mzuriCh ETH Library

Causality Analysis in Control Plane
Verification

Conference Paper

Author(s):
Chen, Yu; Schneider, Tibor (:); Vanbever, Laurent

Publication date:
2023-12-08

Permanent link:
https://doi.org/10.3929/ethz-b-000643612

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
https://doi.org/10.1145/3630202.3630237

Funding acknowledgement:
851809 - From Network Verification to Synthesis: Breaking New Ground in Network Automation (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.



https://orcid.org/0000-0003-2858-9120
https://doi.org/10.3929/ethz-b-000643612
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3630202.3630237
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Causality Analysis in Control Plane Verification

Yu Chen Tibor Schneider Laurent Vanbever
ETH Zirich ETH Zirich ETH Zirich
yuchenl4@ethz.ch sctibor@ethz.ch lvanbever@ethz.ch

ABSTRACT

Control plane verification promises to help operators build reliable
networks by reporting a counterexample that violates the specifica-
tion. However, a single counterexample imposes a major challenge
for operators to understand and repair the violation.

To improve the usability of control plane verification, we present
the first verifier computing the space of all specification violations
as a symbolic expression. Our prototype implementation computes
the causality between the network routing state and the external
routing inputs that induce that state.

Describing the space of all violations helps operators address the
root cause of the violation, while presenting the space as a symbolic
expression allows operators to further manipulate the output to
inspect certain aspects of the problem.

ACM Reference Format:

Yu Chen, Tibor Schneider, and Laurent Vanbever. 2023. Causality Analysis in
Control Plane Verification. In Proceedings of the CONEXT Student Workshop
2023 (CoONEXT-SW °23), December 8, 2023, Paris, France. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3630202.3630237

1 INTRODUCTION

Over the past decade, the research community has proposed a large
number of network verification systems. Control plane verification
in particular promises to analyze the network-wide configuration
and verify specifications against all external routing inputs, not
just the ones that are currently received. The industry, however,
has been hesitant in adopting such systems. One reason for this
slow adoption is that these systems are challenging to use.

In case of a specification violation, control plane verifiers report
a counterexample which consists of a violating network state and
concrete external routing inputs that induce that state. Operators
must repair their configuration based on this single counterexample.
This is challenging for at least three reasons:

1. A single counterexample does not directly indicate bugs in the
configuration. Operators can only guess which exact attributes
cause the network to misbehave. Further, operators cannot iden-
tify whether a fix addresses the root cause of the violation.

2. Verifiers may return a corner case instead of a fundamental
violation. The operator must fix that corner case before invoking
the verifier again, hoping that the next counterexample is part
of a more fundamental issue.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CoNEXT-SW °23, December 8, 2023, Paris, France

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0452-9/23/12.

https://doi.org/10.1145/3630202.3630237

3. The counterexample may not describe a bug in the configura-
tion, but it may point to an imprecise specification. For example,
the counterexample can entail routing inputs the operator as-
serts to be impossible in practice without explicitly describing
them in the specification. In this case, operators must refine the
specification and rerun the verifier.

Instead of returning individual counterexamples, we propose a
verification framework that computes an exact description of the
entire space of external routing inputs that violate the specification.
Instead of enumerating each counterexample, we describe the space
using a single symbolic expression.

Such a symbolic expression addresses all three challenges men-
tioned above. First, having access to the entire violation space helps
operators to identify the fundamental issue while ensuring that the
repair addresses the entire violation space. Second, the symbolic
expression describes every violation simultaneously, helping oper-
ators to identify corner cases and focus on major issues first. Third,
the symbolic expression can be further refined and simplified, e.g.,
by removing the routing inputs that the operator asserts will never
occur. Operators can also substitute symbols with concrete values
and let automated tools simplify the resulting expression.

Generating such a symbolic expression requires a verifier to
analyze the causality between the routing behavior and external
routing inputs, i.e., how different routing inputs affect the network-
wide routing state. Unfortunately, existing verification systems
cannot express this causality due to limitations in their network
encodings. Most systems rely on SMT solvers [1], which can only
find individual counterexamples. Others use Binary Decision Dia-
grams (BDD) [2] to capture the local causality of a router interface,
but they fail to analyze the network-wide routing as BDD cannot
capture the route selection process efficiently.

We design a new control plane verification framework that cap-
tures the causality between the external routing inputs and the
network routing states using symbolic expressions. The framework
takes as input: (i) a network configuration; and (ii) a network spec-
ification. It first computes a mapping between a router’s selected
route and the routes of its neighbors based on each router’s config-
uration. It then combines these mappings to compute a mapping
between the external routing inputs and the network-wide routing
state. In the end, it computes a symbolic expression describing the
space of all external routing inputs that result in a network routing
state that violates the specification.

Precisely describing all external routing inputs that violate a
specification as a symbolic expression has its cost: it takes a lot of
resources to generate and simplify the routing inputs, both in com-
putation time and memory usage. In addition, when the network
size increases, the expression can be more complex to understand
than a single counterexample without further parsing. In §3, we
show how time and memory usage grows exponentially with the
network size. We discuss possible optimizations in §4.


https://orcid.org/0000-0002-3862-3006
https://orcid.org/0000-0003-2858-9120
https://orcid.org/0000-0001-7419-2971
https://doi.org/10.1145/3630202.3630237
https://doi.org/10.1145/3630202.3630237

CoNEXT-SW ’23, December 8, 2023, Paris, France

2 DESIGN

We compute a symbolic expression that describes all external rout-
ing inputs that violate the specification in three steps.

Step 1: Local causality. We first compute the local causality, a
mapping from a router’s local environment to its selected route.
The local environment contains external routing inputs the router
receives and the selected routes of its neighbors. The computation
consists of two sub-steps. First, we transform the selected route of
each neighbor by exploring all execution paths through both the
neighbor’s export policy and the router’s import policy. Each exe-
cution path describes: (i) the received route; and (ii) the conditions
when the route traverses the path.

Second, we symbolically perform the route selection process. For
each execution path p, we compute the local environment for p’s
route by combining two conditions: (i) the route traverses p; and
(ii) the route is preferred over all other received routes.

Step 2: Global causality. Based on the local causality, we compute
the global causality between the external routing inputs and the
global routing state, i.e., the selected routes of all routers in the
network. To that end, we check whether each global routing state is
reachable, i.e., whether there exist external routing inputs that result
in the given state. To check a global routing state’s reachability, we:
(i) check that all local environments can be satisfied simultaneously;
and (ii) ensure the absence of routing loops.

We then combine the local environments of all reachable states
to remove the dependency on neighbors’ selected routes. For each
reachable state, we first compute its propagation graph, an acyclic-
directed graph representing how routes are propagated in the net-
work. We then repeatedly substitute the neighbor’s selected routes
in all local environments in an order that follows the propagation
path in reverse. Finally, we combine all environments and yield a
single symbolic expression describing the external routing inputs
that lead to the given global routing state.

Step 3: Violation. In the final step, we generate a description of
all external routing inputs that violate the specification. To that
end, we collect all global routing states for which both the external
routing inputs and the resulting state violate the specification. We
then combine all collected routing inputs using a logical disjunction
into a symbolic expression and perform boolean simplification.

3 PROTOTYPE

We implement a prototype with around 1k lines of Haskell code. We
use the network in Fig. 1 to demonstrate our output. The network
should advertise all prefixes it receives from its provider (prov) or
peer to its customer (cust). The network fails to implement this
specification: R1 does not advertise routes from the provider to the
customer as the community to-c is missing. In the prototype, we
encode the specification as Expr. (1), where p is a symbolic prefix.

prov.send(p) V peer.send(p) = cust.rco(p) (1)

The prototype outputs the following expression describing the
entire space of external routing inputs that violate the specification:

(prov.send(p) A peer.send(p)) VvV Pe
P := p € cust-pl A cust.send(p)

@

Y. Chen, T. Schneider, and L. Vanbever

prov peer
tch i t-pl | '

match ip cust-p ' set 1p 100 , set 1p 15? }

set 1p 1000 v y set comm "to-c
cust : —> R R2

match comm "to-c" —— BGP session

Figure 1: An example network

Expr. (2) shows that the specification is violated whenever only the
provider advertises a prefix. This clearly identifies the fundamental
violation: the provider’s prefix is blocked from being advertised to
the customer. In addition, the expression P, describes a corner case
where the customer does not receive the prefix advertised by itself,
which points to an imprecise specification. Users can filter out this
corner case by restricting cust.send(p) to false in Expr. (2).

We further profile the end-to-end running time and memory
usage for verifying networks of different sizes. We configure the
routers to run BGP, connected using an iBGP route reflection topol-
ogy with two route reflectors. We also configure well-known busi-
ness relationships for three external neighbors (a provider, a peer,
and a customer). The prototype takes 50ms for a network with 6
internal routers, while 200s for a network with 10 internal routers.
The memory usage is 83MB and 852MB, respectively. The results
indicate a scalability issue: the time and memory usage grows ex-
ponentially with the network size in Step 2.

4 OUTLOOK

We identify two dimensions to extend our prototype: its scalability
and the generality of its specification language. We further describe
new applications enabled by our framework.

Scalability. To improve the scalability of our prototype, we plan
to adopt Multi-Terminal BDD to benefit from its compact encoding.
In addition, we plan to include the specification already in Steps 1
and 2 (instead of only in Step 3) to simplify the global causality.

Specification Language. We intend to extend the specification
language supported by our prototype by allowing operators to ex-
press high-level intent on both the routing state and the forwarding
state of the network.

Applications. A description of the space of all external routing
inputs that violate a specification can enable new applications for
improving network operations. In particular, we envision a system
that attaches probabilities to the space of external routing inputs.
This allows operators to explore the space of violations by ordering
them according to their likelihood.

ACKNOWLEDGMENTS

The research leading to these results was supported by an ERC
Starting Grant (SyNET) 851809.

REFERENCES

[1] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. 2017. A general approach to
network configuration verification. In SIGCOMM.

[2] S.Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and G. Varghese.
2016. Efficient Network Reachability Analysis Using a Succinct Control Plane
Representation. In OSDL



