
Approximating Fork-Join Systems via Mixed Model
Transformations

Rares-Andrei Dobre
Department of Computing
Imperial College London

London, UK
rares.dobre22@imperial.ac.uk

Zifeng Niu
Department of Computing
Imperial College London

London, UK
zifeng.niu19@imperial.ac.uk

Giuliano Casale
Department of Computing
Imperial College London

London, UK
g.casale@imperial.ac.uk

ABSTRACT
While product-form queueing networks are effective in analyzing
system performance, they encounter difficulties in scenarios involv-
ing internal concurrency. Moreover, the complexity introduced by
synchronization delays challenges the accuracy of analytic methods.
This paper proposes a novel approximation technique for closed
fork-join systems, called MMT, which relies on transformation into
a mixed queueing network model for computational analysis. The
approach substitutes fork and join with a probabilistic router and a
delay station, introducing auxiliary open job classes to capture the
influence of parallel computation and synchronization delay on the
performance of original job classes. Evaluation experiments show
the higher accuracy of the proposed method in forecasting per-
formance metrics compared to a classic method, the Heidelberger-
Trivedi transformation. This suggests that our method could serve
as a promising alternative in evaluating queueing networks that
contains fork-join systems.

CCS CONCEPTS
• Software and its engineering→ Software performance; •
Networks→ Network performance modeling.

KEYWORDS
Queueing Network, Fork-Join system, Synchronization Delay

ACM Reference Format:
Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale. 2024. Approximating
Fork-Join Systems via Mixed Model Transformations. In Companion of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
’24 Companion), May 7–11, 2024, London, United Kingdom. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3629527.3652277

1 INTRODUCTION
Modern software systems are typically implemented in a distributed
manner to improve performance, reliability, and scalability [18].
Under this pattern, parallel and concurrent structures have gained
increased importance over the years [9]. The software components
are often parallelized to achieve higher execution efficiency and
increase the utilization of the available resources. Parallel jobs
typically follow a fork-join mechanism. A parallel job is forked into

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652277

several tasks, which are executed concurrently on distinct resources
within the system. After finishing the execution, a task has to await
its sibling tasks at the join point. This job exits the join point and
continues only when all its tasks have finished execution.

Queueing networks are a class of efficient performance models
to understand the impact of execution mechanisms on system per-
formance. A large number of computer systems can be abstracted
as product-form queueing networks from which designers obtain
accurate performance predictions [3]. Nevertheless, product-form
queueing network models do not accommodate jobs that feature
internal concurrency. Furthermore, the exact analysis for inter-
nal concurrency within a queueing network can rapidly lead to a
state-space explosion.

In addition to the time spent on service, the total time of a parallel
execution involves two other delays: queueing delay and synchro-
nization delay [19]. Synchronization delay occurs on any completed
task that waits for the completion of other sibling tasks before leav-
ing the fork-join system. This coordination introduces dependen-
cies and leads to an increased complexity in designing an accurate
analysis for parallel executions. Therefore, it is necessary to have
approximate analytic performance models to analyze parallelism
for software designers and practitioners.

The technique developed by Heidelberger and Trivedi [13] is
long established. This method, which we refer to as HT method
in the rest of the paper, decomposes a job into a primary task and
a fixed number of secondary tasks; these tasks are assumed to be
independent of each other and belong to different job classes. Then
probabilistic routing and pseudo-servers are used to replace parallel
executions so that a product-form solution can be produced.

In this paper, we propose a novel approach, named MMT, for
the analysis of fork-join systems. Similarly to the HT method, the
fork and join are replaced by a probabilistic router and a delay,
respectively. In our terminology, a probabilistic router is an abstract
node that routes incoming jobs along output branches, according
to a probabilistic routing policy and with zero service time. Beyond
that, it introduces auxiliary open job classes to mimic the influence
of parallel computation and synchronization delay on original job
classes, which leads to a mixed queueing network model to ana-
lyze. The arrival rates and service rates of the auxiliary classes are
computed from an iterative procedure that enables us to finally
obtain the approximated solution of the original queueing network
containing parallelism. The main performance measures in the
fork-join system can be obtained using the method described.

The effectiveness of the proposed method is validated by compar-
ison with simulations and the HT method. We use the simulation
results as ground truth. Experiments are conducted on closed queue-
ing networks with homogeneous or heterogeneous fork-join queues

273

https://doi.org/10.1145/3629527.3652277
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652277
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629527.3652277&domain=pdf&date_stamp=2024-05-07

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale

Table 1: Notations for considered queueing networks

Symbol Definition
𝑟 index of the job class
𝑚 index of the service station
𝑐 index of the concurrent (fork-join) structure
𝜇𝑚,𝑟 class-𝑟 service rate at station𝑚
𝜆𝑟 class-𝑟 arrive rate (for open class)
𝑄𝑚,𝑟 class-𝑟 queue length at station𝑚
𝑋𝑚,𝑟 class-𝑟 throughput at station𝑚
𝑇𝑚,𝑟 class-𝑟 response time at station𝑚
𝑈𝑚,𝑟 class-𝑟 utilization at station𝑚
𝐾 number of job classes in the network
𝑀 number of service stations in the network
𝐶 number of fork-join structures in the network
𝐹𝑐 number of parallel paths spawned by the fork

of the structure 𝑐

(i.e., where servers can have the same or different service rates).
Compared to the HT method, the proposed method offers lower
error rates on predicted performance measures.

The rest of the paper is organized as follows. In Section 2, we
provide background on queueing network theory, fork-join systems,
and their analysis. In Section 3, we propose our MMT method for
the analytic analysis of fork-join systems. In Section 4, we present
evaluation experiments and results. In Section 5, we review related
work. Finally, we conclude the paper in Section 6.

2 BACKGROUND
2.1 Queueing Networks
Queueing networks serve as a class of models for analyzing the
performance of systems. They are made up of a collection of service
stations indexed by𝑚 = 1, . . . , 𝑀 , in which jobs are queued and
executed. A service station could have either infinite servers or
finite servers, and is referred to as delay or queue station, respec-
tively. The common use of delay stations is to represent the think
times of workloads, while queue stations typically represent system
resources [16]. In a queue station, there may be competition among
jobs for the server, resulting in waiting times. A queueing network
may execute multiple classes of jobs indexed by 𝑟 = 1, . . . , 𝐾 . Dis-
tinct job classes typically feature different service rates 𝜇𝑚,𝑟 , and
can be further categorized into closed and open classes. For closed
job classes, a fixed number of jobs circulate within the network.
For open job classes, jobs from a source continuously arrive to the
network with rate 𝜆𝑟 . Scheduling policies determine the order in
which jobs are served, with common policies including First-Come
First-Serve (FCFS) and Processor Sharing (PS).

To evaluate the performance of a queueing network, one ap-
proach is to solve a system of global balance equations to get state
probabilities of the underlyingMarkov chain where all performance
measures can be further obtained. However, this method becomes
hardly practical on complex networks due to the state-space ex-
plosion. Among queueing networks, there is a special class named
product-form queueing networks. They have local balance proper-
ties and their exact performance measures can be obtained without

Fork Join

Q4

Q1

Q2

Q3

Figure 1: Queueing network containing a fork-join system

resorting to the underlying state space. Mean Value Analysis (MVA)
[21] is a prevalent technique to solve product-form queueing net-
works. In scenarios where exact analysis becomes computationally
challenging, Approximate Mean Value Analysis (AMVA) [8] pro-
vides a practical alternative, offering insight into key performance
measures such as queue lengths 𝑄𝑚,𝑟 , throughputs 𝑋𝑚,𝑟 , response
times 𝑇𝑚,𝑟 , and utilizations 𝑈𝑚,𝑟 .

2.2 Fork-Join Systems
A queueing network may include a number of fork-join systems
indexed by 𝑐 = 1, . . . ,𝐶 . Fork-Join systems contain both fork and
join nodes, which are a particular structure in queueing networks.
The fork node has the property that any arriving job is split into
multiple tasks to be serviced independently and in parallel, while
the join node combines these tasks back into the original job after
they have finished processing [23]. Let 𝐹𝑐 denote the number of
parallel paths spawned by the fork node of the system 𝑐 , the 𝐹𝑐
executions are assumed to be independent of each other so they
do not intersect before reaching the join node. The notations for
networks considered by this paper are summarized in Table 1.

An example of a closed queueing network containing a fork-join
system is given in Figure 1. Jobs circulate between the fork-join
system and a single queueing station. Any job that arrives at the
fork node is split into three tasks to be processed on Q1, Q2, and Q3.
After completing processing, they must wait for the sibling tasks
to finish. Once all the tasks spawned by the job are finished, they
are joined together back into the original job, which subsequently
moves on to Q4.

2.3 Heidelberger-Trivedi Approximation
Method

A queueing network that contains fork-join systems has no product-
form solution [3], thus it cannot be efficiently solved in general. A
classic transformation method is developed by [13], which origi-
nally transforms single-class closed queueing networks including
a single parallel construct into a queueing network with no con-
currency so that analytic methods such as AMVA can be applied.
The main feature of this transformation is that each closed class is
coupled with one auxiliary closed class for each parallel path.

The parallel constructs targeted by this work are analogous to
fork-join systems. In its model, each job is represented by a primary
taskwithmultiple secondary tasks. Primary and secondary tasks are

274

Approximating Fork-Join Systems via Mixed Model Transformations ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

used to represent the activity of the job executed outside and inside
the fork-join system, respectively. Each primary task arriving at the
fork node is forked into multiple secondary tasks, while secondary
tasks arriving at the join node need to wait for their siblings to
arrive before they can be joined back into the primary task.

This work associates the join node of the fork-join construct
with a delay station. The time a primary task is supposed to spend
at this delay station represents the overall response time of the job
in the fork-join system, whereas for a secondary task it represents
the corresponding synchronization delay. This approach also adds
an auxiliary delay station to the network, which models the time a
primary task spends outside the fork-join system. The secondary
tasks use the auxiliary delay as their reference station. Their service
rates are computed using an iterative procedure analogous to [14].

Suppose 𝐷0 represents the response time of the fork-join system,
𝑅𝑖 denotes the response time at the 𝑖-th parallel path, and 𝐹 denotes
the number of parallel paths spawned by fork 𝑓 , the expectation of
the job response time in the fork-join system is

𝐸 [𝐷0] = 𝐸 [max(𝑅1, . . . , 𝑅𝐹)] (1)

Therefore, the service time of the primary task at the delay station
that replace the join node is 𝐸 [𝐷0]. The 𝑅𝑖 are assumed to be ex-
ponential random variables with 𝐸 [𝑅𝑖] = 1/𝜇𝑖 for all 𝑖 ∈ {1, . . . , 𝐹 },
thus 𝐸 [𝐷0] can be further expressed as the following [24]

𝐸 [𝐷0] =
𝐹∑︁
𝑖=1

1
𝜇𝑖
−
∑︁
𝑖< 𝑗

1
𝜇𝑖 + 𝜇 𝑗

+
∑︁

𝑖< 𝑗<𝑘

1
𝜇𝑖 + 𝜇 𝑗 + 𝜇𝑘

− · · · + (−1)𝐹−1
∑︁

𝑖1<· · ·<𝑖𝐹

1
𝜇𝑖1 + · · · + 𝜇𝑖𝐹

(2)

where 𝑖, 𝑗, 𝑘, 𝑖1, . . . , 𝑖𝐹 represent path indices.
Let 𝐷𝑖 represent the service times of the secondary tasks at this

delay station, i.e. the synchronization delays, 𝐸 [𝐷𝑖] is obtained by
subtracting the mean response time of the 𝑖-th parallel path from
the fork-join response time

𝐸 [𝐷𝑖] = 𝐸 [𝐷0] − 𝐸 [𝑅𝑖] (3)

Figure 2 depicts an example of a network alteration using the
aforementioned procedure. The original job class and its primary
tasks are depicted with red circles in the original and transformed
systems, whereas the distinct secondary tasks are represented
through blue, green, and yellow circles. It can be observed from
Figure 2b that the HT method produces four job classes for this
single class fork-join system with three parallel paths. In the trans-
formed fork-join system, the primary tasks are routed straight to
the synchronization delay station, whereas the secondary tasks
are routed through the fork-join system. From the synchronization
delay station, every job is routed to the auxiliary delay station.
From the auxiliary delay station, the jobs belonging to the primary
task continue proceeding through the rest of the network, while
the jobs from the secondary tasks are sent out to the router. The
obtained model is a product-form queueing network that can be
solved easily.

3 PROPOSED METHODOLOGY
The proposed method is a simpler transformation of fork-join sys-
tems by introducing only one more delay station and fewer job

(a) Original fork-join system

Router

... ...

Synchronization Auxiliary

delay delay

(b) Transforming original system into a network without concurrency

Figure 2: HT method for fork-join transformation

Table 2: Notations for auxiliary classes and network elements
created by the MMT method

Symbol Definition
𝑟 index of the original class
𝑟 ′𝑐 auxiliary class of 𝑟 created for the fork-join

structure 𝑐
𝑜𝑐 router created to replace the fork node

of the fork-join structure 𝑐
𝑑𝑐 delay station created to replace the join node

of the fork-join structure 𝑐

classes. This transformation leads to a simple yet effective compu-
tation procedure for performance measures of the original system.
The new notations introduced by the proposed method are summa-
rized in Table 2.

3.1 Network Transformation
3.1.1 Mixed model construction. We transform the network into
the one that can be applied to analytic approximations. The join
node of the fork-join system 𝑐 is replaced by a delay station𝑑𝑐 , while
the fork node is replaced by a router that forwards incoming jobs to
original 𝐹𝑐 parallel paths. Each path carries an equal probability 1

𝐹𝑐
of being selected to forward a job to, and the sum of probabilities
is 1. However, a router does not offer the functionality required to
spawn other tasks. Thus, even if a job is routed to a parallel path,
no sibling tasks are executed concurrently on the other parallel
paths. To counter this issue, the parallelism induced by a fork-
join system is simulated through the addition of open job classes,
which we shall refer to as the auxiliary classes. The auxiliary classes

275

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale

mirror the behavior of their original classes in terms of routing and
service rates within the fork-join system. As shown in Figure 3a,
the auxiliary classes are routed directly to the router from the
source, and they are forwarded to the sink after leaving the delay
station. Thus, their impact is limited to their corresponding fork-
join systems.

In contrast to the HTmethod, each original class passing through
the fork node is attributed only one auxiliary class whose jobs are
meant to act as siblings of the original job class. Due to the approx-
imation decision of assigning path selection probabilities equal to
1
𝐹𝑐
, the transformation exercises all parallel paths equally. This is a

key difference compared to HT, as it results in a model in which
classes do not map in a one-to-one fashion with a particular parallel
path. Hence, any approximation error that affects an auxiliary class
is equally distributed across the paths. A comparison between both
HT and MMT transformations is shown in Table 3, where the origi-
nal queueing network has one fork-join system and 𝐹 represents
the number of parallel paths.

3.1.2 Arrival rate of the auxiliary open class. Since we have intro-
duced auxiliary open classes into the network, it is necessary to
determine their arrival rates. In equilibrium, the router that replaces
the fork node of the structure 𝑐 satisfies the flow balance condi-
tion [16]. Let 𝑋𝑜𝑐 ,𝑟 denote the class-𝑟 arrival rate/throughput at the
router and assume 𝑋𝑜𝑐 ,𝑟 to be the same as the class-𝑟 arrival rate at
the original fork node, the class-𝑟 throughput at the original fork
node is then 𝑋𝑜𝑐 ,𝑟 · 𝐹𝑐 . Therefore, the arrival rate of the auxiliary
open class can be computed by balancing the flow at the router as

𝜆𝑟 ′𝑐 = 𝑋𝑜𝑐 ,𝑟 · (𝐹𝑐 − 1) (4)

where 𝑟 denotes the original job class, 𝑟 ′𝑐 denotes the auxiliary class
of 𝑟 created for the fork-join structure 𝑐 , 𝜆𝑟 ′𝑐 represents the arrival
rate of the auxiliary open class, and 𝐹𝑐 here denotes the number of
branches connected to the router.

3.2 Synchronization Delay
In this section, we illustrate how MMT method approximates the
synchronization delay. For ease of presentation, we assume there
is one fork-join system (𝐶 = 1) in the original network so we tem-
porarily remove the subscript 𝑐 . We assume that the response time
at any parallel path 𝑝 to be approximately exponentially distributed,
which is proved to an effective assumption for analytic analysis
[22]. Besides, let random variables 𝑅1,𝑟 , . . . , 𝑅𝐹,𝑟 represent class-𝑟
response times at parallel paths 1, . . . , 𝐹 , we assume they are mu-
tually independent. Based on the same two assumptions as the
HT method, we propose the following approximation approach
consisting of two main steps to derive the synchronization delays
for the fork-join system in a queueing network.

3.2.1 Mean response time at a parallel path. The first step of our
approach is to obtain the response times at parallel paths of a fork-
join system. For each path 𝑝 = 1, . . . , 𝐹 , the mean response time is
sum of mean response times at all queueing stations on that path.

We merge the performance measure of the auxiliary class with
that of its corresponding original class. Given the merged queue
length and throughput, Little’s law [17] is then used to compute

Source Sink
R1

R2

R3

Router

...

Synchronization

delay

(a) The network gained from the transformation of a fork-join system

Source Sink
R1'

R2'

R3'

...

...

...

(b) Corresponding homogeneous fork-join system of the
netwwork in Figure 3a

Figure 3: The proposed method for fork-join transformation

the mean response time at each single station

𝑅𝑝,𝑟 =
∑︁

𝑚∈𝑀𝑝

𝑄𝑚,𝑟 +𝑄𝑚,𝑟 ′

𝑋𝑚,𝑟 + 𝑋𝑚,𝑟 ′
(5)

where𝑀𝑝 is the set of service stations on path 𝑝 .

3.2.2 Approximation by a homogeneous fork-join system. The sec-
ond step is to update the service rates of the original and auxiliary
classes at the sychronization delay station.

We propose to approximate the given fork-join system with a
homogeneous fork-join system. As shown in Figure 3b, the corre-
sponding homogeneous fork-join system has the same number of
parallel paths and features one delay station per path. The service
times of both job classes at any delay station of the new fork-join
systems are assumed to be exponential random variables with the
means equal to the average of the original response times of the
path executions

𝐸 [𝑅′𝑝,𝑟] =
𝐸 [𝑅1,𝑟] + · · · + 𝐸 [𝑅𝐹,𝑟]

𝐹
, ∀𝑝 ∈ {1, . . . , 𝐹 } (6)

where the random variable𝑅′𝑝,𝑟 represents the class-𝑟 service time at
the delay station of the parallel path 𝑝 . The homogeneuous system
can approximate the behavior of the orginal system since their
response times are close to each other, i.e., 𝐸 [max(𝑅1,𝑟 , . . . , 𝑅𝐹,𝑟)] ≈
𝐸 [max(𝑅′1,𝑟 , . . . , 𝑅

′
𝐹,𝑟
)].

We therefore use 𝐸 [𝑅′𝑝,𝑟] to approximate the mean response time
of each path in the original fork-join system, and then compute the
synchronization delay by

𝐸 [𝐷𝑝,𝑟] = 𝐸 [max(𝑅1,𝑟 , . . . , 𝑅𝐹,𝑟)] − 𝐸 [𝑅′𝑝,𝑟], ∀𝑝 ∈ {1, . . . , 𝐹 } (7)

where 𝐸 [max(𝑅1,𝑟 , . . . , 𝑅𝐹,𝑟)] can be obtained by (2), and the ran-
dom variable 𝐷𝑝,𝑟 represents the class-𝑟 synchronization delay at
the parallel path 𝑝 of the original fork-join system.

276

Approximating Fork-Join Systems via Mixed Model Transformations ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Table 3: Differences between two transformation methods

HT MMT
added elements 2 delays 1 delay, 1 source
network type closed mixed

number of classes 𝐾 (1 + 𝐹) 2𝐾
synchronization delay heterogeneous homogeneous

(after aggregation)

Algorithm 1 Procedures to solve original queueing networks

Input: a queueing network, 𝑡𝑜𝑙
Output: 𝑄𝑚,𝑟 , 𝑋𝑚,𝑟 ,𝑇𝑚,𝑟 ,𝑈𝑚,𝑟

1: initialize 𝑋𝑜,𝑟 ← 0, 𝑄𝑚,𝑟 ← 1, 𝑄0
𝑚,𝑟 ← 1

2: 𝑠𝑡𝑜𝑝 ← 𝑓 𝑎𝑙𝑠𝑒

3: obtain Q by fork-join transformation
4: while 𝑠𝑡𝑜𝑝 == false do
5: if max

(
1-(𝑄0

𝑚,𝑟 / 𝑄𝑚,𝑟)
)
< 𝑡𝑜𝑙 then

6: 𝑠𝑡𝑜𝑝 ← 𝑡𝑟𝑢𝑒

7: else
8: 𝑄0

𝑚,𝑟 ← 𝑄𝑚,𝑟

9: end if
10: 𝑄𝑚,𝑟 ,𝑄𝑚,𝑟 ′ ,𝑋𝑚,𝑟 𝑋𝑚,𝑟 ′ ,𝑇𝑚,𝑟 ,𝑇𝑚,𝑟 ′ ,𝑈𝑚,𝑟 ,𝑈𝑚,𝑟 ′←AMVA(Q)
11: for 𝑟 = 1, . . . , 𝐾 do
12: 𝑋𝑜,𝑟 ← Avg(𝑋𝑜,𝑟 , 𝑋𝑑,𝑟)
13: 𝜆𝑟 ′ ← 𝑋𝑜,𝑟 · (𝐹 − 1)
14: obtain 𝑅1,𝑟 , . . . , 𝑅𝐹,𝑟 by (5)
15: obtain E[𝐷0] by (2)
16: update 𝜇𝑑,𝑟 and 𝜇𝑑,𝑟 ′ by (7)
17: 𝑄𝑚,𝑟 ← 𝑄𝑚,𝑟 +𝑄𝑚,𝑟 ′ ; 𝑋𝑚,𝑟 ← 𝑋𝑚,𝑟 + 𝑋𝑚,𝑟 ′ ;

𝑇𝑚,𝑟 ← 𝑄𝑚,𝑟 /𝑋𝑚,𝑟 ;𝑈𝑚,𝑟 ←𝑈𝑚,𝑟 +𝑈𝑚,𝑟 ′

18: end for
19: end while

3.3 Algorithm
In our method, the arrival rates of auxiliary classes and the service
rates at the delay server are not known in advance. This implies
that an iterative computation framework is needed to approximate
the solution of the original network.

The framework is shown in Algorithm 1. For ease of presenta-
tion, we consider one fork-join system and temporarily remove the
subscript 𝑐 . The input of the algorithm includes an original queue-
ing network, a tolerance 𝑡𝑜𝑙 that serves as the iteration stopping
threshold, and a boolean value 𝑠𝑡𝑜𝑝 that determines whether to
stop the iteration. We set the initial value of 𝑋𝑜,𝑟 to 0, and both
𝑄𝑚,𝑟 , 𝑄0

𝑚,𝑟 to the same number (line 1), and transform the original
queueing network into a product-form mixed queueing network
by the proposed procedure (line 3). The stopping criterion is the
difference between the queue lengths of two successive iterations
(lines 5-9). At each iteration, the transformed queueing network is
solved by AMVA (line 10). Then, for each auxiliary open class, we
update its arrive rate (lines 12-13) and update the service rates of
both auxiliary and corresponding original classes at the synchro-
nization delay station (lines 14-16). In this way, the parameters of
the queueing network are updated. The last step of an iteration is
to merge the results for each original class (line 17).

Source Sink

Router 1

...

Synchronization

delay 1

Router 2

...

delay 2
Synchronization

Figure 4: An example of nested fork-join transformation by
the proposed method

3.4 Extend Method to Nested Fork-Join System
A nested fork-join structure is a hierarchical arrangement of fork-
join systems, utilizing nested fork-join structures holds significance
in the field of software development [4, 15]. Figure 4 shows a net-
work transformed from a nested fork-join system by the proposed
procedure. As it can be observed, the original system includes two
fork-join structures. We refer to the outer fork-join as 𝐹 𝐽1 and to
the inner fork-join as 𝐹 𝐽2. In this network, the possible paths of the
original job class are depicted in red, whereas the possible paths
of its auxiliary job classes are depicted in green or blue. The green
paths are for the auxiliary class created for 𝐹 𝐽1, whereas the blue
color denotes the paths of the auxiliary class created for 𝐹 𝐽2.

To adapt to nested fork-join systems, for each original class, we
first build auxiliary classes for every fork-join structure visited by
the original class. Two additions are introduced in the MMTmethod
compared to our original method for systems without nested fork-
join structures. The first addition is to start computing the synchro-
nization delay only at the outermost fork-join structure, and then
compute the nested fork-join structures recursively.

The second addition is the calculation of arrival rates of the
auxiliary classes. Because nested systems incorporate inner fork-
join structures and auxiliary classes are created for each of them,
solely considering the throughput of the original class at an inner
fork to compute the arrival rate of the auxiliary class associated
to this structure is not enough. The auxiliary class created for
an inner fork-join structure simulates the sibling tasks executing
concurrently of the auxiliary classes created for the outer fork-join
structures. In other words, the influence of both the original class
and the outer auxiliary classes should be considered. Hence, before
computing the arrival rate, the throughput 𝑋𝑑𝑐 ,𝑟 is updated using
throughputs of class-𝑟 and its auxiliary classes at that delay station

𝑋𝑑𝑐 ,𝑟 = 𝑋𝑑𝑐 ,𝑟 − 𝑋𝑑𝑐 ,𝑟 ′𝑐 +
𝐶∑︁
𝑠=1

𝑋𝑑𝑐 ,𝑟 ′𝑠 (8)

where 𝐶 denotes the set of fork-join structures in the queueing
network, 𝑟 ′𝑐 denotes the auxiliary class of 𝑟 created for the fork-join
structure 𝑐 , and 𝑑𝑐 denotes the delay station created to replace the
join node of the fork-join structure 𝑐 .

We refer to class-𝑟 and its auxiliary classes as 𝑟 -related classes.
Equation (8) merges the throughputs of all 𝑟 -related job classes
at the delay station, except 𝑋𝑑𝑐 ,𝑟 ′𝑐 , which is the throughput of the
auxiliary class created for the fork-join structure associated to the

277

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale

Table 4: Distinct fork-join queues used in evaluation

Groups Topology
heterogeneous_FCFS_1 < 𝑄1 | | 𝑄2 >

heterogeneous_FCFS_2 < 𝑄1 | | 𝑄2 | | 𝑄3 >

heterogeneous_FCFS_3 < 𝑄1 | | (𝑄2 → 𝑄3) >

heterogeneous_PS_1 < 𝑄1 | | 𝑄2 >

heterogeneous_PS_2 < 𝑄1 | | 𝑄2 | | 𝑄3 >

heterogeneous_PS_3 < 𝑄1 | | (𝑄2 → 𝑄3) >

heterogeneous_PS_4 < 𝑄1 | | 𝑄2 >

heterogeneous_PS_5 < 𝑄1 | | 𝑄2 | | 𝑄3 >

homogeneous_FCFS_1 < 𝑄1 | | 𝑄2 >

homogeneous_FCFS_2 < 𝑄1 | | 𝑄2 | | 𝑄3 >

homogeneous_PS_1 < 𝑄1 | | 𝑄2 >

homogeneous_PS_2 < 𝑄1 | | 𝑄2 | | 𝑄3 >

homogeneous_PS_3 < 𝑄1 | | 𝑄2 >

homogeneous_PS_4 < 𝑄1 | | 𝑄2 | | 𝑄3 >

current delay station 𝑑𝑐 . In other words, this equation gives the
total 𝑟 -related throughputs that do not leave for the sink from the
current delay station. If the fork-join structure 𝑐 is not nested (i.e.,
the outermost fork-join), 𝑋𝑑𝑐 ,𝑟 ′𝑐 will remain unchanged.

4 EVALUATION
We first compare the accuracy of the HT method [13] and MMT
method against simulation results obtained by Java Modeling Tool
(JMT) [2]. The implementations of these methods are included by
LINE [5] that is a algorithmic framework for queueing networks
and layered queueing networks [6]. The involved closed queueing
networks in our evaluation can be categorised into distinct groups
depending on the service rates of parallel executions (homogeneous
or heterogeneous) and the scheduling used at the queueing stations
(FCFS or PS).

There are two job classes in every queueing network. Both classes
are closed with a population of 10 jobs each. The queueing networks
always include a fork-join system containing two or three queueing
stations. The service rates at these stations are randomly generated,
with the average service time between 0.3 and 0.8. Table 4 shows a
list of the fork-join queues used in the first experiments. We use
the following notations to describe their topology: < denotes a fork
node, > represents a join node, | | defines a parallel branch, and→
defines a serial routing.

The evaluation results are shown in Table 5. It can be observed
that the proposed method achieves lower errors on most cases
than the HT method. Compared to the baseline, the MMT method
reduces the prediction error of queue length, response time, utiliza-
tion, and throughput by 30.9%, 62.8%, 34.6%, and 35.3% on average.
Figure 5a demonstrates that the two methods exhibit similar pre-
diction accuracy on homogeneous networks, whereas Figure 5c
illustrates that our method notably achieves higher accuracy on
heterogeneous networks. Apart from accuracy, runtime is the other
important factor to consider. As shown in Figure 5b and 5d, the
average runtime of our method is less than 0.015s, substantially
lower than that of the HT method, which is around 0.03s, as the
runtime of the AMVA scales with the increasing number of service

Q T U X
Performance metrics

0

0.05

0.1

0.15

P
re

di
ct

io
n

er
ro

rs

HT
MMT

(a)

HT MMT
0

0.01

0.02

0.03

0.04

T
im

e
(s

ec
on

ds
)

(b)

Q T U X
Performance metrics

0

0.05

0.1

0.15

0.2

0.25

P
re

di
ct

io
n

er
ro

rs

HT
MMT

(c)

HT MMT
0

0.01

0.02

0.03

0.04

T
im

e
(s

ec
on

ds
)

(d)

Figure 5: (a)-(b) for homogeneous networks. (c)-(d) for hetero-
geneous networks. (a),(c): Average prediction errors by HT
and MMT methods. (b),(d): Box plots of average runtimes for
both methods. Red circles and lines inside boxes represent
mean and median values, respectively.

stations and job classes. Compared to our method, where only one
auxiliary job class is created for a fork-join system, the HT method
creates one auxiliary class for each parallel path of the concurrent
system and an additional delay station to model the time spent
outside the fork-join system. Hence, the models created by our
method are more efficient to compute compared to those created
by the HT method.

We then evaluate the MMT method on nested fork-join queues.
Here we only compare the results with that of simulations since
the baseline HT method is not designed for nested fork-join queues.
The networks used for evaluation and numerical results are pro-
vided in Table 6 and Table 7, respectively. Figure 6 visualizes mean
and maximum errors in FCFS and PS groups. As can be observed,
the MMTmethod provides accurate predictions. This method inher-
ently possesses the capability to handle nested fork-join systems
because the auxiliary classes it creates are restricted to their corre-
sponding fork-join systems, and they are independent of the time
their original classes spend outside the fork-join systems, which is
a distinct advantage of our approach. In contrast, the HT method
is initially devised for a network with a single fork-join system.

5 RELATEDWORK
Fork-Join queueing networks represent the key to modelling and
solving parallel systems. However, they do not follow the product-
form restrictions, so most algorithms devised for fork-join networks

278

Approximating Fork-Join Systems via Mixed Model Transformations ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Table 5: Queue length, response time, utilization and throughput errors of HT and MMT methods

Groups ErrQ ErrT ErrU ErrX
HT MMT HT MMT HT MMT HT MMT

heterogeneous_FCFS_1 0.034 0.016 0.226 0.022 0.002 0.003 0.004 0.007
heterogeneous_FCFS_2 0.061 0.029 0.412 0.041 0.004 0.018 0.003 0.021
heterogeneous_FCFS_3 0.066 0.024 0.409 0.034 0.043 0.010 0.070 0.012
heterogeneous_PS_1 0.063 0.014 0.262 0.031 0.010 0.009 0.016 0.010
heterogeneous_PS_2 0.025 0.024 0.140 0.070 0.025 0.046 0.027 0.046
heterogeneous_PS_3 0.067 0.019 0.278 0.046 0.086 0.031 0.122 0.039
heterogeneous_PS_4 0.049 0.042 0.070 0.087 0.040 0.021 0.053 0.022
heterogeneous_PS_5 0.037 0.016 0.343 0.030 0.004 0.010 0.005 0.016
homogeneous_FCFS_1 0.069 0.078 0.125 0.116 0.013 0.009 0.021 0.018
homogeneous_FCFS_2 0.083 0.094 0.114 0.110 0.035 0.018 0.039 0.032
homogeneous_PS_1 0.041 0.032 0.053 0.074 0.014 0.010 0.021 0.017
homogeneous_PS_2 0.062 0.040 0.124 0.116 0.039 0.015 0.025 0.028
homogeneous_PS_3 0.053 0.045 0.073 0.099 0.025 0.014 0.027 0.016
homogeneous_PS_4 0.066 0.057 0.156 0.156 0.024 0.023 0.041 0.029

Mean 0.055 0.038 0.199 0.074 0.026 0.017 0.034 0.022

Table 6: Nested fork-join queues used in evaluation

Groups Topology
FCFS_1 < 𝑄1 | | (< 𝑄2 | | 𝑄3 >) >

FCFS_2 < 𝑄1 | | (< 𝑄2 | | 𝑄3 >) >

FCFS_3 < (< 𝑄1 | | 𝑄2 >) | | (< 𝑄3 | | 𝑄4 >) >

FCFS_4 < (< 𝑄1 | | 𝑄2 >) | | (< 𝑄3 | | 𝑄4 >) >

PS_1 < 𝑄1 | | (< 𝑄2 | | 𝑄3 >) >

PS_2 < 𝑄1 | | (< 𝑄2 | | 𝑄3 >) >

PS_3 < (< 𝑄1 | | 𝑄2 >) | | (< 𝑄3 | | 𝑄4 >) >

PS_4 < (< 𝑄1 | | 𝑄2 >) | | (< 𝑄3 | | 𝑄4 >) >

Table 7: Queue length, response time, utilization and through-
put errors of the MMT method

Groups ErrQ ErrT ErrU ErrX
FCFS_1 0.029 0.035 0.004 0.009
FCFS_2 0.023 0.036 0.004 0.007
FCFS_3 0.044 0.069 0.018 0.035
FCFS_4 0.019 0.085 0.023 0.033
PS_1 0.011 0.085 0.004 0.008
PS_2 0.012 0.070 0.004 0.007
PS_3 0.022 0.119 0.017 0.032
PS_4 0.010 0.083 0.023 0.033
Mean 0.021 0.073 0.012 0.021

are approximations and bounds, see e.g. [23],[7]. The only exact
solution has been devised for two parallel servers [20]. The main
difficulty in analysing fork-join queueing networks stems from the
synchronization delays incurred by the jobs waiting for the other
jobs created by a job to finish [11].

Duda and Czachórski [11] devise an algorithm to analyse fork-
join queueing networks by replacing the fork-join constructs with

Q T U X
Performance metrics

0

0.02

0.04

0.06

0.08

P
re

di
ct

io
n

er
ro

rs

mean
max

(a)

Q T U X
Performance metrics

0

0.02

0.04

0.06

0.08

0.1

0.12

P
re

di
ct

io
n

er
ro

rs

mean
max

(b)

Figure 6: (a) for networks with FCFS scheduling. (b) for net-
works with PS scheduling.

load-dependent queueing stations. Its foundation consists of the
flow-equivalent server method [3] and the decomposition principle.
Varki [25] modifies the computation of residence time in the MVA
algorithm to adapt to the closed, single-class queueing networks
containing fork-join systems. This modification assumes service
stations to have exponentially distributed service times and FCFS
scheduling strategies. Alomari and Menasce [1] propose a method
for analyzing fork-join systems involving servers with heteroge-
neous service times in open networks. The core of this method
involves establishing bounds on the response time of a job in a
fork-join system. This is achieved by analyzing the system under
two scenarios: one where all stations have the same service rates
and the other where their service rates vary. Mak and Lundstrom
[19] introduce an iterative algorithm capable of approximating the
performance measures of directed acyclic graphs abstracted from
parallel systems in polynomial space and time. Franks andWoodside
[12] illustrate the capability of the layered modelling framework
in which a platform for defining models with parallelism can be
conveniently used.

279

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale

6 CONCLUSION
The paper proposes an accurate and computationally efficient ap-
proach for analyzing closed queueing networks containing fork-join
systems. The core of this method involves establishing auxiliary
open job classes to simulate the behavior of the original parallelism.
This transformation leads to a mixed queueing network model that
can be solved by analytic method. Compared to the well-established
Heidelberger-Trivedi method, which uses an one-to-one fashion
to create auxiliary closed job classes for each parallel path, our
approach produces one auxiliary open job classes for the entire
fork-join systems. The evaluation results show that our method
achieves lower error rates. Meanwhile, the proposed method is
faster than the baseline method since our transformed network has
less number of job classes that requires less analytic computations.
In addition, the design of our transformation enables us to deal with
nested fork-join system, which is a notable advantage. Hence, this
paper contributes a simple yet effective fork-join transformation
which has the potential to be of great value in areas of the concur-
rent system research. An extended version of the work presented
in this paper is available in [10].

REFERENCES
[1] Firas Alomari and Daniel A Menasce. 2013. Efficient response time approxima-

tions for multiclass fork and join queues in open and closed queuing networks.
IEEE Transactions on Parallel and Distributed Systems 25, 6 (2013), 1437–1446.

[2] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. 2009. JMT: performance
engineering tools for systemmodeling. ACMSIGMETRICS Performance Evaluation
Review 36, 4 (2009), 10–15.

[3] Gunter Bolch, Stefan Greiner, Hermann De Meer, and Kishor S Trivedi. 2006.
Queueing networks and Markov chains: modeling and performance evaluation with
computer science applications. John Wiley & Sons.

[4] Michael Burke, Ron Cytron, Jeanne Ferrante, and Wilson Hsieh. 1989. Automatic
generation of nested, fork-join parallelism. The Journal of Supercomputing 3
(1989), 71–88.

[5] Giuliano Casale. 2020. Integrated performance evaluation of extended queueing
network models with line. In 2020 Winter Simulation Conference (WSC). IEEE,
2377–2388.

[6] Giuliano Casale, Yicheng Gao, Zifeng Niu, and Lulai Zhu. 2023. LN: A Flex-
ible Algorithmic Framework for Layered Queueing Network Analysis. ACM
Transactions on Modeling and Computer Simulation (2023).

[7] Giuliano Casale, Richard Muntz, and Giuseppe Serazzi. 2008. Geometric bounds:
A noniterative analysis technique for closed queueing networks. IEEE Trans.
Comput. 57, 6 (2008), 780–794.

[8] K Mani Chandy and Doug Neuse. 1982. Linearizer: A heuristic algorithm for
queueing network models of computing systems. Commun. ACM 25, 2 (1982),
126–134.

[9] David Culler, Jaswinder Pal Singh, and Anoop Gupta. 1999. Parallel computer
architecture: a hardware/software approach. Gulf Professional Publishing.

[10] Rares-Andrei Dobre. 2023. Stochastic Modelling in JLINE: Redesigning and Aug-
menting the MVA Solver with Fork-Join Analysis Methods. Technical Report. MSc
Final project, Department of Computing, Imperial College London.

[11] Andrzej Duda and Tadeusz Czachórski. 1987. Performance evaluation of fork
and join synchronization primitives. Acta Informatica 24 (1987), 525–553.

[12] Greg Franks andMurrayWoodside. 1998. Performance of multi-level client-server
systems with parallel service operations. In Proceedings of the 1st international
workshop on Software and performance. 120–130.

[13] Heidelberger and Trivedi. 1983. Analytic queueing models for programs with
internal concurrency. IEEE Trans. Comput. 100, 1 (1983), 73–82.

[14] Patricia A Jacobson and Edward D Lazowska. 1982. Analyzing queueing networks
with simultaneous resource possession. Commun. ACM 25, 2 (1982), 142–151.

[15] Gokcen Kestor, Sriram Krishnamoorthy, and Wenjing Ma. 2017. Localized fault
recovery for nested fork-join programs. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 397–408.

[16] Edward D Lazowska, John Zahorjan, G Scott Graham, and Kenneth C Sevcik.
1984. Quantitative system performance: computer system analysis using queueing
network models. Prentice-Hall, Inc.

[17] John DC Little. 1961. A proof for the queuing formula: L= 𝜆 W. Operations
research 9, 3 (1961), 383–387.

[18] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. 1995. Specify-
ing distributed software architectures. In Software Engineering—ESEC’95: 5th
European Software Engineering Conference Sitges, Spain, September 25–28, 1995
Proceedings 5. Springer, 137–153.

[19] VictorWMak and Stephen F. Lundstrom. 1990. Predicting performance of parallel
computations. IEEE Transactions on Parallel & Distributed Systems 1, 03 (1990),
257–270.

[20] Randolph Nelson and Asser N Tantawi. 1988. Approximate analysis of fork/join
synchronization in parallel queues. IEEE transactions on computers 37, 6 (1988),
739–743.

[21] Martin Reiser and Stephen S Lavenberg. 1980. Mean-value analysis of closed
multichain queuing networks. Journal of the ACM (JACM) 27, 2 (1980), 313–322.

[22] S Salza and SS Lavenberg. 1981. Approximating response time distributions in
closed queueing network models of computer performance. (1981).

[23] Alexander Thomasian. 2014. Analysis of fork/join and related queueing systems.
ACM Computing Surveys (CSUR) 47, 2 (2014), 1–71.

[24] Kishor S Trivedi. 2008. Probability & statistics with reliability, queuing and com-
puter science applications. John Wiley & Sons.

[25] Elizabeth Varki. 1999. Mean value technique for closed fork-join networks. ACM
SIGMETRICS Performance Evaluation Review 27, 1 (1999), 103–112.

280

	Abstract
	1 Introduction
	2 Background
	2.1 Queueing Networks
	2.2 Fork-Join Systems
	2.3 Heidelberger-Trivedi Approximation Method

	3 Proposed Methodology
	3.1 Network Transformation
	3.2 Synchronization Delay
	3.3 Algorithm
	3.4 Extend Method to Nested Fork-Join System

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

