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ABSTRACT

Due to the noises in crowdsourced labels, label aggregation (LA) has emerged as a standard procedure
to post-process crowdsourced labels. LA methods estimate true labels from crowdsourced labels by
modeling worker qualities. Most existing LA methods are iterative in nature. They need to traverse all
the crowdsourced labels multiple times in order to iteratively update true labels and worker qualities
until convergence. Consequently, these methods have high space complexity O(TM) and time
complexity O(ITM), where T and M are the numbers of tasks and workers, respectively, and I is
the number of iterations these algorithms take to converge. In this paper, we treat LA as a dynamic
system and model it as a Dynamic Bayesian network. From the dynamic model we derive two
light-weight algorithms, LAonepass and LAtwopass, which can effectively and efficiently estimate worker
qualities and true labels by traversing all the labels at most twice. As a result, the space and time
complexities of the proposed algorithms are reduced toO(M +T ) andO(MT ), respectively. Due to
the dynamic nature and low complexities, the proposed algorithms can also estimate true labels online
without re-visiting historical data. We theoretically prove the convergence of the proposed algorithms,
and bound the error of estimated worker qualities. Experiments conducted on 20 real-world datasets
demonstrate that the proposed algorithms can effectively and efficiently aggregate labels both offline
and online even if they traverse all the labels at most twice.

Keywords Crowdsourcing · Label Aggregation · Bayesian Network · Online Learning

1 Introduction

Many tasks of machine learning require labels for training. Traditional label collection from domain experts or data
vendors is usually expensive and time-consuming, which may not meet the increasing demand of labels. As an
alternative, crowdsourcing is economical and efficient for acquiring labels [1, 2]. Crowdsourcing platforms, such
as Amazon Mechanic Turk [3] and FigureEight [4], help label requesters to distribute labeling tasks to the crowd
workers who will label the distributed tasks and receive some monetary reward. Despite the low cost of crowdsourcing,
the crowd workers are not experts and may erroneously label some tasks [5]. Consequently, the labels acquired by
crowdsourcing are usually less accurate than those from experts. Therefore, it is common to collect multiple labels for
each task from different workers, and aggregate the collected labels to alleviate errors [6].

Aggregating crowdsourced labels is referred to as label aggregation (LA) or truth inference in crowdsourcing [7] or
truth discovery in the database community [8]. LA takes the crowdsourced labels as input and estimates the true label
for each task. Typically, LA is unsupervised because there are no ground-truth labels available for supervision. The
most straightforward LA algorithm is majority voting (MV) [9]. MV simply regards the label received the most votes
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from workers as the true label for each task. Due to its simplicity, MV’s space and time complexities are as low as
O(M + T ) and O(TM) where M is the number of crowd workers and T is the number of tasks. However, MV
assumes all the workers are equally reliable, which is typically false in crowdsourcing [6]. To address this limitation,
recent LA methods choose to model worker qualities while estimating true labels. The underlying assumption is that
workers who often label tasks correctly are of high quality, while the label supported by high quality workers is selected
as the true label for each task. Guided by this assumption, existing LA algorithms estimate true labels and worker
qualities jointly and iteratively until some convergence condition is satisfied [10, 11, 12, 13]. Various empirical results
demonstrate that LA methods modeling worker quality generally outperform MV in terms of accuracy [7]. However,
most existing LA methods have two limitations due to their iterative nature. First, they need to load the entire dataset
(crowdsourced labels) into memory, which has space complexity at least as high as O(TM). Second, they need to
iteratively traverse the entire dataset multiple times, whose time complexity is at least as high as O(ITM) where I
denotes the number of iterations the algorithms take to converge.

In this paper, we develop a light-weight, effective and efficient LA algorithm, named LAonepass, that has lower space
and time complexities than that of iterative algorithms. Specifically, we tag each label a time-slice, which is the index
of the label’s task. As a result, the labels and tasks have temporal attributes. We then treat LA as a dynamic system,
where worker qualities evolve after estimating true labels over time. We use Dynamic Bayesian network [14] to model
such dynamic system, where worker qualities are modeled as (unknown) temporal variables that evolve over time,
while the (observed) labels and (unknown) true labels are modeled as non-temporal variables that are only instantiated
within one time-slice. When estimating the unknown variables at every time-slice, the worker qualities can be estimated
efficiently by Maximum A Posterior (MAP), and the true label can be estimated by solving a simple optimization
problem analytically. This ensures the crowdsourced labels are traversed only once. It reduces the space and time
complexities down to O(M + T ) and O(TM), which equal to the space and time complexities of MV. We also prove
that the estimated worker quality converges, and the rate of convergence is also given. Moreover, the error of estimated
worker quality can be bounded with high probability even if the crowdsourced labels are traversed only once.

Traversing the labels only once inherently has one disadvantage. The true labels that are estimated early may not be
accurate because the estimated worker qualities have not converged. Therefore, we develop LAtwopass, an extension of
LAonepass, that uses the estimated worker qualities from LAonepass to re-estimate the true labels by performing weighted
majority voting. LAtwopass traverses the crowdsourced labels twice, but can substaitianlly improve aggragation accuracy.
LAtwopass has little computational overhead compared to LAonepass because it does not estimate worker qualities when it
traverses the labels again. Due to low space and time complexities, both LAonepass and LAtwopass can also be configured
to aggregate labels online.

We perform experiments on 20 real-world datasets to demonstrate the effectiveness and efficiency of the proposed
algorithms compared to state-of-the-art LA methods, and show the estimated worker qualities converge and its error can
be bounded by simulated experiments.

2 Problem Statement & Related Work

In this section, we first formally define the problem of LA. Then we review the prior work of LA from three dimensions
that are related to our work.

2.1 Problem Statement of Label Aggregation

Suppose there are T tasks and M workers. Each task t has K (mutual exclusive) classes indexed from 1 to K, and its
unknown true label yt is drawn from [K] where [K] denotes the set of integers {1, . . . ,K}. The tasks are labeled by
the workers, and the label from worker i ∈ [M ] for task t ∈ [T ] is denoted as xi,t, where xi,t ∈ [K]. Each worker i is
associated with an unknown variable wi reflecting the quality of the worker’s labels. For convenience, we denote the
whole crowdsourced labels as X = {xi,t|i ∈ [M ], t ∈ [T ]}. The goal is to aggregate X and estimate the true labels
Y = {ŷt|t ∈ [T ]} for every task as well as the worker qualitiesW = {ŵi|i ∈ [M ]}. For notation simplicity, we assume
each worker labels all the tasks. However, the proposed algorithms can also deal with label sparsity when each worker
labels a subset of tasks.

Please note that we study single-truth LA problem in this paper, where the true label of a task has only one value. This
is different from multi-truth LA problems [15]. Our method is also universal, which only takes crowdsourced labels as
input. This also differs from LA methods that additionally take features of workers or tasks as input. For example, [13]
uses workers’ social network in their aggregation model. [16] uses side information to cluster tasks. However, these
features are difficult to obtain in crowdsourcing and are not available in every crowdsourcing applications.
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Algorithm 1 LA general solution framework
Input: X
Output: Y andW

1: Initialize worker qualitiesW
2: while Not Converged do
3: for t ∈ [T ] do
4: Estimate true label ŷt based on X andW;
5: end for
6: for i ∈ [M ] do
7: Estimate worker quality ŵi based on X and Y;
8: end for
9: end while

10: return Y = {ŷt|t ∈ [T ]},W = {ŵi|i ∈ [M ]}

2.2 Prior Work

Worker quality modeling. Active research works of LA focus on modeling worker quality. The first LA method
considering worker quality can be dated back to 1979 when Dawid and Skene proposed an algorithm, commonly known
as DS, to aggregate clinical diagnoses of doctors [10]. DS is classified as the “confusion matrix” model in the literature,
because it uses a K ×K confusion matrix to capture the probabilities that a worker’s label is generated from a task
conditioned on the task’s true label. A large number of LA methods are descendants of DS [11, 17, 18]. For example,
LFC [19] extends DS by adding priors to confusion matrices. EBCC [12] learns worker correlations when estimating
the confusion matrices. Another commonly adopted worker quality model is “one-coin” model. One-coin model treats
the quality of each worker as a single parameter reflecting the quality of worker’s labels. For example, ZC [20] models
the worker quality as a value between 0 and 1 representing the probability of a worker’s label being correct. IWMV
[21] transforms such probability for estimating true labels which has provable theoretical guarantee on the error rate.
There are also some one-coin models treating worker quality as a real number, where higher value means the worker’s
labels are more likely to be true [22, 23].

Modeling techniques and solution framework. Probabilistic graphical model (PGM) [14] is the most widely used
technique to solve LA problem [24, 11, 23, 6]. PGM depicts conditional dependencies between random variables.
Most PGMs used in LA are generative, which model the conditional probability of a worker’s label given the unknown
worker quality and true label. Techniques other than PGM are also used. The optimization-based method [22] directly
builds an objective function capturing the relation between worker qualities and true labels. [25] constructs the crowd
labels as a matrix and estimates worker qualities and true labels by matrix completion. Methods using neural network,
such as LAA [26], are also used in LA by modeling the non-linear relationship among crowd labels, worker qualities
and true labels.

Regardless of the modeling techniques, most derived LA algorithms are iterative, which can be summarized in Algorithm
1 [7]. It can be observed that Algorithm 1 iteratively estimates true labels and worker qualities by traversing the entire
dataset X multiple times as described in the while loop.

Online LA. Online LA refers to the ability to aggregate labels at present without re-visiting historical labels when
labels are arrived in chunks sequentially [18]. Online LA was studied in the database community when labels are of
continuous and are passively collected from data sources such as webs [27, 28, 29]. However, in the crowdsourcing
applications, the labels are typically categorical. To the best of authors’ knowledge, the methods that can aggregate
labels online in crowdsourcing are SBIC [30] and BiLA [18]. However, SBIC is limited in applicability because it
can only aggregate labels of tasks with two classes. BiLA uses neural network to represent its internal probability
distributions. It requires to traverse the present labels multiple times in order to update worker qualities, which is
inefficient as demonstrated in the experiments. In contrast, the proposed algorithms in this paper can aggregate labels of
tasks with any number of classes, and traverse the labels at most twice to accurately and efficiently aggregate labels
online.

3 Method

In this section, we describe the proposed Dynamic Bayesian network (DBN) model for LA, and present LAonepass

algorithm derived from the proposed dynamic model.
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3.1 The Dynamic Model

ci,t

xi,twti
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y1
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time 1

(b) B1

Figure 1: The proposed DBN model. The intra-time-slice edge is in red; the inter-time-slice edge is in blue.

We treat LA as a dynamic system evolving over T discrete time-slices, which equal to the number of tasks. In the
dynamic system, the meaning of t is two-fold: it represents the index of task t and the time-slice, or state, of the system
is at. Likewise, T represents the number of tasks as well as the life span of the system. At each time-slice t ∈ [T ], it
only estimates task t’s true label. We model worker quality wi ∈ [0, 1] reflecting the probability that this worker’s label
is true. The worker quality wi evolves over time, and is updated each time after yt is estimated until it reaches the end
at time-slice T .

The dynamic system can be modeled by a DBN. In the DBN, wi is modeled as a temporal variable evolving over time.
We add a superscript to the worker quality wti to denote its state at time-slice t. xi,t and yt are modeled as non-temporal
variables that are only instantiated within the their own time-slice. The DBN can be described by two Bayesian networks
B→ and B1 as shown in Figure 1. B→ is 2-time-slice Bayesian network (2TBN) depicting the relation of variables
within one time-slice and the evolution of variables in between two consecutive time-slices. B1 is a Bayesian network
depicting the initial state of the system.

3.1.1 2TBN B→.

There are two types of edges, inter-time-slice edge and intra-time-slice edge, connecting variables in B→. The inter-time-
slice edges connect variables wti , xi,t and yt within time-slice t. The relation between these variables is expressed via an
auxiliary deterministic variable ci,t indicating whether worker i labels task t correctly. Therefore, ci,t = 1(xi,t = yt),
where 1(·) is the indicator function. Since the correctness of worker i’s label is determined by wti ∈ [0, 1], we can
model ci,t as a Bernoulli random variable with parameter wti :

ci,t ∼ Ber(wti), p(ci,t|wti) = (wti)
ci,t(1− wti)1−ci,t (1)

The intra-time-slice edge connects wt−1i and wti . This edge expresses how a worker quality evolves over time by
specifying the transition probability p(wti |w

t−1
i ). We treat p(wti |w

t−1
i ) as the posterior distribution of wt−1i after

observing the labels of task t− 1 and its true label has been estimated. In other words, wt−1i is the prior of wti .

3.1.2 Initial state B1.

B1 expresses the initial state of the dynamic system. The relation of variables is the same as that of time-slice t in B→,
except that it needs to specify the initial state of temporal variable w1

i . Since wi is the probability that worker i labels
tasks correctly, we model wi as a Beta random variable and its initial state w1

i is associated with a Beta distribution
having hyperparameters α and β:

w1
i ∼ Beta(α, β), p(w1

i ) ∝ (w1
i )
α−1(1− w1

i )
β−1 (2)
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3.2 Estimation

Given the model architecture, the joint probability ofWt = {wti |i ∈ [M ]}, Ct = {ci,t|i ∈ [M ]} and Xt = {xi,t|i ∈
[M ]} within time-slice t can be factorized as

p(Wt, Ct,Xt, yt) =
∏
i

p(ci,t|wti , xi,t, yt)

=
∏
i

(wti)
ci,t(1− wti)1−ci,t

(3)

and its log-likelihood function lt = log p(Wt, Ct,Xt, yt) is

lt =

M∑
i=1

ci,t logwti + (1− ci,t) log(1− wti)

=

M∑
i=1

1(xi,t = yt) logwti + (1− 1(xi,t = yt)) log(1− wti)

(4)

We estimate the true label yt by maximizing lt, which can be easily solved via:

ŷt = arg max
k
{
M∑
i=1

wti1(xi,t = k)|k ∈ [K]} (5)

Provided that wt−1i is the prior of wti , the posterior probability of wti after observing xi,t and estimating yt is

p(wti |ci,t, xi,t, yt, wt−1i ) ∝ p(ci,t|wti , xi,t, yt)p(wti |wt−1i )

By the chain rule of probability, the above posterior probability can be expanded as:

p(wti |ci,t, wt−1i ) ∝
t∏

t′=1

p(ci,t′ |wt
′

i )p(w1
i )

= (wti)
Ci,t+α−1(1− wti)t−Ci,t+β−1

(6)

where Ci,t =
∑t
t′=1 1(xi,t′ = ŷt′) is the number of tasks worker i has labeled correctly up to time-slice t, and

t− Ci,t is the number of tasks worker i has labeled incorrectly up to time-slice t. It can be observed that the posterior
p(wti |ci,t, w

t−1
i ) can be compactly written as p(wti |Ci,t), and p(wti |Ci,t) ∼ Beta(Ci,t + α, t − Ci,t + β), which is

again a Beta distribution. Therefore, we can estimate wti by Maximum a Posteriori (MAP):

ŵti =
Ci,t + α− 1

t+ α+ β − 2
(7)

The form of Equation (7) is expected. It reflects the estimated probability that worker i labels tasks correctly up to
time-slice t with the prior belief α and β.

3.2.1 Algorithm flow.

Given the estimation in Equations (5) and (7), the LA algorithm derived from the proposed DBN is summarized in
Algorithm 2. Since all the crowdsourced labels are passed to the algorithm only once, we term the algorithm LAonepass.

4 Analyses

In this section, we first theoretically prove that (a) the estimated worker quality given in Equation (7) converges, and (b)
the error of estimated worker quality can be bounded. Then we analyze the space and time complexities of LAonepass,
and compare them with that of the existing iterative algorithms and MV.

5
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Algorithm 2 LAonepass

Input: X , hyperparameters α and β
Output: Y andW

1: Initialize qualitiesW = {wi|i ∈ [M ]}.
2: for t ∈ [T ] do
3: Estimate true label ŷt by Equation (5);
4: for i ∈ [M ] do
5: Update worker quality ŵti by Equation (7);
6: end for
7: end for
8: return Y = {ŷt|t ∈ [T ]},W = {ŵTi |i ∈ [M ]}.

MV LAonepass Iterative framework
Algorithm 1

Space O(M + T ) O(M + T ) O(TM)
Time O(TM) O(TM) O(ITM)

Table 1: Space and time complexities comparison

4.1 Convergence of Estimated Worker Quality

We analyze the convergence of worker quality in Equation (7) under the assumption that most workers are honest and
they do not incorrectly label tasks on purpose. This assumption was verified empirically [31, 32], and is also supported
by our experimental results showing that the mean accuracy of MV is over 80%. This assumption ensures Equation
(5) can accurately estimate true labels [33]. With this in mind, we can present the convergence of wi in the following
theorem.
Theorem 1. Let ft(W) be the joint posterior probability of worker qualities at time-slice t, and Lt(W) ≡ log ft(W):

Lt(W) =

M∑
i=1

(Ci,t + α− 1) logwti

+ (t− Ci,t + β − 1) log(1− wti)

(8)

thenW = {ŵti |i ∈ [M ]} in Equation (7) converges to the minimizerW∗t = arg minW Lt(W) at rate of o(1/
√
t).

The proof of Theorem 1 is in Appendix A. This theorem shows that worker quality estimated by Equation (7) converges
as fast as o(1/

√
t) even if it traverses all the labels only once. Moreover, the error of worker quality due to estimation

can be bounded by the following corollary.

Corollary 1. p(|W −W∗t | ≤ ε/
√
t) ≥ Φ(ε)−Φ(−ε) where ε is a positive real value, and Φ(·) is the CDF of standard

Normal distribution.

The proof of Corollary 1 is in Appendix B. Corollary 1 states that the error of estimated worker quality can be bounded
tighter with high probability as t grows. We will also empirically verify it in the experiment.

4.2 Space and Time Complexity

We analyze and compare the space and time complexities of LAonepass, the existing iterative algorithms and MV. The
comparison is summarized in Table 1.

4.2.1 Space complexity (SC).

In Algorithm 2, LAonepass needs to initializeW for all the workers with O(M) space. It also needs to reserve O(T )
space for storing the estimated true labels. The SC of caching hyperparameters is O(1). Additionally, the algorithm
needs to maintain Ci,t and t for each worker with O(M) space. At each t, it needs to load the labels of task t, which
is at most M . After the true label of task t is estimated, the labels of task t can be discarded. Therefore, the SC of
loading/storing labels is O(M). The overall SC of LAonepass is O(M + T ).

As to Algorithm 1, the SC of caching worker qualities and true labels are the same as LAonepass. However, it needs to
load the entire dataset with O(TM) space. The overall SC of Algorithm 1 is O(TM).

6
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As to MV, it needs to reserve a space for storing the estimated true labels with O(T ) space. For each task, it needs to
load the related labels with O(M) space. The overall SC of MV is O(M + T ).

4.2.2 Time complexity (TC).

As shown in Algorithm 2, LAonepass estimates one true label and updates all the worker qualities at every time-slice.
Estimating one true label aggregates at most M labels, whose TC is O(M). Updating one worker quality takes O(1) as
in Equation (7). In total it takes O(M) to update all the worker qualities at one time-slice. Given total T tasks, the
overall TC of LAonepass is O(TM).

Algorithm 1 needs to update all the estimated true labels and worker qualities in each iteration, and the TC in one such
iteration is O(TM), which equals to the TC of LAonepass. Assume the algorithms take I iterations to converge, the
overall TC of Algorithm 1 is O(ITM).

MV estimates one true label by aggregating at most M labels withO(M) time. There are T tasks in total, so the overall
TC is O(TM).

5 Extensions

In this section, we present two extensions. The first extension can improve the accuracy of LAonepass by traversing the
crowdsourced labels again. The second extension describes how the proposed algorithms aggregate labels online.

5.1 Two Pass Algorithm

LAonepass in Algorithm 2 estimates the true labels one after another. It traverses all the labels only once. As the algorithm
aggregates more labels, the estimated worker qualities will converge, and the estimated true labels will be more accurate.
However, this also raises one problem: the true labels estimated early in the process may not be accurate because the
worker qualities were yet to converge. To solve this problem, we propose LAtwopass, a simple extension of LAonepass, that
traverses the labels twice. LAtwopass uses the converged worker qualities estimated by LAonepass to perform weighted
majority voting (WMV) by traversing all the labels once again to re-estimate true labels. We choose to use WMV as in
Equation (9). It is shown that this WMV rule has provable theoretical guarantee [21]. LAtwopass adds little overhead
over LAonepass because it does not estimate worker qualities in the second pass. Therefore, the second pass of LAtwopass

can be performed as efficient as MV, and it also has the same SC and TC as that of LAonepass.

vi = Kŵi − 1, ŷt = arg max
k
{
M∑
i=1

vi1(xi,t = k)|k ∈ [K]} (9)

5.2 Online Aggregation

Since we model LA as a dynamic system, LAonepass and LAtwopass can naturally be configured to aggregate labels online.
Specifically, assuming labels are arrived sequentially in chunks. Each chunk contains labels about a few tasks, and the
proposed algorithms can handle the extreme case where each chunk only contains one task’s labels. LAonepass estimates
worker qualities and true labels for tasks in the present chunk. LAtwopass uses worker qualities estimated by LAonepass

and re-estimates true labels in this chunk. After the true labels in this chunk are estimated, the labels in this chunk
can be discarded. The information about worker qualities is retained in the posterior worker quality distributions for
estimating the true labels of tasks in the next chunk. Therefore, LAonepass and LAtwopass have the ability to aggregate
labels online without re-visiting historical labels.

6 Experiments

In this section, we present the experimental results to evaluate LAonepass and LAtwopass. Additional results with
experimental environment and dataset properties can be seen in Appendix C. The code of our algorithms is also
submitted as supplementary file.
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Dataset T M K #label #truth
senti 98980 1960 5 569282 1000
fact 42624 57 3 214960 576
CF 300 461 5 1720 300

CF_amt 300 110 5 6025 300
MS 700 44 10 2945 700
dog 807 109 4 8070 807
face 584 27 4 5242 584
adult 11040 825 4 89948 333
web 2665 177 5 15567 2653
SP 4999 203 2 27746 4999

SP_amt 500 143 2 10000 500
ZC_all 2040 78 2 20372 2040
ZC_in 2040 25 2 10626 2040
ZC_us 2040 74 2 11271 2040
prod 8315 176 2 24945 8315
tweet 1000 85 2 20000 1000
bird 108 39 2 4212 108
trec 19033 762 2 88385 2275
rte 800 164 2 8000 800

smile 2134 64 2 30319 159
Table 2: Statistics about the datasets.

6.1 Setup

6.1.1 Datasets.

We use 20 publicly-available real-world datasets for evaluation. They are collected from 4 sources [34, 17, 35, 7],
covering a wide range of tasks such as sentiment analysis, entity resolution and face recognition. The sizes of the
datasets also vary from 1,720 to 569,282. The statistics of the datasets are summarized in Table 2, and their sources can
be seen in Appendix C.2. Note the last column of Table 2 shows the number of ground-truth labels available in each
dataset. The ground-truth labels are only used for evaluation, but not used as input to LA algorithms.

6.1.2 Methods.

The compared methods include MV, DS [10], LFC [19], EBCC [12], BiLA [18], ZC [20], IWWV [21] and LAA [26].
Descriptions of them can be seen in Prior Work sub-section.

6.1.3 Metrics.

We use accuracy to evaluate the effectiveness of an algorithm. The accuracy is defined as the ratio between the number
of correctly estimated true labels and number of tasks. The efficiency is evaluated by lg(sec), which is defined as
the base 10 logarithm of an algorithm’s runtime in seconds. If lg(sec) is increased by 1, the algorithm’s runtime is
increased 10 times.

6.1.4 Hyperparameters.

The proposed algorithms require to set two hyperparameters α and β. Usually the iterative LA methods select
hyperparameters by consulting the results of MV. However, running MV requires to traverse the entire dataset once,
but the proposed algorithms only traverse all the labels at most twice. They cannot afford to run MV for initialization.
Therefore, we set α = 2 and β = 2 for all datasets. Later we will show that the proposed algorithms are insensitive and
robust to hyperparameters.

6.1.5 Order of tasks.

The proposed algorithms estimate true labels sequentially. In order to show they are robust to the order of tasks, we run
the proposed algorithms 10 times with shuffled tasks over each dataset, and the accuracies of the proposed algorithms
are averaged over the 10 runs for each dataset. We also use this strategy in the online experiment.

8
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Figure 2: Offline experimental results

6.2 Offline Experimental Results

We first present the experimental results conducted offline when all the labels are fed into the algorithm at once. The
mean accuracies and lg(sec) of each method over 20 datasets are summarized in Figure 2. The detailed per-dataset
results can be seen in Appendix C.3. From Figure 2, first we can observe that LAtwopass and LAonepass rank second and
fourth over all the methods in terms of accuracy. This demonstrates that the proposed algorithms can effectively estimate
true labels even if they traverse the entire labels at most twice. Second, LAtwopass is more accurate than LAonepass on
average, which shows that traversing the labels again indeed improves accuracy. Third, the mean accuracy of LAtwopass

is only second to EBCC. To the best of authors’ knowledge, EBCC is the best performing LA method in general because
it learns worker correlation while estimating true labels. However, EBCC is extremely inefficient, it is three orders of
magnitude slower than the proposed algorithms, making it unscalable to large datasets. For example, we find that EBCC
takes about 4.5 hours to aggregate senti while LAtwopass only takes about 5 seconds. Lastly, the proposed algorithms
also run much faster than the methods that model worker qualities. It is also worth noting that the runtime of LAonepass

is very close to that of MV, but is much more accurate than MV.

6.2.1 Comparison to MV.

We perform one-sided Wilcoxon signed rank test [36] on every method against MV based on each method’s accuracies
on 20 datasets, and the results are summarized in Table 3. The results of Wilcoxon test tell whether each method is
significantly more accurate than MV and at what level. We use two significance levels whose p-value thresholds are
0.01(**) and 0.05(*), respectively, and W_ denotes the statistic of a method summing up the ranks of datasets that this
method is compared with MV. From Table 3, we can see only EBCC, LAtwopass and LAonepass are at ** significance
level. This provides a very strong evidence that LAtwopass and LAonepass perform significantly better than MV in terms
of accuracy.

6.2.2 Hyperparameter robustness.

We report the accuracies of the proposed algorithms initialized by different parameters in Figure 3. We vary α and β
from (1, 1) to (5, 5) to generate 25 different initial settings. From Figure 3, we can see that the gaps between the best
and worst accuracies of LAtwopass and LAonepass are 0.005 and 0.1, respectively. This shows the proposed algorithms
are robust to hyperparameters. Note that the LAonepass’s accuracies are relatively low when α = 1 and β > 1. This is
because the initial worker qualities under these combinations are very low, which take time for the worker qualities to
converge. But we can see that even in these cases LAonepass can eventually estimate worker qualities accurately because
LAtwopass has higher accuracies with the same initialization. The result shows that the proposed algorithms are robust to

9
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Method W_ significance level p-value
DS 134 0.1471

LFC 136 0.1305
IWMV 165 * 0.012
EBCC 182 ** 0.0014
LAA 80 0.8256
ZC 124 0.2490

BiLA 147 0.0615
LAtwopass 178 ** 0.0024
LAonepass 176 ** 0.0032

Table 3: One-sided Wilcoxon signed rank test results

Figure 3: Accuracies of the proposed algorithms under different initial settings.

hyperparameters, which differs from some iterative algorithms requiring delicate hyperparameters. For example, EBCC
requires to carefully set 6 hyparameters in order to achieve the reported accuracies.

6.2.3 Worker Quality Convergence Study.

We perform two simulations to verify the theoretical convergence and error bound of LAonepass. In the first simulation,
we generate 20 workers with the same true worker quality 0.6. These workers label 1000 tasks with 4 classes, and
their labels are generated according to their worker qualities. Then the generated labels are fed to LAonepass to estimate
worker qualities. The results are illustrated in Figure 4 (top). In Figure 4 (top), the red line shows the true worker
quality. The green traces show the evolution of estimated worker qualities. The blue and orange curves are the error
bounds computed by taking ε = {1, 2} in Corollary 1, which bound the error with at least 67% and 95% probabilities,
respectively. In the second simulation, we also generate 20 workers but their worker qualities are sampled from
[0.4, 0.7], the other settings remain the same as the first one. Due to space limitation, we randomly select two workers
and present their estimated worker qualities in Figure 4 (bottom). The complete results of the second simulation are in
Appendix C.4. From Figure 4, we can observe that the estimated worker qualities can converge to their true qualities
regardless of whether the workers have the same quality or not, and the errors due to estimation can also be bounded
with high probability. The results empirically confirm the claims in Theorem 1 and Corollary 1.

6.3 Online Experimental Results

Finally, we perform experiments to show that the proposed algorithms can aggregate labels online over 15 selected
datasets (listed in Appendix C.5) where each has at least 95% tasks with ground-truths for evaluation. We divide the
tasks in each dataset evenly into 10 chunks, and feed their labels in each chunk sequentially to the algorithms. We
compare the proposed algorithms with MV and BiLA [18], which can aggregate labels online.

We report the averaged accuracy and lg(sec) in Figure 5. The detailed per-dataset results are in Appendix C.5. From
the figure, we can observe that the proposed algorithms can accurately estimate true labels online, and the accuracies of
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Figure 4: Simulated experimental results.

Figure 5: Online experimental results.

the proposed algorithms and MV converge to their offline counterparts. However, BiLA does not converge to its offline
accuracy. This is because BiLA uses neural network in its model, which requires a large number of labels to train in
order to achieve a decent performance. However, there are inadequate labels for BiLA to train online in the datasets.
We also observe that the proposed algorithms can efficiently aggregate labels online, whose runtimes are close to that of
MV. In contrast, although BiLA can aggregate labels online without re-visiting historical data, it needs to traverse the
labels in the present chunk multiple times to train its model, which cannot aggregate labels in real-time.
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7 Conclusion

This paper presents a novel light-weight method for aggregating crowdsourced labels. We treat LA as a dynamic
system and model it by a Dynamic Bayesian network. Two algorithms, LAtwopass and LAonepass, are derived from the
model, which can aggregate labels by traversing the dataset at most twice. We prove the worker quality estimated
by LAonepass converges as fast as o(1/

√
t), its error can be bounded, and show the space and time complexities of the

proposed algorithms are equal to those of MV. Experiments demonstrate that the proposed algorithms can effectively
and efficiently aggregate labels offline and online.
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A Appendix A. Proof of Theorem 1

In order to prove the theorem, we first present Lemma 1.
Lemma 1. Let {ft(W), t = 1, 2, . . . } be a sequence of posterior probability density functions p(W|Ct) of random
vectors defined on [0, 1]M . Define Lt(W) ≡ log ft(W) as in Equation (8). Suppose for each t, there exists a strict
local maximum,W∗t , of Lt(W). Then the posterior distribution p(W|Ct) satisfies asymptotic normality:

(−∇2Lt(W∗t ))1/2(W −W∗t )
d−→ N(0, 1) as t→∞, (10)
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where Ct =
∑M
i=1 Ci,t is the number of correctly labeled tasks by all workers up to time-slice t.

Proof. We use Theorem 2.1 in [?] to prove this lemma. Theorem 2.1 in [?] states if the following conditions (P1-2 and
C1-3) are satisfied, then the asymptotic normality property in Equation (10) holds.

P1. ∇ log p(W∗t |Ct) = 0.

P2. Σt ≡ {−∇2 log p(W∗t |Ct)}−1 is positive definite.

C1. “Steepness”: as t→∞, σ2
t → 0 where σ2

t is the largest eigenvalue of Σt.

C2. “Smoothness”: for any ε > 0, there exists an integerN and δ > 0 such that, for any t > N , andW ′ ∈ H(W∗t ; δ) =
{|W ′ − W∗t | < δ}, ∇2 log p(W ′|Ct)| satisfies I − A(ε) ≤ ∇2 log p(W ′|Ct)|{∇2 log p(W∗t |Ct)|}−1 ≤ I + A(ε),
where I denotes the identity matrix with an appropriate size and A(ε) is the positive semi-definite symmetric matrix
with the largest eigenvalue goes to 0 as ε→ 0.

C3. “Concentration”: for any δ > 0,
∫
H(W;δ)

p(W|Ct)dW → 1 as t→∞.

In the rest of the proof, we will show the satisfactions of these conditions.

Proof of P1 and P2. SinceW∗t is a local maximum of Lt, the satisfaction of P1 is straightforward. The Hessian of Lt
is

∇2Lt(W∗t ) = diag(−Ci,t + α− 1

(w∗i )2
− t− Ci,t + β − 1

(1− w∗i )2
)i (11)

where Ci,t is the number of correctly labeled tasks by worker i up to t. It can be observed that∇2Lt(W∗t ) is negative
definite because ∇2Lt(W∗t ) is a diagonal matrix whose diagonal entries are negative given reasonable and small
hyperparameters α and β. Therefore Σt is positive definite and P2 satisfies.

Proof of C1. As t → ∞, the diagonal entries of ∇2Lt(W∗t ) approach −∞. Hence the diagonal entries of Σt
approaches 0. It implies all the eigenvalues of Σt go to 0 as t→∞. Therefore, C1 is satisfied.

Proof of C2. C2 is straightforward because all the entries in ∇2Lt(W) are continuous with respect to each wi in its
domain.

Proof of C3. By setting ∇Lt(W) = 0, we can easily find (W∗t )i has the form as given in Equation (7), which
is the mode of a posterior distribution Beta(Ci,t + α, t − Ci,t + β). The variance of the posterior distribution is
(Ci,t+α)(t−Ci,t+β)
(t+α+β)2(t+α+β+1) . Because Ci,t ≤ t, the denominator of the variance dominates the numerator. Therefore the
variance approaches 0 as t→∞. This means Ep(W|Ct)[W −W∗t ]→ 0. Therefore C3 satisfies.

The lemma shows the posterior distribution of worker quality converges as t→∞, and it converges to the minimizer
W∗t of Lt(W).

From Lemma 1 we can take the expectation on the asymptotic distribution in Equation (10) and get

E[(−∇2Lt(W∗t ))1/2(W −W∗t )]→ 0. (12)

It implies

|Ep(W|Ct)(W)−W∗t | = o(1)|(−∇2Lt(W∗t ))−1/2|, (13)

where Ep(W|Ct)(W) is the posterior mean ofW at time-slice t. From Equation (11), we can see −∇2Lt(W∗t ) = Θ(t).
Therefore, |Ep(W|Ct)(W)−W∗t | = o(1/

√
t).

Moreover, the ŵti given by Equation (7) is the mode of posterior distribution p(wti |Ct). Therefore we have

(|Ŵ − Ep(W|Ct)(W)|)i = |ŵti − Ep(wi|Ci,t)(wi)| (14)

Denote the two parameters of the posterior distribution p(wi|Ci,t) as αi = Ci,t + α and βi = t− Ci,t + β. The mode
and mean of the posterior can be written as αi−1

αi+βi−2 and αi

αi+βi
, respectively. Therefore, we can write out Equation
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(14) as

(|Ŵ − Ep(W|Ct)(W)|)i = | αi − 1

αi + βi − 2
− αi
αi + βi

|

= | (αi − 1)(αi + βi)− αi(αi + βi − 2)

(αi + βi − 2)(αi + βi)
|

= | (αi − βi)
(αi + βi − 2)(αi + βi)

|

≤ | 1

(αi + βi − 2)
| = | 1

t+ α+ β − 2
| = Θ(1/t) = o(1/

√
t)

(15)

Hence, |Ŵ − Ep(W|Ct)(W)| = o(1/
√
t). By triangle inequality, we have

|Ŵ −W∗t | ≤ |Ŵ − Ep(W|Ct)(W)|+ |Ep(W|Ct)(W)−W∗t |. (16)

We have shown that |Ep(W|Ct)(W)−W∗t | = o(1/
√
t) and |Ŵ −Ep(W|Ct)(W)| = o(1/

√
t), so |Ŵ −W∗t | = o(1/

√
t),

which proves the theorem.

B Appendix B. Proof of Corollary 1

From Equation (10) and given the fact thatW∗t is a vector of scalars, we can derive

Ŵ d−→ N(W∗t ,Σt), (17)

where Σt ≡ {−∇2 log p(W∗t |Ct)}−1 = {−∇2Lt(W∗t )}−1 as defined in Lemma 1. By transformation of Normal
distribution, we have

p(|Ŵ −W∗t | ≤ εΣ
1/2
t ) = Φ(ε)− Φ(−ε), (18)

where ε is a positive real number and Φ(·) is the CDF of standard Normal distribution. Since Σ
1/2
t is the standard

deviation of the Normal distribution in Equation (17), p(|Ŵ −W∗t | ≤ εΣ
1/2
t ) can be interpreted as the probability that

Ŵ falls within ε standard deviations away fromW∗t .

From Equation (11), we have
(
∇2Lt(W∗t )

)
i
≤ −t, which implies that (Σt)

1/2
i ≤ 1/

√
t. Therefore,

p(|Ŵ −W∗t | ≤ εΣ
1/2
t ) ≤ p(|Ŵ −W∗t | ≤ ε/

√
t), (19)

which implies

p(|Ŵ −W∗t | ≤ ε/
√
t) ≥ Φ(ε)− Φ(−ε). (20)

C Appendix C. Experiments

In this section, we provide additional information about the experiments.

C.1 C.1. Implementation and Experiment Environment

We run all experiments on a Ubuntu desktop with an AMD 5900 CPU and 16 GB memory.

The algorithms in the experiments are all implemented in Python. We implement MV, IWMV and the proposed
LAtwopass and LAonepass by ourselves. The implementations of DS, LFC and ZC along with the hyperparameters are
from the Truth Inference Project [7]. The implementations of EBCC [12], LAA [26] and BiLA [18] along with the
hyperparameters are from the papers’ authors.

C.2 C.2. Datasets and Pre-processing

The links and sources of the used datasets are listed below. The descriptions of the datasets can also be found in the
given links.
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• senti and fact are collected from CrowdScale 2013 [34]. They can be downloaded at https://sites.google.
com/site/crowdscale2013/home.

• MS, ZC_in, ZC_us, ZC_all, SP, SP_amt, CF and CF_amt are from Active Crowd Toolkit project [35]. They
can be downloaded at https://github.com/orchidproject/active-crowd-toolkit.

• prod, tweet, dog, face, smile and adult are collected from Truth Inference Project [7]. They can be downloaded
at http://dbgroup.cs.tsinghua.edu.cn/ligl/crowddata/.

• bird, rte, web and trec are used in [17]. They can be downloaded at https://github.com/zhangyuc/
SpectralMethodsMeetEM.

C.2.1 Pre-processing.

We perform two pre-processing steps after the datasets are collected.

1. We re-index the tasks from 0 to T − 1, workers from 0 to M − 1 and classes from 0 to K − 1. It complies
with the indexing rule of Python.

2. We delete the ground-truth labels whose tasks do not appear in the crowdsourced labels. For example, there
are 160 tasks with ground-truth labels in the smile dataset. But we find one of the 160 tasks does not have any
crowdsourced label. So we delete this ground-truth label.

We do not modify the datasets further to keep the datasets as intact as possible.

C.3 C.3. Offline Experiments

The accuracies and runtimes of methods over each dataset are summarized in the following tables.

Dataset MV DS LFC IWMV EBCC LAA ZC BiLA LAtwopass LAonepass

senti 0.8828 0.8240 0.818 0.89 0.879 N/A 0.889 0.779 0.8922 0.8899
fact 0.9017 0.8507 0.8611 0.9010 0.8924 0.8958 0.901 0.941 0.901 0.901
CF 0.8843 0.7967 0.8167 0.8833 0.8833 0.8533 0.88 0.8867 0.8823 0.8823

CF_amt 0.8558 0.8567 0.8367 0.8567 0.8533 0.8467 0.8533 0.8667 0.8564 0.8574
MS 0.7068 0.7643 0.7743 0.8 0.7871 0.6957 0.7971 0.7829 0.7959 0.7951
face 0.6363 0.6404 0.6404 0.6301 0.6353 0.6507 0.6284 0.6438 0.6303 0.6341
adult 0.7577 0.7447 0.7628 0.7658 0.7478 0.6727 0.7207 0.7628 0.7655 0.7637
dog 0.8224 0.8426 0.8426 0.8302 0.8401 0.8364 0.8302 0.8302 0.8302 0.8314
web 0.7314 0.8255 0.8326 0.8424 0.7437 0.8428 0.8398 0.7791 0.8376 0.8166
SP 0.8853 0.9148 0.9148 0.9052 0.9152 0.8794 0.9166 0.9056 0.9031 0.8949

SP_amt 0.9426 0.944 0.944 0.946 0.944 0.944 0.946 0.942 0.944 0.943
ZC_all 0.8307 0.7926 0.7922 0.8343 0.8632 0.7735 0.8299 0.7961 0.8427 0.8355
ZC_in 0.7402 0.7608 0.7598 0.7490 0.7721 0.6716 0.7725 0.7186 0.7463 0.7437
ZC_us 0.8607 0.8211 0.8211 0.8706 0.9123 0.8098 0.8578 0.8250 0.8678 0.8633
product 0.8966 0.9366 0.9373 0.9274 0.9349 0.8485 0.9280 0.8946 0.9262 0.9083
tweet 0.9341 0.9600 0.9600 0.9480 0.9610 0.9560 0.9510 0.9530 0.9481 0.9512
bird 0.7593 0.8796 0.8981 0.7222 0.8611 0.8796 0.7222 0.8426 0.7537 0.7528
rte 0.8976 0.9275 0.9275 0.9275 0.9313 0.9163 0.9250 0.9350 0.9266 0.9195
trec 0.6521 0.7046 0.7024 0.5912 0.7037 0.5829 0.5697 0.6963 0.6315 0.6428

smile 0.7201 0.7484 0.7484 0.7296 0.7233 0.7170 0.7107 0.7170 0.7723 0.7541
mean 0.8149 0.8268 0.8295 0.8275 0.8392 0.8038 0.8235 0.8249 0.8327 0.8290

Table 4: Offline accuracies of methods over 20 real-world datasets.
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Dataset MV DS LFC IWMV EBCC LAA ZC BiLA LAtwopass LAonepass

senti 3.066 36.965 38.406 49.020 15588 N/A 22.077 10161 5.618 3.446
fact 1.312 9.702 9.733 17.990 3125.148 42.877 6.182 137.687 2.027 1.239
CF 0.010 0.121 0.171 0.150 11.042 14.529 0.055 7.017 0.017 0.010

CF_amt 0.010 0.218 0.229 0.155 2.213 2.392 0.124 2.445 0.020 0.012
MS 0.022 0.254 0.238 0.481 59.165 6.471 0.136 4.202 0.053 0.030
face 0.019 0.160 0.167 0.276 20.880 1.498 0.105 1.640 0.032 0.020
adult 0.332 3.874 3.807 5.068 711 852.562 2.347 435.186 0.601 0.376
dog 0.025 0.251 0.276 0.373 9.582 4.123 0.153 4.747 0.045 0.028
web 0.083 0.744 0.709 1.347 159.522 30.692 0.388 30.598 0.156 0.093
SP 0.158 0.635 0.621 1.882 173.864 10.878 0.391 23.458 0.225 0.142

SP_amt 0.016 0.158 0.190 0.195 2.258 2.330 0.099 2.173 0.034 0.021
ZC_all 0.064 0.361 0.362 0.786 67.306 3.184 0.250 4.987 0.094 0.060
ZC_in 0.070 0.223 0.230 0.782 50.154 2.388 0.132 2.867 0.093 0.059
ZC_us 0.065 0.212 0.237 0.788 45.786 3.083 0.155 5.159 0.097 0.064
product 0.273 0.684 0.702 3.133 58.687 14.550 0.455 34.203 0.365 0.225
senti_1k 0.036 0.316 0.332 0.393 25.383 2.885 0.204 3.048 0.050 0.033

bird 0.004 0.061 0.065 0.043 0.778 2.818 0.038 0.613 0.007 0.005
rte 0.026 0.131 0.157 0.311 9.998 3.508 0.088 3.481 0.039 0.025
trec 0.618 2.693 2.695 7.304 923.698 247.690 1.801 421.628 0.924 0.562

smile 0.069 0.317 0.386 0.847 31.386 3.936 0.235 6.386 0.113 0.072
mean 0.314 2.904 2.986 4.566 1053.806 65.915 1.771 564.626 0.530 0.326

Table 5: Offline runtime (in seconds) of methods over 20 real-world datasets.

C.4 C.4. Simulated Experimental Results
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Figure 6: Complete simulated experimental results of the second simulation. x-axis is the time-slice/task index; y-axis
is the worker quality.
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C.5 C.5. Online Experiments

In the online experiments, we select the following 15 datasets: CF, CF_amt, MS, dog, face, web, SP, SP_amt, ZC_all,
ZC_in, ZC_us, product, tweet, bird, rte. All the tasks in the selected datasets, except web, have ground-truth labels for
evaluation. There are 2665 tasks in web, and 2653 of them have ground-truth labels for evaluation. We do not select the
other datasets because there are too few tasks with ground-truth labels to be distributed into each chunk for evaluation.

The accuracies and runtimes of each method performed on the selected datasets at every data chunk are illustrated in
the figures on the next two pages.
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Figure 7: Online accuracies of each method performed on the selected datasets. The x-axis is the chunk index; the
y-axis is the accuracy. The red and blue lines, representing the accuracies of LAtwopass and LAonepass, may overlap in
some datasets.
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Figure 8: Online runtime (lg(sec)) of each method performed on the selected datasets. The x-axis is the chunk index;
the y-axis is lg(sec).
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