creation of a substantial quantity of
synthetic training data impacts model accuracy. We measured the
accuracy of performance models that were trained on complete
original datasets for different Spark jobs. Then, we extracted vari-
ous amounts of synthetic data from the same dataset, mainly larger
quantities than the original data available. With this sample data,
we retrained the models and measured their accuracy.

Figure 2 shows the results of this experiment. They suggest
that additional synthetic training data does not have an observable
impact on model accuracy beyond a certain point. Further, using
synthetic data for training works differently well compared to using
original data, depending on the model performance and type of job.

Sampling Synthetic Data from Few Available Original Data Points.

Next, we examine the feasibility of generating synthetic training
data with limited availability of original training data. To this end,
we randomly selected different small quantities of samples from
the original performance dataset and generated 1000 synthetic data
points from that. Then, we trained the performance models on
both the original and synthetic data and compared their prediction
accuracy.

Figure 3 shows the results of this experiment. We find that when
original data availability is low, the use of synthetic data for train-
ing results in performance models that are nearly as accurate. For
availability ranging from 3 to 30 original samples, we observed a
difference of only 1.14%. However, this contrasts with the results
from the previous experiment shown in Figure 2, where models
trained on synthetic data sampled from a larger dataset of original
data can perform significantly worse than models trained on the
original data.

5 10 15 20 25 30
Available original samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AP

E

Sort

5 10 15 20 25 30
Available original samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AP

E

Grep

5 10 15 20 25 30
Available original samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AP

E

Linear Regression

5 10 15 20 25 30
Available original samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AP

E

K-Means

5 10 15 20 25 30
Available original samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AP

E

Page Rank

Ernest model: Original data
Ernest model: Synthetic data

Gradient boosting: Original data
Gradient boosting: Synthetic data

Figure 3: Performance model error with 1000 synthetic data
samples, generated from small amounts of original data.

271

https://github.com/dos-group/pm-data-privacy

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Jonathan Will et al.

4.3 Data Synthesis Overhead
A viable approach to creating synthetic data for accurate perfor-
mance modeling must not impose excessive overhead for data cre-
ation. We measured the overhead of creating synthetic training
data on the hardware described in Section 4.1.

100 200 300 400 500
Generated synthetic samples

0

4

8

12

R
un

tim
e

[s
]

10 15 20 25 30
Available original samples

0

4

8

12

R
un

tim
e

[s
]

Job (dataset columns): Sort (3) Grep (4) Linear Regression (5) K-Means (5) Page Rank (5)

Figure 4: Overhead for creating synthetic data for different
Spark job performance datasets.

In Figure 4, we see that for performance datasets containing
the runtime and runtime-influencing factors of typical Spark jobs,
this overhead was measured to be approximately between half a
second and ten seconds. We observe that the computational cost of
synthesizing data does not significantly increase with an increase
in the amount of sampled synthetic data or the number of available
samples in the original dataset. Rather, the findings suggest that the
primary computational effort arises from processing each attribute,
i.e., column, in the original dataset. In the case of DataSynthesizer,
this part is conducted by the DataDescriber component.

4.4 Discussion
We will now discuss the experimental evaluation’s results in terms
of the practical implications for our approach’s viability.

First, we observed that it is feasible to generate substantial quan-
tities of synthetic data without compromising the model’s accuracy.
This implies that we can achieve privacy not just by modifying the
content of each data point, but also by creating arbitrarily large
amounts of synthetic data, thereby concealing the actual quantity
of processed jobs.

Then, it has been observed that the model accuracy gap when
using synthetic data is lowest when the quantity of original data
points is low. In instanceswhere publicly shared training data points
are unavailable or rare, the introduction of synthetic data can have
a significant positive effect on the model accuracy of collaborators.
Consequently, sharing synthetic data is particularly advantageous
in the early stages of a training data sharing initiative.

Finally, the computational overhead of generating synthetic per-
formance data has been shown to range in seconds for performance
datasets of typical Spark jobs on typical consumer hardware. This
low amount of time should not discourage collaborators from gen-
erating and sharing synthetic data.

5 CONCLUSION
In summary, this paper has explored how differential privacy via
data synthesis can facilitate the sharing of runtime data for perfor-
mancemodeling of data analytics workloads in a privacy-preserving
manner. Our initial method has demonstrated an acceptable trade-
off between model prediction accuracy and data privacy. Especially
in cases where there is limited available performance data overall,
the accuracy of collaborators’ performance models can be signifi-
cantly improved through the use of shared synthetic training data
samples. Further, the data synthesis has been shown to induce low
computational overhead.

In the future, we will investigate alternative approaches to en-
sure privacy when sharing performance metrics of data analytics
workloads. Moreover, we hope our short paper also inspires further
research by others in the same direction.

ACKNOWLEDGMENTS
This work has been supported through a grant by the German
Research Foundation (DFG) as “C5” (grant 506529034).

REFERENCES
[1] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2014. Machine

Learning Classification over Encrypted Data. Cryptology ePrint Archive (2014).
[2] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[3] Haokun Fang and Quan Qian. 2021. Privacy Preserving Machine Learning with
Homomorphic Encryption and Federated Learning. Future Internet 13, 4 (2021).

[4] Oded Goldreich. 1998. Secure Multi-Party Computation. Manuscript. Preliminary
version 78, 110 (1998).

[5] Chin-Jung Hsu, Vivek Nair, Vincent W Freeh, and Tim Menzies. 2018. Arrow:
Low-level Augmented Bayesian Optimization for Finding the Best Cloud VM. In
ICDCS ’18. IEEE.

[6] Muhammed Tawfiqul Islam, Shanika Karunasekera, and Rajkumar Buyya. 2021.
Performance and Cost-Efficient Spark Job Scheduling Based on Deep Reinforce-
ment Learning in Cloud Computing Environments. IEEE Transactions on Parallel
and Distributed Systems 33, 7 (2021).

[7] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing
Magazine 37, 3 (2020).

[8] Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai
Lin. 2021. When Machine Learning Meets Privacy: A Survey and Outlook. ACM
Computing Surveys 54, 2 (2021).

[9] Haoyue Ping, Julia Stoyanovich, and Bill Howe. 2017. DataSynthesizer: Privacy-
Preserving Synthetic Datasets. In SSDBM ’17. ACM.

[10] Debbie Rankin, Michaela Black, Raymond Bond, Jonathan Wallace, Maurice
Mulvenna, Gorka Epelde, et al. 2020. Reliability of Supervised Machine Learning
Using Synthetic Data in Health Care: Model to Preserve Privacy for Data Sharing.
JMIR Medical Informatics 8, 7 (2020).

[11] Dominik Scheinert, Alireza Alamgiralem, Jonathan Bader, Jonathan Will,
Thorsten Wittkopp, and Lauritz Thamsen. 2021. On the Potential of Execu-
tion Traces for Batch Processing Workload Optimization in Public Clouds. In Big
Data ’21. IEEE.

[12] Dominik Scheinert, Philipp Wiesner, Thorsten Wittkopp, Lauritz Thamsen,
JonathanWill, and Odej Kao. 2023. Karasu: A Collaborative Approach to Efficient
Cluster Configuration for Big Data Analytics. In IPCCC ’23. IEEE.

[13] Navoda Senavirathne and Vicenç Torra. 2020. On the Role of Data Anonymization
in Machine Learning Privacy. In TrustCom ’20. IEEE.

[14] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,
and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-scale
Advanced Analytics. In NSDI ’16. USENIX.

[15] Jonathan Will, Lauritz Thamsen, Dominik Scheinert, Jonathan Bader, and Odej
Kao. 2021. C3O: Collaborative Cluster Configuration Optimization for Distributed
Data Processing in Public Clouds. In IC2E ’21. IEEE.

[16] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster Computing with Working Sets. HotCloud 10,
10 (2010).

272

Approximating Fork-Join Systems via Mixed Model
Transformations

Rares-Andrei Dobre
Department of Computing
Imperial College London

London, UK
rares.dobre22@imperial.ac.uk

Zifeng Niu
Department of Computing
Imperial College London

London, UK
zifeng.niu19@imperial.ac.uk

Giuliano Casale
Department of Computing
Imperial College London

London, UK
g.casale@imperial.ac.uk

ABSTRACT
While product-form queueing networks are effective in analyzing
system performance, they encounter difficulties in scenarios involv-
ing internal concurrency. Moreover, the complexity introduced by
synchronization delays challenges the accuracy of analytic methods.
This paper proposes a novel approximation technique for closed
fork-join systems, called MMT, which relies on transformation into
a mixed queueing network model for computational analysis. The
approach substitutes fork and join with a probabilistic router and a
delay station, introducing auxiliary open job classes to capture the
influence of parallel computation and synchronization delay on the
performance of original job classes. Evaluation experiments show
the higher accuracy of the proposed method in forecasting per-
formance metrics compared to a classic method, the Heidelberger-
Trivedi transformation. This suggests that our method could serve
as a promising alternative in evaluating queueing networks that
contains fork-join systems.

CCS CONCEPTS
• Software and its engineering→ Software performance; •
Networks→ Network performance modeling.

KEYWORDS
Queueing Network, Fork-Join system, Synchronization Delay

ACM Reference Format:
Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale. 2024. Approximating
Fork-Join Systems via Mixed Model Transformations. In Companion of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
’24 Companion), May 7–11, 2024, London, United Kingdom. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3629527.3652277

1 INTRODUCTION
Modern software systems are typically implemented in a distributed
manner to improve performance, reliability, and scalability [18].
Under this pattern, parallel and concurrent structures have gained
increased importance over the years [9]. The software components
are often parallelized to achieve higher execution efficiency and
increase the utilization of the available resources. Parallel jobs
typically follow a fork-join mechanism. A parallel job is forked into

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652277

several tasks, which are executed concurrently on distinct resources
within the system. After finishing the execution, a task has to await
its sibling tasks at the join point. This job exits the join point and
continues only when all its tasks have finished execution.

Queueing networks are a class of efficient performance models
to understand the impact of execution mechanisms on system per-
formance. A large number of computer systems can be abstracted
as product-form queueing networks from which designers obtain
accurate performance predictions [3]. Nevertheless, product-form
queueing network models do not accommodate jobs that feature
internal concurrency. Furthermore, the exact analysis for inter-
nal concurrency within a queueing network can rapidly lead to a
state-space explosion.

In addition to the time spent on service, the total time of a parallel
execution involves two other delays: queueing delay and synchro-
nization delay [19]. Synchronization delay occurs on any completed
task that waits for the completion of other sibling tasks before leav-
ing the fork-join system. This coordination introduces dependen-
cies and leads to an increased complexity in designing an accurate
analysis for parallel executions. Therefore, it is necessary to have
approximate analytic performance models to analyze parallelism
for software designers and practitioners.

The technique developed by Heidelberger and Trivedi [13] is
long established. This method, which we refer to as HT method
in the rest of the paper, decomposes a job into a primary task and
a fixed number of secondary tasks; these tasks are assumed to be
independent of each other and belong to different job classes. Then
probabilistic routing and pseudo-servers are used to replace parallel
executions so that a product-form solution can be produced.

In this paper, we propose a novel approach, named MMT, for
the analysis of fork-join systems. Similarly to the HT method, the
fork and join are replaced by a probabilistic router and a delay,
respectively. In our terminology, a probabilistic router is an abstract
node that routes incoming jobs along output branches, according
to a probabilistic routing policy and with zero service time. Beyond
that, it introduces auxiliary open job classes to mimic the influence
of parallel computation and synchronization delay on original job
classes, which leads to a mixed queueing network model to ana-
lyze. The arrival rates and service rates of the auxiliary classes are
computed from an iterative procedure that enables us to finally
obtain the approximated solution of the original queueing network
containing parallelism. The main performance measures in the
fork-join system can be obtained using the method described.

The effectiveness of the proposed method is validated by compar-
ison with simulations and the HT method. We use the simulation
results as ground truth. Experiments are conducted on closed queue-
ing networks with homogeneous or heterogeneous fork-join queues

273

https://doi.org/10.1145/3629527.3652277
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652277

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale

Table 1: Notations for considered queueing networks

Symbol Definition
𝑟 index of the job class
𝑚 index of the service station
𝑐 index of the concurrent (fork-join) structure
𝜇𝑚,𝑟 class-𝑟 service rate at station𝑚
𝜆𝑟 class-𝑟 arrive rate (for open class)
𝑄𝑚,𝑟 class-𝑟 queue length at station𝑚
𝑋𝑚,𝑟 class-𝑟 throughput at station𝑚
𝑇𝑚,𝑟 class-𝑟 response time at station𝑚
𝑈𝑚,𝑟 class-𝑟 utilization at station𝑚
𝐾 number of job classes in the network
𝑀 number of service stations in the network
𝐶 number of fork-join structures in the network
𝐹𝑐 number of parallel paths spawned by the fork

of the structure 𝑐

(i.e., where servers can have the same or different service rates).
Compared to the HT method, the proposed method offers lower
error rates on predicted performance measures.

The rest of the paper is organized as follows. In Section 2, we
provide background on queueing network theory, fork-join systems,
and their analysis. In Section 3, we propose our MMT method for
the analytic analysis of fork-join systems. In Section 4, we present
evaluation experiments and results. In Section 5, we review related
work. Finally, we conclude the paper in Section 6.

2 BACKGROUND
2.1 Queueing Networks
Queueing networks serve as a class of models for analyzing the
performance of systems. They are made up of a collection of service
stations indexed by𝑚 = 1, . . . , 𝑀 , in which jobs are queued and
executed. A service station could have either infinite servers or
finite servers, and is referred to as delay or queue station, respec-
tively. The common use of delay stations is to represent the think
times of workloads, while queue stations typically represent system
resources [16]. In a queue station, there may be competition among
jobs for the server, resulting in waiting times. A queueing network
may execute multiple classes of jobs indexed by 𝑟 = 1, . . . , 𝐾 . Dis-
tinct job classes typically feature different service rates 𝜇𝑚,𝑟 , and
can be further categorized into closed and open classes. For closed
job classes, a fixed number of jobs circulate within the network.
For open job classes, jobs from a source continuously arrive to the
network with rate 𝜆𝑟 . Scheduling policies determine the order in
which jobs are served, with common policies including First-Come
First-Serve (FCFS) and Processor Sharing (PS).

To evaluate the performance of a queueing network, one ap-
proach is to solve a system of global balance equations to get state
probabilities of the underlyingMarkov chain where all performance
measures can be further obtained. However, this method becomes
hardly practical on complex networks due to the state-space ex-
plosion. Among queueing networks, there is a special class named
product-form queueing networks. They have local balance proper-
ties and their exact performance measures can be obtained without

Fork Join

Q4

Q1

Q2

Q3

Figure 1: Queueing network containing a fork-join system

resorting to the underlying state space. Mean Value Analysis (MVA)
[21] is a prevalent technique to solve product-form queueing net-
works. In scenarios where exact analysis becomes computationally
challenging, Approximate Mean Value Analysis (AMVA) [8] pro-
vides a practical alternative, offering insight into key performance
measures such as queue lengths 𝑄𝑚,𝑟 , throughputs 𝑋𝑚,𝑟 , response
times 𝑇𝑚,𝑟 , and utilizations 𝑈𝑚,𝑟 .

2.2 Fork-Join Systems
A queueing network may include a number of fork-join systems
indexed by 𝑐 = 1, . . . ,𝐶 . Fork-Join systems contain both fork and
join nodes, which are a particular structure in queueing networks.
The fork node has the property that any arriving job is split into
multiple tasks to be serviced independently and in parallel, while
the join node combines these tasks back into the original job after
they have finished processing [23]. Let 𝐹𝑐 denote the number of
parallel paths spawned by the fork node of the system 𝑐 , the 𝐹𝑐
executions are assumed to be independent of each other so they
do not intersect before reaching the join node. The notations for
networks considered by this paper are summarized in Table 1.

An example of a closed queueing network containing a fork-join
system is given in Figure 1. Jobs circulate between the fork-join
system and a single queueing station. Any job that arrives at the
fork node is split into three tasks to be processed on Q1, Q2, and Q3.
After completing processing, they must wait for the sibling tasks
to finish. Once all the tasks spawned by the job are finished, they
are joined together back into the original job, which subsequently
moves on to Q4.

2.3 Heidelberger-Trivedi Approximation
Method

A queueing network that contains fork-join systems has no product-
form solution [3], thus it cannot be efficiently solved in general. A
classic transformation method is developed by [13], which origi-
nally transforms single-class closed queueing networks including
a single parallel construct into a queueing network with no con-
currency so that analytic methods such as AMVA can be applied.
The main feature of this transformation is that each closed class is
coupled with one auxiliary closed class for each parallel path.

The parallel constructs targeted by this work are analogous to
fork-join systems. In its model, each job is represented by a primary
taskwithmultiple secondary tasks. Primary and secondary tasks are

274

Approximating Fork-Join Systems via Mixed Model Transformations ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

used to represent the activity of the job executed outside and inside
the fork-join system, respectively. Each primary task arriving at the
fork node is forked into multiple secondary tasks, while secondary
tasks arriving at the join node need to wait for their siblings to
arrive before they can be joined back into the primary task.

This work associates the join node of the fork-join construct
with a delay station. The time a primary task is supposed to spend
at this delay station represents the overall response time of the job
in the fork-join system, whereas for a secondary task it represents
the corresponding synchronization delay. This approach also adds
an auxiliary delay station to the network, which models the time a
primary task spends outside the fork-join system. The secondary
tasks use the auxiliary delay as their reference station. Their service
rates are computed using an iterative procedure analogous to [14].

Suppose 𝐷0 represents the response time of the fork-join system,
𝑅𝑖 denotes the response time at the 𝑖-th parallel path, and 𝐹 denotes
the number of parallel paths spawned by fork 𝑓 , the expectation of
the job response time in the fork-join system is

𝐸 [𝐷0] = 𝐸 [max(𝑅1, . . . , 𝑅𝐹)] (1)

Therefore, the service time of the primary task at the delay station
that replace the join node is 𝐸 [𝐷0]. The 𝑅𝑖 are assumed to be ex-
ponential random variables with 𝐸 [𝑅𝑖] = 1/𝜇𝑖 for all 𝑖 ∈ {1, . . . , 𝐹 },
thus 𝐸 [𝐷0] can be further expressed as the following [24]

𝐸 [𝐷0] =
𝐹∑︁
𝑖=1

1
𝜇𝑖
−
∑︁
𝑖< 𝑗

1
𝜇𝑖 + 𝜇 𝑗

+
∑︁

𝑖< 𝑗<𝑘

1
𝜇𝑖 + 𝜇 𝑗 + 𝜇𝑘

− · · · + (−1)𝐹−1
∑︁

𝑖1<· · ·<𝑖𝐹

1
𝜇𝑖1 + · · · + 𝜇𝑖𝐹

(2)

where 𝑖, 𝑗, 𝑘, 𝑖1, . . . , 𝑖𝐹 represent path indices.
Let 𝐷𝑖 represent the service times of the secondary tasks at this

delay station, i.e. the synchronization delays, 𝐸 [𝐷𝑖] is obtained by
subtracting the mean response time of the 𝑖-th parallel path from
the fork-join response time

𝐸 [𝐷𝑖] = 𝐸 [𝐷0] − 𝐸 [𝑅𝑖] (3)

Figure 2 depicts an example of a network alteration using the
aforementioned procedure. The original job class and its primary
tasks are depicted with red circles in the original and transformed
systems, whereas the distinct secondary tasks are represented
through blue, green, and yellow circles. It can be observed from
Figure 2b that the HT method produces four job classes for this
single class fork-join system with three parallel paths. In the trans-
formed fork-join system, the primary tasks are routed straight to
the synchronization delay station, whereas the secondary tasks
are routed through the fork-join system. From the synchronization
delay station, every job is routed to the auxiliary delay station.
From the auxiliary delay station, the jobs belonging to the primary
task continue proceeding through the rest of the network, while
the jobs from the secondary tasks are sent out to the router. The
obtained model is a product-form queueing network that can be
solved easily.

3 PROPOSED METHODOLOGY
The proposed method is a simpler transformation of fork-join sys-
tems by introducing only one more delay station and fewer job

(a) Original fork-join system

Router

... ...

Synchronization Auxiliary

delay delay

(b) Transforming original system into a network without concurrency

Figure 2: HT method for fork-join transformation

Table 2: Notations for auxiliary classes and network elements
created by the MMT method

Symbol Definition
𝑟 index of the original class
𝑟 ′𝑐 auxiliary class of 𝑟 created for the fork-join

structure 𝑐
𝑜𝑐 router created to replace the fork node

of the fork-join structure 𝑐
𝑑𝑐 delay station created to replace the join node

of the fork-join structure 𝑐

classes. This transformation leads to a simple yet effective compu-
tation procedure for performance measures of the original system.
The new notations introduced by the proposed method are summa-
rized in Table 2.

3.1 Network Transformation
3.1.1 Mixed model construction. We transform the network into
the one that can be applied to analytic approximations. The join
node of the fork-join system 𝑐 is replaced by a delay station𝑑𝑐 , while
the fork node is replaced by a router that forwards incoming jobs to
original 𝐹𝑐 parallel paths. Each path carries an equal probability 1

𝐹𝑐
of being selected to forward a job to, and the sum of probabilities
is 1. However, a router does not offer the functionality required to
spawn other tasks. Thus, even if a job is routed to a parallel path,
no sibling tasks are executed concurrently on the other parallel
paths. To counter this issue, the parallelism induced by a fork-
join system is simulated through the addition of open job classes,
which we shall refer to as the auxiliary classes. The auxiliary classes

275

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale

mirror the behavior of their original classes in terms of routing and
service rates within the fork-join system. As shown in Figure 3a,
the auxiliary classes are routed directly to the router from the
source, and they are forwarded to the sink after leaving the delay
station. Thus, their impact is limited to their corresponding fork-
join systems.

In contrast to the HTmethod, each original class passing through
the fork node is attributed only one auxiliary class whose jobs are
meant to act as siblings of the original job class. Due to the approx-
imation decision of assigning path selection probabilities equal to
1
𝐹𝑐
, the transformation exercises all parallel paths equally. This is a

key difference compared to HT, as it results in a model in which
classes do not map in a one-to-one fashion with a particular parallel
path. Hence, any approximation error that affects an auxiliary class
is equally distributed across the paths. A comparison between both
HT and MMT transformations is shown in Table 3, where the origi-
nal queueing network has one fork-join system and 𝐹 represents
the number of parallel paths.

3.1.2 Arrival rate of the auxiliary open class. Since we have intro-
duced auxiliary open classes into the network, it is necessary to
determine their arrival rates. In equilibrium, the router that replaces
the fork node of the structure 𝑐 satisfies the flow balance condi-
tion [16]. Let 𝑋𝑜𝑐 ,𝑟 denote the class-𝑟 arrival rate/throughput at the
router and assume 𝑋𝑜𝑐 ,𝑟 to be the same as the class-𝑟 arrival rate at
the original fork node, the class-𝑟 throughput at the original fork
node is then 𝑋𝑜𝑐 ,𝑟 · 𝐹𝑐 . Therefore, the arrival rate of the auxiliary
open class can be computed by balancing the flow at the router as

𝜆𝑟 ′𝑐 = 𝑋𝑜𝑐 ,𝑟 · (𝐹𝑐 − 1) (4)

where 𝑟 denotes the original job class, 𝑟 ′𝑐 denotes the auxiliary class
of 𝑟 created for the fork-join structure 𝑐 , 𝜆𝑟 ′𝑐 represents the arrival
rate of the auxiliary open class, and 𝐹𝑐 here denotes the number of
branches connected to the router.

3.2 Synchronization Delay
In this section, we illustrate how MMT method approximates the
synchronization delay. For ease of presentation, we assume there
is one fork-join system (𝐶 = 1) in the original network so we tem-
porarily remove the subscript 𝑐 . We assume that the response time
at any parallel path 𝑝 to be approximately exponentially distributed,
which is proved to an effective assumption for analytic analysis
[22]. Besides, let random variables 𝑅1,𝑟 , . . . , 𝑅𝐹,𝑟 represent class-𝑟
response times at parallel paths 1, . . . , 𝐹 , we assume they are mu-
tually independent. Based on the same two assumptions as the
HT method, we propose the following approximation approach
consisting of two main steps to derive the synchronization delays
for the fork-join system in a queueing network.

3.2.1 Mean response time at a parallel path. The first step of our
approach is to obtain the response times at parallel paths of a fork-
join system. For each path 𝑝 = 1, . . . , 𝐹 , the mean response time is
sum of mean response times at all queueing stations on that path.

We merge the performance measure of the auxiliary class with
that of its corresponding original class. Given the merged queue
length and throughput, Little’s law [17] is then used to compute

Source Sink
R1

R2

R3

Router

...

Synchronization

delay

(a) The network gained from the transformation of a fork-join system

Source Sink
R1'

R2'

R3'

...

...

...

(b) Corresponding homogeneous fork-join system of the
netwwork in Figure 3a

Figure 3: The proposed method for fork-join transformation

the mean response time at each single station

𝑅𝑝,𝑟 =
∑︁

𝑚∈𝑀𝑝

𝑄𝑚,𝑟 +𝑄𝑚,𝑟 ′

𝑋𝑚,𝑟 + 𝑋𝑚,𝑟 ′
(5)

where𝑀𝑝 is the set of service stations on path 𝑝 .

3.2.2 Approximation by a homogeneous fork-join system. The sec-
ond step is to update the service rates of the original and auxiliary
classes at the sychronization delay station.

We propose to approximate the given fork-join system with a
homogeneous fork-join system. As shown in Figure 3b, the corre-
sponding homogeneous fork-join system has the same number of
parallel paths and features one delay station per path. The service
times of both job classes at any delay station of the new fork-join
systems are assumed to be exponential random variables with the
means equal to the average of the original response times of the
path executions

𝐸 [𝑅′𝑝,𝑟] =
𝐸 [𝑅1,𝑟] + · · · + 𝐸 [𝑅𝐹,𝑟]

𝐹
, ∀𝑝 ∈ {1, . . . , 𝐹 } (6)

where the random variable𝑅′𝑝,𝑟 represents the class-𝑟 service time at
the delay station of the parallel path 𝑝 . The homogeneuous system
can approximate the behavior of the orginal system since their
response times are close to each other, i.e., 𝐸 [max(𝑅1,𝑟 , . . . , 𝑅𝐹,𝑟)] ≈
𝐸 [max(𝑅′1,𝑟 , . . . , 𝑅

′
𝐹,𝑟
)].

We therefore use 𝐸 [𝑅′𝑝,𝑟] to approximate the mean response time
of each path in the original fork-join system, and then compute the
synchronization delay by

𝐸 [𝐷𝑝,𝑟] = 𝐸 [max(𝑅1,𝑟 , . . . , 𝑅𝐹,𝑟)] − 𝐸 [𝑅′𝑝,𝑟], ∀𝑝 ∈ {1, . . . , 𝐹 } (7)

where 𝐸 [max(𝑅1,𝑟 , . . . , 𝑅𝐹,𝑟)] can be obtained by (2), and the ran-
dom variable 𝐷𝑝,𝑟 represents the class-𝑟 synchronization delay at
the parallel path 𝑝 of the original fork-join system.

276

Approximating Fork-Join Systems via Mixed Model Transformations ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Table 3: Differences between two transformation methods

HT MMT
added elements 2 delays 1 delay, 1 source
network type closed mixed

number of classes 𝐾 (1 + 𝐹) 2𝐾
synchronization delay heterogeneous homogeneous

(after aggregation)

Algorithm 1 Procedures to solve original queueing networks

Input: a queueing network, 𝑡𝑜𝑙
Output: 𝑄𝑚,𝑟 , 𝑋𝑚,𝑟 ,𝑇𝑚,𝑟 ,𝑈𝑚,𝑟

1: initialize 𝑋𝑜,𝑟 ← 0, 𝑄𝑚,𝑟 ← 1, 𝑄0
𝑚,𝑟 ← 1

2: 𝑠𝑡𝑜𝑝 ← 𝑓 𝑎𝑙𝑠𝑒

3: obtain Q by fork-join transformation
4: while 𝑠𝑡𝑜𝑝 == false do
5: if max

(
1-(𝑄0

𝑚,𝑟 / 𝑄𝑚,𝑟)
)
< 𝑡𝑜𝑙 then

6: 𝑠𝑡𝑜𝑝 ← 𝑡𝑟𝑢𝑒

7: else
8: 𝑄0

𝑚,𝑟 ← 𝑄𝑚,𝑟

9: end if
10: 𝑄𝑚,𝑟 ,𝑄𝑚,𝑟 ′ ,𝑋𝑚,𝑟 𝑋𝑚,𝑟 ′ ,𝑇𝑚,𝑟 ,𝑇𝑚,𝑟 ′ ,𝑈𝑚,𝑟 ,𝑈𝑚,𝑟 ′←AMVA(Q)
11: for 𝑟 = 1, . . . , 𝐾 do
12: 𝑋𝑜,𝑟 ← Avg(𝑋𝑜,𝑟 , 𝑋𝑑,𝑟)
13: 𝜆𝑟 ′ ← 𝑋𝑜,𝑟 · (𝐹 − 1)
14: obtain 𝑅1,𝑟 , . . . , 𝑅𝐹,𝑟 by (5)
15: obtain E[𝐷0] by (2)
16: update 𝜇𝑑,𝑟 and 𝜇𝑑,𝑟 ′ by (7)
17: 𝑄𝑚,𝑟 ← 𝑄𝑚,𝑟 +𝑄𝑚,𝑟 ′ ; 𝑋𝑚,𝑟 ← 𝑋𝑚,𝑟 + 𝑋𝑚,𝑟 ′ ;

𝑇𝑚,𝑟 ← 𝑄𝑚,𝑟 /𝑋𝑚,𝑟 ;𝑈𝑚,𝑟 ←𝑈𝑚,𝑟 +𝑈𝑚,𝑟 ′

18: end for
19: end while

3.3 Algorithm
In our method, the arrival rates of auxiliary classes and the service
rates at the delay server are not known in advance. This implies
that an iterative computation framework is needed to approximate
the solution of the original network.

The framework is shown in Algorithm 1. For ease of presenta-
tion, we consider one fork-join system and temporarily remove the
subscript 𝑐 . The input of the algorithm includes an original queue-
ing network, a tolerance 𝑡𝑜𝑙 that serves as the iteration stopping
threshold, and a boolean value 𝑠𝑡𝑜𝑝 that determines whether to
stop the iteration. We set the initial value of 𝑋𝑜,𝑟 to 0, and both
𝑄𝑚,𝑟 , 𝑄0

𝑚,𝑟 to the same number (line 1), and transform the original
queueing network into a product-form mixed queueing network
by the proposed procedure (line 3). The stopping criterion is the
difference between the queue lengths of two successive iterations
(lines 5-9). At each iteration, the transformed queueing network is
solved by AMVA (line 10). Then, for each auxiliary open class, we
update its arrive rate (lines 12-13) and update the service rates of
both auxiliary and corresponding original classes at the synchro-
nization delay station (lines 14-16). In this way, the parameters of
the queueing network are updated. The last step of an iteration is
to merge the results for each original class (line 17).

Source Sink

Router 1

...

Synchronization

delay 1

Router 2

...

delay 2
Synchronization

Figure 4: An example of nested fork-join transformation by
the proposed method

3.4 Extend Method to Nested Fork-Join System
A nested fork-join structure is a hierarchical arrangement of fork-
join systems, utilizing nested fork-join structures holds significance
in the field of software development [4, 15]. Figure 4 shows a net-
work transformed from a nested fork-join system by the proposed
procedure. As it can be observed, the original system includes two
fork-join structures. We refer to the outer fork-join as 𝐹 𝐽1 and to
the inner fork-join as 𝐹 𝐽2. In this network, the possible paths of the
original job class are depicted in red, whereas the possible paths
of its auxiliary job classes are depicted in green or blue. The green
paths are for the auxiliary class created for 𝐹 𝐽1, whereas the blue
color denotes the paths of the auxiliary class created for 𝐹 𝐽2.

To adapt to nested fork-join systems, for each original class, we
first build auxiliary classes for every fork-join structure visited by
the original class. Two additions are introduced in the MMTmethod
compared to our original method for systems without nested fork-
join structures. The first addition is to start computing the synchro-
nization delay only at the outermost fork-join structure, and then
compute the nested fork-join structures recursively.

The second addition is the calculation of arrival rates of the
auxiliary classes. Because nested systems incorporate inner fork-
join structures and auxiliary classes are created for each of them,
solely considering the throughput of the original class at an inner
fork to compute the arrival rate of the auxiliary class associated
to this structure is not enough. The auxiliary class created for
an inner fork-join structure simulates the sibling tasks executing
concurrently of the auxiliary classes created for the outer fork-join
structures. In other words, the influence of both the original class
and the outer auxiliary classes should be considered. Hence, before
computing the arrival rate, the throughput 𝑋𝑑𝑐 ,𝑟 is updated using
throughputs of class-𝑟 and its auxiliary classes at that delay station

𝑋𝑑𝑐 ,𝑟 = 𝑋𝑑𝑐 ,𝑟 − 𝑋𝑑𝑐 ,𝑟 ′𝑐 +
𝐶∑︁
𝑠=1

𝑋𝑑𝑐 ,𝑟 ′𝑠 (8)

where 𝐶 denotes the set of fork-join structures in the queueing
network, 𝑟 ′𝑐 denotes the auxiliary class of 𝑟 created for the fork-join
structure 𝑐 , and 𝑑𝑐 denotes the delay station created to replace the
join node of the fork-join structure 𝑐 .

We refer to class-𝑟 and its auxiliary classes as 𝑟 -related classes.
Equation (8) merges the throughputs of all 𝑟 -related job classes
at the delay station, except 𝑋𝑑𝑐 ,𝑟 ′𝑐 , which is the throughput of the
auxiliary class created for the fork-join structure associated to the

277

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale

Table 4: Distinct fork-join queues used in evaluation

Groups Topology
heterogeneous_FCFS_1 < 𝑄1 | | 𝑄2 >

heterogeneous_FCFS_2 < 𝑄1 | | 𝑄2 | | 𝑄3 >

heterogeneous_FCFS_3 < 𝑄1 | | (𝑄2 → 𝑄3) >

heterogeneous_PS_1 < 𝑄1 | | 𝑄2 >

heterogeneous_PS_2 < 𝑄1 | | 𝑄2 | | 𝑄3 >

heterogeneous_PS_3 < 𝑄1 | | (𝑄2 → 𝑄3) >

heterogeneous_PS_4 < 𝑄1 | | 𝑄2 >

heterogeneous_PS_5 < 𝑄1 | | 𝑄2 | | 𝑄3 >

homogeneous_FCFS_1 < 𝑄1 | | 𝑄2 >

homogeneous_FCFS_2 < 𝑄1 | | 𝑄2 | | 𝑄3 >

homogeneous_PS_1 < 𝑄1 | | 𝑄2 >

homogeneous_PS_2 < 𝑄1 | | 𝑄2 | | 𝑄3 >

homogeneous_PS_3 < 𝑄1 | | 𝑄2 >

homogeneous_PS_4 < 𝑄1 | | 𝑄2 | | 𝑄3 >

current delay station 𝑑𝑐 . In other words, this equation gives the
total 𝑟 -related throughputs that do not leave for the sink from the
current delay station. If the fork-join structure 𝑐 is not nested (i.e.,
the outermost fork-join), 𝑋𝑑𝑐 ,𝑟 ′𝑐 will remain unchanged.

4 EVALUATION
We first compare the accuracy of the HT method [13] and MMT
method against simulation results obtained by Java Modeling Tool
(JMT) [2]. The implementations of these methods are included by
LINE [5] that is a algorithmic framework for queueing networks
and layered queueing networks [6]. The involved closed queueing
networks in our evaluation can be categorised into distinct groups
depending on the service rates of parallel executions (homogeneous
or heterogeneous) and the scheduling used at the queueing stations
(FCFS or PS).

There are two job classes in every queueing network. Both classes
are closed with a population of 10 jobs each. The queueing networks
always include a fork-join system containing two or three queueing
stations. The service rates at these stations are randomly generated,
with the average service time between 0.3 and 0.8. Table 4 shows a
list of the fork-join queues used in the first experiments. We use
the following notations to describe their topology: < denotes a fork
node, > represents a join node, | | defines a parallel branch, and→
defines a serial routing.

The evaluation results are shown in Table 5. It can be observed
that the proposed method achieves lower errors on most cases
than the HT method. Compared to the baseline, the MMT method
reduces the prediction error of queue length, response time, utiliza-
tion, and throughput by 30.9%, 62.8%, 34.6%, and 35.3% on average.
Figure 5a demonstrates that the two methods exhibit similar pre-
diction accuracy on homogeneous networks, whereas Figure 5c
illustrates that our method notably achieves higher accuracy on
heterogeneous networks. Apart from accuracy, runtime is the other
important factor to consider. As shown in Figure 5b and 5d, the
average runtime of our method is less than 0.015s, substantially
lower than that of the HT method, which is around 0.03s, as the
runtime of the AMVA scales with the increasing number of service

Q T U X
Performance metrics

0

0.05

0.1

0.15

P
re

di
ct

io
n

er
ro

rs

HT
MMT

(a)

HT MMT
0

0.01

0.02

0.03

0.04

T
im

e
(s

ec
on

ds
)

(b)

Q T U X
Performance metrics

0

0.05

0.1

0.15

0.2

0.25

P
re

di
ct

io
n

er
ro

rs

HT
MMT

(c)

HT MMT
0

0.01

0.02

0.03

0.04

T
im

e
(s

ec
on

ds
)

(d)

Figure 5: (a)-(b) for homogeneous networks. (c)-(d) for hetero-
geneous networks. (a),(c): Average prediction errors by HT
and MMT methods. (b),(d): Box plots of average runtimes for
both methods. Red circles and lines inside boxes represent
mean and median values, respectively.

stations and job classes. Compared to our method, where only one
auxiliary job class is created for a fork-join system, the HT method
creates one auxiliary class for each parallel path of the concurrent
system and an additional delay station to model the time spent
outside the fork-join system. Hence, the models created by our
method are more efficient to compute compared to those created
by the HT method.

We then evaluate the MMT method on nested fork-join queues.
Here we only compare the results with that of simulations since
the baseline HT method is not designed for nested fork-join queues.
The networks used for evaluation and numerical results are pro-
vided in Table 6 and Table 7, respectively. Figure 6 visualizes mean
and maximum errors in FCFS and PS groups. As can be observed,
the MMTmethod provides accurate predictions. This method inher-
ently possesses the capability to handle nested fork-join systems
because the auxiliary classes it creates are restricted to their corre-
sponding fork-join systems, and they are independent of the time
their original classes spend outside the fork-join systems, which is
a distinct advantage of our approach. In contrast, the HT method
is initially devised for a network with a single fork-join system.

5 RELATEDWORK
Fork-Join queueing networks represent the key to modelling and
solving parallel systems. However, they do not follow the product-
form restrictions, so most algorithms devised for fork-join networks

278

Approximating Fork-Join Systems via Mixed Model Transformations ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Table 5: Queue length, response time, utilization and throughput errors of HT and MMT methods

Groups ErrQ ErrT ErrU ErrX
HT MMT HT MMT HT MMT HT MMT

heterogeneous_FCFS_1 0.034 0.016 0.226 0.022 0.002 0.003 0.004 0.007
heterogeneous_FCFS_2 0.061 0.029 0.412 0.041 0.004 0.018 0.003 0.021
heterogeneous_FCFS_3 0.066 0.024 0.409 0.034 0.043 0.010 0.070 0.012
heterogeneous_PS_1 0.063 0.014 0.262 0.031 0.010 0.009 0.016 0.010
heterogeneous_PS_2 0.025 0.024 0.140 0.070 0.025 0.046 0.027 0.046
heterogeneous_PS_3 0.067 0.019 0.278 0.046 0.086 0.031 0.122 0.039
heterogeneous_PS_4 0.049 0.042 0.070 0.087 0.040 0.021 0.053 0.022
heterogeneous_PS_5 0.037 0.016 0.343 0.030 0.004 0.010 0.005 0.016
homogeneous_FCFS_1 0.069 0.078 0.125 0.116 0.013 0.009 0.021 0.018
homogeneous_FCFS_2 0.083 0.094 0.114 0.110 0.035 0.018 0.039 0.032
homogeneous_PS_1 0.041 0.032 0.053 0.074 0.014 0.010 0.021 0.017
homogeneous_PS_2 0.062 0.040 0.124 0.116 0.039 0.015 0.025 0.028
homogeneous_PS_3 0.053 0.045 0.073 0.099 0.025 0.014 0.027 0.016
homogeneous_PS_4 0.066 0.057 0.156 0.156 0.024 0.023 0.041 0.029

Mean 0.055 0.038 0.199 0.074 0.026 0.017 0.034 0.022

Table 6: Nested fork-join queues used in evaluation

Groups Topology
FCFS_1 < 𝑄1 | | (< 𝑄2 | | 𝑄3 >) >

FCFS_2 < 𝑄1 | | (< 𝑄2 | | 𝑄3 >) >

FCFS_3 < (< 𝑄1 | | 𝑄2 >) | | (< 𝑄3 | | 𝑄4 >) >

FCFS_4 < (< 𝑄1 | | 𝑄2 >) | | (< 𝑄3 | | 𝑄4 >) >

PS_1 < 𝑄1 | | (< 𝑄2 | | 𝑄3 >) >

PS_2 < 𝑄1 | | (< 𝑄2 | | 𝑄3 >) >

PS_3 < (< 𝑄1 | | 𝑄2 >) | | (< 𝑄3 | | 𝑄4 >) >

PS_4 < (< 𝑄1 | | 𝑄2 >) | | (< 𝑄3 | | 𝑄4 >) >

Table 7: Queue length, response time, utilization and through-
put errors of the MMT method

Groups ErrQ ErrT ErrU ErrX
FCFS_1 0.029 0.035 0.004 0.009
FCFS_2 0.023 0.036 0.004 0.007
FCFS_3 0.044 0.069 0.018 0.035
FCFS_4 0.019 0.085 0.023 0.033
PS_1 0.011 0.085 0.004 0.008
PS_2 0.012 0.070 0.004 0.007
PS_3 0.022 0.119 0.017 0.032
PS_4 0.010 0.083 0.023 0.033
Mean 0.021 0.073 0.012 0.021

are approximations and bounds, see e.g. [23],[7]. The only exact
solution has been devised for two parallel servers [20]. The main
difficulty in analysing fork-join queueing networks stems from the
synchronization delays incurred by the jobs waiting for the other
jobs created by a job to finish [11].

Duda and Czachórski [11] devise an algorithm to analyse fork-
join queueing networks by replacing the fork-join constructs with

Q T U X
Performance metrics

0

0.02

0.04

0.06

0.08

P
re

di
ct

io
n

er
ro

rs

mean
max

(a)

Q T U X
Performance metrics

0

0.02

0.04

0.06

0.08

0.1

0.12

P
re

di
ct

io
n

er
ro

rs

mean
max

(b)

Figure 6: (a) for networks with FCFS scheduling. (b) for net-
works with PS scheduling.

load-dependent queueing stations. Its foundation consists of the
flow-equivalent server method [3] and the decomposition principle.
Varki [25] modifies the computation of residence time in the MVA
algorithm to adapt to the closed, single-class queueing networks
containing fork-join systems. This modification assumes service
stations to have exponentially distributed service times and FCFS
scheduling strategies. Alomari and Menasce [1] propose a method
for analyzing fork-join systems involving servers with heteroge-
neous service times in open networks. The core of this method
involves establishing bounds on the response time of a job in a
fork-join system. This is achieved by analyzing the system under
two scenarios: one where all stations have the same service rates
and the other where their service rates vary. Mak and Lundstrom
[19] introduce an iterative algorithm capable of approximating the
performance measures of directed acyclic graphs abstracted from
parallel systems in polynomial space and time. Franks andWoodside
[12] illustrate the capability of the layered modelling framework
in which a platform for defining models with parallelism can be
conveniently used.

279

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale

6 CONCLUSION
The paper proposes an accurate and computationally efficient ap-
proach for analyzing closed queueing networks containing fork-join
systems. The core of this method involves establishing auxiliary
open job classes to simulate the behavior of the original parallelism.
This transformation leads to a mixed queueing network model that
can be solved by analytic method. Compared to the well-established
Heidelberger-Trivedi method, which uses an one-to-one fashion
to create auxiliary closed job classes for each parallel path, our
approach produces one auxiliary open job classes for the entire
fork-join systems. The evaluation results show that our method
achieves lower error rates. Meanwhile, the proposed method is
faster than the baseline method since our transformed network has
less number of job classes that requires less analytic computations.
In addition, the design of our transformation enables us to deal with
nested fork-join system, which is a notable advantage. Hence, this
paper contributes a simple yet effective fork-join transformation
which has the potential to be of great value in areas of the concur-
rent system research. An extended version of the work presented
in this paper is available in [10].

REFERENCES
[1] Firas Alomari and Daniel A Menasce. 2013. Efficient response time approxima-

tions for multiclass fork and join queues in open and closed queuing networks.
IEEE Transactions on Parallel and Distributed Systems 25, 6 (2013), 1437–1446.

[2] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. 2009. JMT: performance
engineering tools for systemmodeling. ACMSIGMETRICS Performance Evaluation
Review 36, 4 (2009), 10–15.

[3] Gunter Bolch, Stefan Greiner, Hermann De Meer, and Kishor S Trivedi. 2006.
Queueing networks and Markov chains: modeling and performance evaluation with
computer science applications. John Wiley & Sons.

[4] Michael Burke, Ron Cytron, Jeanne Ferrante, and Wilson Hsieh. 1989. Automatic
generation of nested, fork-join parallelism. The Journal of Supercomputing 3
(1989), 71–88.

[5] Giuliano Casale. 2020. Integrated performance evaluation of extended queueing
network models with line. In 2020 Winter Simulation Conference (WSC). IEEE,
2377–2388.

[6] Giuliano Casale, Yicheng Gao, Zifeng Niu, and Lulai Zhu. 2023. LN: A Flex-
ible Algorithmic Framework for Layered Queueing Network Analysis. ACM
Transactions on Modeling and Computer Simulation (2023).

[7] Giuliano Casale, Richard Muntz, and Giuseppe Serazzi. 2008. Geometric bounds:
A noniterative analysis technique for closed queueing networks. IEEE Trans.
Comput. 57, 6 (2008), 780–794.

[8] K Mani Chandy and Doug Neuse. 1982. Linearizer: A heuristic algorithm for
queueing network models of computing systems. Commun. ACM 25, 2 (1982),
126–134.

[9] David Culler, Jaswinder Pal Singh, and Anoop Gupta. 1999. Parallel computer
architecture: a hardware/software approach. Gulf Professional Publishing.

[10] Rares-Andrei Dobre. 2023. Stochastic Modelling in JLINE: Redesigning and Aug-
menting the MVA Solver with Fork-Join Analysis Methods. Technical Report. MSc
Final project, Department of Computing, Imperial College London.

[11] Andrzej Duda and Tadeusz Czachórski. 1987. Performance evaluation of fork
and join synchronization primitives. Acta Informatica 24 (1987), 525–553.

[12] Greg Franks andMurrayWoodside. 1998. Performance of multi-level client-server
systems with parallel service operations. In Proceedings of the 1st international
workshop on Software and performance. 120–130.

[13] Heidelberger and Trivedi. 1983. Analytic queueing models for programs with
internal concurrency. IEEE Trans. Comput. 100, 1 (1983), 73–82.

[14] Patricia A Jacobson and Edward D Lazowska. 1982. Analyzing queueing networks
with simultaneous resource possession. Commun. ACM 25, 2 (1982), 142–151.

[15] Gokcen Kestor, Sriram Krishnamoorthy, and Wenjing Ma. 2017. Localized fault
recovery for nested fork-join programs. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 397–408.

[16] Edward D Lazowska, John Zahorjan, G Scott Graham, and Kenneth C Sevcik.
1984. Quantitative system performance: computer system analysis using queueing
network models. Prentice-Hall, Inc.

[17] John DC Little. 1961. A proof for the queuing formula: L= 𝜆 W. Operations
research 9, 3 (1961), 383–387.

[18] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. 1995. Specify-
ing distributed software architectures. In Software Engineering—ESEC’95: 5th
European Software Engineering Conference Sitges, Spain, September 25–28, 1995
Proceedings 5. Springer, 137–153.

[19] VictorWMak and Stephen F. Lundstrom. 1990. Predicting performance of parallel
computations. IEEE Transactions on Parallel & Distributed Systems 1, 03 (1990),
257–270.

[20] Randolph Nelson and Asser N Tantawi. 1988. Approximate analysis of fork/join
synchronization in parallel queues. IEEE transactions on computers 37, 6 (1988),
739–743.

[21] Martin Reiser and Stephen S Lavenberg. 1980. Mean-value analysis of closed
multichain queuing networks. Journal of the ACM (JACM) 27, 2 (1980), 313–322.

[22] S Salza and SS Lavenberg. 1981. Approximating response time distributions in
closed queueing network models of computer performance. (1981).

[23] Alexander Thomasian. 2014. Analysis of fork/join and related queueing systems.
ACM Computing Surveys (CSUR) 47, 2 (2014), 1–71.

[24] Kishor S Trivedi. 2008. Probability & statistics with reliability, queuing and com-
puter science applications. John Wiley & Sons.

[25] Elizabeth Varki. 1999. Mean value technique for closed fork-join networks. ACM
SIGMETRICS Performance Evaluation Review 27, 1 (1999), 103–112.

280

Establish a Performance Engineering Culture in Organizations
Performance as a Value

Josef Mayrhofer
 Performetriks LLC
New Jersey / USA

 Josef@performetriks.com

ABSTRACT

Performance Engineering still needs to be adopted in many
organizations. At the same time, user expectations for fast and
reliable applications are increasing. This paper discusses different
approaches to establishing a performance engineering culture.
After highlighting some of the challenges that hold businesses
back from making performance a shared responsibility, we convey
a success story about how performance became a matter for
everyone in a large European bank.

CCS CONCEPTS
•Software and its engineering, Software and its
engineering~Software maintenance tools, Software and its
engineering~Application specific development environments,
Software and its engineering~Software as a service orchestration
system, Software and its engineering~Object oriented frameworks

KEYWORDS
Performance Engineering, Culture, Performance Testing,
Performance Monitoring, Performance Touchpoints, Performance
as a value, Reliability, Resilience, Quality, Gobenchmark

ACM Reference format:

Josef Mayrhofer. 2024. Establish a Performance Engineering Culture in
Organizations: Performance as a Value, In Companion of the 15th
ACM/SPEC International Conference on Performance Engineering, May 7–11,
2024, London, United Kingdom, ACM, New York, NY, USA. 7 pages,
https://doi.org/10.1145/3629527.3652278

1 WHAT IS PERFORMANCE ENGINEERING

Performance Engineering combines all techniques to design, build,
and operate IT services with performance in mind.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE '24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652278
.

It goes far beyond validating performance requirements and
involves performance monitoring. Some typical performance
engineering activities are:

• Performance requirement review and specification
• Code and design review
• Workload modeling
• Design and implement performance tests
• Execute and analysis of performance tests
• Performance defect tracking and reporting
• Performance troubleshooting support and tuning
• Performance tracing and monitoring
• Performance audit and feedback

Performance [4] is a pervasive quality of software systems;
everything affects it. Performance risks increase the later we start
following performance engineering practices or the earlier we stop
applying them. Performance engineering is a continuous process
that is very similar to software engineering. We can only stop
software engineering activities by setting the software end of life.
Similarly, if we fail to adopt or stop performance engineering
activities, it is only a matter of time before severe reliability
problems disrupt our operations.

2 ROLES AND RESPONSIBILITIES

We have several performance engineering roles depending on the
size of a project or organization. The performance engineer is
technically gifted, a hands-on software developer aware of the
latest advancements and performance engineering tools. When it
comes to architecture reviews, layout of performance
requirements, or design of performance validation and monitoring
approach, the performance architect plays a crucial role. The
performance manager drives the communication and reporting
activities to keep everyone on Board with the performance
development efforts.

In smaller organizations, a performance engineer usually combines
all three roles, while large enterprises split these roles among
multiple teams.

3 PERFORMANCE ENGINEERING
TOUCHPOINTS
3.1 Organizational Touchpoints

From an organizational perspective, we see several approaches to
how enterprises implement performance engineering activities.

281

ICPE '24 Companion, May 7–11, 2024, London, United Kingdom Josef Mayrhofer

3.1.1 Project-based

Back in 1999, performance engineering was a project-related
effort. I remember a project at an e-commerce business in
Germany. A multi-million-dollar project was launched, and the
team faced severe slowness issues during checkout a few weeks
before the scheduled launch date. The project lead hired me as
their performance expert, equipped me with a load testing tool,
and assigned the load testing task. After implementing and
executing a few fundamental load tests, I had all the evidence to
demonstrate that the new shop could not handle concurrent user
traffic. This was no good news because it took several weeks for
the developers to fix these issues, and the organization had to
postpone their product launches.

3.1.2 Center of Excellence

In the late 90s, organizations streamlined their processes and
wiped-out redundancies. The so-called CoE or Center of
Excellence optimizes [5] each value component. A CoE
performance owns all processes, methods, and tools related to
performance engineering. They provided coaching for project
teams, maintained the load testing tools, and, in some cases also,
supported test implementation and execution.

3.1.3 As a Service

The as-a-service economy has become popular during the Industry
4.0 [8] movement. Driven by cost transparency and efficiency,
Performance engineering as a service is often provided by
managed service providers or internal teams. They do everything
from requirement gathering to project-based load test
implementation, execution, and reporting. This model has benefits,
such as buying what you need, but disadvantages, such as not
going the extra mile when required and slightly higher costs.

3.1.4 Performance as a Value

For performance to be valuable, it must grow and endure. If we
look at software development and bug-fixing efforts, we
understand that late defect discovery results in high defect costs,
delays releases, and negatively impacts end users. By fixing such
late-discovered performance issues, you can only heal something
already broken but won’t create endurable value.

The value of performance requires initial and continuous
investments. Like an investor who puts their money into
promising assets, the “Performance as a Value” technique follows a
risk-based approach. There is no reason to put the same
performance investment in all your business applications. Instead,
we run a risk rating on applications and their changes, and
depending on this rating, we implement mitigating measures. This
risk mitigation applies to pre-production performance activities
and includes performance monitoring, alerting, and tracing on
production.

3.2 Life Cycle Touchpoints

From a software development process perspective, there are
several approaches to how enterprises integrate performance

engineering activities. The chess grandmaster [6] put it very well
when he said, “To improve your game, you must study the
endgame before everything else, for whereas the endings can be
studied and mastered by themselves, the middle game and the
opening must be studied in relation to the endgame.” This end-
game thinking is often the secret to a successful performance
engineering project because we put ourselves, in the end, user’s
shoes and design a performance approach to validate the system
requirements under a realistic production-like setting.

Performance requires early and continuous efforts to keep it at the
needed level. The researcher Capers Jones pointed out that defect
costs are low in the early stages [1] but up to 640 times higher if
discovered in production. In Figure 1, we highlight the
dependencies between introducing and resolving defects. When
we bring defect resolution closer to coding, the costs could be
reduced. At the same time, reputation and business risks increase
when performance problems are found late or, in the worst case,
in production. Performance must be part of the entire software
development lifecycle.

Fig. 1. Statistic from Applied Software Measurement [1] to
demonstrate the dependency between defect introduction and
defect resolution on software development costs.
3.2.1 Design for Performance

Technology alone is not a guarantee of success [2]. Jim Collins
explained the role of technology in successful businesses. It seems
the same is true for building fast and reliable business applications.
We should not hope that the latest technologies guarantee reliable
IT services. Instead, we must lay out realistic performance
requirements and make them part of our early software design
decisions.

3.2.2 Coding for Performance

When developers know performance requirements such as request
volumes or response time expectations, they can integrate lazy
loading, resilience, or caching concepts in their software
components. At the same time, developers should be motivated to
implement unit tests to validate the performance as part of their
build processes. The benefit of these practices is that they identify
and fix performance problems earlier and at a lower effort.

3.2.3 Testing for Performance

Performance must be validated, release by release. Any change
comes with a performance risk. We can ignore or mitigate these

282

Establish a Performance Engineering Culture in Organizations ICPE '24 Companion, May 7–11, 2024, London, United Kingdom

risks by running a predefined set of performance tests and
validating our performance quality gates. This continuous
performance validation creates a quality-first mindset and avoids
expensive surprises when we deploy our new features to the user
community.

These days, performance validations are highly automated and
fully integrated into the deployment process. When performance
testing is a lean and continuous process, we detect problems much
earlier. Ideally, performance testing-related activities are scalable
self-service, and we have performance-trending capabilities and
dashboards in place. The chart in Figure 2 outlines how
continuous performance testing supports early component-level
performance tests as well as integration and end-to-end
performance tests.

Fig. 2. A visualization of how performance testing can become a
continuous process.

3.2.4 Operations for Performance

In our digitized world, IT services must sustain significant
variations in user and data volumes. The expectations for fast and
reliable business services grow, and when customers get frustrated
due to performance issues, we see a loss in sales. It’s more
important than ever to identify the root cause of degradations and
implement the remediations fast by keeping the mean time to
repair (MTTR) low.

4 ESTABLISH A PERFORMANCE
ENGINEERING CULTURE IN A LARGE BANK
IN EUROPE

In 2019, performance engineering was absent from a large
European bank; their customers complained, and regulatory
agencies were on the doorstep to review how this bank ensures
that only validated software is deployed to production. The Board
launched a program to modernize their testing activities, including
identifying and remedying gaps. Within a few days, it was evident
that performance engineering was one of their challenges, and the
team hired me to make performance a matter for everyone. In this
section, I explain how we’ve established a culture of performance
discipline in this organization.

4.1 Culture of Performance Discipline

Performance requires awareness and commitment from
management from the first steps to the entire length of this
investment. We tried to get everyone settled in and explained why,
what, and how we planned to implement performance
engineering. The following sections outline how we’ve
implemented performance as a shared responsibility. From
leadership to business and technical roles, performance became a
matter for everyone.

4.1.1 Performance for Leadership

Empowered by line managers, the QA, Project, and performance
lead conducted performance risk assessments. Depending on the
outcome of these risk ratings, they engaged performance experts
to validate their performance requirements.

The leadership team’s role is to remind everyone involved in the
software development process about the importance of reliability
and performance. Any enterprise application changes are on the
daily agenda. The leadership team provides the framework and
rules for performance risk assessments. Supported by a
Performance expert, they can review their risk assessment and
plan meaningful performance tests to mitigate identified
performance risks.

Fig. 3. The Leadership’s roles and responsibilities to make
performance a continuous process.

4.1.2 Performance for Business
Performance requires end-game thinking, so we’ve made business
service owners, business QA, and testers responsible for
performance requirements and their validation. The
transformation at the business level, from what to build to how to
build it, created much better awareness for performance
considerations.

The focus changed from testing functionality to testing how the
end customers will use the product. For each release performance
requirement, risk assessment and load and performance testing
became a fundamental, planned discipline, as outlined in Figure 4.

Lean Continuous

Your

Organization

>
Commit

Repository

New Code

Build Unit Test Cont. PT

Component Level

Repository

Performance Trending

Performance Reporting
Performance Dashboards

ScalableSelf Service

Staging Integration Production

Integration & E2E

283

ICPE '24 Companion, May 7–11, 2024, London, United Kingdom Josef Mayrhofer

Fig. 4. The business teams’ roles and responsibilities to make
performance a continuous process.

4.1.3 Performance for Technical Experts

Business teams got support from technical services owners and
developers. The technical service owner had a shared
responsibility for performance, as outlined in Figure 5, and worked
with developers on fixing identified performance issues. Once
we’ve created this common understanding for performance, we
looked at the processes in this bank. We intended to make
performance a continuous activity without building large
additional teams.

Fig. 5. The technical teams’ roles and responsibilities to make
performance a continuous process.

During the first few months, we focused on building a small core
team for performance engineering. This self-motivated team
designed a performance engineering framework as laid out in the
performance as a value section 3.1.4 to clarify a few general rules,
such as who is in charge, what the rules are, and how to validate
the performance requirements. At the same time, we deployed a

test lab, installed performance monitoring and load injection tools,
and educated the teams on how to use our performance
framework. In this project, our performance framework consisted
of the following tooling:

• Maturity Assessment: Gobenchmark
• Load injection: Gatling and LoadRunner
• Script development: InteliJ
• CICD: Jenkins
• Version Control: Git
• Monitoring: Prometheus and Dynatrace
• Workload modeling: Performance Toolbox
• Reporting: Confluence
• Performance Board and Defect Tracking: Jira

4.2 Automation of Performance
Manual performance test execution and analysis is time-
consuming and prone to human errors. Thanks to continuous
integration solutions such as Jenkins and plugins from Dynatrace,
we automated test executions and configured performance quality
gates. As mentioned earlier, late detection of performance
problems is expensive. By increasing the performance engineering
maturity, we empowered this organization to capture the true
value of performance. Figure 6 outlines the impact of the
performance maturity level on organizations. When they improve
their practices, they detect and solve performance problems earlier
and reduce defect costs as mentioned in section 3.2.

Fig. 6. A low-performance maturity level results in more
performance problems detected in production and higher
performance defect costs.

Looking back on this three-year project, I realize it was an
incredible time. We established a culture of performance and
prevented hundreds of performance issues from getting flawed to
production.

4.3 Challenges in this Performance Engineering Project

We’ve created a culture of performance in this organization, which
is the most important one from my perspective. If performance is
in everyone’s mind, the team will consider it during the entire
software development process.
The five challenges below need to be solved from a technical
standpoint.

P
e
rf

o
rm

a
n
c
e
 D

e
fe

c
ts

Dev

High Performance Maturity Low Performance Maturity

Solve Performance Issues earlier So
lve Perfo

rm
ance Issues late

Test Production

284

Establish a Performance Engineering Culture in Organizations ICPE '24 Companion, May 7–11, 2024, London, United Kingdom

1. Isolation of services and applications under test: Smaller
test stages and reduced capacity on 3rd party services
impacted performance test results.

2. Test data management: Performance tests generate huge
data volumes. Assignment of test data sets and
housekeeping is highly recommended.

3. Technical debts: The developers’ workload is high, and
they cannot include performance defects in their
monthly sprints.

4. Workload models: New products result in difficult-to-
predict transaction patterns. Workload modeling should
be executed frequently in production to gain new
insights for subsequent performance sprints.

5. Performance Engineering skills: To learn this science,
more than introductory courses are required.
Universities could integrate performance engineering
lectures into their syllabus to educate the next
generation of performance engineers.

5 PERFORMANCE ENGINEERING MATURITY

On the one hand, every organization could find its way to develop
and operate reliable applications. On the other hand, we could
share good practices and increase the chances that everyone
would implement better business applications.

Based on our experience, one of the significant challenges is
convincing leadership and creating awareness for performance
engineering. To solve this business problem, we’ve invented [9]
the performance engineering maturity knowledge model and
implemented its algorithms in the Gobenchmark platform. At
Gobenchmark, we combine human-AI-powered knowledge with
qualitative analysis, making the unmeasurable measurable and
bringing flexibility to changes in markets, customers, and
technologies. Figure 7 outlines the core elements of Gobenchmark,
which are:

• Advice from industry experts.
• Framework-based Analysis.
• Rating and comparison.
• Remediation.

Fig. 7. The Gobenchmark platform, including its knowledge
models and core features Advice, Analysis, Rating, and Remedy.

5.1 Advice from industry experts

Classic maturity models often fail because they do not adapt to
changes. Collecting the latest information about methods and tools
is crucial to avoid outdated knowledge. In Gobenchmark, we
created a share advice catalog [6], allowing every industry
professional to share good practices and hints about their solutions
and how they rate their practices and tools. Furthermore, we store
such advice in a flexible and reusable format to ensure that the
built-in AI can utilize this information when creating
recommendations for a customer’s remediation plan.

5.2 Framework Analysis

At Gobenchmark, we have implemented framework-based
analysis because it generates descriptive and explanatory
conclusions. The interviewee walks through 27 questions
structured in domains and practices. Each practice can be
answered by choosing Always, Often, Rarely, or Never. After
completing the assessment, Gobenchmark will calculate and
present the performance engineering maturity score. Such ratings
are easy to understand and allow a comparison to peers or
industry standards. Gaps can be identified by showing how teams
or organizations are rated, and remediation actions can be derived.

5.3 Rating and Comparison
We have no rating for the performance maturity of business
applications or organizations. A high CMM level is no indicator of
performant, secure, and well-designed IT services. Nevertheless,
the outcome of our framework analysis in Gobenchmark can be
transformed to a rating from C- to A and indicates how
organizations or teams are adopting industry best practices.

By seeing the rating, we can identify blind spots, compare
businesses to their peers, and create a remediation plan. In
Gobenchmark, we show the rating immediately after the
framework analysis, which creates essential benefits:

• We understand gaps much faster.
• We can focus our efforts on critical blind spots.
• We have everything we need to show a comparison

to industry standards and peers.
• We can build the remediation plan based on

identified gaps expressed by lower scores.

The performance engineering benchmark in our Gobenchmark
platform is dynamic and will be re-calculated month by month.

5.4 Remediation
For performance engineering to work, it must take us on a journey
where we learn concepts as we do things. Seeing gaps expressed
by a rating does not solve these problems. If we leave
organizations alone to solve these shortcomings, they might run
into further issues, such as going in the wrong direction.

The AI-powered brain of Gobenchmark provides the expected
guidance. It analyzes a customer’s assessment results, incorporates
knowledge from industry experts, and creates a remediation plan

285

ICPE '24 Companion, May 7–11, 2024, London, United Kingdom Josef Mayrhofer

that shows how organizations can reach the next level by
improving their practices and methods and using better tools.

Our world is changing extremely fast, and we can’t expect our
current approach to work tomorrow or several weeks ahead.
Knowledge from industry experts helps. However, we also see
challenges in getting relevant insights from subject matter experts.
For this reason, we’ve integrated large language models to acquire
domain and practice-specific advice, which we incorporate into
the AI-powered remediation plans to provide better customer
mentorship.

Fig. 8. In three steps from self-assessment through scoring and
remediation.

6 OUTLOOK AND CONCLUSION
We believe that reliable business applications must become a
commodity and should be achievable by every business. Today,
the limiting factor [3] is mainly knowledge and awareness. Not
knowing how to integrate performance or observability into value
streams can set your business at risk. Organizations might spend
too much time reinventing the wheel while their competitors
adopt industry standards and dramatically reduce their
development efforts.

To adopt performance engineering practices much faster and
lower the risks involved, we propose the [9] “Performance
Engineering Maturity Model.” Figure 8 outlines how we use
Gobenchmark in our performance engineering project. The three
steps to improve the performance engineering maturity are:

1. Assessment to get guidance on integrating performance
practices into organizations’ value stream.

2. Scoring to raise awareness and highlight organizations’
adoption of industry standards.

3. Remediation to solve technical and methodical gaps
much faster and save time by avoiding reinventing the
wheel.

The benefits of using Gobenchmark are:

• Safe time because we understand gaps and get a
remediation plan within a few minutes.

• Reduce risks because we follow industry best practices.
• Simplify things because you get guidance along the way.
• Avoid DIY (Do it yourself) because Gobenchmark shares

practice-proofed methodical and technical insights with
us, so we no longer need to reinvent the wheel.

• Reduce costs because a higher maturity level helps our
teams avoid expensive reliability issues in the first place.

Read more about the Gobenchmark platform on this page
https://gobenchmark.io/.

ACKNOWLEDGMENTS
I thank the performance engineering community for sharing their
knowledge. Also, I am very grateful for the hard work of our
Performetriks team on developing products such as Gobenchmark
to make performance engineering scalable and protect thousands
of businesses from learning performance the hard way.

REFERENCES
[1] Applied Software Measurement, Capers Jones, 1996.
[2] Jim Collins. Good to Great. 2001
[3] Josef Mayrhofer. 2023. Human-AI powered Strategies for Better Business

Applications. Performetriks, Minnesota.
https://link.springer.com/chapter/10.1007/978-3-031-35734-3_26

[4] M. Woodside, G. Franks, D. C. Petriu. 2007. The Future of Software Performance
Engineering. IEEE. https://ieeexplore.ieee.org/abstract/document/4221619

[5] Peter J. Pronovost, George J. Ata, Brent Carson, Zachary Gordon, Gabriel A.
Smith, Leena Khaitan, and Matthew J. Kraay. 2022. What Is a Center of Excellence.
Liebertpub.
https://www.liebertpub.com/doi/abs/10.1089/pop.2021.0395?journalCode=pop

[6] Josef Mayrhofer: Performetriks.:
https://www.performetriks.com/blog/categories/gobenchmark. (2023)

[7] José Raúl Capablanca,Good Reads Quotes,
https://www.goodreads.com/quotes/650766-in-order-to-improve-your-game-
you-must-study-the .

[8] E.W. Fleisch, Markus; Wortmann, Felix, Geschäftsmodelle im Internet
 der Dinge. HMD Praxis der Wirtschaftsinformatik.
 51(6) (2014) 812-826.
[9] Josef Mayrhofer: Performetriks.:
 https://ppubs.uspto.gov/dirsearch-public/print/downloadPdf/11847597. (2023)

286

https://gobenchmark.io/
https://www.linkedin.com/in/capers-jones-409344/
https://www.jimcollins.com/article_topics/articles/good-to-great.html
https://link.springer.com/chapter/10.1007/978-3-031-35734-3_26
https://ieeexplore.ieee.org/abstract/document/4221619
https://www.liebertpub.com/doi/abs/10.1089/pop.2021.0395?journalCode=pop
https://www.goodreads.com/quotes/650766-in-order-to-improve-your-game-you-must-study-the
https://www.goodreads.com/quotes/650766-in-order-to-improve-your-game-you-must-study-the

Green Software Metrics
Andreas Brunnert

Munich University of Applied Sciences HM
Munich, Germany
brunnert@hm.edu

ABSTRACT
Efficiency has always been at the core of software performance
engineering research. Many aspects that have been addressed in
performance engineering for decades are gaining popularity under
the umbrella of Green IT and Green Software Engineering. Engi-
neers andmarketers in the industry are looking for ways to measure
how green (in terms of carbon dioxide emissions) their software
products are. Proxy measures are proposed, such as hosting cost
or the power consumption of the hardware environment on which
the software is running. In environments where a software system
runs on a dedicated server instance, this may make sense, but in vir-
tualised, containerised or serverless environments, it is necessary
to find ways of allocating the energy consumption of the entire
server to software components that share the same infrastructure.
This paper proposes the use of resource demand measurements as
a basis for measuring how green a given software actually is.

CCS CONCEPTS
• Software and its engineering → Software performance.

KEYWORDS
Green IT, Green Software Engineering, Resource Demand
ACM Reference Format:
Andreas Brunnert. 2024. Green Software Metrics. In Companion of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE ’24
Companion), May 7–11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3629527.3652883

1 INTRODUCTION
In order to meet global carbon dioxide (CO2) reduction targets,
the IT industry needs to be able to quantify its emissions. With-
out quantifiable emissions, it is difficult to identify improvements
and assess their impact. While it is common to use the energy
consumption of servers or entire data centers to derive their CO2
emissions [1], there is no comparable metric for software [4]. Mod-
ern software systems run in virtualised, containerised or serverless
infrastructures, for which we need to find ways of allocating the
CO2 emissions of entire servers to individual software components
or transactions [5].

To achieve this goal, several proxy approaches are currently be-
ing used in the industry [3, 4]. One proxy for carbon emissions is the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652883

hosting cost of a software system [3] (e.g., when renting instances
from a cloud provider). The disadvantage of this approach is that
the price of the runtime environment does not correlate exactly
with the resource or CO2 emissions of the software. Just looking
at the price differences for the same runtime environment on a
cloud environment when choosing different payment options (e.g.,
up-front or on-demand) shows that there is no direct correlation
between price and resource use.

Another proposal from the Green Software Foundation is the
Software Carbon Intensity (SCI) specification1. SCI defines the car-
bon emissions of a software for a given unit of work (e.g., a request
to the system). The SCI specification combines the carbon emis-
sions of all components and transactions of a software system into
a single rate value. The advantage of this approach is the simplic-
ity of the result but it makes it difficult to understand the carbon
emissions of specific transactions or components of a system.

As an alternative approach, the Green Software Measurement
Model (GSMM) [4] attempts to describe a reference model for as-
sessing the resource and energy efficiency of software products and
components. GSMM focuses mainly on the individual components
of a software system, without considering their interrelationships
while processing individual units of work (e.g., transactions). There-
fore, the authors [4] also note that the current GSMM methods are
not fully applicable to complex architectures or distributed systems.

To overcome the limitations of the above approaches, this work
proposes the use of resource demand measurements at the level of
individual components and transactions as a basis for measuring
how green a software is.

2 RESOURCE DEMAND MEASUREMENTS AS
GREEN SOFTWARE METRICS

Measuring or calculating [6] the resource demands (i.e., CPU, mem-
ory, storage, network) of software systems is common in the soft-
ware performance engineering community, as such data is required
for capacity planning and performance modeling techniques. We
propose to use the same data to quantify the emissions of a software
system on a given runtime environment.

When measuring resource demand for a specific transaction,
typical metrics collected are CPU time, bytes allocated in memory,
or bytes written to/from storage or the network. Many of these
metrics, such as the amount of memory consumed by a transaction
or the amount of bytes written to or read from storage or the
network, are independent of the underlying hardware, as they are
primarily influenced by the parameters of a particular transaction.
The only metric that is tied to the actual processor used during the
measurements is CPU time.

In a previous work we have already shown and evaluated the
ability to measure all these resource demands of a software system
1https://sci.greensoftware.foundation

287

https://doi.org/10.1145/3629527.3652883
https://doi.org/10.1145/3629527.3652883
https://sci.greensoftware.foundation

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Andreas Brunnert

rp = {rpT1, …, rpTn}

rpTn = {rpS1Tn, …, rpSiTn}

rpSiTn=

dCPU
dSTOr
dSTOw
dMEM
dNETi
dNETo

Server (S1)

Si

S…

Transaction (T1) … (Tn)

Figure 1: Resource Profile [2]

dCPU
dSTOr
dSTOw
dMEM
dNETi
dNETo

cCPU
cSTO
cSTO
cMEM
cNET
cNET

* =

cCPU/T
cSTOr/T
cSTOw/T
cMEM/T
cNETi/T
cNETo/T

Figure 2: Calculating Carbon Emissions per Transaction

[2]. Therefore, we propose to use this data as a basis for assessing
the carbon intensity of a software system. To structure the data we
use so-called resource profiles, which can store the data for each
transaction of a given software system separately by server (see
Figure 1), software component or even at the level of individual
operations [2]. A resource profile (rp) is a set of vectors (i.e., rpTn)
that describe the resource demand (d) for individual transactions
(T, numbered from 1 to n) for a specific workload and a certain
set of servers (S, numbered from 1 to i). Resource profiles contain
resource demands for the following resource types: CPU (dCPU),
storage (differentiated by read dSTOr

and write dSTOw
operations),

memory (dMEM), and network (differentiated by incoming dNETi and
outgoing dNETo traffic).

A resource demand vector (rpSi Tn
) of a transaction on a given

server (virtual machine, container or serverless component) can
now be used to derive carbon emission metrics based on the carbon
intensity of the underlying hardware components as shown in Fig-
ure 2. For this calculation we need to be able to quantify the carbon
emissions (c) of the different resource types (CPU: cCPU ,storage: cSTO ,
memory: cMEM , network: cNET) in the same unit as the resource de-
mand is stored in the vector. For CPU, we need to know how much
carbon is emitted when a core is running at a certain utilisation
level; for memory, the carbon emissions for a given size (e.g., GB);
and for storage and network, how much carbon is emitted when a
given amount of data is processed. This data can be collected using
services such as climatiq2 for CPU, storage and memory for all
common cloud environments, instance types and regions. Based on
the measured resource demand data and carbon emissions of the
individual resources the carbon emissions for individual transac-
tions of a software system can be calculated as shown in Figure 2 by
mutliplying the resource demand data with the carbon emissions.
The use of both data sources allows the carbon intensity of software
to be derived in more detail than is currently possible in industry.

To evaluate the feasibility of the aforementioned proposal, we
are currently implementing a prototype based on the architecture

2https://www.climatiq.io

Application
Resource Demand

Measurements

OpenTelemetry
collector Prometheus Grafana

OpenTelemetry
protocol (OTLP)

Metrics:
- Resource demands per

transaction
- Throughput per transaction

Climatiq-
Publisher

OpenTelemetry
protocol (OTLP)

Metrics:
- Carbon emissions for CPU,

memory, storage per region
and (cloud) provider periodically
over time

Figure 3: Prototype Architecture

in Figure 3. We are using OpenTelemetry3 as a standard for trans-
ferring the required metrics from the application and climatiq to
Prometheus4 as a time series database. We need to store both sets
of data (resource demand and emission data) correlated by time as
emissions vary over time depending on the amount of green energy
used to power the runtime environment (e.g., lack of solar power at
night). Grafana5 is used to visualize the results of this calculation
to show the carbon emissions per transaction as well as per server,
container, or virtual machine involved in processing a transaction
over time.

3 CONCLUSION & FUTUREWORK
The use of resource demand measurements helps to provide a more
detailed insight into how much carbon a software system emits (in
other words, how green it is). We are currently building a prototype
that links all the different parts together (resource demand data
collection, carbon emission data collection and calculation). Once
this work is done, we plan to run software experiments to evaluate
our proposal against other approaches on the market, such as the
SCI or the GSMM[4]. We also do not currently include the carbon
emissions of network traffic in our prototype as we do not have
the necessary emissions data, but we are looking for suitable data
sources to fill this gap in the future.

REFERENCES
[1] L. Belkhir and A. Elmeligi. Assessing ict global emissions footprint: Trends to

2040 & recommendations. Journal of Cleaner Production, 177:448–463, 2018.
[2] A. Brunnert and H. Krcmar. Continuous performance evaluation and capacity

planning using resource profiles for enterprise applications. Journal of Systems
and Software, 123:239–262, 2017.

[3] A. Currie, S. Hsu, and S. Bergman. Building Green Software. O’Reilly Media, Inc.,
2024.

[4] A. Guldner, R. Bender, C. Calero, G. S. Fernando, M. Funke, J. Gröger, L. M. Hilty,
J. Hörnschemeyer, G.-D. Hoffmann, D. Junger, T. Kennes, S. Kreten, P. Lago, F. Mai,
I. Malavolta, J. Murach, K. Obergöker, B. Schmidt, A. Tarara, J. P. De Veaugh-
Geiss, S. Weber, M. Westing, V. Wohlgemuth, and S. Naumann. Development and
evaluation of a referencemeasurementmodel for assessing the resource and energy
efficiency of software products and components—green software measurement
model (gsmm). Future Generation Computer Systems, 155:402–418, 2024.

[5] A. Katal, S. Dahiya, and T. Choudhury. Energy efficiency in cloud computing data
centers: a survey on software technologies. Cluster Computing, 26(3):1845–1875,
June 2023.

[6] F. Willnecker, M. Dlugi, A. Brunnert, S. Spinner, S. Kounev, W. Gottesheim, and
H. Krcmar. Comparing the accuracy of resource demand measurement and estima-
tion techniques. In M. Beltrán, W. Knottenbelt, and J. Bradley, editors, Computer
Performance Engineering, pages 115–129, Cham, 2015. Springer International Pub-
lishing.

3https://opentelemetry.io
4https://prometheus.io
5https://grafana.com

288

https://www.climatiq.io
https://opentelemetry.io
https://prometheus.io
https://grafana.com

Author Index

Acharya, Manas 181
Acquaviva, Andrea 112
Adriano, Christian Medeiros 52
Angelinelli, Matteo 127
Apşan, Radu 204

Ban, Khun .. 156
Bandamudi, Likhith 87
Bandili, Ramana 158
Barchi, Francesco 112
Barker, Kevin 14
Bartolini, Andrea 106, 112, 127
Bauer, André 72
Baughman, Matt 72
Beierlieb, Lukas 72
Belkhiri, Adel 40
Ben Attia, Maroua 40
Benini, Luca 106
Bode, Jan ... 269
Brunnert, Andreas 287
Bulej, Lubomír 249
Canavate, Raul Sevilla 89
Casale, Giuliano 34, 273
Castro Lopez, Oscar 28
Chahal, Dheeraj 91, 211
Chalkias, Kostas Kryptos 227
Challa, Vishnu 89
Chard, Kyle .. 72
Choudhury, Sutanay 14
Chow, Kingsum 156
Chu, Xiaoyu 120
Cortellessa, Vittorio 260
Cursaru, Vlad-Andrei 204
d’Aloisio, Giordano 77
D’Angelo, Andrea 77
Daniëlse, Paul 204
De Matteis, Tiziano 120, 163, 189
Deenadhayalan, Veera 174
Ding, Caiwen 14
Dittus, Timo 72
Dobre, Rares-Andrei 273
Doekemeijer, Krijn 167
Domaschka, Jörg 235
Domke, Jens 94
Donkervliet, Jesse 204
Eberhart, Aaron 141
Elvesæter, Brian 98
Ezaz, Alireza 67, 82

Ezzati-Jivan, Naser .. 1, 62, 67, 82, 226
Farahani, Reza 135, 146
Fokaefs, Marios 47
Fokaefs, Marios-Eleftherios 226
Foster, Ian .. 72
Friedl, Peter 222
Friesel, Birte 261
Gandhi, Anshul 181
Geng, Tong .. 14
Giese, Holger 52
Gohring De Magalhaes, Felipe 40
Grillmeyer, Daniel 72
Guindani, Bruno 106
Haase, Peter 141
Hadry, Marius 72
Halder, Debajyoti 181
Hamouda, Fares 47
Hamou-Lhadj, Abdelwahab 1, 62
Hatfield, Brian 174
Herb, Tobias 98
Herbst, Nikolas 163, 222
Hozzová, Jana 21
Imran, Omar .. 7
Incerto, Emilio 93
Iosup, Alexandru 95, 120, 189, 204
Jania, Dariusz 47
Janssen, Travis 174
Jati, Grafika 112
Jin, Runyu .. 174
Jung, Reiner 249
Kachur, Oleksandr 242
Kamatar, Alok 72
Khan, Junaid Ahmed112, 127
Khodabandeh, Ghazal 67, 82
Kimovski, Dragi 163, 218
Kounev, Samuel 72, 222
Kring, Cedric 269
Krishna, Karthik 158
Kunde, Shruti 87, 91
Li, Ang .. 14
Li, Heng .. 257
Li, Zhuoyuan 34
Lin, Wei-Chen 94
Lindstrøm, Jonas 227
Litoiu, Marin 57, 93, 258
Loh, Frank .. 146
Lubas, Yannik 72

Lütke Dreimann, Marcel 261
Lyu, Zhiheng 156
Majumdar, Shikharesh 7
Malleni, Sai Sindhur 89
Malsane, Aniket 181
Maram, Deepak 227
Masti, Daniele 93
Mayrhofer, Josef 281
Mercurio, Giuseppe 112
Miller, James 1, 62
Mishra, Mayank 87
Molan, Martin 106, 112, 127
Muench, Paul 174
Namrud, Zakeya 57
Nicolescu, Gabriela 40
Niewenhuis, Dante 120, 189
Niu, Zifeng 273
Oliveira, Filipe 226
Panahandeh, Mahsa 1, 62
Peng, Hongwu 14
Phalak, Chetan 91, 211
Pochelu, Pierrick 28
Prodan, Radu 95, 135, 146
Rajan, Sreeraman 7
Rajput, Anil 156
Ramesh, Manju 211
Reichelt, David Georg 249
Ren, Zebin .. 167
Ristov, Sashko 166, 196
Riva, Ben .. 227
Rohwer, Ivo 222
Roman, Dumitru 98, 135, 146
Roy, Arnab 227
Rožanec, Jože M. 135, 151
Rožanec, Matias 151
S. Dizaji, S. Haleh 135
Sarda, Komal 57
Scheinert, Dominik 269
Schell, Wolfgang 141
Schroeder, Daniel Thilo 98
Schwinger, Maximilian 222
Seybold, Daniel 235
Shwartz, Larisa 57
Singh, Kuldeep 91
Singh, Ravi Kumar 87
Singhal, Rekha 87, 91, 211
Sonnino, Alberto 227

289

Spillner, Josef 165
Spinczyk, Olaf 261
Stephan, Michael 222
Straesser, Martin 72
Střelák, David 21
Suman, Shekhar 120
Szárnyas, Gábor 97
Talluri, Sacheendra 120, 189
Tang, Yu ... 156
Thamsen, Lauritz 269
Toczé, Klervie 163

Tørring, Jacob O. 21
Traini, Luca 257
Triendl, Simon 196
Trinh, Eames 204
Trivedi, Animesh 167
Ural, Damla 204
van Hoorn, André 249
van Werkhoven, Ben 21
Varbanescu, Ana-Lucia 95
Vasilevskii, Aleksei 242
Volpert, Simon 235

Vuduc, Richard 21
Wang, Joy .. 227
Watts, Ian ... 57
Wesner, Stefan 235
Will, Jonathan 269
Winkelhofer, Sascha 235
Zadok, Erez 181
Zafar, Iqra ... 52
Zunzer, Seraphin 269

290

	frontmatter-15pages
	p1-panahandeh
	Abstract
	1 Introduction
	2 Foundational Experiments
	3 System Design
	3.1 Data Collection
	3.2 SCG Construction
	3.3 Social Network Analysis
	3.4 Spectrum Analysis

	4 Preliminary Result and Discussion
	5 Related Work
	6 Conclusions and Future Plan
	References

	p7-imran
	Abstract
	1 Introduction
	2 Background
	2.1 Apache Spark
	2.2 Dataset
	2.3 Object Detection Techniques

	3 Proposed Approach
	3.1 System Design
	3.2 Experimental Design

	4 Experimental Results
	5 Conclusions
	6 Future Work
	Acknowledgments
	References

	p14-peng
	Abstract
	1 Introduction
	2 Emerging AI/ML Accelerators
	2.1 Graphcore IPU
	2.2 Sambanova RDU
	2.3 Nvidia & AMD GPU
	2.4 Summary

	3 Evaluation Results
	3.1 Square GEMM Benchmark
	3.2 BERT Operator Benchmark
	3.3 2D Convolution Operator Benchmark
	3.4 SPMM Benchmark
	3.5 Streaming Operator Benchmark

	4 Conclusion
	References

	p21-hozzova
	Abstract
	1 Introduction
	2 Sharing autotuning data following FAIR principles
	2.1 Used nomenclature
	2.2 Findable
	2.3 Accessible
	2.4 Interoperable
	2.5 Reusable

	3 Use Case Examples
	3.1 Comparing search methods
	3.2 Creating models to guide tuning
	3.3 Analyzing data to gain insight

	4 Related Work
	5 Challenges and Future Work
	6 Conclusion
	Acknowledgments
	A Checklist for FAIR Sharing of Data in Autotuning Research

	p28-pochelu
	Abstract
	1 Introduction
	2 Post-training representation and optimization
	3 Experimental settings
	3.1 Evaluated Neural Networks
	3.2 Evaluated Machine Specifications
	3.3 Graph Optimization Settings

	4 Experimental Results
	4.1 Prediction Speed
	4.2 Memory Consumption
	4.3 Power consumption
	4.4 Loading Time

	5 Key Takeaways
	6 Conclusion and Future Directions
	References

	p34-li
	Abstract
	1 Introduction
	2 Background
	2.1 Queueing Network Models
	2.2 Markovian Arrival Process (MAP)
	2.3 Phase-type Renewal Process
	2.4 Marked Markovian Arrival Process (MMAP)

	3 MNA: A Novel Hybrid Approach
	3.1 MNA for Open Models
	3.2 MNA for Closed Models

	4 Numerical Evaluation of MNA
	4.1 Model Design
	4.2 Single-class Open Queueing Networks
	4.3 Multiclass Open Queueing Networks
	4.4 Closed Queueing Networks

	5 Application and Example
	6 Conclusion
	References

	p40-belkhiri
	Abstract
	1 Introduction
	2 Proposed Solution
	2.1 Capturing Execution Traces
	2.2 Classification of Traces
	2.3 Extraction of Thread States
	2.4 Frequent Pattern Mining
	2.5 Performance Anomaly Diagnosis

	3 Evaluation and Discussion
	3.1 Use case
	3.2 Discussion
	3.3 Overhead Analysis

	4 Related Work
	5 Conclusion
	References

	p47-hamouda
	Abstract
	1 Introduction
	2 Related Work
	3 DMBench Architecture and Implementation
	3.1 Functional and Non-Functional Requirements
	3.2 Architecture

	4 Current Implementation State
	4.1 Case Study: IBM DB2 Migration

	5 Future Development
	6 Conclusion
	References

	p52-zafar
	Abstract
	1 Introduction
	2 Interference Anomaly Scenario
	3 STIG Simulator
	3.1 Design and Architecture
	3.2 Algorithms

	4 Evaluation Case Study
	4.1 STIG Analysis
	4.2 Reconfiguration Plan

	5 Conclusion and Future Work
	References

	p57-sarda
	Abstract
	1 Introduction
	2 KubePlaybook Framework
	2.1 Data Collection & Generation
	2.2 Composition of NL Prompts
	2.3 KubePlaybook Description

	3 Experimental Setup & Evaluation
	3.1 Experiment Configuration
	3.2 Evaluation Methodology

	4 Discussion & Challenges
	5 Related Work & Application
	6 Conclusion & Future Directions
	References

	p62-panahandeh
	Abstract
	1 Introduction
	2 Background Summary
	3 Method Design
	3.1 Data Preparation
	3.2 Anomaly detection
	3.3 Culprit Ranking

	4 Experiments and Evaluation
	4.1 Results

	5 Conclusion
	References

	p67-khodabandeh
	Abstract
	1 Introduction
	2 related works and background
	3 Methodology
	3.1 Network Construction
	3.2 Community Detection
	3.3 Graph Similarity

	4 Discussion
	5 Conclusions and Future Work
	References

	p72-bauer
	Abstract
	1 Introduction
	2 Background
	2.1 Dataset Description
	2.2 K-Means & Silhouette Coefficient
	2.3 Other Applied Methods
	2.4 Related Work

	3 Approach
	3.1 High-Level Idea
	3.2 Performance Characteristics Extraction
	3.3 Performance Clustering
	3.4 Possible Extensions and Discussion

	4 Exploration of the Dataset
	4.1 Data Selection
	4.2 Clustering the Dataset
	4.3 Temporal Performance Deviation

	5 Conclusion
	References

	p77-d-angelo
	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Grammar Construction
	3.2 Membership Testing

	4 Evaluation
	4.1 Addressing RQ1
	4.2 Addressing RQ2
	4.3 Discussion

	5 Conclusion and Future Work
	Acknowledgments
	References

	p82-ezaz
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Collection and Preprocessing
	3.2 Critical Path Extraction
	3.3 Performance Variation Analysis
	3.4 Visualization and Insight Generation

	4 Analysis and Discussion
	5 Conclusions and Future Work
	References

	p87-bandamudi
	Abstract
	1 Introduction
	2 LLaMPS Architecture
	3 Use Case
	4 Conclusion and Future Work
	References

	p89-malleni
	Abstract
	1 Introduction
	2 Architecture
	3 Benchmark Orchestration
	4 Observability
	5 Measurements
	6 Case Study

	p91-singh
	Abstract
	1 Introduction
	2 features of SuperArch
	3 Use case
	4 Conclusion and future work
	References

	p93-incerto
	1 Workshop Chairs’ Welcome

	p94-lin
	Abstract

	p95-iosup
	p97-szarnyas
	Abstract

	p98-schroeder
	Abstract
	1 Introduction
	2 Background: Computational Models for Graph Processing
	3 A conceptual Framework to Pipeline-Oriented Computation
	3.1 Computation as Type
	3.2 Higher-order Traversal Abstraction
	3.3 Directed Data-Transfer Protocol
	3.4 Operator Model
	3.5 Pipeline Abstraction

	4 Implementation of computational models for graph processing in GraphMa
	4.1 Vertex-Centric Embedding
	4.2 Edge-Centric Embedding
	4.3 Sub-Graph-Centric Embedding

	5 Conclusion
	References

	p106-guindani
	Abstract
	1 Introduction
	2 Related work
	2.1 Machine learning approaches in HPC
	2.2 Thermal modeling in HPC

	3 Methodology
	3.1 Dataset
	3.2 Prediction target
	3.3 Models

	4 Experimental results
	4.1 Experimental setting
	4.2 Empirical results

	5 Discussion
	Acknowledgments
	References

	p112-jati
	Abstract
	1 Introduction
	2 Related Works
	2.1 LiDAR processing for automotive applications
	2.2 LiDAR point cloud transformation for contaminant detection

	3 Methodology
	3.1 Cover Contamination LiDAR Dataset
	3.2 Graph Construction
	3.3 Graph Attention Networks

	4 Results
	4.1 Setting Experiments
	4.2 Contaminant Detection

	5 Conclusions
	Acknowledgments
	References

	p120-suman
	Abstract
	1 Introduction
	2 Background
	2.1 System model
	2.2 Ontology and OWL basics

	3 Ontology Design
	3.1 Requirements analysis
	3.2 Reusing existing ontologies
	3.3 High-level design and classes
	3.4 Detailed design and propertites
	3.5 Validation

	4 ODAbler: design of ontology-based simulation in OpenDC
	4.1 Architecture of ODAbler framework
	4.2 Implementation of the ODAbler framework
	4.3 Exploration of graph applications

	5 Related Work
	6 Conclusion and future work
	References

	p127-khan
	Abstract
	1 Introduction
	2 Related Work
	3 Background: Examon
	4 Methodology
	4.1 ODA ontology
	4.2 Knowledge graph: Ontology realisation
	4.3 ODA Complex Queries
	4.4 Ontology query language: SPARQL
	4.5 Evaluation criteria

	5 Experimental evaluation
	5.1 Experiment setup
	5.2 Query implementation

	6 Discussion
	7 Conclusion
	References

	p135-s-dizaji
	Abstract
	1 Introduction
	2 Graph Sampling Algorithms
	2.1 Node-based sampling
	2.2 Edge-based sampling
	2.3 Traversal-based sampling

	3 Related Work
	3.1 Analytical evaluations
	3.2 Numerical evaluation

	4 Sampling Evaluation Metrics
	4.1 Graph Properties
	4.2 Distributions Divergence

	5 Experimental Design
	5.1 Graph features
	5.2 Datasets
	5.3 Experimental setup

	6 Evaluation Results
	6.1 Synthetic graphs
	6.2 Real-world graphs

	7 Conclusion and Future Work
	Acknowledgments
	References

	p141-eberhart
	Abstract
	1 Introduction
	1.1 Knowledge Graphs
	1.2 The Graph-Massivizer Project

	2 Knowledge graph creation process
	2.1 FAIR Data Principles
	2.2 Graph data model
	2.3 Iterative approach
	2.4 Providing dataset metadata
	2.5 Semantic Data Model
	2.6 RDF Mappings
	2.7 Performing pre- and post-processing
	2.8 Data Ingestion
	2.9 Performing data validation

	3 Architecture
	4 Example
	5 Future Work
	References

	p146-farahani
	Abstract
	1 Introduction
	2 Background
	2.1 Computing Continuum
	2.2 Serverless Computing
	2.3 Workflow Management Systems

	3 Serverless Workflow Management
	3.1 Cloud-based WMSs
	3.2 Edge-Cloud Continuum-based WMSs
	3.3 Simulations-based WMSs

	4 Opportunities
	4.1 Cost Model
	4.2 Scalability
	4.3 Auto-scaling
	4.4 Statelessness

	5 Challenges
	5.1 Stream Processing
	5.2 Data Distribution
	5.3 Complexity

	6 Conclusion
	Acknowledgments
	References

	p151-rozanec
	Abstract
	1 Introduction
	2 Go language for machine learning development
	3 Related work
	3.1 Graph sampling

	4 Library Design and Implementation
	4.1 Implemented methods
	4.2 Main modules
	4.3 Design choices

	5 Conclusion and Future Work
	Acknowledgments
	References

	p156-chow
	p158-krishna
	p163-kimovski
	p165-spillner
	Abstract
	1 Introduction
	2 Exploration
	References

	p166-ristov
	Abstract
	References

	p167-ren
	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 Baseline Performance with the None Scheduler
	5 Performance Effect of Kyber's Configurations without a File System
	6 Performance Effect of Kyber's Configurations with File Systems
	7 Related Work
	8 Conclusion and Future Work
	References

	p174-jin
	Abstract
	1 Introduction
	2 BACKGROUND
	3 Naive Kubernetes DR
	3.1 Limitations Of The Naive Approach
	3.2 Case Study Using The Naive Approach

	4 Robust Kubernetes DR using recipes
	4.1 Recipe
	4.2 Recipe API and Examples
	4.3 Implementation

	5 EVALUATION
	5.1 Environment Setup
	5.2 Kubernetes Applications Categorization
	5.3 Recipe Reliability And Efficiency

	6 RELATED WORKs
	7 CONCLUSION AND FUTURE WORK
	References

	p181-halder
	Abstract
	1 Introduction
	2 Background and Prior Work
	3 Power Modeling
	3.1 Features
	3.2 Power Prediction

	4 Evaluation
	4.1 Experimental Setup and Methodology
	4.2 Experimental Results

	5 Conclusion and Future Work
	References
	A Appendix: Empirical data showing the power consumption of co-executed workloads versus the sum of power consumption of individual workloads
	B Appendix: Empirical data showing the difference between full-server monitored power and RAPL power values
	C Appendix: Hyper-parameter tuning

	p189-niewenhuis
	Abstract
	1 Introduction
	2 Background
	2.1 Power Usage Effectiveness
	2.2 Carbon Intensity
	2.3 Operational Footprint
	2.4 Simulation

	3 Problem Statement
	4 FootPrinter
	5 Experiments
	5.1 Operational Carbon Footprint
	5.2 Selecting location
	5.3 Validation

	6 Related work
	7 Conclusion
	Acknowledgments
	References

	p196-triendl
	Abstract
	1 Introduction
	2 Introduction to the Montage Workflow
	3 Implementation and deployment challenges
	3.1 Deployment challenges
	3.2 Implementation challenges

	4 Experimental design
	4.1 Experiment setup
	4.2 Memory impact
	4.3 Fine vs. Medium vs. Coarse
	4.4 Threats to validity

	5 Related work
	5.1 Observations for the Montage workflow
	5.2 Observations for FaaS deployments

	6 Conclusion
	References

	p204-apsan
	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 System Requirements
	3.2 Design and Implementation Overview

	4 Validation of librnr
	4.1 Replay Timing Accuracy (Requirement R3)
	4.2 System Overhead (Requirement R4)

	5 Results
	5.1 Experiment Setup
	5.2 VR Play Area Settings Affect vr Power Use
	5.3 Limiting Bandwidth Leads to Sudden Performance Degradation
	5.4 vr Performance Similar across Devices When Offloading

	6 Related Work
	7 Conclusion and Ongoing Work
	References

	p211-phalak
	Abstract
	1 Introduction
	2 Related Work
	3 Our Architecture
	4 Cost Model
	4.1 Compute Cost
	4.2 Storage Cost
	4.3 Data transfer Cost

	5 Experimental Setup
	6 Experimental Analysis
	6.1 Data transfer bandwidths
	6.2 Effect of cloud vendor and aggregator on mini-batch time distribution
	6.3 Effect of aggregator placement and cloud vendor
	6.4 Effect of aggregator hierarchy
	6.5 Cost Model Validation

	7 Conclusion
	References

	p218-kimovski
	Abstract
	1 Introduction
	2 Related work
	2.1 Hypergraph applications modelling and sustainability analysis
	2.2 Hyperworkflow optimisation and cognition with federated learning
	2.3 Overlay infrastructure provisioning

	3 Conceptual Architecture
	4 Conclusion
	References

	p222-rohwer
	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Resource Demand Profile Creation

	4 Preliminary Evaluation
	5 Conclusion and Future Work
	Acknowledgments
	References

	p226-fokaefs
	Abstract

	p227-chalkias
	Abstract
	1 Introduction
	2 Method
	3 Case studies
	3.1 Picking the right dependencies and specs
	3.2 Mix and Match Optimizations
	3.3 Errors and inconsistencies in dependencies
	3.4 Continuous benchmarks

	4 Conclusion and future work
	References

	p235-volpert
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Profiling with eBPF
	2.2 Cgroups
	2.3 Isolation Terminology
	2.4 QoS Isolation Quantification

	3 Method
	4 Experiment Design
	4.1 Experiment workflow
	4.2 Approach and Implementation

	5 Evaluation
	5.1 Evaluation Environment
	5.2 Results

	6 Related Work
	7 Conclusion
	References

	p242-vasilevskii
	Abstract
	1 Introduction
	2 Requirements
	3 Architecture
	3.1 Load Generation
	3.2 Test Execution
	3.3 Data Store and Feedback Loop

	4 Organizational Challenges
	5 Related Work
	6 Future Work and Conclusion
	References

	p249-reichelt
	Abstract
	1 Introduction
	2 Foundations
	2.1 Instrumentation Technologies
	2.2 Kieker
	2.3 MooBench

	3 Benchmarking
	3.1 Benchmark Adaptation
	3.2 Execution Configuration
	3.3 Monitoring Overhead
	3.4 Overhead Scalability

	4 Related Work
	4.1 Overhead of APM Tools
	4.2 Overhead of Instrumentation
	4.3 Overhead of Instrumentation for Different Infrastructures

	5 Summary
	References

	p257-traini
	Abstract

	p258-litoiu
	p260-cortellessa
	Abstract

	p261-lutke-dreimann
	Abstract
	1 Introduction
	2 Related Work
	3 Design and Evaluation Challenges
	3.1 Memory Heterogeneity
	3.2 Accelerator Heterogeneity
	3.3 Task Setup
	3.4 Driver Frameworks
	3.5 Hardware Model

	4 HetSim Overview
	4.1 Workload Generation
	4.2 Simulation
	4.3 Statistics and Visualization

	5 Example and Evaluation
	5.1 Performance of scheduling strategies
	5.2 Costs of scheduling decisions
	5.3 Simulation Correctness
	5.4 Simulator performance

	6 Conclusion and Future Work
	Acknowledgments
	References

	p269-will
	Abstract
	1 Introduction
	2 Related Work
	2.1 Dataflow Job Performance Modeling
	2.2 Privacy in Collaborative Machine Learning

	3 Approach
	3.1 Idea Overview
	3.2 Data Obfuscation via Data Synthesis

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Modeling with Synthetic Data
	4.3 Data Synthesis Overhead
	4.4 Discussion

	5 Conclusion
	Acknowledgments
	References

	p273-dobre
	Abstract
	1 Introduction
	2 Background
	2.1 Queueing Networks
	2.2 Fork-Join Systems
	2.3 Heidelberger-Trivedi Approximation Method

	3 Proposed Methodology
	3.1 Network Transformation
	3.2 Synchronization Delay
	3.3 Algorithm
	3.4 Extend Method to Nested Fork-Join System

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	p281-mayrhofer
	p287-brunnert
	Abstract
	1 Introduction
	2 Resource Demand Measurements as Green Software Metrics
	3 Conclusion & Future Work
	References

	backmatter

