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ABSTRACT
An effective isolation among workloads within a shared and possi-
bly contended compute environment is a crucial aspect for industry
and academia alike to ensure optimal performance and resource
utilization. Modern ecosystems offer a wide range of approaches
and solutions to ensure isolation for a multitude of different com-
pute resources. Past experiments have verified the effectiveness of
this resource isolation with micro benchmarks. The effectiveness of
Quality of Service (QoS) isolation for intricate workloads beyond
micro benchmarks however, remains an open question.

This paper addresses this gap by introducing a specific exam-
ple involving a database workload isolated using Cgroups from a
disruptor contending for CPU resources. Despite the even distri-
bution of CPU isolation limits among the workloads, our findings
reveal a significant impact of the disruptor on the QoS of the data-
base workload. To illustrate this, we present a methodology for
quantifying this isolation, accompanied by an implementation in-
corporating essential instrumentation through Extended Berkeley
Packet Filter (eBPF).

This not only highlights the practical challenges in achieving
robust QoS isolation but also emphasizes the need for additional
instrumentation and realistic scenarios to comprehensively evaluate
and address these challenges.

CCS CONCEPTS
•General and reference→Performance; •Computingmethod-
ologies → Modeling methodologies.

KEYWORDS
Isolation, Performance, eBPF, Benchmarking, Cloud, DBMS

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652267

ACM Reference Format:
Simon Volpert, SaschaWinkelhofer, StefanWesner, Daniel Seybold, and Jörg
Domaschka. 2024. Exemplary Determination of Cgroups-Based QoS Isola-
tion for a Database Workload. In Companion of the 15th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’24 Companion), May
7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3629527.3652267

1 INTRODUCTION
In the ever-evolving landscape of computing, the paradigm shift
toward cloud computing and larger-scaled compute environments
has revolutionized the way organizations deploy, manage, and uti-
lize computing resources. Cloud computing, in particular, offers
unparalleled scalability, flexibility, and cost-effectiveness, enabling
businesses and scientists to work on challenges that were unattain-
able without it [14, 17]. However, the shared nature of resources in
such environments introduces inherent challenges, necessitating
robust mechanisms to ensure isolation among disparate workloads
and tenants. These challenges can be imposed by the desire to con-
solidate physical hardware, overbooking or overcommitting as a
business model, or by misbehaving disruptive tenants acting as
“noisy neighbors”.

There is a wide range of solutions that aim to solve these iso-
lation challenges. One aspect towards a solution is various virtu-
alization technologies. These range from classic hypervisor-based
implementations over manifold container-based solutions towards
more recent developments in the concept of application sandbox-
ing. Many of them pursue different strategies to achieve adequate
isolation; however, they do share some commonalities. A frequently
used strategy is the utilization of Cgroups [7, 23].

Cgroups are provided by the Linux kernel. They enable an oper-
ator to distribute processes into groups and subsequently assign
resource limits to those groups. These mechanisms have proven to
work very well, specifically when solely observing the isolated and
limited resource. The patterns of resource usage of real-world ap-
plications are often more complex [5]. Their QoS is not necessarily
directly dependent on a few distinct resources, as it is a measure of
end-to-end performance that inherently involves any amount of
resources [4, 16].
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In this paper, we focus on Cgroup-based CPU isolation. For this
specific case, we investigate whether one tenant’s QoS is impacted
by another disrupting tenant, even though their CPU limits are
evenly shared with no overbooking in place. With this, we aim at
answering the following two research questions:

RQ 1 (Isolationmeasurement). How can QoS isolation be chal-
lenged in complex deterministic scenarios?

RQ 2 (Cgroup sufficiency). Is Cgroup-based isolation enough
for reliant QoS isolation?

Answering these questions, we provide several contributions.
First, we provide a strategy to measure isolation between two ten-
ants considering the impact on QoS. Second, we suggest metrics
that quantify the degree of isolation. Finally, we provide a tool
developed for this work that enables low-overhead instrumentation
of compute resources for isolated process trees.

The remainder of this paper is structured as follows. In section 2
we discuss the fundamentals of this work. This includes eBPF profil-
ing, Cgroups and a discussion of isolation and its quantification for
QoS. This is followed by a description of the methodology applied
in section 3 and lays the foundation for the answer to RQ 1. The
methodology is followed by important details of the implemen-
tation in section 4. It gives a brief overview of the technologies
involved in the experimental setup and the workflow of measured
scenarios. The final results in section 5 discuss the observations
and in this process answers RQ 2. We close with a review of related
work in section 6 and a final summary in section 7.

2 BACKGROUND
This section describes important background aspects for the subse-
quent progression of this work. This includes low-overhead instru-
mentation, Cgroups, and isolation considerations.

2.1 Linux Profiling with eBPF
The Linux profiling subsystem efficiently gathers and collects per-
formance data, enabling developers and operators to pinpoint and
enhance resource utilization patterns. Retrieving these comes with
a performance penalty depending on the method of accessing it.

eBPF facilitates the execution of verified code within a dedicated
Virtual Machine (VM) integrated in the Linux kernel, extending the
capabilities of the original Berkeley Packet Filter (BPF) [13]. Beyond
executing functions upon receiving network packets, eBPF can
observe and respond to various event sources as part of the Linux
profiling subsystem, including Performance Monitoring Counters
(PMCs), tracepoints, and both kernel and user functions.

Although these events are not technically part of eBPF, it pro-
vides an accessible means of leveraging them. Specifically, the in-
strumentation and processing of profiling data directly within the
kernel space can reduce instrumentation overhead, since frequent
interactions with kernel and userspace are kept to a minimum.

The typical lifecycle of an eBPF program is depicted in fig. 1, as
presented by Gregg [6]. As depicted here, a typical first step is the
(i) generation of BPF byte-code by arbitrary eBPF tooling. Upon
this generation, the byte-code is (ii) loaded into the kernel for a
verifying step before being passed to the eBPF VM. For exchanging

data between Kernel- and userspace, the (iii) perf_output and (iii)
async read channels can be utilized.

verifier

BPF

maps

(b) kprobes

(a)
tracepoints

(c) uprobes
...

BPF
bytecode

statistics

per-event
data

(i) generate

(ii)
load

(iii)
perf output

(iii)
async read

𝐾𝑒𝑟𝑛𝑒𝑙𝑈𝑠𝑒𝑟

Figure 1: eBPF internals and Linux instrumentation accord-
ing to [6]

Within the scope of this work, we are employing instrumen-
tation on (a) Tracepoints. Tracepoints are static points of kernel
instrumentation [19], established and implemented by kernel devel-
opers to trigger an event upon a specific call. They also incorporate
hardware-specific counters, such as CPU cycles per core since boot
time.

eBPF based instrumentation is naturally tightly coupled with the
currently loaded Linux kernel. The BPF Type Format (BTF) aims to
improve the portability of eBPF based tools by providing a metadata
format, which encodes debug information related to the functions
and structures of the kernel referenced in the eBPF programs. The
profiling tool trac1, developed during this work, utilizes this format.
The tool itself is in an ongoing development phase.

This section only briefly outlines eBPF and Linux profiling, with
a more detailed exposition available in the previous work of fellow
authors [2, 20].

2.2 Cgroups
Control groups2 are a Linux feature that enables precise control
over the utilization of various system resources [8]. The Linux
kernel ensures that the processes assigned to such a group adhere
to the limits specified for the Cgroup. Additionally, Cgroups can
be unique, shared, and nested, essentially creating a hierarchical
structure.

Cgroups offer powerful measures to control, limit, and possibly
isolate resources. Used in conjunction with namespaces, they act
as an essential enabler for virtualization, particularly in the context
of container virtualization [20].

The Cgroups project underwent a significant restructuring effort,
resulting in the recent release of Cgroups v2. This effort was first
merged into the kernel with version 4.5 and is able to fully replace v1

1https://github.com/omi-uulm/trac
2https://man7.org/linux/man-pages/man7/cgroups.7.html
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since kernel version 5.6 [3]. At the time of writing, the list of Cgroup
controllers include (i) cpu, (ii) cpuset, (iii) freezer, (iv) hugetlb, (v)
io, (vi) memory, (vii) perf, (viii) pids, and (ix) rdma.

This work focuses on the usage of the (i) CPU controller imple-
mented by Cgroups v2. It enables setting a limit on the number of
CPU cycles per second.

2.3 Isolation Terminology
Isolation is a condition that occurs when two workloads share a
resource and compete for it. The degree to which they interfere
with each other characterizes isolation. If their influence on each
other is distinctive, the isolation is considered low, and vice versa.
This concept is discussed by several authors [10, 12, 22]. This study
follows the definition of isolation provided by Krebs et al. who
define:

Definition 1 (Isolation). Performance isolation is the ability of
a system to ensure that tenants working within their assigned quota
(i.e., abiding tenants) will not suffer performance degradation due to
other tenants exceeding their quotas (i.e., disruptive tenants).

In a similar context, particularly in cloud computing, the term
"noisy neighbor" is often used in related literature. This term refers
to a disruptive tenant that adversely affects another tenant. Accord-
ing to the definition provided by Longbottom [11], a noisy neighbor
is described as follows:

Definition 2 (Noisy Neighbor). A workload within a shared
environment is utilizing one or more resources in a way that it impacts
other workloads operating around it.

2.4 QoS Isolation Quantification
Performance degradation is a measure of how strong an abiding
workload𝑊𝑎 is affected by a disruptive workload𝑊𝑑 . It can be
determined as “performance loss rate” 𝐼𝑝𝑙𝑟 [9, 12, 18, 22].

𝐼𝑝𝑙𝑟 =
|𝑊𝑎1 −𝑊𝑎2 |

𝑊𝑎1
(1)

Here𝑊𝑎1 represents a workload in an undisrupted environment,
whereas𝑊𝑎2 represents the sameworkload impacted by a disruptive
workload𝑊𝑑 .

Krebs et al. extends this simple model with one specifically tar-
geted at QoS isolation determination [10]. We apply and slightly
adapt this model to fit our measured parameters.

Taking eq. (1) as a basis, we can determine the actual performance
ratio𝑞𝑊𝑎

and𝑞𝑊𝑏
by calculating 1−𝐼𝑝𝑙𝑟 . This leads to the simplified

eq. (2) and eq. (3).

𝑞𝑊𝑎
=

𝑊𝑎

𝑊𝑎𝑟𝑒𝑓

(2) 𝑞𝑊𝑑
=

𝑊𝑑

𝑊𝑑𝑟𝑒𝑓

(3)

Using eq. (2) and eq. (3) we can then determine the remaining
relative performance 𝜌 at a certain 𝑞𝑊𝑑

as 𝑞𝑊𝑎
.

𝜌 (𝑞𝑊𝑑
) = 𝑞𝑊𝑎

(4)

Table 1: Scenarios

name 𝑊𝑎 𝑙𝑎 𝑊𝑑 𝑙𝑑

(i) baseline 100 % 50 % 0 % 50 %
(ii) harmony 100 % 50 % 0-100 % 50 %

As Krebs et al. further states, these kind of values represent only
a distinct point where the disruption is to a specific degree. To
address this, we can try to reduce the resulting series of eq. (4) to a
single isolation metric 𝐼 .

An approach is to limit the number of samples 𝑞𝑊𝑑
to𝑚 equidis-

tant points and subsequently compute their arithmetic mean:

𝐼𝑎𝑣𝑔 =

∑
𝜌 (𝑞𝑊𝑑

)
𝑚

(5)

As this likely neglects the maximum amount of degradation,
we can further derive another metric that describes the maximum
isolation impact 𝐼𝑚𝑎𝑥 as follows:

𝐼𝑚𝑎𝑥 =
min(𝑞𝑊𝑎

)
arg min
𝑞𝑊𝑑

(𝑞𝑊𝑎
) (6)

Naturally, employing either eq. (5) or eq. (6) might overlook
the inherent curve of 𝐼𝑄𝑜𝑆 , potentially introducing a bias to the
outcome. Further considerations on deriving a metric that avoids
this are left for future work.

3 METHOD
This section presents the method behind the conducted experiments
and thus elaborates on the scenarios, instrumentation, and isolation
quantification. These aspects are adapted from previous work [20,
21].

Goal. As mentioned in section 1 we aim to measure the Cgroup
QoS isolation for the CPU resource. According to section 2.4 we
need at least two distinct measurements to analyze the isolation
capability of a technology. One being the reference workload in an
uncontended environment, and the other being the same workload
under contention.

Scenarios. As we are interested in whether a QoS-based isolation
is as high as a specific isolation for a certain resource, we choose
an appropriate isolation scenario. Earlier work has shown that this
is the case for fairly distributed resources where no overbooking,
overcommitting, or aggressive resource stealing happens [20, 21].
Volpert et al. show that this is particularly true for the “harmony”
scenario.

Therefore, this work analyzes the isolation of two scenarios: (i)
baseline and (ii) harmony. These are itemized in table 1

Here,𝑊𝑎 and𝑊𝑑 describe the workload performed within their
respective imposed limits 𝑙𝑎 and 𝑙𝑑 .𝑊𝑎 is considered static in both
scenarios and is instrumented regarding its consumed resources and
QoS status. It is further supposed to resemble a realistic workload
and is thus realized as a macro or synthetic benchmark [9]. For
the (ii) harmony scenario,𝑊𝑑 gradually increases over time and
is also instrumented for its consumed resources. Its purpose is to
specifically stress the single resource that is being isolated.
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Instrumentation. Again, the resource instrumentation approach
follows the principles outlined in previous work by the authors [20,
21]. In summary, it is independent of isolation technology and
performed outside of the isolation group. This is achieved with
eBPF.

Isolation quantification. In section 2.4, we introduce and briefly
examine metrics for quantifying QoS isolation. Utilizing eBPF and
QoSmetrics reported by𝑊𝑎 we can quantify the isolation at specific
degrees of contention by𝑊𝑑 .

4 EXPERIMENT DESIGN
In this section, we describe the abstract workflows of the experi-
ments. These are followed by a presentation and reasoning behind
the choices for the tools and instrumentation points selected.

4.1 Experiment workflow
As described in section 3, the experimental workflow follows two
scenarios. The execution of a scenario is highlighted in fig. 2

Host

Isolation Group Isolation Group

𝑊𝑎 𝑊𝑑

Profile

g

External Storage

(𝑖𝑖𝑖) Profiling

(𝑖) S
paw

n

(𝑖𝑖) Exe
cute

(𝑖𝑣) Acquire

(𝑣) Store

Figure 2: Flow of an abstract measurement

The process begins with (i) the initialization of an isolation
group. In this phase, (ii) load is generated by𝑊𝑎 and𝑊𝑏 . The (iii)
profiling process on the host system is initiated concurrently. This
profiling monitors the isolation groups. Upon completion, data is
(iv) collected and (v) stored on external storage.

Each run takes 5 minutes and is repeated 3 times. After each
run, the whole physical systems are reset and pruned to guaran-
tee no unintended side effects by residue of past experiments and
improving reproducibility.

4.2 Approach and Implementation
The following briefly iterates over the actual implementation of the
method as described in section 3 is realized.

Load generation. As stated in section 3 we need two distinct
workloads𝑊𝑎 and𝑊𝑑 .𝑊𝑎 is supposed to act as a realistic work-
load. Here, we choose to run a YCSB3 benchmark on a remote
host against a Postgres database [1]. The throughput in operations
per second and thus the QoS workload𝑊𝑎 is determined for this

3https://github.com/brianfrankcooper/YCSB

databse. For the sake of simplicity, we choose an insert-only work-
load stressing the database for 5 minutes. In that 5 minutes, YCSB
tries to execute 100, 000, 000 inserts of 500 bytes with 90 threads.
After its run-time, it reports a list of all operations with timestamp
and latency. Operations per second can be derived by resampling to
a desired frequency and counting the operations. These operations
per second are considered to be the QoS metric of𝑊𝑎 .

The Postgres database is continually instrumented with respect
to its CPU cycles and operations per second. Its configuration is
generated by PGtune4 optimizing Postgres with half of the to-
tal resources available on the physical server as described in sec-
tion 5.1[15].
𝑊𝑑 is considered to be a micro benchmark that continuously

stresses the CPU. We use the stress-ng implementation to realize
that load. It is set up such that it increases its utilization over time,
until it fully utilizes its granted resources. To achieve a linear load
generation behavior, we partition this load generation into multiple
intervals with configurable resolution.

Assuming ideal isolation, the measures of both workloads resem-
ble a progression, as illustrated in 3.

𝑊𝑎

𝑊𝑑𝑖𝑑𝑒𝑎𝑙

𝑊𝑑𝑟𝑒𝑎𝑙

𝑡

𝑊

Figure 3: Load generation

Instrumentation. Since we focus on CPU isolation, we select an
instrumentation point as outlined in section 2.1 that gives a detailed
view on CPU utilization. Modern CPUs provide hardware-based
counters that report the cycles that are executed on each core. The
progression of the counters over time, along with the maximum
number of possible cycles per core, can be used to derive CPU
utilization.

In order to keep the instrumentation overhead as low as possible,
we opt to utilize eBPF instrumentation. This allows us to gain fine-
grained control over the sampling frequency and efficient profiling
inside the kernel space. To leverage eBPF instrumentation, we built
a profiling tool named “trac5”.

Trac allows to be attached onto a root process. This root process
and any process invoked by it are subsequently instrumented for
either CPU cycles, resident memory, disk I/O, or network I/O. The
gathering of those metrics happens inside the kernel space, where
they are collected in a datastructure, called a BPF map. After profil-
ing, these maps can be accessed by the user-space counterpart of
the profiling tool. The collected data are processed and presented
as CSV time series with a resolution of up to 1𝑚𝑠 .
4https://pgtune.leopard.in.ua/
5https://github.com/omi-uulm/trac
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Isolation. To isolate processes with Cgroups, we leverage the
isolation tool “nsJail6”. NsJail is a Linux process isolation tool that
utilizes the Linux namespace subsystem, Cgroup resource limits,
and seccomp-bpf syscall filters to achieve process isolation.

In particular, we use the tool’s Cgroup capabilities to isolate the
stress-ng CPU load generator, as well as the Postgres database.

The stress-ng CPU load generator itself does not utilize other
system resources such as memory, disk I/O and network I/O. As a
consequence, we do not isolate these between workloads. Moreover,
memory, disk I/O, and network I/O utilized by the Postgres database
are negligible for the configuration and workload applied.

5 EVALUATION
This section systematically discusses the results of the evaluation
outlined in the sections before.

5.1 Evaluation Environment
The experimental configuration encompasses a pair of physical
servers, symmetrically arranged and equipped with identical com-
ponents. Both servers feature two Intel CPUs, specifically the “In-
tel(R) Xeon(R) CPU E5-2630 v3”, operating at a base clock frequency
of 2.40 GHz with 32 cores. Memory associated with these CPUs
totals 16 · 16 = 256 GiB of DDR4 memory clocked at 2133 MHz. The
physical storage disk for the database state is a Samsung SM843TN,
which exhibits a Input Output Operations Per Second (IOPS) per-
formance of 15, 000 for “random write” operations.

Communication for actual workload between all nodes is sepa-
rated and facilitated by Mellanox Technologies’ Network Interface
Card (NIC) from the “MT27800 ConnectX-5” family, capable of a
network throughput of 50 Gbit/s.

Figure 4 visualizes the interaction between the pair of physical
servers mentioned above. Here YCSB is responsible to generate and
control𝑊𝑎 (Postgres) from a remote host. We do so to limit possible
interference on𝑊𝑎 by the load generated by YCSB. The latter should
not be accounted for as it would act as a “noisy neighbor”.𝑊𝑑

generates its own workload and is not externally controlled.

Host A

Isolation Group Isolation Group

𝑊𝑎 𝑊𝑑

Host B

YCSB

𝑊𝑎

generation

𝑊𝑑

generation

Figure 4: Workload generation and controlling across hosts

The complete experiment set-up includes additional auxiliary
servers responsible for workflow automation. Notable involved
software components are itemized in table 2.

5.2 Results
In the following, we iteratively discuss the results of the scenar-
ios presented in table 1. Each scenario is represented by a plot.

6https://github.com/google/nsjail

name version note
Fedora CoreOS 39 Operating system version
Linux Kernel 6.5.6 Kernel used by the operating system

Fedora CoreOS
k3s v1.28.4 Rancher Kubernetes Distribution
Argo Workflow v3.5.4 The workflow engine to orchestrate

experiments and scenarios
trac 0.2.3 Profiling tool based on eBPF and

Aya
stress-ng 0.13.05 Load generator for CPU
YCSB 0.17.0 Macro benchmark for databaes
Postgres 15 SQL based Database management

engine
nsjail 3.4 Process isolation utilizing Linux

kernel functions
Table 2: Software version list
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0

50,000
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200,000

𝑊
𝑎
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s/
s

Figure 5: Baseline scenario

For the actual isolation metric determination we present an addi-
tional graph highlighting the impact on𝑊𝑎 QoS isolation at every
observed degree of stress imposed by the disruptive workload𝑊𝑑 .

Figure 5 visualizes the baseline scenario. The y-axis shows𝑊𝑎 in
operations per second at a given interval in seconds. As described
above, this information is provided by YCSB. As each experiment
is repeated multiple times and actual operations per second are
volatile, we adapted the visualization accordingly. Every measured
data point is plotted as a small circle resulting in a scatter plot. An
overlay as a smoothed thicker line highlights the trend of those data
points. The smoothing algorithm applied implements the Locally
Estimated Scatterplot Smoothing (LOESS) method. This results in
a trend for this baseline graph that settles roughly at 175, 000𝑜𝑝𝑠/𝑠 .

The visualization method for𝑊𝑎 in fig. 6 follows the same princi-
ple. However, the visualization of the disruptive workload𝑊𝑑 does
not apply said algorithm. Instead, it plots an overlays as the mean
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Figure 6: Harmony scenario

of repeated runs, as these measurements are stable. Thus, the steps
of the gradually increasing disruptive workload are easily visible.

Adding this disruptive workload𝑊𝑑 has a significant impact on
the behavior of𝑊𝑎 . After an initial pausing duration of 100𝑠 we
can see an immediate degradation of 𝑜𝑝𝑠/𝑠 for𝑊𝑎 . This gets worse
as𝑊𝑑 reaches its full utilization and results in a degradation of𝑊𝑎

of almost 50%.
Most importantly, neither workload ever exceeds 50% of the

physical system capacity, as defined by its assigned CPU cycle limit.
This means that the CPU cycles isolation works well considering
the fact that no workload is able to exceed its limit. This is in direct
conflict of the 50% QoS degradation observed. It is evident that a
harmonic split of the seemingly available total resource of CPU
cycles can have an impact on each other’s CPU performance.

A more detailed visualization with a specific focus on the impact
on isolation is presented in fig. 7. Here, the x- and y-axes represent
the relative degradation ratio of the workload as defined in sec-
tion 2.4 with the dimension of time completely removed. Therefore,
this graph represents 𝑞𝑊𝑎

for every 𝑞𝑊𝑑
. Again, because of the

volatile nature of the measure points, we present the graph as a
trend overlay over a scatter plot. Here, we can see a slight change
in the degree of degradation above 50% of 𝑞𝑊𝑑

. What is also easily
visible here is that good isolation between𝑊𝑎 and𝑊𝑑 is represented
by a higher value, while worse isolation is represented by a lower
value within the interval of [0, 1]. In table 3 discrete interesting val-
ues of fig. 7 are presented. Taking into account the equidistant 𝑞𝑊𝑑

values in the interval [0.1, 0.9] of this table results in Iavg = 0.83
for eq. (5). Furthermore, we can also calculate Imax = 0.60. These
values are naturally different from each other, as they both describe
different properties of the isolation function 𝜌 .

The observations above lead to the following interpretation.

Interpretation. The reason behind the observation that𝑊𝑑 can
have such a huge impact on𝑊𝑎 even though they should not impact
each other can be manifold. However, two aspects seem to play an
important role here.

0 20 40 60 80 100
𝑞𝑊𝑑

in %

0

20

40

60

80

100

120

𝑞
𝑊

𝑎
in
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Figure 7: Isolation impact

Table 3: Isolation metrics comparison

𝑞𝑊𝑎
in %

𝑞𝑊𝑑
in %

0.0 93.6
10.0 92.0
20.0 89.7
30.0 87.5
40.0 86.0
50.0 84.7
60.0 82.6
70.0 78.8
80.0 72.2
90.0 62.5
95.0 56.8

The system we execute our experiment on features two hyper-
threading enabled CPUs. Theoretically speaking, they are able to
fully utilize all logical cores with maximum cycles if the workload
fits. This was observed in previous work of the authors [20]. How-
ever, the workload in terms of QoS decreases significantly when the
actual physical cores are fully utilized. This assumption is indicated
by the slight change of slope in fig. 7 at 𝑞𝑊𝑑

≈ 50%. Although more
cycles could be utilized by the respective workloads while staying
within their cycle limit, they are not able to use them to maintain
their QoS.

Another limiting factor could be due to the saturation of only
loosely related resources in regard to CPU cycles. This could be due
to the overhead induced by process scheduling. Thus, CPU cycles
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could be increasingly reserved for such essential tasks, leading to
even more starvation of𝑊𝑎 .

6 RELATEDWORK
A prevalent method for assessing the isolation capability involves
calculating the 𝐼𝑝𝑙𝑟 as outlined in eq. (1). In line with this approach,
previous studies commonly determine this on a per-resource ba-
sis [12, 18, 22, 23]. We extend these findings with considerations
regarding QoS.

Silva et al. reviewed the effectiveness of resource isolation for
QoS isolation in the past [16]. They state that providing QoS for
application performance requires more than just guaranteeing a
certain allocation of CPU, memory, or I/O resources. We support
their findings for the more recent Cgroups v2 and extend them with
further measurements and an isolation quantification model.

7 CONCLUSION
Over the course of this work, we designed and implemented a so-
phisticated experimental setup that allowed us to execute two work-
loads against each other in order to measure their isolation from
each other. We have deliberately chosen a very specific scenario,
where a synthetic “abiding” database under constant workload com-
petes against a “disruptive” stressor that utilizes the CPU as high
as possible.

We determine that those two workloads influence each other
even when their CPU limits are evenly shared across the available
resources without any overbooking. Neither workload exceeds its
limit, but the impact on the QoS of the abiding database is clearly
visible.

As a consequence, we can see that mere CPU isolation is insuffi-
cient for more complex workloads outside of micro-benchmarks
that try to escape them. Aspects like hyper-threading and CPU
scheduling overhead are CPU related resources that are not iso-
lated as probably expected. Applying these findings to real-world
scenarios requires in situ system tests to determine the actual im-
pact on QoS when co-locating tenants.

The results presented in this work can be considered as a first pre-
liminary step towards more effective QoS isolation. From this point
on we see various possible future directions. One is the configura-
tion of stricter isolation environments with limited hyper-threading
and possibly system call filtering mechanisms of sandboxes. An-
other direction could be the improvement of instrumentation to
pinpoint the actual saturated resource resulting in a drop in QoS.
Lastly, those considerations could be repeated for other Cgroup,
different isolation technologies or other workloads.
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