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ABSTRACT 1 INTRODUCTION

As the market for cloud computing continues to grow, an increasing
number of users are deploying applications as microservices. The
shift introduces unique challenges in identifying and addressing
performance issues, particularly within large and complex infras-
tructures. To address this challenge, we propose a methodology
that unveils temporal performance deviations in microservices by
clustering containers based on their performance characteristics
at different time intervals. Showcasing our methodology on the
Alibaba dataset, we found both stable and dynamic performance pat-
terns, providing a valuable tool for enhancing overall performance
and reliability in modern application landscapes.
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As enterprises increasingly transform their applications into mi-
croservices and deploy them in cloud environments [3], the or-
chestration of hundreds of these microservices becomes crucial in
shaping the performance and reliability of applications. The com-
plexity of this endeavor is illustrated, for example, by Alibaba’s
production infrastructure, which contains more than 28,000 mi-
croservices and 400,000 containers [6]. Consequently, managing
such a large number of microservices and containers is a major
challenge, particularly when potential performance degradations
or failures should be detected. In this context, fine-grained perfor-
mance analysis and monitoring becomes a daunting task.

To facilitate the performance monitoring of microservices, we
propose a methodology to reveal the temporal performance devia-
tions of microservices. The overarching concept involves clustering
microservice containers according to their performance attributes at
different time periods. By analyzing these temporal clusters, we can
pinpoint deviations in performance behavior. In other words, over
time, microservice containers! may shift between clusters, enabling
the identification of containers that exhibit notable performance
deviations. For example, if a certain percentage of microservice
containers exhibit such variations, this could be the trigger to in-
vestigate why that particular microservice is behaving differently,
ultimately helping to ensure the overall performance and reliability
of the system. With the temporal dimension, these insights could
be mapped to possible root causes (e.g., abnormal user behavior at
runtime or an application update that degraded the performance).

We utilized the Alibaba dataset [6], which contains runtime in-
formation of microservices and the underlying hardware, to gain
valuable insights and showcase our methodology. Our investiga-
tion? showed that the performance of some microservices remains
stable the whole time, while others change their performance sig-
nificantly.

1A container serves as an instance of a microservice.
2The analysis is available at CodeOcean https://doi.org/10.24433/CO.6129510.v1.
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The remainder of this paper is structured as follows: In Section 2,
we provide information on the analyzed dataset, clustering, and
related work. In Section 3, we present our methodology. In Section 4,
we investigate the dataset and the performance of our methods. In
Section 5, we conclude the paper.

2 BACKGROUND

2.1 Dataset Description

Luo et al. [6] released the Alibaba dataset used in this paper. The
dataset includes detailed runtime metrics derived from microser-
vices operating in Alibaba’s production infrastructure. Collected
over 13 days in 2022 from the Alibaba Cloud, these traces are cat-
egorized into four parts: Node, which captures bare-metal node
runtime information; MSResource, responsible for documenting
CPU and memory utilization of containers from different microser-
vices; MSRTMCR, providing details on microservice call rate and
response time; and MSCallGraph, encompassing call graphs among
microservices across multiple clusters. The dataset covers over
400,000 bare-metal nodes, 28,000 microservices, and 470,000 con-
tainers. Our approach specifically concentrates on the information
gathered by MSResource.

2.2 K-Means & Silhouette Coeflicient

K-means [5, 7] is a clustering algorithm used in machine learning
and data analysis. It aims to partition a dataset into k distinct,
non-overlapping subgroups (clusters) based on the similarity of
data points. The algorithm iteratively assigns each data point to
the cluster with the nearest centroid (i.e., geometric center) and
updates the centroids accordingly. One challenge in k-means is
determining the optimal number of clusters k for a given dataset.

The silhouette coefficient is a metric that quantifies how well-
separated the clusters are. Essentially, it measures the similarity of
an object to its own cluster (cohesion) as opposed to other clusters
(separation). It ranges from -1 to 1, with higher values indicating
better-defined clusters. A silhouette coefficient close to 1 suggests
that data points within a cluster are more similar to each other than
to those in other clusters. This metric is valuable for assessing the
quality of clustering results and guiding the choice of an optimal
number of clusters in the k-means algorithm.

2.3 Other Applied Methods

Principal Component Analysis (PCA) [8] is a dimensionality reduc-
tion technique. The primary goal of PCA is to transform high-
dimensional data into a lower-dimensional representation, cap-
turing the most significant variations in the original dataset. It
identifies the principal components, orthogonal axes along which
the data exhibits maximum variance.

A Decision Tree [2] is an intuitive and powerful tool in machine
learning and data analysis commonly employed for classification
and regression tasks. These hierarchical structures recursively split
the dataset into subsets based on the most informative features,
resulting in a tree-like model of decisions. The tree evaluates a spe-
cific feature at each internal node, choosing the split that optimally
separates the data. The process continues until the creation of leaf
nodes, each representing a distinct class or a numerical value.
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2.4 Related Work

To the best of our knowledge, there are few publicly accessible trace
datasets from production systems made available and investigated.
For instance, Azure explored and released a serverless dataset con-
taining function invocation and execution times in 2019 [9].In a
more recent study, Azure presented a similar dataset [10]. A further
example is the dataset utilized in this paper, released by Alibaba [6],
containing runtime metrics of microservices. In another study [1],
a scientific serverless dataset was investigated and released, en-
compassing function invocations, characteristics of functions, and
function execution times. Meta also released and investigated a
dataset [4], containing topology and call information of their mi-
croservices. In contrast to these works, we do not release a dataset
but utilize the aforementioned Alibaba dataset to explore the tem-
poral behavior deviation of the microservices.

3 APPROACH
3.1 High-Level Idea

To examine the temporal performance deviation of microservices,
we partition the Alibaba dataset into discrete time intervals. Within
each dataset segment, we capture the performance attributes of
individual microservice containers, enabling comparison across
distinct time periods. Please note that the dataset comprises diverse
microservices, each implemented with various deployed containers.
To accomplish this, we employ clustering and compute an initial
cluster based on the first temporal segment. We then assign each
microservice container to a cluster based on its performance charac-
teristics. Subsequently, for each segment, we reassign microservices
containers to clusters. This methodology enables identification of
microservices whose containers exhibit significant performance
deviations, as reflected by switching clusters. For our comparative
analysis (see Section 4), we have chosen a time interval of one hour,
thus dividing the Alibaba dataset into hourly segments. However,
it is important to note that this interval can be adjusted as needed
to offer a more refined or broader resolution.

3.2 Performance Characteristics Extraction

To cluster the different microservices containers, information from
each time interval has to be extracted. Within a given dataset seg-
ment, we identify all containers operating during this specific time
frame. Subsequently, for each container, we collect CPU and mem-
ory utilization data, as well as the normalized runtime (i.e., the
actual runtime within this interval divided by the length of the inter-
val). The CPU and memory utilization data are then aggregated into
statistical summaries, including the mean, standard deviation, and
quartiles (minimum, 25th percentile, median, 75th percentile, and
maximum). Finally, these aggregated performance metrics, along
with the runtime information, are utilized for the clustering.

3.3 Performance Clustering

To cluster the containers from microservices according to their per-
formance characteristics, we employ the k-means algorithm and the
elbow method to determine the optimal number k of clusters. Specif-
ically, we applied clustering for k € {2,3,...,10} U{25,50,100} and
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utilized the silhouette coefficient to determine the optimal value
for k which is 5.

Figure 1 illustrates the decision-making process of k-means. The
depicted decision tree is truncated and is, therefore, only an approx-
imation of the clustering. For instance, all microservice containers
with a mean memory utilization of less than 0.29 were grouped
into Cluster 3. Another illustration is Cluster 1, encompassing mi-
croservice containers with a mean memory utilization greater than
or equal to 0.29 but less than 0.54 and a mean CPU utilization less
than 0.31. The rules for the remaining clusters are more intricate.
Please note that the presented values are derived from the hourly
aggregation. Specifically, the initial split in the decision tree checks
whether a microservice container encountered an average memory
consumption higher than 0.54 during the hour.

<0.54

>=0.72 >=0.7
<072 l <0.7
[ CPU_Mean ] [ CPU_Mean ]
T T
>=0.093 ‘ >=0.15 ‘

<0.15

o

Figure 1: Explanation of the clustering.
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3.4 Possible Extensions and Discussion

Our methodology is designed to work on the CPU and memory
utilization to keep the approach generic—that is, supporting any
application. To tailor it to a specific use case, one could incorporate
application-level information such as the read/write rate to/from a
database, the length of the queue, the number of active threads, etc.
Please remember that values must be normalized between 0 and 1
to ensure that the value range of each feature for the clustering is
equal. Of course, the aggregation time can be set to any arbitrary
time to offer a more refined or broader resolution and does not have
to be exactly one hour. Additionally, our initial findings indicate
that k-means outperformed hierarchical and density-based cluster-
ing methods on the Alibaba dataset. However, it is important to
acknowledge that the effectiveness of these clustering algorithms
may vary depending on the dataset or input being utilized.

4 EXPLORATION OF THE DATASET
4.1 Data Selection

Given the extensive size of the dataset, we carefully chose different
points in time from the first, second, and final days to thoroughly
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examine microservices’ performance deviation. In detail, our anal-
ysis encompassed the first hour of the first day (denoted as doh0
to match Alibaba’s syntax). Subsequently, we investigated the sec-
ond hour to capture immediate changes (referred to as doh1). For
a greater temporal span, we delved into the 13th hour (referred
to as d0h12) to assess performance half a day later. Additionally,
we examined the first hour of the second day to compare perfor-
mance a full day later (named as d1h0). Finally, we extended the
investigation to the last hour of the last available day (labeled as
d?h23).

Although the dataset covers 13 days, the download script pro-
vided by Alibaba aborts after the dataset part with the number 1008.
Considering the file naming convention, the file corresponds to the
last hour of day 3. However, upon inspecting the timestamps of
the last downloaded file, they fall within the final hour of day 21.
In essence, we lack clarity on the date to which this file pertains.
Consequently, we assign the label d?h23 to denote the uncertainty
regarding the date.

Table 1: Overview of the number of microservices and their
containers at selected points in time.

doho dOh1 doh12 d1ho d?h23
#unique MS 28,164 28,167 28,173 28,013 27,707
#MS containers 467,822 467,004 472,320 480,646 447,353

An overview of the number of individual microservices and the
total number of containers at the selected points in time is listed in
Table 1. The quantity of unique microservices and their containers
fluctuates between different time points. For example, comparing
dOhO and d?h23, the dataset reveals a decrease of 457 microservices
and 20,469 containers. Moreover, the number of shared unique mi-
croservices (see Table 2) stands at 28,161, 28,143, 27,834, and 27,650
between dOh0 and d0h1, dOhO and d0h12, and so forth, respectively.

4.2 Clustering the Dataset

To assess the effectiveness of the microservice clustering, we ana-
lyzed all 28,164 microservices, examining the distribution of their
containers across clusters. Notably, 22,873 microservices demon-
strated a homogeneous distribution, with all containers residing
within a single cluster, while 5,291 exhibited a distribution across
multiple clusters.

In addition to quantitative analysis, we employed visualizations
to evaluate the clustering quality of microservice containers. Em-
ploying PCA to reduce the dimensionality, we plotted the clustered
containers on two principal axes, as depicted in Figure 2. This
approach revealed five distinct areas, each representing a cluster.
While most microservice containers aligned with their respective
clusters, a few outliers were observed, such as the three blue dots
in the golden area. Overall, we are confident in the clustering’s abil-
ity to distinguish and classify various microservices’ performance
behavior accurately.

4.3 Temporal Performance Deviation

To investigate the temporal performance deviation of the microser-
vices, we compare the shift of microservice containers between
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Figure 2: Visualization of the clustering.

clusters over the selected periods in time. To this end, we only
consider containers that exist across all periods in time.
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Figure 3: Visualization of the temporal performance devia-
tion through the shift of microservices between clusters over
time. The color of each flow represents the initial cluster.

We start with a visual assessment in Figure 3, where the color of
the flows represents the cluster the microservice containers origi-
nate from—that is, from the initial cluster derived from d0h0. Over
time, a noticeable evolution occurs in the number of containers
within each cluster, as illustrated by the varying heights of boxes la-
beled with their respective cluster IDs. The most substantial change
is observed in Cluster 4. While the container count remains rela-
tively stable (50,806, 57,486, 56,374) for dOh0, d1h0, and d?h23, it
undergoes a drastic reduction from d0h0 to doh1(28,908) and sub-
sequently quadruples from dOh1 to dOh12 (112,913). In contrast,
Cluster 3 exhibits the slightest deviation, with nearly all contain-
ers persisting within this cluster throughout the entire duration,
visually depicted by the blue flow, which almost has no forks. In
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numerical terms, out of the initial 20,056 containers clustered into
Cluster 3, 18,101 containers remain within this cluster during the
selected time points. That is, these containers do not experience a
significant change in their temporal performance behavior.

In addition to the visual analysis, we employ a descriptive inves-
tigation listed in Table 2. Initially, we explore the diminishing count
of unique microservices and containers shared with the initial time
point (i.e., dOh0), indicating potential changes in the functionality
of Alibaba’s production infrastructure over time. At the same time,
the performance changes, evident in the decreasing number of mi-
croservices maintaining their cluster distribution, that is, containers
remaining in the same clusters across selected time points, with
percentages of 91%, 80%, 72%, and 71% from dOhI to d?h23. The
change is further illustrated by the percentage of microservices
where all containers change their clusters, which stands at 1%, 4%,
8%, and 9%. When comparing pairwise performance deviations, the
most prevalent pairs, ranked by decreasing similarity, are (d0h0,
doOh1), (dOho, d1h0), (d0h0, d?h23), and (d1h0, d?h23).

Table 2: Overview of the temporal performance deviation.
The clusters were derived based on d0ho, that is, Rows 3-7
are computed based on this initial clustering,.

doh1 doh12 d1ho d?h23
#shared MS with doho 28,160 28,132 27,537 27,132
#shared MS containers 466,745 465,422 428,036 404,762
with doho
#MS kept cluster distri- 25,511 22,592 19,936 19,139
bution
#MS containers stayed 432,408 365,330 345,957 326,242
in same cluster
#MS changed cluster dis- 2,649 5,540 7,601 7,993
tribution
#MS containers changed 34,337 100,092 82,079 78,520
cluster
#MS where all contain- 226 1,056 2,318 2,552

ers changed cluster

5 CONCLUSION

Our proposed methodology for monitoring the temporal perfor-
mance deviations of microservices offers a valuable solution to the
challenging task of managing large-scale microservice deployments.
This enables lightweight identification of containers with notable
performance variations, which can subsequently undergo in-depth
investigation through more intricate analyses to guarantee the over-
all performance and reliability of the system. We revealed stable
and dynamically changing performance patterns while applying
our methodology to the Alibaba dataset.
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