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ABSTRACT
This paper presents GraphMa, a framework aimed at enhancing
pipeline-oriented computation for graph processing. GraphMa inte-
grates the principles of pipeline computation with graph processing
methodologies to provide a structured approach for analyzing and
processing graph data. The framework defines a series of compu-
tational abstractions, including computation as type, higher-order
traversal, and directed data-transfer, which collectively facilitate
the decomposition of graph operations into modular functions.
These functions can be composed into pipelines, supporting the
systematic development of graph algorithms. For this paper, our
focus lies in particular on the capability to implement the well-
established computational models for graph processing within the
proposed framework. In addition, the paper discusses the design of
GraphMa, its computational models, and the implementation de-
tails that illustrate the framework’s application to graph processing
tasks.
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1 INTRODUCTION
Graphs, with their intricate structures and complex relationships,
are an integral part of the world around us, playing a key role in
various domains ranging from social networks to biological systems.
Historically, graph processing has been fundamental in applications
such as network analysis, e.g. shortest path computation [12, 22],
for mapping services [5], analysis of social networks [13, 21] or
even feature extraction [17]. These traditional uses have paved the
way for more advanced applications.

In recent times, we have witnessed the emergence of graph pro-
cessing in areas like recommendation systems [3, 4, 7, 20], fraud
detection [11], and complex interaction mapping in bioinformat-
ics. Moreover, the increasing availability and collection of large
datasets have significantly influenced the size and complexity of
graphs [16]. These large-scale graphs present unique challenges
and opportunities for processing and analysis.

In response to these challenges, distributed graph processing has
gained prominence [2]. This shift from traditional, localized graph
processing to distributed methods addresses the need for scalability
and efficiency in handling vast and more and more complex graph
structures. Frameworks like ApacheGiraph [10], Google’s Pregel [9]
or the Apache TinkerPop [14] project have been instrumental in
this transition. They offer powerful, general-purpose solutions for
distributed graph processing, enabling easier implementation of
algorithms tailored to specific graph-related problems.

Building upon the foundational aspects of graph processing,
the application of concepts like immutability or modularity, well-
known in functional programming, offer a promising approach for
constructing graph processing pipelines. The congruence between
these concepts and graph processing is rooted in several advantages,
which are particularly beneficial for handling the challenges posed
by graph data.

In this context, modularity is the decomposition of complex prob-
lems into smaller, reusable functions. This approach mirrors the
inductive nature of many graph algorithms and processing work-
flows, where operations are independent yet interrelated. In graph
processing, this translates to the ability to encapsulate operations
like traversal, filtering, and transformation into discrete functions,
which can then be composed to addressmore complex graph-related
problems. Such modularity not only fosters code reusability but
also simplifies the process of constructing and maintaining graph
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algorithms and even beyond, the composition of a multitude of
graph algorithms.

Graph processing, especially when dealing with large datasets,
can greatly benefit from parallel and concurrent execution. Reduc-
ing or eliminating sharedmutable states, simplifies themanagement
and reasoning of parallelism and concurrency. This is crucial for
optimizing the performance of graph algorithms, allowing them to
handle the computational demands of large-scale graph analysis.
The immutability and stateless nature embedded in the concepts of
functional programming make it inherently suited for these tasks.

In this paper, we outline the fundamental principles that underlay
our concept for pipeline-oriented computation in general. Building
on this we propose and discuss GraphMa, a collection of ideas and
preliminary implementations extending the ideas around general
pipeline-oriented computation towards graph processing. For this
paper our focus lies in particular on the capability to implement
the well-established computational models for graph processing
(see Section 2) within the proposed framework (see Section 3).

2 BACKGROUND: COMPUTATIONAL MODELS
FOR GRAPH PROCESSING

The landscape of graph processing is rich and varied, encompass-
ing a range of computational units and models each designed to
optimize different aspects of graph analysis. At the heart of these
models is the goal to efficiently process and analyze data struc-
tured in graphs. Based on [2] we would like to exercise an overview
of the primary computational models that have shaped modern
graph processing, highlighting their foundations, operations, and
the challenges they address.

• Vertex-Centric (TLAV)Model: Pioneered byGoogle’s Pregel [9]
and further extended by Apache Giraph [1], the Vertex-
Centric model places the vertex at the center of computation.
In this model, each vertex independently executes the same
function, processing incoming information, potentially up-
dating its state, and then communicating with other vertices
through its edges. This approach allows for high levels of
parallelism as each vertex operates in isolation, yet collabo-
ratively contributes to the graph’s overall computation.

• Superstep Paradigm: This executionmodel, integral to Vertex-
Centric processing, organizes computation into a series of
global steps known as supersteps. During a superstep, ver-
tices concurrently execute a specified function, after which
they engage in communication by sending messages to ver-
tices that will be active in the subsequent superstep. This
synchronized execution and communication phase structure
not only facilitates easier reasoning about the computational
process and thus simplifies the programming of distributed
graph algorithms. The paradigm is briefly described in [2].
We also recommend read [19] and [9].

• Scatter-Gather Model: This model splits the process of mes-
sage handling into two distinct phases: scattering, where
vertices send out messages, and gathering, where messages
are collected and state updates are aggregated. By clearly
distinguishing between these phases, the Scatter-Gather
model [18] provides a structured approach to handling vertex

communication, facilitating more organized data processing
flows.

• Gather-Apply-Scatter Model: Introduced by PowerGraph [6]
adresses the challenge of computational load imbalance, es-
pecially in graphs with power-law distributions, the Gather-
Apply-Scattermodel decomposes vertex operations into three
phases: gather information from neighboring vertices, apply
a function to update the vertex’s state, and scatter results to
influence neighboring vertices in the next cycle.

• Edge-Centric Model: Offering a different perspective, the
Edge-Centricmodel [15] focuses computation on graph edges
rather than vertices. This model, exemplified by X-Stream
and Chaos, is particularly effective in scenarios where edge-
based computations are predominant. This model optimizes
the use of secondary storage and network communication,
making it suitable for processing very large graphs that do
not fit into memory.

• Sub-graph-Centric Model: By concentrating on sub-graphs,
either partition-centric within a physical partition or neigh-
bourhood-centric allowing for shared state updates, this
model [8] aims to reduce communication overheads. This
approach is especially beneficial in distributed environments
where minimizing inter-node communication can signifi-
cantly enhance performance.

• MEGA Model: Specifically designed for machine learning
applications on graphs, the MEGA model introduced by
Tux2 [23] focuses on edge-level computations with functions
such as Exchange, Apply, and Global Sync. These functions
facilitate detailed manipulation of graph structure and val-
ues, supporting sophisticated machine learning algorithms
on graph data.

3 A CONCEPTUAL FRAMEWORK TO
PIPELINE-ORIENTED COMPUTATION

This section presents a comprehensive overview of our novel com-
putation model designed for pipeline-oriented data processing in
general. It is only in Section 4 when we discuss how to apply this
framework as the basis to implement computational models for
graph processing. Our proposed model integrates functional pro-
gramming paradigms with object-oriented design principles to
create a versatile framework capable of addressing complex data
processing requirements. It is structured around a series of inter-
connected layers, each contributing to a cohesive and flexible archi-
tecture that facilitates the development of data processing pipelines.
These layers include Computation as Type, Higher-order Traversal
Abstraction, Directed Value-Transfer Protocol, Operator Model, and
finally the Pipeline Abstraction. We begin to introduce the first
Layer Computation as Type.

3.1 Computation as Type
The foundation of our model is the concept of Computation as Type,
which posits computation units as first-class entities encapsulated
by a Compute interface. This interface is defined as a function ac-
cepting a value of type T and performing operations, potentially
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with side effects. This foundational abstraction underpins the archi-
tecture for creating pipeline stages, enabling data processing that
is both type-safe and modular.

3.2 Higher-order Traversal Abstraction
The second layer, Higher-order Traversal Abstraction is the compo-
nent designed to oversee data access and processing in an abstract
manner. It outlines the methods for navigating through different
data sources, thereby enabling versatile and effective data manipu-
lation. In this section, we explore the fundamental elements of this
abstraction, detailing their organizational framework and how they
interact.

3.2.1 Structural Composition and Behavioral Interaction.

Higher-order Traversal Primitives: At the core of our Traversal
Abstraction are the higher-order traversal primitives, which are
instrumental in defining the manner in which data is accessed and
iterated over. These primitives are characterized by their ability to
abstract away the specifics of data sources and access mechanisms,
providing a unified interface for data traversal. Key characteristics
include:

• Sequential Access: An abstraction layer that decouples the tra-
versal mechanism from the data source’s physical represen-
tation while allowing for sequential access to data, enabling
iteration over data sources like containers, IO channels, or
generator functions.

• Computation Integration: An important feature is the inte-
gration with first-order computation units, allowing tra-
versed values to be processed in a seamless and flexible
manner. This is achieved through second-order functions
that pass each traversed value to a specified computation
unit (Compute<T>).

• Traversal Strategies:
– Single-step Traversal (TryNext): Processes data one item
at a time, affording precise control over the iteration and
enabling fine-grained data manipulation.

– Bulk Traversal (ForNext): Optimizes data processing by
handling batches of data, streamlining the traversal pro-
cess and improving efficiency.

– Continuation-controlled Bulk Traversal (WhileNext): Intro-
duces a continuation-passing style for bulk processing,
offering dynamic control over the traversal logic based on
runtime conditions. This strategy is particularly notable
for its use of the Continuation interface, which provides
a mechanism for halting or altering the course of compu-
tation in response to specific criteria.

Traverser Abstraction in a nutshell:

• Computation Carrier : The Traverser emerges as the central
figure in this abstraction, acting as the carrier for the com-
putation across data sets. It encapsulates the higher-order
traversal primitives, serving as the execution context for
data processing operations.

• Unified Control Flow Patterns: By housing different traver-
sal strategies within a coherent framework, the Traverser
harmonizes flexibility with control. It offers a spectrum of

control flow patterns, from granular, step-by-step data pro-
cessing to more coarse-grained, bulk handling techniques.

• Seamless Interaction and Modularity: The delineation of tra-
versal strategies into distinct components not only clari-
fies the traversal abstraction but also enhances the system’s
modularity. This separation allows for the extension and cus-
tomization of traversal behaviors to accommodate specific
processing requirements, fostering reusability and adaptabil-
ity.

• Foundation for Advanced Data Processing: The integration
of traversal primitives within a unified Traverser environ-
ment provides a robust foundation for implementing so-
phisticated data processing strategies. This design carefully
balances the need for complex control flowmechanisms with
the desire for a clear, modular architectural structure.

By abstracting the intricacies of data traversal and offering a
suite of customizable traversal strategies, the Traverser layer stands
as a cornerstone of the proposed computation model. It exemplifies
the framework’s capacity to facilitate advanced data manipulation
techniques.

3.3 Directed Data-Transfer Protocol
We introduce a refined conceptual model for pipeline-oriented
computation, anchored by the Directed Value-Transfer Protocol.
This model emphasizes the seamless management and transfer of
data across computational stages, aligning with the principles of
functional programming and type-centric design philosophies. Our
model is distinguished by its lifecycle-aware architecture and the
explicit delineation of data producer and consumer roles, facilitating
a structured yet flexible approach to constructing computation
pipelines.

3.3.1 Architectural Foundations. At the heart of our model lies the
Compute<T> interface, a fundamental abstraction representing a
unit of computation. It encapsulates the notion that computations
are first-class entities, capable of accepting input and executing
operations in a type-safe manner. Building upon this, our design
introduces a hierarchical structure aimed at enhancing data transfer
efficiency and lifecycle management:

• Lifecycle Integration: The Transfer.Lifecycle interface in-
troduces a dual-phase lifecycle management protocol with
open() and close() methods. This protocol ensures the
acquisition and release of resources are handled gracefully,
enhancing the robustness of the computation chain.

• Role-Specific Abstractions: Our model defines two important
interfaces, Transfer.Port<T> and Transfer.Pipe<T>, to
represent the roles of data producers and consumers, re-
spectively. This distinction not only clarifies the data flow
directionality, but also enriches the model with the capability
to handle complex data processing scenarios.

3.3.2 Operational Dynamics. TheDirected Value-Transfer Protocol
underpins an interaction framework:

• Managed Data Flow: The explicit lifecycle management em-
bedded within the data transfer interfaces ensures that each
stage of the computation pipeline is initialized and termi-
nated appropriately, promoting efficient resource utilization.
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• Directed Transfer Mechanism: By segregating data transfer
roles into Port and Pipe, our model ensures a clear and effi-
cient directionality of data flow. This segregation allows for
the optimization of data transmission mechanisms, catering
to both synchronous and asynchronous processing needs.

• Flexible Computation Chains: The extension of Pipe<T> to
potentially act as both consumer and producer underscores
the model’s versatility. It supports the construction of in-
tricate multi-stage processing pipelines, enabling data to
be transformed progressively through successive computa-
tional units.

3.3.3 Computational Chain Composition. A key feature of our
model is the LazyChain<I,O> interface, which symbolizes the essence
of pipeline-oriented computation through the contravariant compo-
sition of computation units. This interface facilitates the dynamic
assembly of computational stages, allowing for the efficient trans-
formation and transfer of data across the pipeline:

• Enhanced Modularity: The LazyChain interface exemplifies
the model’s commitment to modular and reusable design
principles. It allows for the flexible chaining of computational
units, ensuring that complex data processing tasks can be
decomposed into manageable, composable segments.

The Directed Value-Transfer Protocol, as conceptualized in our
pipeline-oriented computation model, represents a sophisticated
framework for data processing. It marries the principles of lifecycle
management, type safety, and functional programming to offer a ro-
bust and flexible solution for constructing complex computational
pipelines. Through this model, we aim to provide a scalable and
efficient framework for addressing the diverse challenges of mod-
ern data processing tasks, reaffirming the potential of functional
patterns in the realm of object-oriented programming languages
like Java.

3.4 Operator Model
The Operator Model represents the quintessential fifth layer within
our innovative pipeline-oriented computational framework, metic-
ulously crafted to underpin the construction and orchestration of
data processing pipelines. This model introduces a sophisticated
suite of computational constructs, pivotal for the lifecycle man-
agement of operators and the nuanced handling of their states,
thereby facilitating a broad spectrum of data processing operations.
Herein, we integrate and refine the abstract conceptualization of the
Operator Model, emphasizing its core constructs, their structural
interplay, and the pivotal role of terminal operators in concluding
data processing tasks.

3.4.1 Core Constructs and Structural Composition.

Operator Protocol. The Operator<T> abstraction stands as the
cornerstone of the Operator Model, extending Transfer.Lifecycle to
underscore its essential role in managing the lifecycle and state of
operations within pipelines. This interface is instrumental for:

• State Management: It allows for the encapsulation of stateful
computations, enabling operators to maintain and manipu-
late local state through the localState() method.

Transducer. The Transducer<I, O> abstraction, serving as the
backbone for intermediate operators, embodies the transforma-
tional logic necessary for processing and relaying data through
various stages of the pipeline. Its design is focused on:

• Transformation and Lazy Computation: Facilitating the lazy
transformation of data, thus acting as a critical bridge in the
data flow across the pipeline.

Materializer. The Materializer<T> abstraction plays a crucial
role in state materialization, especially in managing the transition
of data states within pipelines through chunked buffers, enhancing
the efficiency and organization of data processing workflows.

Terminal Operators. Terminal operators, categorized into Com-
plete Terminal Operators and Partial Terminal Operators, mark the
culmination of the pipeline’s data processing journey. They are
distinguished by their evaluation strategies:

• Complete Terminal Operators process the entirety of input
data, embodying exhaustive data analysis or transformation.

• Partial Terminal Operators facilitate early termination of pro-
cessing based on specific conditions, optimizing performance
through lazy evaluation and early termination strategies.

3.4.2 Interaction Dynamics and Evaluation Strategies.

• Lifecycle and StateManagement: The OperatorModel ensures
meticulous lifecycle management across all operator types,
harmonizing state management and data transformation
processes. This integration is vital for the seamless flow and
transformation of data across the pipeline.

• Flexible Terminal Evaluation: The differentiation in termi-
nal operator strategies enhances the model’s adaptability,
allowing for both exhaustive data processing and efficient,
condition-based evaluations. This flexibility ensures opti-
mal performance and resource utilization, catering to a wide
range of computational requirements.

The Operator Model emerges as a comprehensive and modular
framework for pipeline construction, characterized by its advanced
management of operator lifecycle, state, and terminal evaluation
strategies. Through its well-structured abstractions—from trans-
ducers and materializers to the nuanced categorization of terminal
operators—it lays a versatile and extensible foundation for domain-
specific data processing operations. This model not only encapsu-
lates the core principles of pipeline-oriented computation but also
fosters adaptability and efficiency, ensuring its applicability across
diverse data processing scenarios.

3.5 Pipeline Abstraction
The Pipeline abstraction is a pivotal construct within the novel
pipeline-oriented computational model, representing the overar-
ching framework that orchestrates the structured and stateful pro-
cessing of data. This abstraction serves as a high-level blueprint
for defining data processing flows, encapsulating the complexities
of data transformation and transmission. The design principles
underlying the Pipeline model prioritize modularity, flexibility,
and clarity in constructing computational logic, thereby offering
a robust platform for implementing sophisticated data processing
mechanisms.
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3.5.1 Overview of Pipeline Components.

• Stage: A Stagewithin the pipeline signifies a discrete pro-
cessing unit, tasked with receiving input values, applying
a specified operation, and producing output for the subse-
quent stage. It embodies the core functional element of the
pipeline, enabling the definition and execution of transfor-
mation operations in a type-safe manner.

• State: The State component encapsulates stateful logic for
data materialization, transforming or accumulating data as it
traverses the pipeline. This aspect of the pipeline architecture
facilitates the implementation of complex data processing se-
mantics, allowing for the dynamic evolution of computation
based on the flow of data.

• Sink: Serving as the terminal point of the pipeline, the Sink
is responsible for consuming all processed data to produce
a final outcome or effectuate a side operation. It marks the
culmination of the pipeline’s computational process, transi-
tioning the abstract pipeline description into an actionable
computation through the evaluation operator.

3.5.2 Structural Composition. The pipeline is conceptually struc-
tured as a series of computation steps, organized as LazyChain
instances and interconnected via Transfer.Pipe objects. These
steps converge at an Operator.Terminal, where the computed
data is either transformed into a result or utilized to perform a side
effect. The recursive type parameterization of the Pipeline inter-
face ensures type safety across the processing stages, facilitating
the seamless chaining of operations.

3.5.3 Interaction and Evaluation Strategies. The pipeline model
embraces the principle of "laziness," deferring computations until
absolutely necessary. This design choice enables the efficient as-
sembly of an execution plan that outlines the data transformation
process, from the source through to the sink. The plan encapsu-
lates the requisite parameters for executing computations at each
stage, culminating in a pipeline sink where the evaluation operator
resides.

The evaluation operator, embodied by the Evaluator, allows for
the implementation of various evaluation strategies:

• Eager Evaluation: Immediate execution of computations upon
their invocation.

• Lazy Evaluation: Deferral of computations until required,
encapsulated within a ’thunk’ to capture the deferred com-
putation.

• Memoized Evaluation: Computations are performed upon
first access, with results cached for future reference.

This flexible evaluation framework, referred to as the ’Flow-
Machine’, grants granular control over the computation flow, en-
hancing resource utilization and potentially improving execution
speed and memory efficiency depending on the use case scenario.

The Pipeline abstraction forms the crux of a sophisticated com-
putational model designed to facilitate the structured and stateful
processing of data. Through its modular composition, the pipeline
model enables the construction of complex data processing flows
with ease, offering a comprehensive framework for the implemen-
tation of diverse computational logic. This abstraction not only
simplifies the development of data processing applications but also

enriches the computational model with a flexible and powerful
mechanism for data transformation and evaluation.

4 IMPLEMENTATION OF COMPUTATIONAL
MODELS FOR GRAPH PROCESSING IN
GRAPHMA

In this section we propose approaches on how to embed graph
computation models into the higher-order pipeline model.

4.1 Vertex-Centric Embedding
Embedding the Vertex-Centric Computation Model (TLAV) into the
higher-order pipeline model could leverage the strengths of both
models to efficiently process graph-based data.

Below we give a concise overview of how this integration is
currently structured and operates.

4.1.1 Structural Composition.

(1) Compute<T>for Vertex Operations: Vertices are encap-
sulated as Compute<Vertex> instances, where each vertex
acts as an independent computational unit with its own state.
This aligns with the Computation as Type principle, allowing
vertices to process data and messages in a type-safe manner.

(2) Traversal as Message Passing: The Higher-order Traver-
sal Abstraction is adapted to facilitate message passing be-
tween vertices. Each vertex employs traversal primitives to
send and receive messages, abstracting the communication
mechanism and ensuring flexibility in message dissemina-
tion strategies.

(3) Directed Data-Transfer for Supersteps: The Directed
Data-Transfer Protocol orchestrates the execution of super-
steps. A Transfer.Pipe<Message> interface manages the
asynchronous delivery of messages between supersteps, en-
suring that messages sent in one superstep are correctly
queued for processing in the next.

(4) Operator Model for Vertex Execution Logic: The Op-
erator Model is extended to define vertex execution logic
within supersteps. Operator<Vertex> interfaces manage
state transitions and message processing, supporting the
iterative nature of vertex-centric computations.

(5) Pipeline Abstraction for Graph Processing Flows: The
entire graph processing logic is encapsulated within a
Pipeline<Graph> abstraction, orchestrating the flow of com-
putation across supersteps. This pipeline integrates stages
for message passing, vertex state updates, and global con-
vergence checks.

4.1.2 Behavioral Interaction.

(1) Iterative Pipeline Stages: Each superstep is represented
as a stage in the pipeline, with vertices operating in parallel
to process incoming messages and update their states. The
pipeline dynamically adapts to the iterative nature of the
vertex-centric model, allowing for repeated execution of
stages until a global stopping condition is met.

(2) DynamicMessageRouting: The pipeline utilizes theHigher-
order Traversal Abstraction to dynamically route messages
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between vertices. This enables efficient scatter-gather opera-
tions, optimizing the distribution and collection of messages
across the graph.

(3) Stateful Computation and Lifecycle Management: The
Directed Data-Transfer Protocol and Operator Model jointly
manage the lifecycle of vertex computations. They ensure
that vertex states are correctly initialized, updated, and final-
ized across supersteps, maintaining consistency and robust-
ness in the computation.

(4) Flexible Evaluation Strategies: The Pipeline Abstraction
supports flexible evaluation strategies for vertex-centric com-
putations, allowing for both eager and lazy execution of
supersteps. This flexibility aids in optimizing performance
based on the specific characteristics of the graph and the
computational workload.

(5) Adaptation to Vertex-Centric Variations: The pipeline
model’s modular design allows for easy adaptation to dif-
ferent vertex-centric variations (bulk synchronous parallel,
asynchronous, edge-centric, mixed-mode). Specific compo-
nents of the pipeline (e.g., message routing, state manage-
ment) can be customized to reflect the desired computational
semantics and performance characteristics.

4.1.3 Summary. By integrating the Vertex-Centric Computation
Model within the higher-order pipeline model, this approach pro-
vides a structured yet flexible platform for graph processing.

It combines the modularity, type safety, and functional program-
ming strengths of the pipeline-oriented model with the intuitive,
scalable, and vertex-focused computation of the vertex-centric
model.

This integration not only enhances the expressiveness and ef-
ficiency of graph processing tasks but also leverages the parallel
execution capabilities inherent in distributed computing environ-
ments.

4.2 Edge-Centric Embedding
Embedding the Edge-Centric Computation Model (TLAE) into the
higher-order pipeline model involves focusing on the relationships
and interactions between vertices, with edges acting as the primary
conduits of computation and communication.

Below we give a concise overview of how such an integration
could be structured and operate.

4.2.1 Structural Composition.

(1) Compute<Edge>for Edge Operations: Edges are repre-
sented as Compute<Edge> instances, where each edge acts as
an independent computational unit capable of accessing and
modifying the data of its connected vertices as well as its own
properties. This encapsulation aligns with the Computation
as Type principle, facilitating type-safe edge operations.

(2) Directed Data-Transfer for Edge-Vertex Communica-
tion: A Transfer.Pipe<Message> interface is utilized for
edge-to-vertex message passing, managing the asynchro-
nous exchange of messages. This supports direct communi-
cation between edges and vertices, allowing edges to send
messages that influence vertex state and behavior.

(3) Operator Model for Edge Execution Logic: The Operator
Model is adapted to define the logic of edge computations
within supersteps. Operator<Edge> interfaces handle the
processing tasks of edges, including state transitions based
on both edge properties and received vertex messages.

(4) Pipeline Abstraction for Edge-Centric Flows: The graph
processing logic, focusing on edge interactions, is encapsu-
lated within a Pipeline<Edge> abstraction. This pipeline
manages the stages of edge computation, message passing,
and the integration of edge-induced vertex updates.

4.2.2 Behavioral Interaction.

(1) Iterative Pipeline Stages for Edges: Supersteps are repre-
sented as stages in the pipeline, with edges performing com-
putation and message passing in parallel. This approach fa-
cilitates the autonomous operation of edges, allowing for the
iterative processing of edge and vertex interactions across
supersteps.

(2) Dynamic Edge-to-Vertex Message Routing: Utilizing the
Directed Data-Transfer Protocol, the pipeline dynamically
routes messages from edges to their connected vertices. This
mechanism is crucial for enabling edges to influence vertex
state and initiate vertex-level computations based on edge-
centric logic.

(3) Stateful Edge Computation and Lifecycle Management:
The integration of the Operator Model with the Directed
Data-Transfer Protocol ensures that edge states are cor-
rectly managed throughout the computation lifecycle. This
includes initialization, state updates based on incoming mes-
sages, and finalization, maintaining robustness and consis-
tency in edge-centric computations.

(4) Flexible Evaluation Strategies for Edge-Centric Oper-
ations: The Pipeline Abstraction supports both eager and
lazy execution strategies for edge-centric computations. This
flexibility allows for performance optimization based on the
graph’s characteristics and the computational workload, en-
hancing the efficiency of edge-centric processing.

(5) Adaptation to Edge-Centric Variations: The modular de-
sign of the model facilitates easy adaptation to different edge-
centric variations (pure edge-centric, vertex-augmented, hy-
brid). Specific pipeline components (e.g., message routing,
edge computation logic) can be tailored to reflect the compu-
tational semantics and performance characteristics desired
for each variation.

4.2.3 Summary. By embedding the Edge-Centric Computation
Model within the higher-order pipeline model, this approach offers
a structured platform for focusing on edge-based interactions and
data flows in graph processing.

It leverages the modularity, type safety, and functional program-
ming benefits of the pipeline-oriented model, along with the di-
rect communication and computation capabilities inherent in edge-
centric approaches.

This integration not only provides a powerful tool for address-
ing problems where edge relationships are paramount but also
enhances the flexibility and performance of graph processing tasks
in distributed computing environments.
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4.3 Sub-Graph-Centric Embedding
Embedding the Sub-Graph-Centric Computation Model (TLAG)
into the pipeline-oriented computation model focuses on leverag-
ing cohesive groups within the graph structure, enhancing com-
putational efficiency and expressiveness. This integration aims to
exploit the locality and reduce communication needs by treating
subgraphs as primary computational units.

Below we explain how such an integration could be structured
and operate.

4.3.1 Structural Composition.

(1) Compute<SubGraph>for SubgraphOperations: Subgraphs
are encapsulated as Compute<SubGraph> instances, treating
each subgraph as an independent computational unit. This
approach aligns with the Computation as Type principle,
facilitating type-safe operations on subgraph data, including
both its internal structure and interconnections.

(2) Directed Data-Transfer for Subgraph Communication:
Utilizing the Transfer.Pipe<Message> interface, themodel
manages asynchronous message passing between subgraphs.
This enables subgraphs to communicate, exchanging infor-
mation and updates in a manner that respects the locality of
data and computations.

(3) Operator Model for Subgraph Execution Logic: The Op-
erator Model adapts to define subgraph-level computations.
Operator<SubGraph> interfaces are responsible for execut-
ing computations that consider the subgraph’s entire struc-
tural and relational context, supporting iterative execution
patterns for dynamic state updates.

(4) Pipeline Abstraction for Subgraph-Centric Processing:
The graph processing logic, centered around subgraph com-
putations, is encapsulated within a Pipeline<SubGraph>
abstraction. This pipeline coordinates the stages of subgraph
computation, communication, and integration of updates
across the larger graph structure.

4.3.2 Behavioral Interaction.

(1) Iterative Pipeline Stages for Subgraphs: Each pipeline
stage corresponds to a superstep in the subgraph-centric
computation, allowing subgraphs to process information
and interact in parallel. This iterative approach facilitates
the dynamic exchange of information and updates across
subgraphs, maintaining the model’s emphasis on locality
and reduced communication overhead.

(2) Dynamic Subgraph-to-Subgraph Communication: The
pipeline uses the Directed Data-Transfer Protocol to enable
efficient and localized message passing between subgraphs.
This setup is crucial for maintaining data locality and reduc-
ing communication overhead, particularly for algorithms
that benefit from intensive local interactions.

(3) Stateful Subgraph Computation and Lifecycle Manage-
ment: Integrating the Operator Model with the Directed
Data-Transfer Protocol ensures that subgraph computations
are managed effectively throughout their lifecycle. This in-
cludes initialization, iterative processing based on structural
and relational context, and finalization, ensuring consistency
and robustness in subgraph-centric computations.

(4) Flexible Evaluation Strategies for Subgraph-Centric
Operations: The Pipeline Abstraction supports various eval-
uation strategies, including eager and lazy execution, tailored
to the computational needs of subgraph-centric processing.
This flexibility allows for optimization of performance based
on the graph’s structure and the computational workload,
enhancing the efficiency of processing within and across
subgraphs.

(5) Adaptation to Subgraph-Centric Variations: Themodel’s
modular design facilitates easy adaptation to different sub-
graph-centric variations (TLAG, graph-centric, neighbour-
hood-centric, hybrid). Specific pipeline components can be
customized to reflect the computational semantics and per-
formance characteristics desired for each variation, ensuring
that the approach is tailored to the specific requirements of
the problem at hand.

4.3.3 Summary. By embedding the Sub-Graph-Centric Computa-
tion Model within the higher-order pipeline model, this approach
offers a structured yet flexible platform for focusing on computa-
tions within cohesive subgraph units.

It leverages the strengths of the pipeline-oriented model – mod-
ularity, type safety, and functional programming benefits – along
with the enhanced locality, reduced communication needs, and
expressiveness of the subgraph-centric approach.

This integration not only provides a powerful mechanism for
addressing graph processing challenges that benefit from subgraph-
level focus but also enriches the computational model with ad-
vanced capabilities for handling complex patterns and relationships
in large-scale graph data.

5 CONCLUSION
In this paper, we introduced GraphMa, a collection of ideas and
preliminary implementations extending the ideas around general
pipeline-oriented computation towards graph processing. We ar-
gued that GraphMa’s architecture, which merges pipeline com-
putation principles with graph processing techniques, provides a
structured method for constructing and executing graph algorithms.
Through the introduction of computational abstractions such as
computation as type, higher-order traversal abstraction, and di-
rected data-transfer protocol, GraphMa enables the decomposition
of complex graph operations into modular, composable functions.

Furthermore, we have qualitatively explored the potential inte-
gration of well-established computational models for graph pro-
cessing within the GraphMa framework. This exploration has high-
lighted the framework’s inherent flexibility and the theoretical
effectiveness of such an integration. By detailing how these com-
putational models could align with GraphMa’s pipeline-oriented
architecture, we have shed light on the framework’s potential to
facilitate and enhance the development and execution of graph
processing tasks.

Looking ahead, we anticipate that GraphMa will serve as a valu-
able tool for researchers and practitioners in the field of graph
processing, offering a scalable and modular approach to algorithm
development. Future work will involve extending GraphMa’s capa-
bilities, exploring its application to a broader range of graph pro-
cessing scenarios, and evaluating its performance in comparison
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to existing frameworks. Our goal is to continue refining GraphMa,
ensuring that it remains a robust and adaptable framework capable
of addressing the evolving challenges in graph processing.
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