
Serverless Workflow Management on the Computing Continuum:
A Mini-Survey

Reza Farahani
reza.farahani@aau.at

Alpen-Adria-Universität Klagenfurt
Klagenfurt, Austria

Frank Loh
frank.loh@uni-wuerzburg.de

University of Würzburg
Würzburg, Germany

Dumitru Roman
dumitru.roman@sintef.no

Sintef
Oslo, Norway

Radu Prodan
radu.prodan@aau.at

Alpen-Adria-Universität Klagenfurt
Klagenfurt, Austria

ABSTRACT
The growing desire among application providers for a cost model
based on pay-per-use, combined with the need for a seamlessly
integrated platform to manage the complex workflows of their
applications, has spurred the emergence of a promising comput-
ing paradigm known as serverless computing. Although serverless
computing was initially considered for cloud environments, it has
recently been extended to other layers of the computing continuum,
i.e., edge and fog. This extension emphasizes that the proximity of
computational resources to data sources can further reduce costs
and improve performance and energy efficiency. However, orches-
trating the computing continuum in complex applicationworkflows,
including a set of serverless functions, introduces new challenges.
This paper investigates the opportunities and challenges introduced
by serverless computing for workflow management systems (WMS)
on the computing continuum. In addition, the paper provides a
taxonomy of state-of-the-art WMSs and reviews their capabilities.
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1 INTRODUCTION
The proliferation of online applications, advancements in network-
ing and computing technologies, and the continuously growing
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number of users who opt for diverse online services have collec-
tively propelled application workflow management systems (WMS)
to the forefront of discussions among various stakeholders [54]. In
this context, an application workflow refers to cooperative tasks,
activities, or processes that execute a specific business or compu-
tational logic. These tasks require network, computational, and
storage resources beyond the capabilities of a single on-premises
cluster. The emergence of cloud computing has revolutionized the
domain of WMSs by offering scalable resources and diverse ser-
vices. Most public cloud providers offer WMS, such as Amazon
Simple Workflow Service and Google Cloud Composer, enabling
application providers to build, deploy, schedule, and orchestrate
their workflow tasks comprehensively. Although the adoption of
cloud services represented a significant advancement, challenges
persist in realizing a pure pay-per-use model and achieving seam-
less scalability. This is because cloud providers typically charge
application owners based on allocated resources rather than ac-
tual consumption. Furthermore, application providers are burdened
with ongoing responsibilities to configure and scale infrastructure
instances, requiring comprehensive application monitoring and
expertise in both infrastructure and services management [49].

To address the described challenges, both application and cloud
providers made substantial architectural modifications. On the ap-
plication side, the architecture transitioned from monolithic to
service-oriented, then to microservices [14], and Function-as-a-
Service (FaaS) [8], allowing the execution of small pieces of code as
functions [46]. Taking into account the distinctive characteristics
of emerging applications, particularly those with FaaS-based archi-
tectures, cloud providers have taken advantage of their previous
experience, e.g., virtualization and containerization paradigms, to
establish a pure pay-per-use paradigm known as serverless [53]
as an alternative to the Infrastructure-as-a-Service (IaaS) model.
Hence, cloud providers are increasingly adopting serverless prin-
ciples across a spectrum of their existing services, encompassing
serverless containers (e.g., AWS Fargate or Google Cloud Run),
serverless databases (e.g., AWS DynamoDB), and even serverless
graph processing (e.g., AWS Neptune). Furthermore, most cloud
providers offer serverless WMSs, such as AWS Step Functions,
Google Workflows, and IBM Composer.

In pursuit of cost efficiency, reduced latency, and energy conser-
vation, both industry and academia have recently increased their
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efforts to utilize fog or edge resources in close proximity to appli-
cation users, thus, establishing serverless WMSs throughout the
entire computing continuum [20]. To this end, open-source server-
less platforms, e.g., Apache OpenWhisk [1] or OpenFaaS [38], have
been developed to operate on on-promise or leased edge or fog
instances. However, this presents a challenge, given that the server-
less paradigm was originally designed for cloud environments, not
accounting for such computational constraint instances. Hence,
among numerous critical considerations, one key research ques-
tion in designing serverless WMSs on the computing continuum
is: “How can service level objectives (SLOs), e.g., latency and en-
ergy, and economic cost, be optimized by determining the strategic
allocation of workflow functions, deciding which to execute on
edge or fog instances and which to offload to the public cloud?”
This mini-survey explores fundamental concepts, reviews the latest
WMSs, and discusses the opportunities and challenges arising from
integrating serverless paradigms into WMSs.

2 BACKGROUND
2.1 Computing Continuum
The computing continuum is a structural design consisting of vari-
ous computing and storage resources with varying network band-
width, interconnected in three layers: Cloud, Fog, and Edge [18, 23].
The cloud layer is supported by public providers, such as AWS,
IBM, or Google, to provide large-scale infrastructure and a broad
range of services. The fog layer presents computing capabilities in
close proximity to data sources and user devices on a smaller scale.
This involves utilizing less powerful devices with lower access la-
tencies compared to cloud servers, typically located in network
base stations (e.g., gNodeB in 5G). The edge layer consists of lo-
cal servers and devices with limited resources, including sensors
and actuators, equipped with computational capabilities. These are
strategically placed at user locations to further minimize service
latency. Although each layer can collaborate and exchange infor-
mation in the execution of applications, it also possesses the ability
to operate independently. Adopting this multi-layer architecture
empowers application providers to utilize appropriate resources
and services, consequently enhancing SLOs, energy, and economic
cost compared to dependence on a singular layer of resources.

2.2 Serverless Computing
Serverless is an emerging computing paradigm designed for the
deployment of FaaS applications and other services statelessly [3].
Serverless applications typically comprise a collection of stateless
and atomic functions, commonly deployed within containers or
encapsulated as Zip files. Upon invocation of the function by the
application, a cold start occurs on the infrastructure side, requiring
the deployment of the container from online repositories to the
specified resource. In contrast, a warm start occurs when the re-
quested function is pre-deployed on the computational resource,
resulting in rapid initialization and execution. In such paradigms,
functions interact and exchange data using platform services like
databases, if necessary [28]. Therefore, it empowers application
developers to build scalable and event-driven applications while
incurring charges based on the execution time of functions (i.e.,
pay-per-use), in addition to any supplementary services utilized by

these functions. Moreover, it eliminates the complexities associated
with the provisioning and maintenance of resources, challenges
commonly encountered in traditional cloud-based systems designed
for monolithic applications [49]. For a comprehensive overview of
the serverless lifecycle, we refer to literature [37].

2.3 Workflow Management Systems
Application workflows typically consist of multiple stages, each
comprising a set of independent tasks. These workflows are com-
monly represented as directed acyclic graphs (DAGs), where nodes
represent tasks and edges denote data dependencies. Task com-
munication is generally based on shared file systems and task ex-
ecution occurs only when all dependencies are satisfied [55]. A
workflow management system (WMS) operates as a dedicated tool
to execute and orchestrate such workflows in heterogeneous com-
puting and storage resources, including local and cloud instances.
Many WMSs, such as Pegasus [13], Airflow [22], Argo, AWS Step
Functions, Google Workflows, or IBM Composer, plus open-source
ones like LithOps [48], and PyWren [26], have been developed to
facilitate the seamless execution and management of application
workflows across diverse computing architectures with serverful
or serverless models. Such WMSs typically receive an application
DAG as input, actively monitor the progress of running tasks and
available resources, and generate execution plans by mapping tasks
to the existing computing resources to enforce rigorous adherence
to data dependencies while simultaneously striving to minimize
the overall execution time.

3 SERVERLESS WORKFLOWMANAGEMENT
The rising customer demands from major public cloud providers,
such as AWS, Google, IBM, and Azure, for serverless platform inte-
gration, coupled with the increasing complexity of serverless work-
flows, have greatly boosted the popularity of serverless WMSs [12].
Statistics reveal a substantial six-fold increase in the adoption of
serverless workflows in Azure between 2019 and 2022 [32]. Man-
aging complex workflows, often involving multiple functions and
adhering to specific SLO levels, presents a challenge that cannot
be adequately addressed by a single cloud-based architecture with
concurrent function execution limitations (e.g., 1,000 functions for
AWS Lambda). Therefore, the prevalent adoption of open source
serverless platforms such as OpenFaaS [38] or OpenWhisk [1] has
become a common practice to equip the other two layers of the com-
puting continuum with serverless capabilities. However, designing
WMSs to meet requested SLO levels across various resources in
the computing continuum while accounting for available resources
and concurrency limitations presents a considerable and intricate
challenge. In the following discussion, we categorize and review
state-of-the-art WMSs into three distinct types.

3.1 Cloud-based WMSs
Currently, all leading cloud providers have established their pro-
prietary serverless WMSs. For instance, AWS Step Functions, an
Amazon serverless WMS, utilizes the JSON format to orchestrate
workflow functions, employing various constructs for paralleliza-
tion, data distribution, and conditional branches. Despite providing
versatile constructs, both WMSs are limited in scalability as they
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operate within the same cloud region of a single provider, prevent-
ing the use of other cloud regions in a federated cloud manner
or the computing continuum. Google Workflows uses the YAML
format to define control and data flows within workflows. Unlike
the previously mentioned WMSs, it supports function execution
through HTTP requests, allowing the deployment of serverless
functions across any cloud region.

In recent years, various WMSs have been developed to execute
workflows across single or multiple providers’ regions. Spock [21]
operates as a scalable and adaptive WMS, employing virtual ma-
chines and a serverless platform deployed in public clouds. Its objec-
tive is to distribute the execution of machine learning inference jobs
to minimize SLO violations. Sequoya [51] is another that provides
developers with multiple scheduling policies tailored to various
Quality of Service (QoS) parameters. Once a function completes,
it triggers successor functions either on the local server running
OpenWhisk or on cloud servers. The Multi-Provider Serverless
Computing (MPSC) framework [2] is one of the multi-cloud WMSs,
aiming to optimize task allocation between local servers and cloud
platforms, specifically AWS Lambda and IBM Cloud Functions. Hy-
perflow [36] is anotherWMS that enables the execution of workflow
functions exclusively within a designated region of AWS Lambda
or Google Cloud Functions. However, these WMSs mostly ignore
the function concurrency limitations of cloud providers.

The literature has also introduced domain-specific serverless
WMSs, designed to accelerate the development of serverless appli-
cations within specific domains. Examples include scientific work-
flows, which encompass complex and long-term data-intensive
tasks [6, 25]. The mentioned WMSs use HyperFlow to construct
WMSs and execute scientificworkflows onAWSLambda andGoogle
Cloud Functions. Furthermore, numerous recent works aim to en-
hance the execution speed of workflows in public cloud environ-
ments [10, 30, 31, 33]. For this aim, Mahgoub et al. [31] introduced
three levels of optimizations integrated on AWS Lambda, allocating
the appropriate resources for each function invocation. They also
introduced SONIC [30], which determines the optimal approach to
pass data between various serverless functions, that is, local storage,
direct passing, and remote storage.

3.2 Edge-Cloud Continuum-based WMSs
In the domain of edge-cloud WMSs, numerous works have focused
mainly on specific tasks within WMSs, such as function schedul-
ing [41, 50, 56, 58]. For instance, Aslanpour et al. proposes an energy-
aware serverless scheduling method tailored for applications in
edge computing in [4]. Two priority-based and zone-oriented al-
gorithms improve the operational availability of bottleneck edge
devices using “sticky offloading” and “warm scheduling” to opti-
mize QoS metrics. Skippy [42] represents another container-based
scheduling method within these types of WMS, strategically bal-
ancing trade-offs between data and computation exchange. It takes
workload-specific compute requirements into account, including
GPU acceleration, to optimize overall utilization. Numerous works,
such as OSCAR [43], propose the offloading of functions to clouds
when edge resources become overloaded. Skedulix is another sys-
tem on the edge-cloud continuum [11] that offloads functions from
OpenFaaS to AWS Lambda to minimize costs while adhering to

deadline constraints. Similarly, Serverledge is a decentralized edge-
cloud system [47] that runs serverless functions on edge devices
and offloads them to cloud servers or neighboring edge instances
in case of overload. However, such systems target small single-
workflow scheduling due to the concurrency limitations of edge
devices and a single cloud instance. Costless [17] is a framework de-
signed to optimize the execution cost of single serverless workflow
applications by dividing their execution between the edge layer and
the cloud. However, it does not account for scheduling concurrent
workflows. The authors of [29] investigated the placement of work-
flow functions in edge-cloud systems to only minimize completion
time.

3.3 Simulations-based WMSs
Addressing the need for proactive performance evaluation and
prediction in serverless WMSs, many dedicated simulators have
recently been developed. These simulators not only aid in assess-
ing performance or cost metrics before deployment and execu-
tion [24, 34, 45, 52], but strive to provide valuable predictions [5, 16]
to serverless providers regarding diverse load and request patterns.
The authors in [34] simulate serverless functions with a fixed mem-
ory setup in a single cloud region and model the average response
time of the functions, cold start, and concurrent instances of the
serverless function. SimLess [45] is another serverless simulator
that assesses the overhead of individual functions, as well as the
entire workflow, and their comparable setups in federated clouds.
DFaaSCloud [24] as an extension of CloudSim [7] and OpenDC
Serverless [27] are simulators specifically designed to simulate the
execution time of workflow functions. Faas-sim [40] is an edge-
cloud simulator offering a versatile serverless simulation environ-
ment backed by real-world trace data.

4 OPPORTUNITIES
4.1 Cost Model
Unforeseeable variations in application workloads pose a challenge
when using fixed container provisioning, resulting in charges dur-
ing inactive periods. While dynamic auto-scaling is an option for
most IaaS providers, it introduces additional costs and the potential
for imprecise resource provisioning. On the contrary, serverless
computing charges are determined by actual triggered events, in-
cluding dedicated resources and function invocation frequency. The
serverless paradigm ensures more predictable pricing irrespective
of workload fluctuations. By leveraging the precise scalability of
serverless, avoiding unnecessary resource allocation and idle-time
costs, the overall price remains unaffected by workload variability.

4.2 Scalability
Certain applications operate consistently in close proximity to data
sources on the edge layer of the computing continuum, while sev-
eral others require seamless integration throughout the computing
continuum. Leveraging the execution of serverless functions on
the computing continuum enables WMSs to carry out these func-
tions optimally. For instance, many serverless WMSs operating
within the computing continuum adopt a straightforward service
execution strategy that involves task execution on edge instances
as long as resources are available, with a subsequent transition to
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offloading tasks to the fog or cloud when needed. Furthermore,
concurrent function executions through parallelization techniques
not only enhance the practicality but also boost the scalability of
WMSs within the computing continuum.

4.3 Auto-scaling
Traditional IaaS infrastructure relying on virtual machines faced
drawbacks such as large memory footprints and challenging scala-
bility, involving duplication of significant data when creating more
service replicas on an instance. Therefore, one of the critical chal-
lenges for IaaS-based resource-limited edge and fog layers lies in
resource management. Embracing lightweight abstractions like con-
tainers, serverless solutions offer a smaller footprint and precise
autoscaling. This efficiency is particularly notable because of the
minimal overhead in creating or terminating replicas compared to
full virtual machines. The promise is further enhanced when server-
less adopts computation principles based on functions inherited
from microservice architecture advancements instead of treating
the entire application as a black box.

4.4 Statelessness
The statelessness feature of serverless architecture offers several
advantages over a serverful architecture. Since each function or ser-
vice operates independently without maintaining a persistent state
between invocations, fault tolerance and resilience improved, since
failures in one function do not impact the overall system. Moreover,
it makes serverless platforms such as WMSs appealing for real-time
collaboration tools such as instant messaging and chatbots [57].
Therefore, it enables WMSs to have more suitable performance,
particularly for applications with inherent lack reliance on and
awareness of previous event, compared to the serverful ones.

5 CHALLENGES
5.1 Stream Processing
While the serverless paradigm is widely acknowledged as a success-
ful advancement for cloud computing, the scale-to-zero technique
and the subsequent cold start of serverless functions may not be
optimal for certain latency-sensitive stream processing applica-
tions [19, 37]. The ability to scale to zero has both advantages and
drawbacks. Although it minimizes energy consumption and reduces
economic costs, initial invocation of the function results in a cold
start, introducing additional delays with current technologies. Al-
though this delay poses no issue for batch applications, it can lead
to performance degradation in stream time-sensitive processing
applications, since they require real-time decision-making, particu-
larly on resource-limited devices. This discrepancy has led to active
exploration within the research community, with studies analyzing
its impacts [15, 44] and proposing various promising solutions, such
as reducing overhead in the development phase [53].

5.2 Data Distribution
Data and storage management are key in serverless WMSs, ir-
respective of the computational and network differences among
computing continuum instances. The stateless nature of the server-
less, coupled with a lack of server affinity, gives rise to challenges.

While cloud-based WMSs uphold function states by storing them
in storage, the proximity of maintaining this state becomes pivotal
at the edge, consequently, the edge layer transmitting substantial
data per function invocation to remote devices. Current serverless
WMSs within the edge-cloud continuum tend to prioritize CPU and
memory specifications while neglecting crucial storage provision-
ing techniques. Imagine a scenario where an application involves a
sequence of function invocations. In this case, the transfer cost is
incurred only once in traditional approaches for monolithic applica-
tions. However, with serverless, this cost may be incurred multiple
times between any two consecutive function invocations if executed
on different layers. In the cloud, these limitations are seamlessly ad-
dressed by robust data centers and a high-speed communication. In
contrast, in the edge layer of the computing continuum, data trans-
port becomes problematic [3, 35]. Although numerous research
studies have been initiated that focus on data caching and storage
placement have been initiated to address this problem [9, 39], we
believe that more research is needed to fully address this challenge.

5.3 Complexity
The lack of effective abstractions for managing task-based work-
loads on serverless platforms, especially for workflows that exhibit
intricate structures and dependencies, necessitates manual parti-
tioning and encapsulation of workflow function codes. In addition,
despite the overarching promise of serverless to diminish the need
for manual resource management, it still requires the configura-
tion and adjustment of resource-related parameters for applica-
tion workflows, such as concurrency and memory per container.
The mentioned requirements add complexity for the application
providers. In addition, multiple layers of infrastructure within the
computing continuum, coupled with middleware and execution
engines, pose challenges in monitoring, understanding, and predict-
ing application performance. Therefore, more research activities
are needed to alleviate these complications.

6 CONCLUSION
This mini-survey explores relevant technologies and assesses the
capabilities of serverless workflow management systems. We dis-
cuss the appropriateness of serverless WMSs on the computing
continuum due to their (1) potential for seamless integration from
cloud to edge, (2) provision of pure pay-per-use and cost-effective
design, (3) mitigation of challenges related to resource provision-
ing and scaling, (4) facilitation of easy parallelization for stateless
functions, and (5) provision of fine-grained scalability for resources.
However, the design of such WMSs for today’s applications faces
significant challenges, including (1) prolonged latencies induced by
cold startups, (2) difficulties in handling stream processing work-
flows, (3) complexities in managing data distribution and storage,
(4) the intricate task of designing cost-, SLO-, and energy-aware
systems, and (5) the potential to induce resource inefficiencies that
necessitate collaborative efforts from both academia and industry.
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