Check for
Updates

HetSim: A Simulator for Task-based Scheduling on
Heterogeneous Hardware

Marcel Liitke Dreimann
Universitat Osnabriick
Osnabriick, Germany
marcel.luetkedreimann@uos.de

ABSTRACT

Server hardware is becoming more and more heterogeneous, with
an increasingly diverse landscape of accelerators such as GPUs,
FPGAs, or novel processing-in-memory (PIM) technologies. De-
signing and evaluating scheduling algorithms for these is far from
trivial due to accelerator-specific setup costs, compute capabilities,
and other characteristics. In fact, many existing scheduling simula-
tors only consider some of these characteristics, or only support a
specific sub-set of accelerators. To overcome these challenges, we
present HetSim, a modular simulator for task-based scheduling on
heterogeneous hardware. HetSim enables research on online and
offline scheduling and placement strategies for modern compute
platforms that combine CPU cores with multiple GPU, FPGA, and
PIM accelerators. It is efficient, fair, and compatible with a variety
of common workload descriptions, output metrics, and visualiza-
tion tools. We use HetSim to reproduce results from Alebrahim
and Ahmad, and examine how accelerator characteristics affect
the performance of various scheduling strategies. Our results in-
dicate that ignoring accelerator characteristics during simulation
is often detrimental, and that the ideal scheduling algorithm for
a given workload may depend on available accelerators and their
characteristics. HetSim is available as open-source software.

CCS CONCEPTS

« General and reference — Evaluation; Experimentation; «
Software and its engineering — Scheduling; Memory manage-
ment; « Human-centered computing — Visual analytics; « Com-
puting methodologies — Discrete-event simulation.

KEYWORDS

Simulator, Heterogeneous Hardware, Scheduling

ACM Reference Format:

Marcel Liitke Dreimann, Birte Friesel, and Olaf Spinczyk. 2024. HetSim:
A Simulator for Task-based Scheduling on Heterogeneous Hardware. In
Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE "24 Companion), May 7-11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3629527.3652275

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE 24 Companion, May 7-11, 2024, London, United Kingdom

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05

https://doi.org/10.1145/3629527.3652275

Birte Friesel
Universitat Osnabriick
Osnabriick, Germany
birte.friesel@uos.de

261

Olaf Spinczyk
Universitat Osnabriick
Osnabriick, Germany
olaf@uos.de

1 INTRODUCTION

Server hardware has become more and more heterogeneous over
recent years. In addition to many-core processors, it can now also
include multiple GPUs or FPGAs. Moreover, new processing-in-
memory technologies such as UPMEM PIM are emerging and be-
coming available for end users. Each of these accelerators has its
own characteristics and limitations: it can achieve outstanding per-
formance on workloads that it was designed for while being of
limited use in other cases.

One common limitation is the need to allocate a CPU core for
setup purposes. Consider the trace of PolyBench’s 2mm OpenCL
benchmark [11] shown in Fig. 1. Even though the benchmark target
is a GPU, OpenCL first spends 200 ms with CPU-only setup func-
tions. The workload itself (mm2_kernel2) makes up less than 25 %
of execution time ! and is the only component that actually uses
the GPU.

Hence, setup cost is far from negligible when designing or evalu-
ating scheduling algorithms. This also applies to other accelerators.
For instance, dynamic offloading with FPGAs relies on costly dy-
namic reconfiguration, and executing tasks on UPMEM PIM is also
far from instantaneous [9].

Similarly, accelerators can use dedicated memory or share it with
CPU cores. The former may require data transfers between main
memory and accelerator memory. This heterogeneity and diver-
sity of execution components poses new challenges for scheduling
and placement decisions. Depending on the software layer where
they are implemented, these can affect developers of operating sys-
tems, database management systems, language runtimes, or even
applications.

Currently, integrating accelerators into applications is usually
up to application developers. Novel system software like MxTask-
ing [16] and userspace frameworks like StarPU [4] aim to help
them with this task. These projects rely on tasks as control flow ab-
stractions and offer a unified framework for programming different
kinds of accelerators. They also deal with scheduling decisions that
come up if tasks can be executed on several different accelerators.
The increasing complexity and heterogeneity of accelerators leads
to increasing complexity in dealing with these decisions.

The contributions of this paper are three-fold.

e We provide a discussion of challenges that designers and
performance evaluation methods of scheduling strategies
for heterogeneous hardware face (Section 3).

e We present HetSim, a simulator for task execution on het-
erogeneous hardware (Section 4). It is capable of evaluating

'While clBuildProgram latency can be reduced by using pre-compiled GPU binaries in
this particular example, the discrepancy between setup cost (CPU) and execution time
(GPU) remains.

https://orcid.org/0009-0007-2426-4798
https://orcid.org/0000-0002-0688-9440
https://orcid.org/0000-0001-9469-2367
https://doi.org/10.1145/3629527.3652275
https://doi.org/10.1145/3629527.3652275
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629527.3652275&domain=pdf&date_stamp=2024-05-07

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Marcel Lutke Dreimann, Birte Friesel, and Olaf Spinczyk

clBuildProgram

clGetPlatformiDs E.

| mm2_kernel2 (Execution)
clFinish

Figure 1: Execution trace of PolyBench’s 2mm OpenCL benchmark [11] on an integrated Intel UHD Graphics Xe GPU. The
benchmark uses 16 execution units; the trace has been extracted by the OpenCL Intercept Layer [3].

scheduling algorithms on user-defined hardware platforms
without the need for real-world measurements. In addition
to a set of built-in workloads, it also accepts workload def-
initions provided by users or by existing DAG workload
generators. An optional event log containing task phases
and memory transfers allows for user-friendly visualization
with existing tools such as Perfetto. With HetSim, we are
able to reproduce results from Alebrahim and Ahmad.

o We use HetSim to examine how accelerator-specific overhead
affects the performance of different scheduling strategies
(Section 5).

The next section examines related work and outlines the gaps
that HetSim aims to fill. We then cover our three contributions (see
above) and conclude in Section 6.

2 RELATED WORK

The literature offers a variety of scheduling simulators for a diverse
set of use cases.

Suranauwarat presents a simulator that exclusively deals with
single-CPU scheduling algorithms [20]. It is meant to be used for
educational purposes and comes with graphical animations, but
does not support heterogeneous hardware.

Realtss focuses on evaluating real-time CPU scheduling poli-
cies without having to implement them in a real-time operating
system [8]. It has education and research in mind.

ScSF is intended for simulation-based high-performance com-
puting (HPC) scheduling research [18]. It offers tools for workload
modeling and generation, system simulation, comparative workload
analysis, and experiment orchestration.

SimGrid simulates distributed applications in grid environments [7].

It focuses on communication rather than computation, with latency-
and bandwidth-bound links between nodes and bandwidth sharing
in case of simultaneous transfers. While it can handle heteroge-
neous hardware, its host resource does not support accelerator-
specific behavior. Moreover, it measures performance based on
floating-point operations per second (FLOPS). We will explain the
drawback of this metric in Section 3.5.

Due to SimGrids’s detailed communication simulation and ease
of use, several simulators build on top of its API For instance,
Alea focuses on event-based scheduling of heterogeneous jobs on
heterogeneous resources with dynamic runtime changes [14]. It
gathers information about resource status and simulation results,
which can be visualized later.

Even though many simulators can gather statistics and offer
visualizations, none that we are aware of support heterogeneous
hardware with accelerator-specific behavior. They do not consider
setup or reconfiguration costs, and only provide limited statistics
and simulator output. Moreover, many simulators have been tailor-
made for specific classes of scheduling strategies or hardware com-
ponents, limiting their re-usability. Our contribution, HetSim, fills

262

these gaps by dealing with accelerator-specific attributes in ar-
bitrary schedules and hardware components. Combined with its
support for third-party workload generation and visualization tools,
this makes it more flexible than existing simulators.

3 DESIGN AND EVALUATION CHALLENGES

As mentioned in the introduction, modern frameworks for the man-
agement of heterogeneous computing resources use a control flow
abstraction called tasks: self-contained units of work that cannot
be preempted. The advantage of tasks over traditional abstractions
such as POSIX threads or GPU/PIM kernels is their simplicity, which
allows for having a unified control flow model for all supported
accelerators.

While this addresses one common issue when dealing with het-
erogeneous accelerators, task-based scheduling algorithms still face
avariety of challenges. We will now discuss the five most prominent
ones that we have identified: memory heterogeneity, accelerator
heterogeneity, task setup, driver frameworks, and the hardware
model.

3.1 Memory Heterogeneity

While most accelerators come with dedicated memory, they can
also share memory and even the last-level cache with the CPU - in-
tegrated GPUs such as Intel’s UHD 630 are a prominent example for
this. Additionally, only some accelerators with dedicated memory
support direct memory access (DMA). So, a task will incur different
amounts of data transfer overhead depending on where it is sched-
uled. At the same time, in both cases, subsequent tasks scheduled
on the same accelerator may benefit from already-present data or
warm caches. So, the performance of an individual task depends
not just on its own schedule, but also on the schedule of preceding
tasks that access shared data. Grouping those onto accelerators
with a shared cache can improve performance or save energy [10].

3.2 Accelerator Heterogeneity

Accelerators are not one-size-fits-all devices: GPUs excel at parallel
tasks that access shared memory, whereas UPMEM PIM works best
with embarrassingly parallel workloads without synchronization or
shared memory [17]. Executing a task on an unsuitable accelerator
may result in worse performance than just running it on a CPU
core [9]. Scheduling strategies have to take this into account, and
simulators must be aware of it as well in order to provide useful
results. This is a balance act between general-purpose algorithms
and simulators that assume anything is supported anywhere, and
the more complex task of encoding and utilizing knowledge about
the specific properties of each accelerator.

HetSim: A Simulator for Task-based Scheduling on Heterogeneous Hardware

3.3 Task Setup

Many accelerators rely on CPU support just like conventional pe-
ripheral devices. A CPU core has to allocate (part of) the accelerator,
transfer the task’s program code and possibly data, start the task,
and handle communication (e.g. waiting for the task to finish and
retrieving results). Both scheduling strategies and simulators must
take this reliance on CPU cores into account, especially for short
tasks where the setup time may exceed actual task execution (cf.
Fig. 1). This is another balance act: depending on a task’s attributes,
using a less suitable accelerator or plain CPU execution may still
be faster than the incurred CPU-bound setup cost.

3.4 Driver Frameworks

All accelerators that we are aware of rely on an accelerator-specific
driver framework in order to execute tasks. Vendors recommend
their own software for optimal performance, e.g. CUDAZ, OneAPI’,
or the UPMEM SDK*. However, when updates are applied to this
software, the accelerator characteristic may change. Driver opti-
mizations can reduce execution time on the accelerator, or affect
the setup time of a task. If scheduling algorithms are to be evaluated
on real hardware within a scheduling framework, the scheduling
framework must implement the interfaces to all possible drivers.
While OpenCL comes close by providing a standard (including a
programming language) that encompasses a variety of accelerator
types, some features and novel technologies such as UPMEM PIM
are missing.

3.5 Hardware Model

Scheduling algorithms and simulators rely on a hardware model
to determine the suitability of a given accelerator for a given task.
While metrics such as clock frequency or FLOPS may work well in
homogeneous settings (e.g. scheduling tasks on a CPU with slow
efficiency and fast performance cores), they are insufficient for
our purpose. Different accelerators may use different architectures,
and thus respond differently to heavy use of branch instructions,
vector operations, synchronization, shared memory accesses, and
similar. For instance, GPUs tend to work well with floating point
math but suffer from branching-induced performance penalties,
whereas UPMEM PIM excels at integer vector operations [12]. So,
actual accelerator performance is a function of the type of task it
executes, and not just its instruction count or a related numeric
metric. FLOPS and frequency, as used by e.g. SimGrid, capture none
of these nuances.

When dealing with dedicated memory, data transfer overhead
must be considered as well. The interconnect used for data transfer
typically has a well-defined latency and throughput. However, if
multiple data transfers are executed on a single interconnect at the
same time, the bandwidth is shared.

4 HETSIM OVERVIEW

We now present our main contribution: HetSim, an event-based,
discrete scheduling simulator that addresses the aforementioned
challenges. It follows a modular design to allow for easy adjustments

Zhttps://developer.nvidia.com/cuda-toolkit
Shttps://www.intel.com/content/www;/us/en/developer/tools/oneapi/toolkits.html
4https://sdk.upmem.com/

263

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

and extensions. Fig. 2 shows its main components and how they
interact with each other.

The Accelerator base class implements common functionality
and checks, such as per-task memory allocations or determining
whether a given task actually has an implementation for this accel-
erator. Its derived classes implement accelerator-specific behavior.
Each Accelerator instance references a single MemoryPool that
represents the accelerator’s memory and implements data object
allocation and movement. Multiple accelerators can share the same
memory pool to represent shared memory environments.

The Environment class stores a list of all accelerators (populated

by ModellLoader) and workload tasks (generated by TaskSetGenerator).

Each Task has a list of dependencies and accessed data objects; a
single data object can be referenced by multiple tasks. Lastly, the
simulator provides a Profiler that keeps track of all task phases
and memory transfers. The resulting statistics can be printed on
the console or saved in Google’s trace format>.

The following subsections describe how HetSim supports the
analysis of scheduling and placement strategies for heterogeneous
systems. We will cover workload generation, the simulation process
itself, and simulation output.

4.1 Workload Generation

When evaluating scheduling algorithms, it is important to ensure
that workloads resemble a wide range of real-world applications
and contain randomized components to identify systematic errors
in scheduling strategies. At the same time, it is desirable to obtain
deterministic simulation results for debugging and reproduction
purposes.

HetSim achieves both by providing a set of random number gen-
erators that can alter workload attributes, and storing the random
seeds and other workload parameters of each simulation run in
a Config object (cf. Fig. 2). Randomizable attributes include the
amount and size of data objects accessed by a task, its expected
runtime, and its set of supported accelerators. Each simulation
run can be reproduced by loading the associated hardware model
description and configuration into a subsequent HetSim invocation.

On top of this, HetSim supports four different types of task sets.
It can also simulate mixed workloads that combine multiple task
set types.

Random task sets make use of all possible characteristics an ap-
plication can have, including data (de)allocation and dependencies
between tasks. The latter can be disabled if the increased scheduling
complexity caused by task dependencies is undesirable.

Database Queries often serve as motivation for heterogeneous
hardware, as database operators can benefit from significant perfor-
mance boosts by utilizing GPU, FPGA or PIM accelerators [5, 15, 19].
The task set is composed of query and aggregation tasks. Each query
task accesses the same large data object (the database) and allo-
cates a smaller data object for its result, and the aggregation tasks
combine those intermediate results into a single data object.

Directed Acyclic Graphs (DAGs) are often used for evaluating
scheduling strategies such as Heterogeneous Earliest Finish Time
(HEFT) [2, 13]. HetSim supports the DAG task set format of two

Shttps://docs.google.com/document/d/1CvACIvFfyA5R-
PhYUmn500QtYMH4h6I0nSsKchNAySU

https://developer.nvidia.com/cuda-toolkit
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://sdk.upmem.com/
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Profiler TaskSetGenerator

Generates different sets
of tasks

Collects scheduling and
memory events

1 1

Marcel Lutke Dreimann, Birte Friesel, and Olaf Spinczyk

Config UPMEM
Loads/stores UPMEM behavior
configuration of simulator,
I

1 1 1

ModelLoader Environment

FPGA

Accelerator FPGA core behavior

Loads/stores model Orchestrates all together

1..*1

Data Task

1.%1.*

Represents a data object
with its properties

Represents a task with
its properties

Implements basic
accelerator behavior

GPU

1.*

1 GPU core behavior

MemoryPool

CPU Core

Represents memory;
can move data objects

CPU core behavior

Figure 2: Overview over the most important simulator components.

existing tools: DAGGEN and Pegasus. DAGGEN generates synthetic,
random task graphs that are intended for CPU scheduling [21].
Pegasus workloads, on the other hand, are based on real scientific
workloads like RNA analysis or the characterization of earthquake
hazards [6]. In both cases, each graph node represents a task, and
each edge encodes a dependency between two tasks. DAGGEN
associates tasks with random computation costs, whereas Pegasus
workloads do not provide any runtime annotation. Hence, HetSim
generates new computation costs for accelerators according to the
provided simulator configuration, and annotates graph edges with
communication costs.

User-defined task sets allow for evaluating scheduling strate-
gies that are optimized for specific workloads, and for analyzing the
performance and acceleration potential of applications rather than
scheduling algorithms. Users can simulate applications that do not
yet make use of heterogeneous hardware with a fixed scheduling
strategy, and see how enabling the execution of tasks on specific
accelerators changes application runtime and resource utilization.

4.2 Simulation

HetSim is implemented as a C++ library. This way, developers can
easily port existing scheduling algorithms to the simulator, or im-
plement new algorithms that can later be used in real systems.
Additionally, it allows for the use of debugging tools to analyze
scheduling algorithms in detail. HetSim supports both online and
offline scheduling algorithms. It is available as open source software
and extensively documented, thus enabling developers to extend
its set of accelerators with custom implementations.

In addition to scheduling algorithm (C++) and task set (Sec. 4.1),
users must specify the simulated hardware platform. Such a plat-
form description consists of four elements: memory pools, acceler-
ator architectures, the accelerators themselves, and links between
memory pools. HetSim uses an XML format for platform descrip-
tions in order to remain flexible when it comes to supporting future
heterogeneous hardware platforms. Listing 1 shows an example;
we will now describe its four components in detail.

A MemoryPool represents main memory (DRAM), a specific
accelerator’s dedicated memory, or similar. The memory model is

264

<MemoryPool id="0" size="16384" />

" size="8192" />

" perf_min="1.0" perf_max="1.5" />

"1" perf_min="1.8" perf_max="2.0" />

<Accelerator id="0" archid="0" memorypool="0" type="CPUCore" setupcost="0"
dma="1" modelerror="0.0" poweridle="10.0" powerload="25.0" />

<Accelerator id="1" archid="0" memorypool="0" type="CPUCore" setupcost="0"
dma="1" modelerror="0.0" poweridle="10.0" powerload="25.0" />

<Accelerator id="2" archid="1" memorypool="1" type="GPU" setupcost="250" dma=
"0" modelerror="0.0" poweridle="20.0" powerload="100.0" />

<Link src="0" dst="1" speed="100" />

<Link src="1" dst="0" speed="100" />

Listing 1: Excerpt of a hardware platform description.

not limited to volatile RAM: it also supports persistent memory
such as Optane DCPMMs and SSDs. Each memory pool must have
a unique ID and a maximum size.

An Architecture encodes performance attributes of a specific
accelerator architecture, e.g. a specific GPU model. It has a unique
ID as well as minimum and maximum performance factors. HetSim
uses these to generate randomized computation costs based on the
interval defined by the abstract performance factors. Overlapping
performance ranges of architectures allow for non-linear computa-
tion costs. For example, consider two architecture with performance
ranges [1.0,2.0] and [1.5, 2.5]. Tasks will most likely run faster on
the second architecture due to its larger performance factors. How-
ever, because of the overlap [1.5, 2.0], tasks can also be equally fast
or the first architecture can be faster than the second. This way,
HetSim can break out of simple FLOPS-based performance models
like the one used in SimGrid.

An Accelerator is a concrete compute unit instance, e.g. a CPU
core or an FPGA. It references an accelerator architecture and a
memory pool by ID, and also has its own ID. The type indicates
whether it is a CPU, GPU, FPGA, UPMEM, or other kind of acceler-
ator. Additional parameters indicate the absolute setup cost for a
task (recall Fig. 1), DMA support, model error, and power usage in
idle as well as under load.

The idea behind model error is that the expected execution times
of individual tasks may be inaccurate. To examine how suscepti-
ble a scheduling algorithm is to such inaccuracies, users can set

HetSim: A Simulator for Task-based Scheduling on Heterogeneous Hardware

modelerror to a value within [0.0, 1.0) that controls the dispersion
of actual task execution time around the expected execution time.
For instance, with modelerror="0.1", actual execution time can
be up to 10 % lower or higher than expected execution time.

The poweridle and powerload values are used by HetSim to
estimate the power consumption of each individual accelerator
and of the entire system. In order to define virtual accelerators,
the corresponding accelerator can be duplicated with the same
memorypool ID but a new accelerator ID.

Finally, each Link encodes a link between two memory pools
and its data transfer speed. Duplex communication is modeled by
two Link elements with individual bandwidths.

4.3 Statistics and Visualization

Adequate evaluation metrics and statistics as well as intuitive visu-
alization are crucial for understanding and analyzing scheduling
algorithms and application performance. HetSim supports a variety
of those.

Metrics. Given a set of accelerators A and a schedule plan, HetSim
provides its simulated total execution time (makespan) as well as
the SLR, Speedup and Efficiency metrics from the literature [1].

SLR (Schedule Length Ratio) is often used to compare sched-
ules in a way that is independent of DAG topology. It divides the
makespan by the sum of task execution times on the critical path.
Hence, a better strategy has a lower SLR.

SLR(plan) = makespan(plan)

tiecp MiNgeA Wtia
Speedup describes how much the schedule benefits from using
multiple accelerators. It divides the fastest sequential execution
time that can be achieved when scheduling all tasks on a single
accelerator by the makespan.

ingea Xtier Wti,a

m
Speedup(plan) = makespan(plan)

Efficiency, in turn, describes how well the scheduling algorithm
utilizes the accelerators. It is defined as the ratio of speedup over the
number of available accelerators |A|. An efficiency of 1.0 indicates
that the total execution time of a task set is evenly split across all
available accelerators.

Speedup(plan)
1A|

Task Phases and Visualization. HetSim records all memory transfers
and, for each task, which of the following phases it is currently in:

Efficiency(plan) =

o Task setup

Task blocked (waiting for dependency)
Task blocked (waiting for setup)

Setup blocked (accelerator busy)

Data transfer

Task execution

For each phase, it records start time, duration, and affected accel-
erator. For memory transfers, it also records the utilization of the
respective memory pool.

This allows HetSim to determine the accumulated time that each
accelerator has spent in the different task phases as well as its total
number of tasks and load. The recorded phases can be visualized

265

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

with Google’s Perfetto as shown in Fig. 3. Perfetto generates an
interactive plot similar to a Gantt diagram and provides utilities for
detailed analysis.

HetSim also determines the minimum, maximum, and average
wall-clock time that the machine running the simulation spent
making scheduling decisions. Simulation overhead is excluded from
this decision time. Thus, users can compare the overhead of different
scheduling algorithms.

5 EXAMPLE AND EVALUATION

We will now analyze four scheduling algorithms (three online, one
offline) to demonstrate the scientific usefulness, performance, and
correctness of HetSim. Those are heterogeneous Round Robin (hRR),
GreedyET, GreedyDS, and HEFT. Source code, data, and analysis
scripts are available at https://ess.cs.uos.de/git/artifacts/wosp-c-
2024-hetsim-artifacts.

hRR is a naive adaptation of the Round Robin (RR) CPU sched-
uling algorithm for heterogeneous hardware. It does not consider
performance attributes, and simply iterates over all accelerators un-
til it has found one that is capable of executing the task. GreedyET
picks the accelerator with the shortest expected execution time, and
GreedyDS additionally takes data transfers and setup phases into
account. HEFT is an offline scheduling algorithm from the litera-
ture [2, 13]. All algorithms use CPU core 0 to run setup code for task
execution on a GPU or FPGA, if needed. An important distinction
is the ability to balance load across CPU cores and accelerators. In
contrast to hRR and HEFT, GreedyET and GreedyDS are not able
to do load balancing and might over-utilize preferred accelerators.

5.1 Performance of scheduling strategies

Our evaluation uses the Sipht® Pegasus task set. It consists of 33
tasks with dependencies from the genome analysis / RNA transla-
tion domain. The hardware platform has eight CPU cores in two
different NUMA regions of 64 GiB each, an integrated GPU sharing
the memory with node 0, and a dedicated GPU and FPGA with 16
GiB of memory each. The link between the NUMA regions has a
bandwidth of 100 MB/s and all other links can transfer data with
25 MB/s.

We examine four configurations: a complex model with accelerator-
specific setup times, and a simple model without those. Both come
in two flavors: slow (little speedup provided by accelerators) and
fast (up to two times higher speedup). Table 1 lists the perfor-
mance intervals and setup costs, and Table 2 shows a HetSim con-
figuration excerpt for the complex models. In the simple cases,
min_fpga_reconf_time and max_fpga_reconf_time are set to 0.
We use the SLR metric from the literature to compare the strate-
gies. Note that this metric does not take setup costs into account
when calculating the critical path. An adjusted SLR definition for
heterogeneous hardware might be useful in the future.

On the simple model without setup costs, HEFT performs best
(see Fig. 4). As an offline algorithm, it has prior knowledge of all
tasks, so this is to be expected. Moreover, HEFT’s internal model is
close to our simple model, with the only exception being that HEFT
allows concurrency between memory transfers and task execution.

®https://pegasus.isi.edu/workflow_gallery/gallery/sipht/index.php

https://ess.cs.uos.de/git/artifacts/wosp-c-2024-hetsim-artifacts
https://ess.cs.uos.de/git/artifacts/wosp-c-2024-hetsim-artifacts
https://pegasus.isi.edu/workflow_gallery/gallery/sipht/index.php

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom Marcel Litke Dreimann, Birte Friesel, and Olaf Spinczyk

~ CPUCore 0

Thread 0

Thread Task setp

Thesd2
Memory 0 ~ L .

A GPU1

Thread 1 Blocked (setup)

Memory 1 ~ 5K ‘

Figure 3: Small example simulator trace visualized by Perfetto.

Accelerator[slow [fast [setup time

o i
CPU Core | [1.0,1.0] | [L.0,1.0] 0 5° i o
iGPU [0.8,2.2] | [0.8,4.4] 100 5°7 ! o
dGPU [1.1,3.6] | [1.1,7.2] 120 G 4] &I !
FPGA [1.2,4.0] | [1.28.0] 90 2] : %}
Table 1: Performance intervals [perf _min, perf_max] and E % l_—jI:] i
setup times for “slow” and “fast” configurations. & 27 E
hlIRR GreeldyET GreeldyDS HEIFT hlllR GreeldyET GreeldyDS HEIFT
Setting [H Setting [‘ Figure 4: SLR for scheduling strategies without setup phases,
max_fpga_reconf_time | 200 strict_exceptions 1 using slow (left) and fast (right) accelerators.
min_fpga_reconf_time | 100 min_data_size 4
min_task_runtime 10 max_data_size 300
max_task_runtime 500 max_task_delay 0 2 301 i o
partial_task_families 0 seed_uniform 3 & E
min_data_objects 1 seed_task_runtime | 1 % 201 ° !
max_data_objects 5 seed_data_size 2 § ! °
Table 2: A simulator configuration that allows for FPGA re- 2 1o- r—TL! o : @ r—TLH %!
configuration. The seeds are different for each iteration. E iﬂ %’ P 2
5 | = =
NI‘R GreeldyET GreeldyDS HEIFT I hI;R GreeldyET Gree:ijS HEIFT

In the slow flavor (left), hRR comes in second, and the greedy
strategies perform worst. HetSim output and Perfetto diagrams re-
veal that hRR benefits from load balancing, whereas the greedy
strategies execute all tasks on dGPU and FPGA and leave the
(slower) CPU and iGPU idle. In the fast flavor (right), on the other
hand, the greedy strategies outperform hRR. Here, hRR leaves ac-
celerators idle, as its round-robin algorithm treats eight (slow) CPU
cores and three (fast) accelerators as eleven equally fast compute

Figure 5: SLR for scheduling strategies with setup phases,
using slow (left) and fast (right) accelerators.

Any performance gains provided by an accelerator can easily be
nullified by its setup costs.

Another interesting insight is that the overall SLR of every algo-
rithm has increased in the fast flavor. This does not mean that the
makespan has increased, but rather that the length of the critical
path across the DAG was reduced. All of these findings could be
highly useful during research and development of scheduling and
placement strategies.

nodes.

Fig. 5 shows the impact of including setup costs in the models.
Now, hRR is best in both flavors, outperforming even the offline
HEFT approach. hRR prefers CPU cores (see above) and thus incurs
little CPU/FPGA setup costs, whereas HEFT chooses GPU or FPGA
execution without taking setup cost into account, degrading its
performance. Additionally, for HEFT and both greedy algorithms,

CPU core 0 is overloaded with setup code for GPU and FPGA tasks, 5.2 Costs of scheduling decisions

thus delaying their start. While GreedyET favors the FPGA due to Of course, more complex scheduling decisions incur higher sched-
having the lowest execution time for most tasks, it still comes up uling overhead. Fig. 6 shows the time per scheduling decision on
with a suboptimal schedule due to its high reconfiguration time. the Sipht task set, measured on the simulating machine. hRR, with
GreedyDS performs better, but is still behind hRR and HEFT due its lack of model usage, is fastest. GreedyET is five times slower,
to its lack of load balancing and over-utilization of CPU core 0. and GreedyDS’s fine-grained approach results in an up to 20-fold
Overall, we see that mapping tasks to devices is far from trivial. increase in overhead.

266

HetSim: A Simulator for Task-based Scheduling on Heterogeneous Hardware

20000 A
w
< 15000 -
£
(]
£ 10000 1
£

5000 - I
l=
hRR GreedyET GreedyDS

Figure 6: Benchmark of scheduling algorithms with mini-
mum, maximum and average decision time measured on the
simulating machine (i7-11850H).

o 151

B HEFT (Lit.) s HEFT (HetSim)
o« PEFT (Lit.) s PEFT (HetSim)
£ 10

=)

c

o}

|

Q

ERER

o

@

<

%}

n -

FATI=O.5 FA'|1=1 FATI=10
Figure 7: SLR results for HEFT and PEFT by Alebrahim and

Ahmad (annotated as “Lit.”) and Hetsim.

5.3 Simulation Correctness

To evaluate the correctness of HetSim, we used it to reproduce
HEFT and PEFT SLRs reported by Alebrahim and Ahmad. Those
build upon a hardware model with two processing units with dif-
ferent performance values for each task and without setup cost.
The input task sets were generated with DAGGEN with variable
levels of parallelism (“FAT” parameter). The HetSim reproduction
uses a hardware model consisting of two CPU cores with different
architectures and identical DAGGEN parameters. As Fig. 7 shows,
while absolute values differ slightly due to a different simulation
model, the relation between HEFT and PEFT remains the same.
When comparing HetSim’s plans with the example given by
Alebrahim and Ahmad, we see only a single difference. HetSim’s
simulation model does not allow memory transfer during task exe-
cution, while the HEFT and PEFT plan from the paper does.

5.4 Simulator performance

Lastly, we evaluated the performance of HetSim itself by using the
database query benchmark with the hRR algorithm. As Fig. 8 shows,
simulation time scales linearly with the number of tasks, with a
maximum of just 2.2 s for 500,000 tasks. Despite its single-threaded
implementation, HetSim is fast enough to simulate large task sets
in a reasonable amount of time. In practice, the simulation time was
not a limitation for us, as several simulations can run on different
cores at the same time.

267

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

N
o
|

=
wn
L

aeééaﬁeéeﬁﬁﬁﬂqééaﬁﬁﬁeéeQM

Lmaﬂ

o
1

ﬁa‘)baﬁém’aéﬁ!

Timeins

©c o =
o wn
)

fiencest=

51 151 201 251 301 351 401 451

Number of tasks in thousands

101

Jary

Figure 8: Simulation time for large task sets on an i7-11850H.

6 CONCLUSION AND FUTURE WORK

We have presented HetSim, a scheduling simulator for heteroge-
neous hardware that allows developers to study and analyze sched-
uling algorithms for given workloads and hardware configurations.
We showed that it can help identify weaknesses of scheduling al-
gorithms. The simulator records statistics and allows visualization
of schedules by third-party tools. Furthermore, HetSim supports
benchmarking scheduling decisions to help developers evaluate the
performance overhead of complex algorithms. The simulator han-
dles large simulations with hundreds of thousands of tasks in only
a few seconds and can reproduce results from the literature. HetSim
is freely available at https://ess.cs.uos.de/git/software/hetsim under
an open source license. It can serve as a reusable evaluation tool
that removes the need for writing algorithm-specific simulators.

The development of HetSim is ongoing. We plan to handle con-
tention and bandwidth limitations if multiple data transfers happen
at the same time on a single link in our simulator. HetSim could also
use a real hardware model without abstract performance values
to estimate absolute execution times on real hardware instead of
time units. Furthermore, we plan to extend the possible use cases
of HetSim. For example, our simulator could also be used to auto-
matically explore the design space of scheduling strategies for a
given hardware model.

ACKNOWLEDGMENTS

The work on this paper has been funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) — 361498541,
502565817.

REFERENCES

[1] Wakar Ahmad, Bashir Alam, and Sahil Malik. 2019. Performance analysis of list
scheduling algorithms by random synthetic DAGs. In Proceedings of 2nd Inter-
national Conference on Advanced Computing and Software Engineering (ICACSE).
https://doi.org/10.2139/ssrn.3349016
Shaikhah Alebrahim and Imtiaz Ahmad. 2017. Task Scheduling for Heterogeneous
Computing Systems. J. Supercomput. 73, 6 (jun 2017), 2313-2338. https://doi.
0rg/10.1007/s11227-016-1917-2
Ben Ashbaugh. 2018. Debugging and Analyzing Programs Using the Intercept
Layer for OpenCL Applications. In Proceedings of the International Workshop
on OpenCL (Oxford, United Kingdom) (IWOCL ’18). Association for Computing
Machinery, New York, NY, USA, Article 14, 2 pages. https://doi.org/10.1145/
3204919.3204933
Cédric Augonnet, Olivier Aumage, Nathalie Furmento, Raymond Namyst, and
Samuel Thibault. 2012. StarPU-MPI: Task Programming over Clusters of Machines
Enhanced with Accelerators. In Recent Advances in the Message Passing Interface,
Jesper Larsson Traff, Siegfried Benkner, and Jack J. Dongarra (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 298-299.
[5] Alexander Baumstark, Muhammad Attahir Jibril, and Kai-Uwe Sattler. 2023.
Processing-in-Memory for Databases: Query Processing and Data Transfer. In

—_
&,

https://ess.cs.uos.de/git/software/hetsim
https://doi.org/10.2139/ssrn.3349016
https://doi.org/10.1007/s11227-016-1917-2
https://doi.org/10.1007/s11227-016-1917-2
https://doi.org/10.1145/3204919.3204933
https://doi.org/10.1145/3204919.3204933

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Proceedings of the 19th International Workshop on Data Management on New
Hardware (Seattle, WA, USA) (DaMoN ’23). Association for Computing Machinery,
New York, NY, USA, 107-111. https://doi.org/10.1145/3592980.3595323

Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui Su,
and Karan Vahi. 2008. Characterization of scientific workflows. In 2008 Third
Workshop on Workflows in Support of Large-Scale Science. 1-10. https://doi.org/
10.1109/WORKS.2008.4723958

H. Casanova. 2001. Simgrid: a toolkit for the simulation of application scheduling.
In Proceedings First IEEE/ACM International Symposium on Cluster Computing
and the Grid. 430-437. https://doi.org/10.1109/CCGRID.2001.923223

Arnoldo Diaz, Ruben Batista, and Oskardie Castro. 2007. Realtss: a real-time
scheduling simulator. In 2007 4th International Conference on Electrical and Elec-
tronics Engineering. 165-168. https://doi.org/10.1109/ICEEE.2007.4344998

Birte Friesel, Marcel Liitke Dreimann, and Olaf Spinczyk. 2023. A Full-System
Perspective on UPMEM Performance. In Proceedings of the 1st Workshop on
Disruptive Memory Systems (Koblenz, Germany) (DIMES ’°23). Association for
Computing Machinery, New York, NY, USA, 1-7. https://doi.org/10.1145/3609308.
3625266

Victor Garcia, Juan Gomez-Luna, Thomas Grass, Alejandro Rico, Eduard Ayguade,
and Antonio J. Pena. 2016. Evaluating the effect of last-level cache sharing on
integrated GPU-CPU systems with heterogeneous applications. In 2016 IEEE
International Symposium on Workload Characterization (IISWC). 1-10. https:
//doi.org/10.1109/IISWC.2016.7581277

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. 2012. Auto-tuning a high-level language targeted to GPU codes. In 2012
innovative parallel computing (InPar). Ieee, 1-10.

[12] Juan Gémez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F.

Oliveira, and Onur Mutlu. 2022. Benchmarking a New Paradigm: Experimental
Analysis and Characterization of a Real Processing-in-Memory System. IEEE
Access 10 (2022), 52565-52608. https://doi.org/10.1109/ACCESS.2022.3174101

[13] Julien Herrmann, Loris Marchal, and Yves Robert. 2014. Memory-Aware List

Scheduling for Hybrid Platforms. In 2014 IEEE International Parallel & Distributed
Processing Symposium Workshops. 689-698. https://doi.org/10.1109/IPDPSW.

Marcel Litke Dreimann, Birte Friesel, and Olaf Spinczyk

2014.80

Dalibor Klusécek and Hana Rudova. 2010. Alea 2: job scheduling simulator. ICST.
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8722

Mehdi Moghaddamfar, Christian Firber, Wolfgang Lehner, Norman May, and
Akash Kumar. 2021. Resource-Efficient Database Query Processing on FPGAs. In
Proceedings of the 17th International Workshop on Data Management on New Hard-
ware (Virtual Event, China) (DAMON ’21). Association for Computing Machinery,
New York, NY, USA, Article 4, 8 pages. https://doi.org/10.1145/3465998.3466006
Michael Miiller, Thomas Leich, Thilo Pionteck, Gunter Saake, Jens Teubner, and
Olaf Spinczyk. 2020. He..ro DB: A Concept for Parallel Data Processing on
Heterogeneous Hardware. In Architecture of Computing Systems — ARCS 2020,
André Brinkmann, Wolfgang Karl, Stefan Lankes, Sven Tomforde, Thilo Pionteck,
and Carsten Trinitis (Eds.). Springer International Publishing, Cham, 82-96.
Joel Nider, Craig Mustard, Andrada Zoltan, John Ramsden, Larry Liu, Jacob
Grossbard, Mohammad Dashti, Romaric Jodin, Alexandre Ghiti, Jordi Chauzi,
and Alexandra Fedorova. 2021. A Case Study of Processing-in-Memory in off-
the-Shelf Systems. In 2021 USENIX Annual Technical Conference (USENLX ATC
21). USENIX Association, 117-130. https://www.usenix.org/conference/atc21/
presentation/nider

Gonzalo P. Rodrigo, Erik Elmroth, Per-Olov Ostberg, and Lavanya Ramakrishnan.
2018. ScSF: A Scheduling Simulation Framework. In Job Scheduling Strategies for
Parallel Processing, Dalibor Klusacek, Walfredo Cirne, and Narayan Desai (Eds.).
Springer International Publishing, Cham, 152-173.

Viktor Rosenfeld, Sebastian Bref3, and Volker Markl. 2022. Query Processing
on Heterogeneous CPU/GPU Systems. ACM Comput. Surv. 55, 1, Article 11 (jan
2022), 38 pages. https://doi.org/10.1145/3485126

Sukanya Suranauwarat. 2007. A CPU scheduling algorithm simulator. In 2007
37th Annual Frontiers In Education Conference - Global Engineering: Knowledge
Without Borders, Opportunities Without Passports. F2H-19-F2H-24. https://doi.
org/10.1109/FIE.2007.4417885

Frédéric Suter and Sascha Hunold. 2013. Daggen: A synthetic task graph genera-
tor.

https://doi.org/10.1145/3592980.3595323
https://doi.org/10.1109/WORKS.2008.4723958
https://doi.org/10.1109/WORKS.2008.4723958
https://doi.org/10.1109/CCGRID.2001.923223
https://doi.org/10.1109/ICEEE.2007.4344998
https://doi.org/10.1145/3609308.3625266
https://doi.org/10.1145/3609308.3625266
https://doi.org/10.1109/IISWC.2016.7581277
https://doi.org/10.1109/IISWC.2016.7581277
https://doi.org/10.1109/ACCESS.2022.3174101
https://doi.org/10.1109/IPDPSW.2014.80
https://doi.org/10.1109/IPDPSW.2014.80
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8722
https://doi.org/10.1145/3465998.3466006
https://www.usenix.org/conference/atc21/presentation/nider
https://www.usenix.org/conference/atc21/presentation/nider
https://doi.org/10.1145/3485126
https://doi.org/10.1109/FIE.2007.4417885
https://doi.org/10.1109/FIE.2007.4417885

	Abstract
	1 Introduction
	2 Related Work
	3 Design and Evaluation Challenges
	3.1 Memory Heterogeneity
	3.2 Accelerator Heterogeneity
	3.3 Task Setup
	3.4 Driver Frameworks
	3.5 Hardware Model

	4 HetSim Overview
	4.1 Workload Generation
	4.2 Simulation
	4.3 Statistics and Visualization

	5 Example and Evaluation
	5.1 Performance of scheduling strategies
	5.2 Costs of scheduling decisions
	5.3 Simulation Correctness
	5.4 Simulator performance

	6 Conclusion and Future Work
	Acknowledgments
	References

