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ABSTRACT
Extreme conditions and the integrity of LiDAR sensors influence
AI perception models in autonomous vehicles. Lens contamination
caused by external particles can compromise LiDAR object detec-
tion performance. Automatic contaminant detection is important to
improve reliability of sensor information propagated to the user or
to object detection algorithms. However, dynamic conditions such
as variations in location, distance, and types of objects around the
autonomous vehicle make robust and fast contaminant detection
significantly challenging.

We propose a method for contaminant detection using voxel-
based graph transformation to address the challenge of sparse Li-
DAR data. This method considers LiDAR points as graph nodes and
employs a graph attention layer to enhance the accuracy of con-
taminant detection. Additionally, we introduce cross-environment
training and testing on real-world contaminant LiDAR data to en-
sure high generalization across different environments. Compared
with the current state-of-the-art approaches in contaminant detec-
tion, our proposed method significantly improves the performance
by asmuch as 0.1575 in F1-score. Consistently achieving F1 scores of
0.936, 0.902, and 0.920 across various testing scenarios, our method
demonstrates robustness and adaptability. Requiring 128 millisec-
onds on a AMD EPYC 74F3 CPU for the end-to-end process, our
method is well-suited for an early warning system, outperforming
human reaction times, which require at least 390 milliseconds to
detect hazards. This significantly contributes to enhancing safety
and reliability in the operations of autonomous vehicles.
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1 INTRODUCTION
The LiDAR becomes one of the main sensors for the perception
model in autonomous vehicles. LiDAR point clouds provide 3D
information about the surrounding environment, offering an in-
depth picture of the objects around it [12, 16]. Perception models
such as object detection, object recognition, scene reconstruction,
motion estimation, and path planning are essential. The integrity
of LiDAR data influences the performance of perception models in
autonomous vehicles. Failure of integrity can result in catastrophic
errors or failures.

LiDAR data integrity is essential in edge case conditions, such
as sensor cover contamination. While the sensor may be in good
condition, its perception can be limited by unexpected situations
affecting its surface or cover. Beyond severe weather conditions,
the sensor cover’s cleanliness can significantly limit perception
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capabilities. This limitation is evidenced by a decreased object de-
tection accuracy, as highlighted in a recent benchmark study [5].
This benchmark found that weather-related contamination, includ-
ing rain, snow, and fog, reduces object detection performance. For
instance, the PV-RCNN method achieved an Average Precision (AP)
of 84.39 under clean conditions, which dropped to 51.35 with rain-
affected data. That study assessed the impact of adverse weather
conditions leading to particle accumulation on the sensor cover.
In the same survey, using synthetic corruption data (Gaussian,
uniform, and impulse noise only), object detection performance
decreased by up to 20% of AP. On the other hand, sensor cover
contamination can also result from external factors, such as water,
dust, oil, mud, and other external sources.

The impact of these contaminants on the LiDAR lens represents
a major threat to sensor data integrity. This emphasizes the need
for a contaminant detection technique as an early warning before
executing object detection. Contaminant detection is also crucial
for triggering automatic cleaning procedures if contaminants are
present. Perception anomalies remain a hot topic nowadays, as
summarized in a survey of several techniques for anomaly detection
[2]. However, research in contaminant detection still needs to be
improved due to the challenge of scarcity of real-world LiDAR-
contaminated datasets [14].

A key attribute of LiDAR point clouds is the intensity of each
point, which reflects the return strength of a laser beam after strik-
ing an object. Different materials reflect varying intensities and
an object’s distance can diminish this intensity [1]. Typically, the
longer the distance from the sensor to the object, the lower the ob-
ject’s intensity. Thus, detecting contaminants becomes challenging
when relying solely on intensity values in dense or sparse point
clouds, as contaminant presence can be confusedwith large distance
points. Thus, a distance and environment-invariant contaminant
detection model is highly needed for real-world environments.

In this paper, we employ graph representation for contaminant
detection with the following contributions: i) We are the first to
tackle LiDAR contaminant detection using graph representation
by comparing different approaches. ii) We improve state-of-the-art
approaches in terms of accuracy and tested in various contaminant
types from various environmental settings. In particular, detecting
contamination is challenging due to LiDAR sparsity. LiDAR point
clouds at longer distances are more sparse than closer ones. To
tackle this sparsity, we propose a voxel-based graph transformation
to deal with contaminated LiDAR point clouds.

Specifically, we employ a Graph Neural Networks (GNNs)-based
method that treats LiDAR points as connected nodes in a graph.
GNNs are specialized neural networks designed for graph-structured
data, wherein nodes represent entities and edges represent relation-
ships. They excel in capturing spatial information by aggregating
data from neighboring nodes, enhancing their understanding of
relationships and dependencies within the graph. In a LiDAR point
cloud, where an object is present, the points would be denser and
contain more information than in a no-object area. This leads us
to employ graph attention networks. Additionally, we deal with
large regions of the environment and high-resolution LiDAR, which
generates a large number of points. Processing all points as nodes
in the graph increases computation time, so representing some

points as a single node helps reduce the number of nodes. This ap-
proach can be defined as point voxelization. Finally, we introduce a
graph representation of voxel point clouds using graph attention
networks (voxel-GAT) for contaminant detection on autonomous
vehicles, namely AutoGrAN.

The proposed method efficiently represents sparse LiDAR data
and outperforms the state-of-the-art approach regarding classifi-
cation performance and computational efficiency. We utilize three
datasets, namely "5m," "10m," and "20m," to reflect variations in loca-
tion, distance, surrounding objects, and contaminant sources. Our
approach employs a cross-data validation scheme, creating three
models based on each dataset and testing them using a different
dataset. Compared to the 3D CNN-based detection method, our
proposed method improves the F1-score from 0.778, 0.850, and 0.840
to 0.936, 0.902, and 0.920, respectively, across six possible train-test
dataset scenarios.

In terms of computational performance, our proposed method
achieves competitive end-to-end processing times, from graph con-
struction until obtaining contaminant results, all within an average
of 128 milliseconds per point cloud frame running on CPU AMD
EPYC 74F3, single core CPU clock speed 3.2G. This efficiency es-
tablishes the proposed method as a promising candidate for an
early warning system in autonomous vehicle downstream tasks. As
indicated in [10] and [22], the system has to complete the end-to-
end processing within a latency of around 100 milliseconds to be
effective. Additionally, considering human reaction times, which
range from 390 to 600 milliseconds for detecting incoming hazards
[13] [7], the proposed method’s computation times is a significant
advantage. It delivers promising results in contaminant detection
for LiDAR on autonomous vehicles, demonstrating high accuracy,
robustness, ease to train, and low computational overhead.

2 RELATEDWORKS
2.1 LiDAR processing for automotive

applications
The perception model is a crucial input for the decision-making
and planning of an autonomous vehicle. The research was carried
out to increase each perception model’s accuracy, robustness, and
generalization, e.g., in [9],[21]. To achieve this goal, the develop-
ment of the Autonomous vehicle model needs to pay attention to
various aspects ranging from research to development. In more
detail, an AI model’s development depends on the data, algorithm,
and deployment aspects.

In the paper byWang et.al [20], it is mentioned that accuracy and
robustness are important factors. High accuracy is certainly needed,
considering that automotive vehicles require correct decision-making
because they involve life-and-death situations. Errors in percep-
tion can cause decision-making errors, which can have fatal con-
sequences. Robustness concerns the AI model’s ability to perform
well in every situation, dynamic environment, dynamic location,
and object surrounding. We need to realize that there will be situ-
ations and scenarios of uncertainty in the real world. The sensor
properties also influence the AI model, especially the perception
model, which must be robust to all sensor conditions [3]. The per-
ception model must be robust when deployed and tested in different
environments, weather, and traffic situations [25].
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Apart from accuracy and robustness, the perception model needs
to consider ease of training. Autonomous vehicles must be usable
under all conditions, making data collection a significant challenge
in terms of both cost and time. The AI training process must be
feasible with limited data. We lack datasets for training in every
possible situation, including various adverse traffic conditions as
well as challenges posed by weather and sensor contamination [24].
Efforts have been made with data degraded by simulators. However,
simulating all scenarios, especially unusual ones (edge cases and
anomalies), proves difficult. Formal verification using mathematical
models can be applied to the created models, but scalability is
limited, especially for complex systems like autonomous vehicles.
Therefore, every AI model developed needs to undergo real-world
testing to validate performance and identify new scenarios that may
not have been previously considered. Real-world testing allows for
the validation of AI performance and the discovery of previously
unrecorded scenarios.

The last aspect to consider regarding AI models is low computa-
tional overhead. Autonomous vehicles require fast decision-making,
where the perception model serves as input for the reinforcement
learning agent in the autonomous vehicle’s decision-making pro-
cess. Therefore, it is crucial to maximize the speed of the subpro-
cesses [17] [23]. Finally, developing LiDAR processing methods
should be prioritized to meet the requirements of high accuracy,
robustness, ease of training, and low computational overhead.

2.2 LiDAR point cloud transformation for
contaminant detection

Driven by applications in autonomous driving, several LiDAR point
cloud processing approaches have been developed. These can be
categorized based on the type of data representation: 1D, 2D, 3D, and
graph. The 1D approach creates a representative vector from the
original 3D data, upon which classical machine learning techniques
for tabular data are applied.

In research aligned with contaminant classification, the use of
1D transformations was introduced by Heinzler et al., who aggre-
gated features from point clouds such as (𝑥,𝑦, 𝑧) for the cartesian
and (𝑟, 𝜃, 𝜑) for the spherical coordinates, echo number, intensity,
and echo pulse width. In their study, Heinzler et al. attempted to
classify weather conditions as clear, rainy, or foggy on LiDAR point
clouds, achieving the best accuracy of 97.14% using SVM and KNN
[6]. Similarly, the application of 1D transformation and KNN for
classifying rain, fog, and snow was proposed by Rivero et al. [19].
However, Rivero placed the LiDAR sensor in a static position. Fur-
thermore, both [19] and [6] did not address the classification of
sensor cover contamination.

Another approach involves 2D transformation, which constructs
a 2D depth and intensity image from the LiDAR point cloud. James
et al. initiated the classification of sensor cover contamination using
2D transformations [8]. They transformed a 2D image of LiDAR data
as input for a 2D CNN to classify contaminants like dirt, salt, and
frost. The 2DCNN achieved promising results, reaching an accuracy
of around 80% in classifying between clean and dirty conditions
using a front-view transformation of LiDAR data. However, the
data used in [8] was collected from a statically positioned sensor
without any objects in front of the acquisition sensor and with the

sensor cover fully contaminated. Therefore, it may not accurately
reflect real-world environmental conditions.

The 2D transformation inevitably reduces spatial information
from the original 3D point cloud. LiDAR processing that uses 3D
data directly often employs voxelization techniques. This technique
distributes the point cloud coordinates while preserving as much
spatial information as possible. The application of 3D voxelization
includes its use in PV-RCNN, which leverages 3D convolution as
a backbone for 3D object detection [4]. However, the proposal to
use 3D convolution for contaminant detection has not yet been
established. Nonetheless, we have considered 3D as one of our
baseline methods for contaminant detection.

The latest advancement in LiDAR processing methodologies
is the introduction of graph processing networks, which aim to
represent sparse LiDAR sensor data as graphs. Graph convolutional
networks were then applied to this graph-represented data. Graph
convolutions can be significantly more efficient than 2D and 3D
convolutions on sparse tensors, as they avoid unnecessary iterations
over zero elements.

The use of graphs for point cloud analysis was initiated by Point-
GNN, which successfully employed a Graph Neural Network to
process point clouds for object detection [15]. However, Point-
GNN’s limitation lies in its inability to capture the global context of
the environment, especially in large settings. Subsequently, graph
attention mechanisms were developed for object detection from
raw LiDAR data [18]. Recent research has utilized Graph Attention
Networks for 3D object detection [11]. These methods have inspired
the use of voxels and attention in graph classification. A simple and
highly accurate network is needed for contaminant detection. To
the best of our knowledge, no study has leveraged a graph-based
approach for contaminant classification research.

3 METHODOLOGY
This paper proposes point cloud contaminant detection as a graph
classification problem. Due to the lack of a dedicated dataset for this
task, we collected the LiDAR data ourselves, which includes varying
levels of location, distance, sparsity, and various types and levels of
contaminations (for details, refer to subsection 3.1). Recognizing the
sparsity of the data in our dataset, we decided to use graph attention
networks (GATs), which utilize the attention mechanism to handle
data sparsity effectively. A LiDAR point cloud comprises up to 2
million points; if a single node represents a single point, it causes
high computational costs. To address this challenge, we propose
voxelization, which involves dividing the 3D space of point clouds
occupied by some points into small cubic volumes called voxels so
that a single node will represent several points. This reduction in
the number of nodes significantly reduces computational time. We
then create the graph structure from the voxelized data (detailed
in subsection 3.2) to be passed into the GAT network (described in
subsection 3.3). The network outputs a single global representation
of each input voxel graph as a binary classifier, aiming to detect
contaminant presence or absence.

3.1 Cover Contamination LiDAR Dataset
The point cloud data were captured using a test-bed car equipped
with a LiDAR sensor, specifically the RS-Ruby from Robosense,
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Figure 1: Applying contaminant on LiDAR cover: (1) clean,(2)
clean-cover, (3) tap water, (4) dust, (5) mud drop, (6) mud
uniform, (7) salt water, (8) lubricant oil.

rated at level L4+ or considered High Driving Automation. The
LiDAR sensor has specifications of 128 signal beams, maximum 250
meters range, Horizontal resolution 0.2𝑜 , minimum 0.1𝑜 Vertical
Angular Resolution, Horizontal FoV 360𝑜 , Vertical FoV 40𝑜 , 10 Hz
frame rate.

This contaminant detection model differentiates between two
classes: clean and contaminated. The clean class includes two con-
ditions: (1) the sensor is free from contaminants, and (2) the sensor
is covered with a clean-transparent plastic cover. The contaminated
class covers various types of contamination, including water, dry
and wet mud, dust, salt water, and engine lubricant/oil on top of
clean-transparent plastic cover. The application of contaminants is
shown in Figure 1. Each type of contaminant is applied separately
in different experiments. Each contamination has low, middle, and
high levels, corresponding to varying amounts of spray used when
applying the contaminant to the sensor cover. For example, ’low’
corresponds to one spray application, ’mid’ to three, and ’high’ to
five. This approach aims to reflect the diverse characteristics of real-
world contaminants. To simulate objects encountered on the road,
we covered several objects, such as cars, pedestrians, motorbikes,
whiteboards, and aluminum foil.

To evaluate high generalization capabilities with high accuracy
and robustness, this research utilizes three distinct datasets rep-
resenting varied environmental settings: the 5𝑚, 10𝑚, and 20𝑚
datasets. The 5𝑚 collected dataset is of a passage to an underground
parking lot, where the hallway is below ground level and is con-
fined by walls on both sides. In this dataset, the LiDAR is positioned
with the car object around 5 meters ahead, surrounded by other
objects. The 10𝑚 and 20𝑚 datasets have data collected in the exact
location. The location is an outdoor parking lot with wider spatial
dimensions compared to the 5𝑚 data. In the 10𝑚 dataset, the target
object is positioned around 10 meters from the LiDAR, while in the
20𝑚 dataset, the target object is placed at around 20 meters. Figure
2 depicts our data acquisition setup.

We select a specific area in front of the LiDAR sensor to en-
sure the effect of contamination. This area encompasses all three

Figure 2: Contaminated LiDARdata acquisition using testbed-
car, contaminated LiDAR, and surrounding object: (a1) data
5𝑚 in an underground narrow hallway, (a2) raw LiDAR ac-
quired in 5𝑚, (b1) Data 10𝑚 data outdoor parking area, (a2)
raw LiDAR acquired in 10𝑚.

dimensions for the training and testing datasets, with the LiDAR-
equipped car serving as the reference coordinate (Point 0,0,0). We
take the area of interest where target objects are placed in our envi-
ronment. So, along the x-axis, we choose a span of 80 meters from
the reference point (0 to 80 meters). For the y-axis, we select an
area of 15.5 meters (-5.5 to 10 meters in coordinate); for the z-axis,
we take all the return points. The same area of interest cropping
procedure is applied to all three datasets. The 5𝑚 dataset typically
yields around 140,000 points per point cloud, in contrast to the 10𝑚
and 20𝑚 datasets, which generally yield around 70,000 points per
point cloud. The higher point density in the 5𝑚 dataset is due to
the closer distance of the LiDAR to the target object, resulting in
denser point clouds.

3.2 Graph Construction
To construct graphs, we first apply voxelization to reduce the num-
ber of points to avoid computational overhead. Each point cloud is
converted into a three-dimensional voxel grid. The number of vox-
els differs for each point cloud depending on the original structure
or environment in real-world situations.

In voxelization, we employ the concept of average pooling to
maintain the primary feature representation of the point cloud,
which, in the case of LiDAR, is the point cloud structure and in-
tensity of each point. Each voxel computes and retains the average
intensity of the points it encapsulates, thus maintaining spatial
information of the original point cloud. Applying a 3D convolu-
tional layer directly on 3D voxels might make our predictions less
accurate because it processes every voxel, even the ones without
any points. To address this issue, we propose converting voxels
into graphs. In this graph representation, each node corresponds to
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a voxel containing points and the edges to connect voxels closest
to each other in three dimensions. This approach aims to enhance
prediction accuracy by focusing exclusively on voxels containing
relevant information and their immediate spatial relationships. The
edges for each graph are created in a three-step process, as follows:

(1) Point sorting: The initial step is the most important of the
whole process. We employ a QuickSort algorithm to sort
the points according to their coordinates in the three dimen-
sions 𝑋,𝑌, 𝑍 separately. For 𝑛, the number of points along
a dimension, the algorithm will have a O(𝑛 log𝑛) complex-
ity. Since we have it in three dimensions (𝑧,𝑦, 𝑧), the overall
complexity is O(𝑛 log𝑛).

(2) Edge construction: This process considers adjacent points
from the sorted lists in each dimension. Each point in every
dimension can have at most two adjacent points, except for
the first and last elements on the list. This results in approxi-
mately 2𝑛 edges for each dimension, totaling 6𝑛 across all
three dimensions. This process has a O(𝑛) complexity. The
list of edges is then saved in an edge index.

(3) Edge directionality: Contaminants primarily influence the
intensity of the reflected LiDAR beams and the structure of
objects rather than introducing directional effects. There-
fore, in our graph construction, edges play a crucial role in
capturing point distribution for each node according to its
neighbor but do not necessitate bi-directionality. Therefore,
the constructed graphs have un-directed edges. We utilize
the coalesce function from the pytorch-geometric library
to remove duplicate edges. In principle, this process would
require O(𝑘 log𝑘) where 𝑘 is the total number of edges be-
fore removing duplicates. In the worst case, 𝑘 can reach 6𝑘
for all three dimensions, so removing and looping a list of
edges can require O(𝑘) in the worst case. However, since
𝑘 depends on 𝑛, this complexity can also be considered as
part of O(𝑛 log𝑛) because our proposed construction graph
is dominated by sorting operations.

We create a 𝐷𝑎𝑡𝑎 pytorch-geometric library object representing
a graph object. We select all three coordinates and the beam’s
intensity as a feature vector for each instance of a voxel. The edges
we created earlier become the 𝑒𝑑𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 property of the 𝐷𝑎𝑡𝑎

object, which forms the adjacency matrix of nodes. The proposed
method will construct a graph with a different number of nodes
and edges according to the original input point cloud structure.

3.3 Graph Attention Networks
We construct a deep learning model that employs Graph Attention
Networks (GATs). In LiDAR data acquisition, areas with objects
often yield dense point clouds, resulting in sparsity within the well-
suited data for GATs. The GATs efficiently handle sparse data by
representing it as a graph, with each point as a node. Leveraging
attention mechanisms, they focus on relevant subsets of nodes,
adapting to the local structure of the graph. These features em-
power GATs to excel in classifying contamination within point
clouds generated by LiDAR, making them a powerful tool for our
task. Figure 3 outlines the proposed GATs model for contaminant
classification, followed by table 1, which details the number of pa-
rameters in the proposed model. The proposed architecture comes

from empirical experiments to get the minimum parameters with
the highest F1 score.

Figure 3: The Proposed LiDAR Contaminant Detection based
on Graph Attention Networks.

Table 1: The Proposed network for LiDAR Contaminant De-
tection.

conv1.att_src: 64
conv1.att_dst: 64
conv1.bias: 64
conv1.lin_src.weight: 256
conv2.att_src: 2
conv2.att_dst: 2
conv2.bias: 2
conv2.lin_src.weight: 128
Total Parameters: 582

The model uses two GAT layers (GATConv) to process node fea-
tures in the graph, generating an adaptive representation of each
node based on its local context. The first layer employs multi-head
attention mechanisms to enrich and diversify feature representa-
tions with four heads. Each node’s features pass through this first
GAT layer (conv1), followed by an ELU activation for non-linearity.
The second layer (conv2) reduces the output feature dimension to
one for each node. GAT’s attention mechanism assigns varying
weights to node neighbors, enhancing relationship capture. Since
our task is graph classification, we then pass the graph through
a (global mean pooling) aggregation function to get a representa-
tion of all the node features of the graph into a single value for
binary classification: clean or contaminated. The model’s output,
the Log_softmax applied to this value, yields a probability distri-
bution for clean and contaminated classes. Training employs the
Adam optimizer with 𝑙𝑟 = 0.005 and𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 = 5𝑒 − 4.

4 RESULTS
4.1 Setting Experiments
4.1.1 Dataset Preparation. The numbers of contaminated class in-
stances are 360, 328, and 364 for the 5𝑚, 10𝑚, and 20𝑚 datasets,
respectively. The contaminated class combines various contami-
nation sources explained in 3.1. While 360 instances represent the
clean class across all datasets, we consider the data balanced. Each
point cloud instance contains between around 70,000 and 140,000
points. Our proposed method transforms each point cloud instance
into a graph, resulting in node-edge pairs: (n)1361-(e)3879 for the
5𝑚 dataset, (n)2209-(e)6359 for the 10𝑚 dataset, and (n)2514-(e)7242
for the 20𝑚 dataset. Training and testing are conducted using: CPU
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AMD EPYC 74F3 24 core 48 threads, single core CPU clock speed
3.2G, single GPU NVIDIA GeForce RTX 3090 with 24265MiB, and
RAM 250G DDR4.

To demonstrate the robustness of the contaminant detection
method, we will conduct a cross-environment between training and
testing data. Thus, three models will be developed, each trained on
data from an environment, for example, 5𝑚, and then tested on data
from the other environments, 10𝑚 and 20𝑚, and vice versa. Utilizing
three different datasets captures the dynamic aspects of the point
cloud that are close to real-world conditions. This approach will also
highlight the model’s generalization and transferability capabilities.
Therefore, even with limited training data, the detection model can
perform effectively across different environmental settings.

4.1.2 Baseline Method. To demonstrate the complexity of contam-
inant detection in dynamic situations, we will compare classifica-
tion models ranging from manual feature engineering to the most
straightforward transformations in 1D and 3D. The point cloud is
transformed into 1D data by extracting information such as 𝑥,𝑦, 𝑧
coordinates, and intensity values, resulting in seven features: mini-
mum, maximum, mean, standard deviation, and percentiles at 25,
50, and 75. This process generates 28 1D features that represent
the statistical distribution of the point cloud. Subsequently, we
compare various machine learning algorithms, including Logistic
Regression, Multilayer Perceptron, Support Vector Machine, Naive
Bayes, k-Nearest Neighbors, Decision Tree, and Random Forest. Ad-
ditionally, we compare these methods to another baseline, namely
the 3D approach, which preserves the spatial information from the
point clouds. In the 3D approach, voxelization is performed, and
the model is constructed using a 3D Convolutional Neural Network
(3D CNN).

4.2 Contaminant Detection
The performance of contaminant detection is analyzed in terms
of F1-score, graph construction time, and inference time across all
possible scenarios. Table 2 evaluates the performance of various
machine learning algorithms in detecting contaminants, measured
by F1 scores, at three different data scales (5𝑚, 10𝑚, and 20𝑚).
The models compared include well-established classification tech-
niques such as Decision Tree, Logistic Regression, Naive Bayes, and
Support Vector Machine, as well as more modern approaches like
Multi-Layer Perceptron, K-Nearest Neighbors, 3D Convolutional
Neural Network, and the proposed method, namely Voxel-GAT.

From the data presented in Table 2, we observe that shallow
learning models, such as Decision Trees (DT), Logistic Regression
(Logit), and Naive Bayes (NB), are not able to perform adequately
in contaminant detection tasks, with their average F1 score being
below 80% across all tested data scales. This suggests that shallow
learning methods may lack the capacity to capture and model com-
plex relationships in three-dimensional spatial data, often involving
nonlinear interactions and patterns that are difficult to separate.
This limitation is likely because these models do not exploit the
spatial structure in the data and tend to have more superficial fea-
ture representations, resulting in lower performance in tasks that
require a deep contextual understanding. On the other hand, mod-
els such as 3D CNNs show improved performance compared to
traditional models, supporting the theory that three-dimensional

spatial data structures are inherently better suited to tasks with
spatial characteristics.

The proposed method, Voxel-GAT, stands out in this comparison
by demonstrating high F1 scores across all data scales, indicating its
effectiveness in detecting contaminants with high consistency. This
suggests that Voxel-GAT can capture complex spatial relationships
in the data, an essential aspect of tasks that detect patterns or
anomalies in three-dimensional spatial data. Voxel-GAT excels in
ensuring distance-environment invariance, which is critical for
explaining differences between the trained and tested data. As
previously described, the 10𝑚 data set is similar to the 20𝑚 data set,
whereas the 5𝑚 data set differs regarding the location and distance
of surrounding objects. The proposed model is more robust across
different scenarios, being trained on 5𝑚 and tested on 10𝑚 and
20𝑚 data, and vice versa. For the cross-train-test dataset, we have
six possible scenarios, which, scenarios 1,2,3,4,5 and 6. All of the
scenarios introduced are in table 2. Based on the table, scenarios
3 and 5 are trained on 10𝑚 or 20𝑚 and still performing well on
the 5𝑚 test data—a result not achieved by the baseline methods.
The consistently superior performance of Voxel-GAT across all
data scales confirms its adaptability and robustness in handling
variations in data size and complexity, making it a promising choice
for real-world contaminant detection applications.

The proposed method demonstrates outstanding performance,
as reflected in the confusion matrix shown in Figure 4. We examine
six Voxel-GAT confusion matrices for each scenario, corresponding
to the scenario numbers in Table 2. Based on the confusion matrix
displayed in Figure 4, it is evident that the Voxel-GAT model gener-
ally experiences a low number of False Negatives, with no instances
of False Positives, except in Scenario 4. In this scenario, where the
model was trained with 10𝑚 data and tested with 20𝑚 data, several
cases of False Positives were observed. A closer inspection of the
case data for each misclassification, detailed in Table 3, reveals that
errors occurred with data originating from various sources of con-
taminants, namely water, uniform mud, mud drop, dust, and salt.
Interestingly, misclassifications predominantly happen in cases of
low contamination, where the contamination level is the lowest.
An exception is observed with mud drops, where misclassifications
occur at low, mid, and high contamination levels. This phenome-
non is understandable, given that mud drops cover the sensor at
specific locations with a volume of contaminant that is insignificant
compared to the total sensor coverage.

The false positives identified in Scenarios 4 and 6 were attributed
to the clean cover, which was mistakenly classified as contamina-
tion. This issue is not particularly problematic due to the nature
of the cover installation. Contaminants were applied to the protec-
tive cover surrounding the LiDAR to safeguard the experimental
(and expensive) LiDAR hardware. This cover introduces noise into
the LiDAR image and sometimes acts as an anomaly/contaminant.
Notably, the contaminant classification approach consistently rec-
ognized clean LiDAR data (without the cover) as non-contaminated.
The instances involving the cover are the primary cause of false
positives in Scenarios 4 and 6.

However, the problem with the cover data does not invalidate
the robustness of the proposed contaminant detection model. If we
focus only on the critical anomalies of middle and high contamina-
tion, we still observe that we correctly classify most cases. As only
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Table 2: Evaluation result of all cross train and test data scenario for contaminant detection from baseline and the proposed
method Voxel-GAT. The number reported is F1-score.

No. Scenario Model Testing Data 1D DT 1D Logit 1D MLP 1D NB 1D RF 1D SVMrb 1D KNN 3D CNN Voxel-GAT
1 5𝑚 10𝑚 0.308 0.308 0.308 0.308 0.308 0.711 0.308 0.780 0.918
2 5𝑚 20𝑚 0.336 0.336 0.336 0.336 0.336 0.728 0.336 0.777 0.954

average F1 0.322 0.322 0.322 0.322 0.322 0.719 0.322 0.778 0.936
3 10𝑚 5𝑚 0.676 0.512 0.336 0.333 0.526 0.486 0.720 0.733 0.889
4 10𝑚 20𝑚 0.343 0.349 0.825 0.336 0.971 0.936 0.900 0.968 0.915

average F1 0.509 0.430 0.580 0.334 0.748 0.711 0.810 0.850 0.902
5 20𝑚 5𝑚 0.361 0.333 0.336 0.333 0.361 0.381 0.568 0.733 0.876
6 20𝑚 10𝑚 0.871 0.833 0.955 0.308 0.977 0.940 0.977 0.948 0.964

average F1 0.616 0.583 0.645 0.320 0.669 0.660 0.772 0.840 0.920

these examples cause real problems in both autonomous driving
applications and perception systems, they should be the focus of
the proposed work. In practical applications in production-ready
hardware, there would also be no problem with the cover and con-
tamination as the LiDAR will operate without any additional plastic
cover.

Figure 4: Confusion matrix of the proposed method in all
scenarios.

Regarding computational performance, Table 4 compares the
inference time of the baseline methods and the proposed method
when running on both CPU and GPU. The ’CPU’ column displays
the inference time on the CPU, while the ’GPU’ column shows the
inference time when the process is executed on the GPU. Although
the shallow machine learning methods are generally faster, their
F1-score performance is significantly lower than Voxel-GAT.

Table 3: Mis-classification cases of the proposed method
Voxel-GAT.

No.
Scenario

False
Positive

False
Negative

1 - water:low; mudUniform:low,mid;
dust:low; salt:low

2 - water:low; mudUniform:low

3 - water:low; mudDrop:low,mid,high;
dust:low; salt:low

4 cover water:low

5 - water:low; mudDrop:low,mid,high;
dust:low; salt:low

6 cover water:low; mudUniform:low; salt:low

Table 4: Inference time of baseline method and proposed
Voxel-GAT, running on CPU and GPU.

Method CPU (in second) GPU (in second)
DT 5.44E-07 x
Logit 1.20E-06 x
MLP 6.82E-06 x
NB 5.46E-07 x
RF 1.62E-06 x
SVMrb 1.44E-05 x
KNN 1.46E-04 x
3D CNN 6.10E-04 4.03E-05
Voxel-GAT (Proposed) 4.99E-03 7.91E-05

For the proposed method, the inference time on the CPU is
recorded at 4.99e-03 seconds. On the GPU, the inference time re-
duces to 7.91e-05 seconds, indicating that the method benefits sig-
nificantly from the parallel processing capabilities of the GPU. In
comparison, the baseline 3D CNN has an inference time of 6.10e-04
seconds on the CPU and 4.03e-05 seconds on the GPU. This means
that 3D CNN is about 1.96 times faster on the GPU than Voxel-GAT.

An early warning system should not only account for inference
time but also include preprocessing time. The time required for
preprocessing is 0.010 seconds, 0.129 seconds, and 0.128 seconds for
1D, 3D, and graph data, respectively. While 1D processing is faster,
the time taken for voxel and graph creation is not significantly
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longer, on average. When combining preprocessing with inference
time, the total end-to-end time from raw data to detection result
does not significantly increase. The time to create a graph is approx-
imately 0.128 seconds or 128 milliseconds. However, considering
the trade-off between the F1 score and inference time, Voxel-GAT
is the preferable choice, offering a much higher F1 score than 3D
CNN with a competitive end-to-end computational process.

5 CONCLUSIONS
The LiDAR contaminant detection method for autonomous vehi-
cles has been developed. We compared all transformation methods,
from 1D and 3D, to a developed graph-based transformation. The
proposed method is superior in all experimental scenarios, includ-
ing cross-environments and contamination, on real-world LiDAR
sensors installed on test-bed vehicles.

The proposed method achieves an average F1-score above 0.902,
with the graph processing time from creation to detection under
around 128 milliseconds. We utilize a compact architecture contain-
ing two Graph Attention Networks layers capable of processing
point cloud inputs of dynamic sizes. Ultimately, the proposed model
has been proven to effectively classify cleanliness or contamination
in complex and extreme LiDAR point clouds. This initiates further
research into designing near-sensor LiDAR processingmethods that
are low-cost and sustainable using a graph processing approach.
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