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ABSTRACT
Sustainability has become a critical focus area across the technology

industry, most notably in cloud data centers. In such shared-use

computing environments, there is a need to account for the power

consumption of individual users. Prior work on power prediction

of individual user jobs in shared environments has often focused

on workloads that stress a single resource, such as CPU or DRAM.

These works typically employ a specific machine learning (ML)

model to train and test on the target workload for high accuracy.

However, modern workloads in data centers can stress multiple

resources simultaneously, and cannot be assumed to always be

available for training. This paper empirically evaluates the perfor-

mance of various ML models under different model settings and

training data assumptions for the per-job power prediction prob-

lem using a range of workloads. Our evaluation results provide key

insights into the efficacy of different ML models. For example, we

find that linear ML models suffer from poor prediction accuracy

(as much as 25% prediction error), especially for unseen workloads.

Conversely, non-linear models, specifically XGBoost and Random

Forest, provide reasonable accuracy (7–9% error). We also find that

data-normalization and the power-prediction model formulation

affect the accuracy of individual ML models in different ways.

CCS CONCEPTS
•Hardware→ Power and energy; Power estimation and opti-
mization; Enterprise level and data centers power issues.

KEYWORDS
Sustainability, per-job power prediction, ML models, co-executed

workloads.
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1 INTRODUCTION
The exponential growth in digital data, coupled with increasing

computational demands (e.g., DNN training and crypto mining),

has raised significant questions about the carbon footprint of data

centers [31]. Both data center providers and users often share a

common interest in regulating carbon usage [12, 25]. To regulate

carbon usage, an important first step is to track the power con-

sumption of each workload (or job, used interchangeably). This

per-job power-tracking enables informed decision-making, empow-

ering users to make design choices that align with sustainability

goals [15]. Further, in the near future, providers may consider pric-

ing models that partly charge users based on their attributed power

use (e.g., carbon tax), thus incentivizing sustainable practices.

Predicting the per-job power consumption is a difficult problem

due to the often time-varying utilization of the various server re-

sources by a job at runtime. The problem is further exacerbated

by OS- and device-specific scheduling intricacies when resources

have to be shared between jobs. Machine Learning (ML) approaches,

such as regression models, are well suited to the power prediction

problem given their ability to infer complex relationships between

variables [25]. In particular, prior works have used a variety of

ML models and model settings for the power-prediction problem.

However, given the large variety of ML models and their settings,

a thorough evaluation is first necessary to assess the usefulness of
different ML models for job-level power prediction.

Recent works on per-job power prediction have primarily focused

on estimating the power consumption based on CPU and mem-

ory utilization metrics [6, 13, 14]. As we discuss in Section 2, it is

not enough to account only for the power consumption of CPU

and memory subsystems. The classical works in power prediction

(e.g., Joulemeter [21], VMeter [17]) employ linear ML models to

predict power as a function of resource-utilization metrics. While

such models may work well for benchmarks designed to saturate

individual resources, we find that linear models have poor accuracy

when predicting per-job power for workloads that stress multiple

resources simultaneously, such as TensorFlow and MongoDB.

In this paper, we empirically evaluate the performance of sev-

eral, diverse ML models (both linear and non-linear) to predict

per-job power consumption, using several workloads and both

micro- and macro-benchmarks. We also evaluate the impact on
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prediction accuracy of several models and system settings, such

as data normalization, accounting for background processes, and

factoring in idle power. To investigate the impact of training data

and the deployment context, we evaluate the ML models under

different settings, including testing on the training workloads and

testing on unseen workloads.

Our experimental results using 8 different pairs of (co-executed)

test workloads under 7 different ML models show that non-linear
models outperform linear models in terms of per-job prediction ac-

curacy (see Section 4). In particular, XGBoost and Random Forest

provided less than 10% error when predicting the per-job power

consumption of unseen workloads (comparing the sum of predicted

per-job power values with full-server power measurements). By

contrast, linear regression (LR) had much worse accuracy, with

errors as high as 40–50% for some pairs of co-located workloads.

Our experiments beyond two co-executed workloads show that

non-linear models can predict per-job power consumption with

∼10% error when the training dataset corresponds to the test co-

execution scenario. However, training a model for each workload

class (CPU-, DRAM-, I/O-heavy) separately did not improve the

prediction accuracy significantly (3–7% difference).

We also find that the ML model settings and prediction formu-

lation can have an impact on prediction accuracy. For example,

predicting for the residual power (after subtracting idle system

power) instead of total power, and including the intercept term in

supported ML models, can reduce prediction error by as much 10%.

We also found that data normalization techniques like standardiza-

tion or min-max scaling significantly affect neural network models’

accuracy. Other models, such as decision trees, are less sensitive

to data scaling. Finally, we found that prediction accuracy is not

much affected when we take into account the resource utilization of

background processes, suggesting that ML models can capture such

activities through the resource usage of foreground workloads.

In summary, this paper makes the following contributions:

• Weempirically evaluate severalMLmodels, including aworkload-
specificmodel, for power prediction. This is in contrast to existing

works that often only consider a single model. Further, we report

on the impact of model formulation settings and data-processing

techniques on power prediction accuracy. We have made our

datasets and code available [27] for reproducibility.

• We consider the practical yet challenging problem of per-job
power prediction to allow users in shared environments to as-

sess their sustainability footprint. We considered up to four co-

executed workloads. Few prior works focus on this realistic case.

• Unlike prior works, we experiment with diverse workloads that
are not just CPU- or memory-bound but stress the entire system.

Further, we consider the realistic scenario where a test workload

has not been observed in training, unlike much of the prior work

that focuses only on cross-validation results.

2 BACKGROUND AND PRIORWORK
The problem of predicting the power consumption of individual jobs

in the presence of other co-executing jobs is challenging for at least
two reasons. First, the power consumption of a server when running

multiple jobs simultaneously is not simply the sum of the power

consumed when the jobs are run individually (see Appendix A for

empirical data). This is likely due to resource saturation, sharing,

and contention when multiple jobs co-execute.

The second challenge is that there is no accurate, ground truth

power value that is available for individual jobs. Prior research
has focused on predicting total server power [3, 32] by using re-

source usage metrics (e.g., CPU and memory utilization). While

these models are valuable for specific use cases, our goal is to model

the concurrent utilization of all system resources to predict per-job
power consumption.

Prior Work. Joulemeter [21] employs linear ML models to predict

per-VM power consumption using observable power states in the

hypervisor. Linear regression models have also been employed

in CloudMonitor [32] and VMeter [17] to predict VM-level power.

Likewise, linear regression has also been used to predict total server

power (Krishnan et al. [23]) and process-level power (Bertran et
al. [4]). However, we find that linear models are inadequate for

predicting the power consumption of co-executed jobs in shared

environment scenarios (see Section 4.2).

Several studies have employed a single, non-linear ML model

for power prediction. Xiao et al. [35] and BitWatts by Colmant et
al. [7] explore polynomial regression for predicting power in vir-

tual environments. Dhiman et al. [11] proposed the use of Gaussian
Mixture Models (GMM) for power prediction in virtualized envi-

ronments. Recent works by Fieni et al. [13, 14] leverage Lasso and

Ridge regression for power modeling. The authors also use sequen-

tial learning to calibrate their power models online by training

on currently executing workloads [14]. The authors also rely on

PowerAPI [18] (which in turn relies on Intel RAPL [9]) to track CPU

package and DRAM power consumption values as ground truth.

RAPL-reported values provide power consumption of CPU pack-

age (cores, caches, and any integrated GPU) and DRAM. Phung et
al. [30] leverage RAPL values as additional features for learning, but
focus on modeling the power use of only CPU-intensive workloads.

While RAPL power values can serve as ground truth for CPU

and/or DRAM power consumption, they are not accurate indicators

of full-server power (see Appendix B) as RAPL does not include
power consumed by disks, motherboard, network, or GPU(s).

Given the importance of power consumption tracking, there

have also been power modeling tools developed for consumer use.

Scaphandre [28] predicts per-process power consumption by track-

ing the jiffies and correlating it with RAPL power values when a

process is running. However, as noted by prior work [20], Scaphan-

dre’s focus is primarily on CPU-power consumption (hence the

reliance on RAPL). Kepler [6] is a tool developed by Red Hat that

predicts pod and node power consumption; however, Kepler is lim-

ited to only Kubernetes environments. Further, Kepler uses cgroups

and sysfs to get CPU and memory usage statistics, and thus only

focuses on the power of these two resources. Similar tools have also

been developed for user-facing purposes, but these tools are not

accurate enough for tracking the power of workloads that stress

multiple resources. For example, Apple provides an “Energy Im-

pact” metric with their Activity Monitor tool [2], but the estimates

reported are only relative values (with no units) that are based on

a job’s CPU usage [26].

There are other prior works that focused on specific scenarios or

workloads (see survey paper by Lin et al. [25]), such as approaches
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Table 1: Features used to train ML models.

Entity Features
CPU Cycles, Ref-cycles, Instructions

DRAM LLC-load-misses, LLC-loads, LLC-store-misses, LLC-

stores

Disk Bytes, Blocks (# of reads and writes)

RAPL Package power, RAM power

that estimate the power usage of HPC servers [19, 34] or predict the

power consumption of DNN training systems [1, 24, 31]. However,

they rely on the specifics of the workload or system, and are thus

not easily generalizable.

3 POWER MODELING
For all ML models we considered, the ground truth for server power,

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 , was obtained via a power meter (see Section 4.1). In general,

the ML models estimate server power at time 𝑡 , say 𝑃𝑡𝑠𝑒𝑟𝑣𝑒𝑟 , as a

function of some feature vector, ®𝑥𝑡 , as 𝑃𝑡𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑓 ( ®𝑥𝑡 ). The hat

notation denotes predicted values (as opposed to ground truth

values). For ease of notation, we drop the 𝑡 superscript by implicitly

considering the formulations as being specific to a given time.

3.1 Features
The ML models aim to predict power consumption as a function

of resource utilization and other metrics, referred to as features

(the ®𝑥). Rather than determining these features from scratch, we

built on existing studies to obtain features for our power-prediction

problem; note that we are not considering networked systems in

this paper, so we do not include network features, though they

could be easily added as needed.

Based on prior works [17, 21, 32], we arrived at the feature

list shown in Table 1. We believe this list is short yet representa-

tive enough to capture the important resource-utilization values.

While RAPL power values may not track full-server power, RAPL

power values may still serve as useful features, as we explore in
Section 4. For CPU and DRAM features, we used perf-stat to ob-

tain performance event counts, which are reported per TID (Thread

Identifier). We used pstree to track all TIDs (including for child

threads) pertaining to a given workload to aggregate the features

from perf-stat per workload. We used blktrace to track per-process

disk reads and writes.

All performance event counts from perf-stat are sampled at

200ms intervals. A higher sample rate increased the power con-

sumption overhead of tracing by 5W. We aggregate performance

event counts for every 1s interval and align them with the full-

system power values obtained from the power meter every 1s. For

workload-specific resource utilization, we combine the performance

event counts for each workload separately. We obtain RAPL power

values from turbostat; RAPL power values are reported as an ag-

gregate for the CPU package and DRAM, and not per TID.

3.2 Power Prediction
We start with a simple setting where a single workload is running

on a server. In this case, the power prediction can be formulated as:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑓 ( ®𝑥𝑤1) (1)

where ®𝑥𝑤1 is the feature vector, say of size𝑛, obtained for the (single)

workload. For example, for Linear Regression (LR) with intercept

term, Eq. (1) takes the form 𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝛽0 +
∑𝑛
𝑖=1 𝛽𝑖 · 𝑥𝑤1.𝑖 , where

the 𝛽 terms denote the coefficients of the LR model that are learned

during training and 𝑥𝑤1.𝑖 is the 𝑖
𝑡ℎ

feature of the ®𝑥𝑤1 feature vector.

For LR (and other ML models that support the intercept term, 𝛽0),

one can also set up the ML model without intercept. We evaluate

both options in our experiments.

Since the server has some baseline idle power, say 𝑃𝑖𝑑𝑙𝑒 , which

can be considered as a constant (for that server), another formula-

tion is to predict the residual power (or dynamic power), which is

𝑃𝑟𝑒𝑠𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑠𝑒𝑟𝑣𝑒𝑟 − 𝑃𝑖𝑑𝑙𝑒 . In this case, the prediction takes the form

𝑃𝑟𝑒𝑠𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑓 ( ®𝑥𝑤1), and so we predict full-server power as:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑖𝑑𝑙𝑒 + 𝑓 ( ®𝑥𝑤1) (2)

Another variant of Eq. (2) is to also subtract the feature values

obtained for an idle system, say ®𝑥𝑖𝑑𝑙𝑒 (e.g., CPU cycles of an idle

system spent on background processes) to better correlate with

residual power as:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑖𝑑𝑙𝑒 + 𝑓 ( ®𝑥𝑤1 − ®𝑥𝑖𝑑𝑙𝑒 ) (3)

Co-Executed Workloads. When we have two workloads (can be

extended beyond two) executing concurrently, as is the focus of

this paper, we can separately predict the power consumption of

each workload as 𝑃𝑤𝑖 = 𝑓 ( ®𝑥𝑤𝑖 ), and predict full-server power as:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑓 ( ®𝑥𝑤1) + 𝑓 ( ®𝑥𝑤2) (4)

For ML models that have an intercept term (e.g., Linear Regression
with 𝛽0 in 𝑓 ()), we subtract the intercept once from Eq. (4) to avoid

double-counting the intercept. Note that we still use full-server

power (𝑃𝑠𝑒𝑟𝑣𝑒𝑟 ) as the dependent variable in the final prediction

formulation since we have ground truth for only full-server power

(and not for the power consumption of individual workloads).

For co-executed scenarios, we separately track the feature values

(e.g., CPU cycles) for each workload process and their children to

obtain ®𝑥𝑤1 and ®𝑥𝑤2. Feature values that do not belong to either of

the processes can be attributed to background or kernel processes,

denoted as ®𝑥𝑏𝑔 . As such, another variant of Eq. (4) that we consider
is with 𝑓 ( ®𝑥𝑏𝑔) added to the right-hand side.

For the residual power formulation, we similarly have:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑖𝑑𝑙𝑒 + 𝑓 ( ®𝑥𝑤1) + 𝑓 ( ®𝑥𝑤2) (5)

with the possibility of 𝑓 ( ®𝑥𝑏𝑔) added to the right-hand side. We

also consider variants of the above formulations where ®𝑥𝑖𝑑𝑙𝑒 is

subtracted from each feature vector on the right-hand side.

Power accounting. For the co-executed formulations, Eqs. (4) and (5),

and their variants, the power contribution of each workload can

be estimated as 𝑓 ( ®𝑥𝑤𝑖 ), for 𝑖 = 1, 2. If 𝑃𝑖𝑑𝑙𝑒 (or the intercept term

or 𝑓 ( ®𝑥𝑏𝑔)) also must be accounted for, then we can charge each

workload with a fraction of 𝑃𝑖𝑑𝑙𝑒 proportional to its estimated

power. For example, in Eq. (5), we estimate workload 1’s total power

contribution as:

𝑓 ( ®𝑥𝑤1) +
𝑓 ( ®𝑥𝑤1)

𝑓 ( ®𝑥𝑤1) + 𝑓 ( ®𝑥𝑤2)
· 𝑃𝑖𝑑𝑙𝑒 (6)
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Table 2: Workloads employed in our experiments.

Resource Workload
CPU 7zip, Cypto++, CP2K, Gzip

DRAM Stream, MBW, Tinymembench, RAMSpeed SMP

Disk Unpack Linux, LevelDB, SQLite, FIO

System Stress-ng, Tensorflow, Mobile Neural Network, Sys-

bench, Memcached, Filebench, MongoDB

Using the proportion of predicted power to account for 𝑃𝑖𝑑𝑙𝑒 is

preferable to, say, using the proportion of a resource usage metric,

since predicted power is a function of all features.

4 EVALUATION
In this section we discuss the results and observations from the

evaluation of the power models on various workloads and model

formulations. In Section 4.1 we discuss our experimental setup,

the benchmarks used for evaluation, the ML models, their model

formulation settings, and the metrics used for evaluation. We con-

ducted experiments for multiple scenarios like predicting per-job

power when only a single workload is executed, or when two or

more workloads are co-executed. The evaluation results for ev-

ery scenario are discussed in Section 4.2. We also discuss 5-fold

cross-validation results and feature importance.

To make our results reproducible, we have made available our

datasets and code for power-prediction model evaluation [27].

4.1 Experimental Setup and Methodology
We conduct all our experiments on a server with two Intel Xeon E5

CPUs with Haswell architecture (has RAPL support). The server has

24 cores total and 256GB of memory. We disabled speedstep (DVFS),

hyperthreading, and turboboost (overclocking) to minimize power

consumption uncertainties due to dynamic system/OS behavior. To

obtain ground truth, we use an external wall power meter, WattsUp

Pro [33], attached to the server, which provides full-server power

readings once per second.

Workloads. For our evaluation, we employed workloads from stress-

ng [22], YCSB [8], and Phoronix Test Suite [29], as shown in Table 2.

The resource-specific workloads were primarily used for training

whereas the System workloads were used for testing; a similar

methodology was adopted by prior works that modeled the power

consumption of individual (not co-executed) workloads [7, 13, 16].

Training on microbenchmarks allows the ML models to learn the

impact of resource utilization on power consumption under con-

trolled stress-test conditions. Every workload ran for around 20

minutes either independently, or co-executed with other workloads.

ML Models. We used a variety of ML models to evaluate power

prediction: Linear Regression (LR), Decision Tree (DT), Random

Forest (RF), Support Vector Regressor (SVR), XGBoost, Lasso, and

Neural Network (NN). All ML model hyper-parameters were tuned

via Grid Search; see Appendix C for details.

Data Processing Techniques. For data processing, we experimented

with three popular techniques: (i) de-mean, whereby the mean of

the dataset is subtracted, (ii) standardization, which additionally

divides by the standard deviation of the data, and (iii) min-max

normalization, which scales data to the (0, 1) range. In general,

Neural Net XGBoost Linear Reg Lasso SVR Dec Tree Rnd Frst
Power Model
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MongoDB
Tensorflow
Sysbench
Memcached
Mobile Neural Net
Filebench

Figure 1: MAPE values for power modeling when a single
application is run on the server.

all techniques provided better results than no processing as raw

values for different features have different magnitudes. For example,

CPU cycles/second is usually in the billions, whereas for non-disk-

intensive workloads, the reads/second or writes/second during

workload execution is typically in the thousands.

Prediction Metrics. We used Mean Absolute Error (MAE) and Mean

Absolute Percentage Error (MAPE) as our error metrics; ground

truth was obtained from the power meter. MAE values showed the

same trend as MAPE, so we report MAPE values in our results.

4.2 Experimental Results
For evaluation, unless otherwise stated, we use the System work-

loads (as listed in Table 2) for testing the ML models, while using

the others for training.

4.2.1 Single Workload Execution. We start by evaluating the ML

models for the single workload scenario using the residual power

prediction formula with idle features removed (see Eq. (3)). Fig-

ure 1 illustrates the MAPE values obtained for predicting the server

power on the y-axis and the ML models on the x-axis. All the mod-

els perform well, with an average MAPE value of less than 17%

across all workloads. Support Vector Regression (SVR) outperforms

the others, with an average MAPE of 6.6%, followed by Random

Forest with an average MAPE of 9.6%. Even Linear Regression (LR)

provides satisfactory results, achieving an average MAPE of 12.7%.

For the power prediction in Figure 1, we experimented with

different data-processing techniques. We found that the de-mean

approach provided the best results for all models, except NN. For

all models except NN, other approaches like standardization result

in a 1–2% increase in MAPE. With min-max normalization, MAPE

increased by 1–3%. For NN, min-max scaling worked the best, im-

proving the prediction accuracy significantly (76%); standardization

only provided some improvement (11%) in prediction accuracy. The

reason for this is the NN model’s sensitivity to input scale and

reliance on gradient-based optimization methods [5]. Techniques

like min-max scaling ensure a consistent scale for all features, fa-

cilitating efficient learning and stable convergence. Without this

consistent scaling, the NN model’s learning could be inefficient due

to skewed gradients. Other models such as Decision trees, Random

Forest, and XGBoost, are less sensitive to data scaling because their

splitting criteria and/or ensemble nature focuses on the relative

ordering of feature values rather than their specific scales. These

models make decisions based on feature relationships, making them
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Neural Net XGBoost Linear Reg Lasso SVR Dec Tree Rnd Frst
Power Model
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Figure 2: Prediction results when workloads are co-executed
and residual server power is predicted as the sumof predicted
residual power of each workload.

inherently robust to variations in feature scales. For subsequent

evaluations, we used de-mean for all models except NN, for which

we used min-max scaling.

Among the different model variants considered, the residual

power prediction approach (Eq. (2)) offered better accuracy com-

pared to directly predicting full-server power (Eq. (1)). This im-

provement is seen particularly in the case of Linear Regression (LR)

and XGBoost, resulting in a 10% reduction in MAPE. Excluding idle

features ( ®𝑥𝑖𝑑𝑙𝑒 ) from the prediction process did not affect prediction

accuracy. Furthermore, including the intercept term in supported

models led to a slight improvement in prediction accuracy. How-

ever, for LR, the improvement was substantial, reducing MAPE

by approximately 20%. Unless specified otherwise, we considered

these variations in our subsequent results.

Predicting residual power, where we isolate the active system

usage by subtracting idle power, proved effective in improving ac-

curacy. This is because predicting residual power allows the model

to capture only the specific resource patterns associated with ac-

tive jobs, providing a better understanding of how power usage is

affected by resource utilization of jobs. At the same time, incorpo-

rating the intercept term in the models was crucial for considering

baseline power, representing the constant power consumption of

the server (which includes idle power) when no active jobs are

running. These two steps (predicting for residual power and including
the intercept term) are important for power prediction as they ensure
that the model does not unintentionally miss or attribute variations,
preventing bias in predictions.

Additionally, we conducted experiments without utilizing the

two RAPL power features. This resulted in a slight increase (1-2%)

in MAPE values across all ML models. RAPL power features cannot

be obtained on a per-thread or Thread ID (TID) basis. Therefore,

it is not possible to track the power contribution of individual

workloads using RAPL power features. Moreover, RAPL values

exhibit inconsistencies for certain server models, as reported by

Desrochers et al. [10]. Therefore, we opted not to incorporate RAPL
power features in the remainder of our evaluation.

4.2.2 Per-job Power Prediction for Co-Executed Workloads. We

now consider the challenging case where each co-executed work-

load’s power consumption is to be predicted. In particular, each co-

executed workload’s residual power consumption is first predicted,

and then the full-server power, obtained by adding the individual

workload power values and 𝑃𝑖𝑑𝑙𝑒 (via Eq. (5)), is compared with

the full-server ground truth power use. We train our models on

feature vectors from random pairs of non-System workloads from

Table 2. We then test the models on 8 pairs of System workloads.

This ensures that test workloads are separate from training.

Figure 2 shows our results for different pairs of co-executed

workloads. Here, the training data included only pairs of non-test
workloads from Table 2, representing the realistic case where test

workloads may not always be available for training. XGBoost per-

formed the best, with an average MAPE of 7.3%, followed by Ran-

dom Forest (8.9%), Decision Tree (12.3%), and SVR (14.9%). LR per-

formed poorly, with an average MAPE of 25%, highlighting the

linear model’s inability to account for resource contention when work-
loads are co-executed. We also explored the variation where the

predicted power consumed by other processes (𝑓 ( ®𝑥𝑏𝑔) term from

Section 3.2) was added to the predicted power of the workloads

to arrive at the full-server power prediction. However, this for-

mulation yielded slightly higher MAPE values, and was thus not

considered further.

We also conducted 5-fold cross-validation for our ML models by

training and testing on the dataset obtained by co-executing a pair

of workloads. In general, the prediction errors are lower than those

in Figure 2, since the test workloads comprise the same training

data. Based on average MAPE values, all models performed well,

with SVR (4.4%), RF (5.7%), NN (6.7%), Lasso (6.7%), DT (8.1%), and

XGBoost (9.7%) providing less than 10% error; even LR (6.9%) re-

sulted in low error under this cross-validation setting. This suggests
that the choice of ML model to employ also depends on the training
and test data overlap assumptions.

4.2.3 Background Processes as Third Workload. As mentioned ear-

lier, we explored another variation of our power model by consider-

ing all background processes as an additional workload co-executed

during the experiments. The idea behind this approach was that the

power model might be able to better segregate the power among

the active workloads if the background processes are grouped sep-

arately. The power prediction formulation hence becomes:

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑖𝑑𝑙𝑒 + 𝑓 ( ®𝑥𝑤1) + 𝑓 ( ®𝑥𝑤2) + 𝑓 ( ®𝑥𝑏𝑔) (7)

However, the results were not impressive. XGBoost had the least

average MAPE of 20.9%, followed by RF (22.9%), NN (25.3%), and DT

(25.4%). We also tried another variation of this model without the

intercept term (𝛽0), but that resulted in much worse results (∼57%
average MAPE for RF, DT, and LR). We thus decided to not consider

this model variation for our evaluation.

4.2.4 Beyond Two Co-Executed Workloads. We next experimented

by testing on four co-executed workloads by also training on the

dataset obtained by co-executing four workloads. We ran 5 combi-

nations of four workload pairs and evaluated using “leave-one-out”

cross-validation (see Figure 3). For example, in Figure 3, when we

test on the Tensorflow + MNN + Memcached + Filebench work-

load combination (blue legend), then the remaining 4 workload

combinations are used for training.

All the ML models performed well except LR and Lasso. XG-

Boost and Random Forest had the least average MAPE of ∼10%.
LR performed much worse with ∼24% average MAPE. This again

shows that linear models are not well suited for co-executed work-
loads’ power prediction. Overall, XGBoost and Random Forest are the
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Figure 3: Prediction results when four workloads are co-
executed and residual server power is predicted as the sum
of predicted residual power of each workload.

best performing models with 10% or lower average MAPE in most

scenarios, showing that non-linear models are effective for per-job

power prediction.

4.2.5 Workload Classification. The workloads being executed on

a server can be classified by the resource(s) they stress. It may be

interesting to consider a modeling approach whereby we build a

powermodel for eachworkload class separately to gain accuracy. To

that end, we classified workloads into 3 classes: CPU-heavy, DRAM-

heavy, and Disk-heavy. We trained a different power model for each

class and tested it on a workload of the same class. We compared

this new approach of “workload classification” with the original

“all workloads for training” approach (except the one being tested).

In this experiment, we trained and tested on a single workload

execution scenario. The benchmark workloads used are the micro-

benchmarks from Table 2. Figure 4 shows that the prediction error

of the power model trained for specific workload classes is typically

worse than the original approach (3–7% difference). This suggests
that a single model trained on multiple workload classes can improve
power prediction accuracy over workload-specific models.

4.2.6 Feature Selection and Importance. To evaluate our feature

set, we employed the mutual information method from scikit-

learn to estimate the significance of each feature utilized in our

training, as outlined in Table 1. This method quantifies the depen-

dence between two variables and is instrumental in assessing the

information gain associated with each feature relative to the target

variable. We found that DRAM and CPU features had higher impor-

tance scores (e.g., LLC-loads, LLC-stores for DRAM and ref-cycles,

cycles for CPU), while Disk features (e.g., bytes and blocks) had the

lowest scores. We repeated our power predictions by omitting the

Disk features, but this resulted in slightly higher MAPE values, sug-

gesting that our feature list is adequate. We also utilized XGBoost

and Random Forest algorithms to determine feature importance,

obtaining similar results.

4.2.7 Analyzing the Per-Job Power Predictions. Thus far we evalu-
ated our per-job power predictions (obtained via Eq. (6)) by compar-

ing the sum of per-job powers with full-server powermeter readings

because there is no ground truth for per-job power consumption in

the co-executed setting. Nonetheless, we can analyze the trend in

per-job power predictions. We first compared the per-job predic-

tions obtained from the co-executed setting with the ground truth

residual power when the workload is run in isolation. As expected,
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Figure 4: Performance of power models when trained on
specific workload classes versus all workloads.

the former is lower than the latter, likely due to resource contention

and saturation. For example, the ground truth residual power of

Sysbench in isolation is about 63W. However, the predicted per-job

power of Sysbench when co-executed with Memcached and when

co-executed with Mobile Neural Network (MNN) is only about

46W and 50W, respectively. In both co-executions, the predicted

power of Memcached and MNN is also lower than their ground

truth isolated power.

We also compared the per-job power predictions when Ten-

sorFlow (TF) is co-executed with MongoDB and when TF is co-

executed with MNN. The predicted power for TF is 67W when

co-executed with MongoDB and 85Wwhen co-executed with MNN.

Since MongoDB is I/O intensive, we expect TF’s I/O to be slowed

downmuchmore when TF is co-executed withMongoDB compared

to when TF is co-executed with MNN; consequently, TF may have

fewer instructions to be run per second when co-executed with

MongoDB, lowering its power draw. The disk and CPU features

confirm this claim, providing some validation of our predictions.

5 CONCLUSION AND FUTUREWORK
Per-job power tracking is an important first step for incentivizing

sustainable computing practices among consumers and providers

of cloud data centers. While there is ample literature on power-

prediction techniques, there is little prior work on comparing dif-
ferent power-prediction models, especially under different workload
and model settings. Our evaluation results showed that non-linear

ML models, specifically XGBoost and Random Forest, provided

good prediction accuracy (≤ 10% MAPE). Even for SVR models,

we found that a non-linear kernel provided significantly higher

prediction accuracy than a linear kernel (∼92% lower MAPE). By

contrast, LR did not perform well (25% MAPE). As such, the choice

of ML model plays an important role in power prediction. The

choice of ML model also depends on the training and test data

assumptions. In cross-validation settings, almost all ML models

we experimented with performed quite well (less than 10% MAPE).

Interestingly, workload-specific power models did not provide good

accuracy; training across workload classes resulted in a non-trivial

6% accuracy gain.

ACKNOWLEDGMENTS
This work was supported in part by Dell-EMC, NetApp, Tintri,

Facebook, and IBM support; and NSF awards CNS-1750109, CNS-

1900706, CNS-2106263, CNS-2106434, CNS-2214980, andCCF-2324859.

186



Empirical Evaluation of ML Models for Per-Job Power Prediction ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Anthony, L., Kanding, B., and Selvan, R. Carbontracker: Tracking and pre-

dicting the carbon footprint of training deep learning models. In ICML Workshop
on Challenges in Deploying and monitoring Machine Learning Systems (2020).

[2] Apple. View energy consumption in Activity Monitor on Mac. https://support.

apple.com/en-gb/guide/activity-monitor/actmntr43697/mac.

[3] Barroso, L. A., and Hölzle, U. The Case for Energy-Proportional Computing.

IEEE Computer 40, 12 (2007), 33–37.
[4] Bertran, R., Becerra, Y., Carrera, D., Beltran, V., Gonzalez, M., Martorell,

X., Torres, J., and Ayguade, E. Accurate energy accounting for shared virtual-

ized environments using pmc-based power modeling techniques. In 2010 11th
IEEE/ACM International Conference on Grid Computing (2010), pp. 1–8.

[5] Bhanja, S., and Das, A. Impact of data normalization on deep neural network

for time series forecasting. ArXiv (2018).

[6] Cloud Native Computing Foundation. Kubernetes Efficient Power Level

Exporter (Kepler). https://sustainable-computing.io, 2022.

[7] Colmant, M., Kurpicz, M., Felber, P., Huertas, L., Rouvoy, R., and Sobe, A.

Process-level power estimation in vm-based systems. In Proceedings of the Tenth
European Conference on Computer Systems (New York, NY, USA, 2015), EuroSys

’15, Association for Computing Machinery.

[8] Cooper, Brian. Yahoo! Cloud Serving Benchmark. https://github.com/

brianfrankcooper/YCSB, 2021.

[9] David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R., and Le, C. RAPL:

memory power estimation and capping. In Proceedings of the 2010 ACM/IEEE
International Symposium on Low Power Electronics and Design (ISPLED) (2010),
pp. 189–194.

[10] Desrochers, S., Paradis, C., and Weaver, V. M. A Validation of DRAM RAPL

Power Measurements. In Proceedings of the Second International Symposium on
Memory Systems (Alexandria, VA, USA, 2016), pp. 455–470.

[11] Dhiman, G., Mihic, K., and Rosing, T. A system for online power prediction in

virtualized environments using gaussian mixture models. In Design Automation
Conference (2010), pp. 807–812.

[12] Dutt, A., Rachuri, S. P., Lobo, A., Shaik, N., Gandhi, A., and Liu, Z. Evaluating

the energy impact of device parameters for dnn inference on edge. In Proceedings
of the 14th International Green and Sustainable Computing Conference (IGSC’23)
(Toronto, Canada, 2023).

[13] Fieni, G., Rouvoy, R., and Seinturier, L. SmartWatts: Self-Calibrating Software-

Defined Power Meter for Containers. In Proceedings of the 20th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Internet Computing (2020), pp. 479–488.

[14] Fieni, G., Rouvoy, R., and Seiturier, L. SelfWatts: On-the-fly Selection of

Performance Events to Optimize Software-defined Power Meters. In Proceedings
of the 21st International Symposium on Cluster, Cloud and Internet Computing
(2021), pp. 324–333.

[15] Gandhi, A., Ghose, K., Gopalan, K., Hussain, S., Lee, D., Liu, D., Liu, Z., Mc-

Daniel, P., Mu, S., and Zadok, E. Metrics for sustainability in data centers.

In Proceedings of the 1st Workshop on Sustainable Computer Systems Design and
Implementation (HotCarbon’22) (San Diego, CA, USA, July 2022), USENIX.

[16] Guo, N., Gui, W., Chen, W., Tian, X., Qiu, W., Tian, Z., and Zhang, X. Using

improved support vector regression to predict the transmitted energy consump-

tion data by distributed wireless sensor network. EURASIP Journal on Wireless
Communications and Networking 2020, 1 (2020), 120.

[17] Husain Bohra, A. E., and Chaudhary, V. VMeter: Power modelling for virtual-

ized clouds. In Proceedings of the 2010 IEEE International Symposium on Parallel
Distributed Processing, Workshops and Phd Forum (IPDPSW) (2010), pp. 1–8.

[18] Inria, University of Lille. PowerAPI. https://powerapi.org, 2023.

[19] Jarus, M., Oleksiak, A., Piontek, T., and Weglarz, J. Runtime power usage

estimation of HPC servers for various classes of real-life applications. Future
Generation Computer Systems 36 (2014), 299–310.

[20] Jay, M., Ostapenco, V., Lefèvre, L., Trystram, D., Orgerie, A.-C., and Fichel,

B. An experimental comparison of software-based power meters: focus on CPU

and GPU. In Proceedings of the 23rd IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (Bangalore, India, 2023), pp. 1–13.

[21] Kansal, A., Zhao, F., Liu, J., Kothari, N., and Bhattacharya, A. A. Virtual ma-

chine power metering and provisioning. In Proceedings of the 1st ACM Symposium
on Cloud Computing (Indianapolis, IN, USA, 2010), SoCC ’10, pp. 39–50.

[22] King, Colin. stress-ng. https://manpages.ubuntu.com/manpages/xenial/man1/

stress-ng.1.html, 2023.

[23] Krishnan, B., Amur, H., Gavrilovska, A., and Schwan, K. Vm power metering:

Feasibility and challenges. SIGMETRICS Perform. Eval. Rev. 38, 3 (jan 2011), 56–60.

[24] Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T. Quantifying the carbon

emissions of machine learning. arXiv preprint arXiv:1910.09700 (2019).
[25] Lin, W., Shi, F., Wu, W., Li, K., Wu, G., and Mohammed, A.-A. A taxonomy and

survey of power models and power modeling for cloud servers. ACM Comput.
Surv. 53, 5 (2020).

[26] Nethercote, Nicholas. What does the OS X Activity Monitor’s “Energy Impact”

actually measure? https://blog.mozilla.org/nnethercote/2015/08/26/what-does-

the-os-x-activity-monitors-energy-impact-actually-measure/.

[27] PACE Lab, Stony Brook University. Replication Package. https://github.com/

PACELab/sassy-metrics-data-code, 2023.

[28] Petit, B. Scaphandre. https://github.com/hubblo-org/scaphandre.

[29] Phoronix Media. Phoronix Test Suite. https://www.phoronix-test-suite.com/,

2023.

[30] Phung, J., Lee, Y. C., and Zomaya, A. Y. Modeling System-Level Power Con-

sumption Profiles Using RAPL. In 2018 IEEE 17th International Symposium on
Network Computing and Applications (NCA) (2018), pp. 1–4.

[31] Schmidt, V., Goyal, K., Joshi, A., Feld, B., Conell, L., Laskaris, N., Blank, D.,

Wilson, J., Friedler, S., and Luccioni, S. CodeCarbon: Estimate and Track

Carbon Emissions from Machine Learning Computing. https://mlco2.github.io/

codecarbon/motivation.html, 2021.

[32] Smith, J. W., Khajeh-Hosseini, A., Ward, J. S., and Sommerville, I. Cloudmon-

itor: Profiling power usage. In Proceedings of the 2012 IEEE Fifth International
Conference on Cloud Computing (2012), pp. 947–948.

[33] WattsUp. WattsUp? Pro. https://arcb.csc.ncsu.edu/~mueller/cluster/arc/wattsup/

metertools-1.0.0/docs/meters/wattsup/manual.pdf.

[34] Witkowski, M., Oleksiak, A., Piontek, T., and Wundefinedglarz, J. Practical

Power Consumption Estimation for Real Life HPCApplications. Future Generation
Computer Systems 29, 1 (2013), 208–217.

[35] Xiao, P., Hu, Z., Liu, D., Yan, G., and Qu, X. Virtual machine power measuring

technique with bounded error in cloud environments. Journal of Network and
Computer Applications 36, 2 (2013), 818–828.

A APPENDIX: EMPIRICAL DATA SHOWING
THE POWER CONSUMPTION OF
CO-EXECUTEDWORKLOADS VERSUS THE
SUM OF POWER CONSUMPTION OF
INDIVIDUALWORKLOADS
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Figure 5: Residual power (after subtracting idle power) when
workloads are co-executed versus sum of residual powers
when workloads are run in isolation.

We conducted experiments using stress-ng micro-benchmarks [22]

to investigate the difference in power consumption of co-executed

and individual workloads. We observed a large difference (see Fig-

ure 5(a)) between the sum of residual power consumption of two

CPU-bound micro-benchmarks (ackermann and pi) when run in-

dividually and the residual power consumption when these two

micro-benchmarks are run together. Residual power is the server

power with idle power subtracted from it.

Figure 5(a) shows, in blue, the sum of residual power consumption

of two CPU-bound micro-benchmarks (ackermann and pi) when

run individually; in orange, we see the residual power consump-

tion when these two micro-benchmarks are run together. We see

a similar difference (see Figure 5(b)) even if we run a CPU-bound

micro-benchmark next to a memory-bound one. The large differ-

ence between the two lines shows that the power consumption

profile of a job depends on other concurrent jobs as there may be

resource saturation and contention when jobs co-execute.
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Table 3: Illustration of our hyper-parameter tuning using Grid Search. Tuned values are highlighted in bold.

XGBoost SVR Decision Tree Random Forest Neural Network
learning_rate: [0.01,

0.03, 0.1, 0.5]
n_estimators: [100,

200, 300, 900]
max_depth: [3, 5, 6]
min_child_weight:

[1, 3, 5]
subsample: [0.6, 0.8,
1.0]

colsample_bytree:

[0.6, 0.8, 1.0]

C: [0.1, 1, 10, 100]
kernel: [linear, rbf,
poly]

gamma: [scale, auto,
0.01, 0.1, 1]

epsilon: [0.1, 0.2, 0.5,
1.0]

max_depth: [None, 5, 10, 15,

20]
min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]
max_features: [auto, sqrt,

log2]
max_leaf_nodes: [None, 10,
20, 30]

min_impurity_decrease:

[0.0, 0.1, 0.2]

n_estimators: [100, 200, 300,
500]

max_depth: [None, 5, 10, 20,
30]

min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]
max_features: [’auto’, ’sqrt’,
’log2’]

bootstrap: [True, False]
max_leaf_nodes: [None, 10,

20, 50]

activation: [ReLU, ELU,
tanh]

solver: [adam, sgd]
learning_rate_init: [0.001,

0.01, 0.1, 1]

B APPENDIX: EMPIRICAL DATA SHOWING
THE DIFFERENCE BETWEEN FULL-SERVER
MONITORED POWER AND RAPL POWER
VALUES
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Figure 6: Power values reported by Intel RAPL [9] and the
full-server power meter when running (a) Sysbench, and (b)
Memcached.

While RAPL power values can serve as ground truth for CPU

and/or DRAM power consumption, they are not accurate indicators

of full-server power, as shown in Figure 6. We empirically show

this shortcoming with Sysbench and Memcached workloads. In

general, across workloads, we found that the sum of CPU package

and DRAM power values for RAPL is 30–50% lower than full-server

monitored power values. Further, within a workload execution, the

ratio of full-server to RAPL power values varies significantly, by as

much as 1.1–1.7× for the workloads we experimented with. This

is to be expected as RAPL does not include power consumed by,

for example, the disks, motherboard, network, or non-integrated

GPU(s).

C APPENDIX: HYPER-PARAMETER TUNING
All ML models we experimented with were first tuned via Grid

Search to identify the best hyper-parameter values. Table 3 shows

the hyper-parameter tuning details for five ML models (XGBoost,

SVR, DT, RF, and NN), along with the best values chosen. For XG-

Boost, parameters such as learning rate, number of estimators, and

maximum depth were adjusted to find a balance between model

complexity and accuracy. SVR tuning focused on the regularization

parameter C, kernel type, kernel coefficient (gamma), and epsilon

(for epsilon-SVR model). For kernel type, our experiments showed

that the RBF (Radial Basis Function) kernel had the best prediction

accuracy. RF and DT had similar tuning to prevent overfitting while

maintaining model depth. For RF, we also considered the number

of estimators (300 in our case) for better accuracy. For NN, we used

the Multi-layer Perceptron regressor from scikit-learn with ReLU

activation and three hidden layers; the three hidden layers had size

of 512, 16, and 16 neurons. For LR, we experimented with and with-

out intercept. Including intercept, as mentioned earlier, gave better

results. We also tried Ridge regression as an alternative to LR and

Lasso, but its prediction accuracy was worse (5–6% higher MAPE

than LR and Lasso), so we do not include it in our evaluation. For

regularization, since Ridge regression did not work well, we had

the alpha hyper-parameter set to 0.1 for Lasso (L1 regularization).
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