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Abstract

By transferring the knowledge learned from previous ex-
periences to new tasks, graph meta-learning approaches
have demonstrated promising performance on few-shot graph
learning problems. However, most existing efforts predomi-
nately assume that all the data from the seen classes is gold-
labeled, while those methods may lose their efficacy when the
seen data is weakly-labeled with severe label noise. As such,
we aim to investigate a novel problem of weakly-supervised
graph meta-learning for improving the model robustness in
terms of knowledge transfer. To achieve this goal, we propose
a new graph meta-learning framework — Graph Interpolation
Networks (Meta-GIN). Based on a new robustness-enhanced
episodic training paradigm, Meta-GIN is meta-learned to in-
terpolate node representations from weakly-labeled data and
extracts highly transferable meta-knowledge, which enables
the model to quickly adapt to unseen tasks with few labeled
instances. Extensive experiments demonstrate the superiority
of Meta-GIN over existing graph meta-learning studies on the
task of weakly-supervised few-shot node classification.

Introduction

Many prevailing graph ML methods typically rely upon
the availability of sufficient labeled data (Zhou et al.[2019;
Ding et al.[|2020). In contrast, the long-tail property of real-
world graphs makes those methods less effective for learn-
ing new concepts when only limited labeled data is avail-
able (Ding et al.|2020; [Huang and Zitnik|2020; Baek, Lee,
and Hwang| 2020). A powerful graph ML model should
be able to quickly learn never-before-seen class labels us-
ing only a handful of labeled data. Dealing with such few-
shot concept is important and corresponds to many practi-
cal applications. For example, many social networking plat-
forms such as Facebook and Twitter need to consistently
promote new features or new social media groups to users.
Based on the limited user interactions, the deployed model is
required to provide high-quality recommendations for other
users regarding these new concepts. Inspired by the recent
success of meta-learning in image domain (Snell, Swer-
sky, and Zemel|2017), increasing research efforts have been
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'In this paper, we primarily focus on the task of few-shot node
classification.

made in graph meta-learning (Zhou et al.|2019} [Huang and
/1tnik|2020; Lan et al.[2020; Liu et al.|2021)) for solving the
problem of few-shot learning on graph-structured data.

Despite some exciting progress, the research of graph
meta-learning overall remains in its infancy. In general, ex-
isting endeavors predominately focus on the supervised set-
ting, where abundant gold-labeled nodes can be accessed
from the seen classes during the meta-training process. This
assumption is often infeasible since collecting such auxil-
iary knowledge is laborious and requires intensive domain-
knowledge, especially when considering the heterogene-
ity of graph-structured data. An alternative solution is to
adopt automatic labeling tools based on heuristics, crowd-
sourcing, or weak-learners (Zhang, Wang, and Qiao|[2019).
Though using such weakly-labeled data is more practical,
one companion issue is that those labels usually contain a
significant amount of noise. As shown in the previous re-
search studies (Ren et al.|2018a} Zhang et al.|[2019), most
of the existing few-shot learning (FSL) models are highly
vulnerable to noise or outliers, thus the model performance
on unseen tasks would be largely degraded if the model is
meta-learned on those weakly-labeled data. Therefore, it is
imperative to investigate the problem of weakly-supervised
graph meta-learning, in order to push forward the frontiers
of FSL on graphs.

As a research problem has been little explored, weakly-
supervised graph meta-learning is challenging to solve,
mainly due to the difficulty of extracting highly transfer-
able meta-knowledge from weakly-labeled node classes: (i)
on the one hand, the existing literature of learning with noisy
labels is tailored for independent and identically distributed
(i.i.d.) data such as image and text. The inability of model-
ing relational data like graphs that lie in non-Euclidean space
could largely jeopardize their effectiveness. Hence, it is nec-
essary to develop new frameworks that can consider the de-
pendencies among nodes and mitigate the inaccurate super-
vision signals; (ii) on the other hand, in order to extract meta-
knowledge during the meta-training process, graph meta-
learning models will be trained with diverse node classifica-
tion tasks from disjoint label spaces. It requires the model
to quickly adapt to never-before-seen labels, which poses
great challenges to existing denoising algorithms since they
are optimized in a static learning environment (i.e., a single
task). Hence, how to bridge the gap between the two learn-



ing paradigms and design a graph meta-learning model that
can effectively denoise and efficiently adapt to new task (i.e.,
meta-test task) with unseen classes is vital to be explored.

To address the aforementioned challenges, we present
a new robust graph meta-learning framework — Graph In-
terpolation Network (Meta-GIN) in this paper. Meta-GIN
is meat-learned with our carefully designed robustness-
enhanced episodic training, which can effectively solve
weakly-supervised few-shot node classification on graphs.
Instead of directly learning from a noisy meta-training
task in each episode, Meta-GIN meta-learns the graph FSL
model from the noise-reduced meta-training task interpo-
lated across a set of meta-training tasks. To obtain each
noise-reduced node representation in an interpolated meta-
training task, Meta-GIN randomly samples a set of meta-
training tasks sharing the same label space and learn expres-
sive node representations that captures both node attributes
and topological structure information. Afterwards, by inter-
polating and comparing the information among the sampled
nodes with the same label across a set of meta-training task,
Meta-GIN is able to provide a better estimation of confi-
dence score for each node and further summarize a noise-
reduced representation of the corresponding target class. By
learning across a pool of those interpolated tasks, Meta-
GIN can be meta-learned not only to denoise from weakly-
labeled data, but also to extrapolate the knowledge from seen
to unseen node classes. Finally, the learned Meta-GIN can
quickly adapt to new tasks using few fine-tuning steps. In
summary, the main contributions of our work are:

* We investigate a new problem — weakly-supervised graph
meta-learning, which can mitigate the limitation of exist-
ing graph meta-learning methods and push forward the
frontiers of few-shot learning on graphs.

* We propose a principled framework Meta-GIN that is ca-
pable of extracting highly transferable meta-knowledge
from weakly-labeled data, in order to solve unseen node
classification tasks with few labeled nodes.

* We perform extensive experiments on various real-world
datasets to corroborate the effectiveness of our approach.
The experimental results demonstrate the superior perfor-
mance of Meta-GIN over existing efforts.

Related Work

Graph neural networks (Chang et al.|2015}; |Cao, Lu, and Xu
20165 Kipf and Welling[2017; |Velickovic et al.|2018j; Hamil-
ton, Ying, and Leskovec|2017) have recently achieved mo-
mentous success in transforming the information of a graph
into low-dimensional latent representations. The effective-
ness of prevailing graph ML methods such as GNNs largely
relies on sufficient labeled instances. However, those meth-
ods fail to address graph few-shot learning (FSL) problems,
where the unseen concepts during testing phrase only have
few labeled instances (Zhou et al.|2019).

Meta-learning, also known as learning-to-learn, enables
the models to accumulate knowledge from previous expe-
riences, and has led to significant progress in various do-
mains for addressing FSL problems. In essence, a meta-
learning model learns across diverse meta-training tasks

sampled from those seen classes with a large quantity of
labeled data, and can be naturally generalized to a new
task (i.e., meta-test task) with unseen classes during train-
ing (Snell, Swersky, and Zemel|2017). Following this learn-
ing paradigm, researchers have proposed to use GNNs as
the backbone to extrapolate meta-knowledge on graphs,
which demonstrates promising results. Among recent ad-
vances of FSL on graphs, a major line of work aims to
solve the task of node classification (Zhou et al.[2019; Ding
et al.[[2020; Huang and Zitnik [2020; [Liu et al.[|[2021}; [Lan
et al.[[2020; Liu et al.|[2020). Among them, Meta-GNN,
GPN and G-Meta are three representative ones. Specifically,
Meta-GNN (Zhou et al.|2019) uses gradient-based meta-
learning to optimize a GNN model for few-shot node classi-
fication. GPN (Ding et al.|[2020) extends prototypical net-
works to graph-structured data by considering the impor-
tance of each node. G-Meta (Huang and Zitnik|2020) uses
local subgraphs to transfer subgraph-specific information.
Note that other methods such as GFL (Yao et al.|[2020)
and MetaTNE (Lan et al.|2020) are different from our sce-
nario since they are focusing on multiple networks and plain
networks, respectively. In addition to few-shot node classi-
fication, other graph ML tasks including graph classifica-
tion (Chauhan, Nathani, and Kaul [2019; Ma et al.|[2020)
and link prediction (Baek, Lee, and Hwang|2020; Zhang
et al.|2020) has also been studied under the FSL setting. Un-
like previous works, we propose a weakly-supervised graph
meta-learning framework, which eliminates the dependency
of gold-labeled data during meta-training.

Proposed Approach

In this section, we introduce the details of the proposed
Meta-GIN. To better explain how it works, we show its
framework in Figure 1. Based on our robustness-enhanced
episodic training, Meta-GIN facilitates graph meta-learning
on weakly-labeled nodes by interpolated noise-reduced node
representations. With the noise-reduced node representa-
tions, Meta-GIN further extracts highly transferable meta-
knowledge and performs few-shot node classification on
novel classes using optimization-based meta-learning. In
the following subsections, we elaborate three key parts:
robustness-enhanced episodic training, graph interpolation
networks, and meta-optimization, respectively.

Problem Definition 1 Weakly-supervised Few-shot Node
Classification: Given an attributed graph G = (A,;X),
and the node label set Y = {y1,y2,...,yc} that can be
divided two subsets: the seen labels Yirqin, and the un-
seen labels Y;qst. Specifically, we have substantial weakly-
labeled nodes with label noise for Yirqin, and few-shot
clean-labeled nodes (i.e., support set S) for each class in
Viest.- The problem aims to study how to predict labels for
the unlabeled nodes (i.e., query set Q) from those few-shot
node classes YViest, by leveraging the knowledge of weakly-
labeled nodes from Yirqin-

Note that if Vs consists of N classes and the sup-
port set S includes K labeled nodes per class, this prob-
lem is named N-way K-shot node classification problem.



In essence, the objective of this problem is to learn a meta-
classifier that can be adapted to new classes with only a few
labeled nodes. Therefore, how to extract highly transferable
meta-knowledge from weakly-labeled data from Yy,qin 1S
the key for solving the studied problem.

Robustness-enhanced Episodic Training

The effectiveness of few-shot learning algorithms largely
benefits from the episodic training paradigm (Vinyals et al.
2016)). Briefly, the key idea of episodic training is to mimic
the real test environment by sampling data from )y, and
the model learns over such meta-training tasks in a large
number of episodes. Following this idea, graph FSL meth-
ods construct a pool of few-shot node classification tasks
according to the seen labels. For each meta-training task
T: = {St, Q+}, the model is trained to minimize the loss
of its predictions for the query set Q; , and goes episode by
episode until convergence. In this way, the model gradually
collects meta-knowledge across those meta-training tasks
and then can be naturally generalized to the meta-testing task
Tiest = {S, Q} with unseen classes Vyes:.

Meta-training with Task Interpolation. However, exist-
ing graph FSL methods commonly assume that the labels
of nodes from Y;,q;n are clean, which is invalid under
the weakly-supervised setting we target. To suppress the
label noise during the meta-training process, we propose
a robustness-enhanced episodic training paradigm by us-
ing the idea of rask interpolation. Specifically, we sample
M meta-training tasks that share the same label space and
then perform interpolation among the M tasks to generate
a noise-reduced meta-training task. Correspondingly, each
node in the final N-way K-shot task is interpolated by M
nodes from different tasks with the same class label.

During each episode training, we firstly sample a set of
M meta-training tasks {7; }£, sharing the same label space
from y train-

Sy = {(Uzl’ yf,l)’ (Uf,vatS,2)7 ] (Uts,NxKv yi,NxK)}7
Q= {(Ug,l’ y?,l)’ (Ug,zvygz)v ) (Ug,NxKHyg,NxK’)}v

{THL, = {{S1, Q13 {S2, @2}, .. {Sur, Qur}},

ey
where all the task in {7;}*, are sampled from the same N
classes. For each meta-training task 7;, the support set S;
contains N classes and K weakly-labeled nodes per class,
while Q; containing K’ query nodes sampled from the re-
mainder of each of the N classes.

Furthermore, for each set of M label-sharing meta-
training tasks with weakly-labeled nodes, the proposed
framework Meta-GIN will try to generate a noise-reduced
meta-training task via task interpolation to improve the ef-
fectiveness of episodic training under the weakly-supervised
setting. Thus we can get the noise-reduced support and
query sets:

S'= {(Civyf)v (CS’ y;)7 ey (C?VxKay?VxK)}’
Ql = {(Ctllvylll)v (cg7y(21)a sy (C(JIVXK”y?VXK’)}’

where cj denotes the noise-reduced node representation
generated from Vi, = {vig,v2k,...,0nmk} across the

@

M tasks and y; denotes its corresponding shared target
class. With the noise-reduced meta-training task, our model
could further extract highly transferable meta-knowledge
and solve the weakly-labeled graph meta-learning problems.

Graph Interpolation Networks

Moreover, we propose a new family of graph neural net-
works, called Graph Interpolation Networks (GIN) to fa-
cilitate graph meta-learning on weakly-labeled nodes. In
essence, GIN is composed of two key building blocks, in-
cluding (1) a node representation learning module that em-
beds each node; and (2) a node interpolation module for de-
riving noise-reduced node representations for the final noise-
reduced meta-training task. The details are as follows:

Node Representation Learning. The initial step of con-
ducting graph meta-learning is to learn expressive node rep-
resentations that capture both graph structure and node fea-
tures. To achieve this, we first design a GNN-based encoding
module in GIN. Specifically, it is built with multiple GNN
layers that encode each node to a low-dimensional latent
representation. The core operation in GNNs is the message
passing scheme, in which information is propagated from
each node to its neighborhoods with specific determinis-
tic propagation rules. It is worth noting that the encoding
module is compatible with arbitrary GNN-based architec-
ture (Kipf and Welling|2017;|Hamilton, Ying, and Leskovec
2017; |Velickovi€ et al.|2018). To improve the model effi-
ciency on large graphs, we employ Simple Graph Convolu-
tion (SGC) (Wu et al.|2019) in this work. Specifically, SGC
utilizes a simplified graph convolution pre-processing fol-
lowed by standard multi-class logistic regression.

Node Representation Interpolation. However, the previ-
ously learned node representations from seen classes Vi qin
are unable to represent their corresponding classes since
they are likely mislabeled. Hence, our node representation
interpolation module aims at interpolating nodes in node
set Vi to generate noise-reduced node representations and
leverage those interpolated node representations to learn the
concept of each class.

To generate a noise-reduced representation with the M
labeled nodes from a set Vy, one straightforward solution is
taking the average of all the embedded nodes belonging to
that set with py = Ilel Zievk z;, where z; is the learned
node representations from the graph representation learn-
ing module of node v;. However, directly taking the mean
vectors of the embedded nodes as noise-reduced node rep-
resentation could be ineffective due to the existence of mis-
labeled nodes. Specifically, our node representation interpo-
lation module is designed to estimate a confidence score «;
for each node and further perform fine-grained interpolation
among the nodes from M tasks.

To identify the confidence score of each labeled node,
GIN will compute the confidence score of each sample with
message passing. As shown in Figure[I] we first build a full-
connected interpolation graph using M sampled nodes from
each set Vy, then we develop a node re-weighting layer us-
ing graph attention mechanism to aggregate and compare
the information among weakly-labeled nodes. The node re-
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Figure 1: Overview of the proposed framework. In each training episode, Meta-GIN interpolates weakly-labeled nodes from
multiple meta-training tasks to obtain the noise-reduced support and query set and further extracts highly transferable meta-
knowledge. During meta-testing, Meta-GIN can quickly adapt to unseen tasks with few-shot labeled instances.

weighting layer can be defined as follows:
51—a< Z aiiwr [z | A ]>

v €Vg

where w € R24' ig the learnable parameter vector, o is a
nonlinear activation function, i.e., sigmoid function. s; de-
note the confidence score of node v; and A; = z; — pi
captures the difference between the embedding of node v;
and the prototype of Vj,. By incorporating the distance be-
tween each node and the prototype, GIN can better perceive
the concept of the corresponding class and compute the fi-
nal confidence score. Specifically, a;; is the attention weight
between nodes v; and v;, we compute it via attention:

exp(LeakyReLU (a®[w™z;||wTz;]))
> mev, exp(LeakyReLU (aT[wTz;||wTz,,]))

3

Qjj = )
“)
where Z; = [z;||A;] and the attention vector a is a train-
able weight vector that assigns importance to different node
during aggregation.

After obtaining the confidence scores of the weakly-
labeled nodes in each set Vy, GIN is able to generate a noise
reduced node representation by interpolating these noisy la-
beled nodes with their weights. Based on the computed at-
tentional weights from Eq. (3), We can obtain the interpo-
lated representation with ¢, = Z Z SiZi.

Node Classification. With the noise-reduced support set S’
that contains K interpolated node representations for each
of the N classes, GIN will try to classify each instance
to its corresponding class label. This can be done with a
feed-forward layer y;, = softmax(Wlc, + b.), where
W, € R¥*N and b, € RV are learnable weight matrix
and bias, respectively. Under the episodic training frame-
work, the objective of each meta-training task is to minimize
the cross-entropy loss function for performing node classi-
fication. Specifically, the training loss for each interpolated
instance cy, is computed by:

E:

—log p(yrlck), (5)

where y; is the shared label of set V. As the training in-
stances are computed by the node interpolation module,
GIN is able to reduce the negative impacts of mislabeled
nodes during the meta-learning process. By minimizing the
above loss function, GIN is able to learn a generic classifier
for a specific N-way K-set meta-training task and further
extract highly transferrable meta-knowledge from weakly-
labeled data.

Meta-optimization

Having the proposed Graph Interpolation Networks, we are
able to obtain noise-reduced support set S’ and query set Q’
via interpolating multiple meta-training tasks. Upon that, we
train the model via meta-learning, such that the meta-learned
GIN model (Meta-GIN) is capable of effectively adapting to
new tasks with few labeled instances. Specifically, we follow
model-agnostic meta-learning (Finn, Abbeel, and Levine
2017) to learn Meta-GIN in an optimization-based fashion,
in order to better exploit the clean-labeled support nodes
during meta-testing and make fast and effective adaptation
to a new task through a small number of gradient steps.

Meta-training. In the meta-training stage, we expect to ob-
tain a good initialization of GIN, which is inherently gen-
eralizable to unseen tasks, and explicitly encourage the ini-
tialization parameters to perform well after a small number
of gradient descent updates on a new learning task. When
learning a specific interpolated task 7;, we begin with feed-
ing the nodes from the noise-reduced support set S; to GIN,
and calculate the cross-entropy loss L7 as formulated in Eq.
(B). We consider a GIN model represented by a parameter-
ized function fg with parameters 6, the optimization algo-
rithm first adapts the initial model parameters 6 to 6 for
each interpolated learning task 7, independently. Specifi-
cally, the updated parameter 6; is computed using £+ on
the interpolated node representation and the corresponding
class label. Formally, the parameter update with one gradient
step can be expressed as:

;=0 — aVeLr:(fo), (6)

where « controls the learning rate for each task. Note that



Algorithm 1: The learning algorithm of Meta-GIN.

Input: Task distribution p(7") over the input graph G
Output: The well-trained model Meta-GIN

1 Randomly initialize the parameters 8 of GIN

2 while not converge do

3 Randomly sample a batch of task sets with all the tasks
in a set {7; }2£, sharing the same label space.

4 for each task set {T;}1L, do

5 //Node Interpolation

6 for each Vi, € {{S: }1£1,{Q:}1£,} do

7 L Compute the representations for nodes in Vy,
8 Interpolate and obtain the noise-reduced node

representation cy,

9 Obtain the noise-reduced S, and Q;

10 Evaluate Vg L7/ (fe) using S; and L7/ in Eq.
1 | Compute adapted parameters 6’ by Eq. @
1z | Update 6 with the interpolated query set by Eq.

13 return Meta-learned graph meta-learning model Meta-GIN

Eq. (6) only includes one-step gradient update, while it is
straightforward to extend to multiple gradient updates (Finn,
Abbeel, and Levine|2017).

Our model Meta-GIN is trained by optimizing for the
best performance of fg with respect to @ across all in-
terpolated meta-training tasks. More concretely, the meta-
objective function is defined as follows:

min > ﬁﬁ(fe;):ﬂ{oln > L1 (fo-avor s (o))

T/ ~p(T) T/ ~p(T)
@)

where p(7) is the distribution of interpolated meta-training
tasks. Since the meta-optimization is performed over param-
eters @ with the objective computed using the updated pa-
rameters (i.e., 0;) for all tasks, correspondingly, the model
parameters are optimized such that one or a small number
of gradient steps on the target task will produce maximal
effectiveness.

Formally, we leverage stochastic gradient descent (SGD)
to update the model parameters @ with the instances from
the interpolated query set, such that the model parameters 6
are updated as follows:

0+ 6-5Ve > Lyl(fo) ®)

T ~p(T)

where [ is the meta step size. The detailed learning process
of Meta-GIN is presented in Algorithm [T}

Meta-testing. After training on a considerable number of
meta-training tasks, we expect that the Meta-GIN model
has been gradually meta-learned well for handling unseen
few-shot node classification tasks. Its generalization perfor-
mance will be measured on the test episodes, which contain
clean-labeled nodes sampled from ;e instead of Virqin.
For each meta-testing episode, we we will remove the Node
Interpolation module, and fine-tune the meta-learned classi-
fier Meta-GIN with the provided clean-labeled support set S
and classify each query node in Q into the most likely class.

Experiments

In this section, we will start with the experimental setup and
then present our experiment results to answer three research
questions: (i) is Meta-GIN effective in solving the weakly-
supervised few-shot node classification? (ii) Can Meta-GIN
achieve satisfying performance on a variety of noise levels?
and (iii) How does each module in Meta-GIN contribute to
the final performance?

Experiment Settings

Evaluation Datasets. We adopt three datasets used in previ-
ous research (Ding et al.|2019; |Huang and Zitnik|[2020) for
few-shot node classification. Amazon (McAuley, Pandey,
and Leskovec| |2015) is built with the products in “Elec-
tronics” and their complementary relationship (“bought to-
gether”) on Amazon. DBLP (Tang et al.|2008)) is a DBLP
citation network in which nodes denoting papers and the ci-
tation relations among papers are used to create links. To
further compare the performance of different methods on
large-scale graphs, we also include another citation network
ogbn-arxiv, which is a benchmark dataset from Open Graph
Benchmark (OGB). We follow the same train/validation/test
splits and data preprocess procedure as in (Ding et al.[2020)
for Amazon and DBLP datasets. For ogbn-arxiv dataset, we
retrieve the network with the public OGB package and split
it for few-shot learning node classification scenario. More
details including the data sources, preprocessing procedures
and the summary of statistics can be found in Appendix.

Label Corruption. To explore the performance of different
methods for graph meta-learning on weakly-labeled data, we
follow previous work (Ren et al.[2018b; (Chen et al.[2019;
Jiang et al.|2018; [Hendrycks et al.|2018) and inject two rep-
resentative types of label noise to the datasets. Specifically,
for a dataset with P classes, Symmetric Noise (Sym) cor-
rupts each label class uniformly to all the other classes with
probability /(P — 1); and Asymmetric Noise (Asym) flips
a label to a different class with probability e. To make the
evaluation more realistic, both training and validation data
will be perturbed. More details can be found in Appendix.

Compared Methods. In the experiments, we compare the
proposed model GPN with two different categories of meth-
ods: (1) GNN-based methods. GCN (Kipf and Welling
2017), SGC (Wu et al.|2019) and GraphSAGE (Hamil-
ton, Ying, and Leskovec|2017) are three representative semi-
supervised node classification methods. They are adapted
for few-shot learning scenarios as in (Zhou et al. 2019}
Ding et al.|2020). PTA (Dong et al.|2021) is a decoupled
GNN which is robust to label noise using adaptive weight-
ing strategy. (2) Graph meta-learning methods. We include
three state-of-the-arts for graph few-shot node classifica-
tion: Meta-GNN (Zhou et al.|2019) applies MAML (Finn,
Abbeel, and Levine|2017) to SGC for few-shot node classi-
fication in graphs, while GPN (Ding et al.[2020) is empow-
ered by the Graph Prototypical Network to learn highly rep-
resentative class prototypes and Meta-GPS (Liu et al.[2022)
extends GPN with Prototype and Scaling & shifting transfor-
mation. G-Meta (Huang and Zitnik|2020) regards the cen-



Table 1: Test accuracy for weakly-supervised few-shot node classification (30% label noise) on different datasets.

Amazon 5-way 1-shot 5-way 3-shot 10-way 1-shot 10-way 3-shot
Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric

GCN 0.386 £0.025 0.381£0.023  0.534+0.027 0.5294+0.023 0.211£0.019 0.197 £0.021  0.376 +0.027 0.372 £ 0.022
SGC 0.390 £0.019 0.385£0.021  0.535+0.018 0.527+£0.017  0.248 £0.016 0.232£0.012  0.383+0.013 0.380 £0.015
GraphSAGE 0.338 £0.018 0.406 £0.023  0.529+0.021 0.568+0.016  0.211 £0.026 0.224 +£0.018  0.362+0.026 0.373 £0.014
PTA 0.405+£0.023 0.437£0.018  0.553 +£0.012 0.5814+£0.022  0.252£0.016 0.255£0.015  0.394+0.023 0.409 £ 0.018
Meta-GNN  0.403 £0.021 0.480 4+ 0.018  0.601 £0.028 0.650 £0.024  0.2794+0.034 0.325+0.031  0.555£0.023 0.563 £ 0.029
GPN 0.408 £0.015 0.463 £0.023  0.6294+0.024 0.651+£0.027  0.263 £0.011 0.314 £0.026  0.535+0.011 0.579 £0.016
G-Meta 0.488 £0.025 0.496 £0.024 0.614+0.018 0.658+0.022  0.336 £0.025 0.376 £0.021  0.463+0.021 0.504 £0.019
Mate-GPS  0.495£0.021 0.5124+0.019  0.631+£0.019 0.662+£0.025  0.359 +£0.018 0.397+0.019  0.541 £0.024 0.561 £ 0.021
Meta-GIN 0.694 +0.033 0.652 +0.010 0.750 +0.021 0.725 +0.021 0.567 £0.027 0.559 £0.025 0.627 =0.028 0.615 + 0.022

DBLP 5-way 1-shot 5-way 3-shot 10-way 1-shot 10-way 3-shot
Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric

GCN 0.369 £0.022 0.345+0.031  0.470 £0.041 0.4444+0.031 0.212£0.030 0.201 £0.014 0.345£0.033 0.335 = 0.042
SGC 0.376 £0.023 0.374+0.016 0.487 £0.024 0.479+0.023 0.224 £0.013 0.223+0.014 0.359 £0.019 0.348 +0.025
GraphSAGE 0.345+0.021 0.354£0.028  0.536 £0.021 0.540 £0.024  0.262+0.014 0.279£0.015  0.350 £0.018 0.395 £ 0.023
PTA 0.388 £0.020 0.392+0.013  0.550 £0.024 0.561 +0.025 0.280£0.016 0.303+0.019  0.366 £0.022 0.427 +0.025
Meta-GNN  0.581 £0.010 0.6114+0.009  0.684 £0.021 0.7024+0.025 0.498 £0.028 0.514+0.025 0.573 £0.021 0.578 +0.024
GPN 0.566 £0.020 0.621 £0.014  0.758 £0.009 0.766 +0.014  0.464 £0.011 0.501 £0.018  0.649 £0.017 0.650 = 0.015
G-Meta 0.618 £0.027 0.627+0.022  0.697 £0.025 0.761+0.010  0.497 £0.025 0.502+0.014 0.536 £0.027 0.605 % 0.012
Mate-GPS ~ 0.631 £0.018 0.639+0.020 0.749£0.016 0.759+0.013  0.504 £0.021 0.511+0.017 0.613£0.018 0.629 = 0.020
Meta-GIN 0.734 +0.012 0.739 +0.019 0.794 +0.010 0.772+0.016 0.591 +£0.023 0.593 £ 0.020 0.672 £+ 0.020 0.695 + 0.011
oghn- 5-way 1-shot 5-way 3-shot 10-way 1-shot 10-way 3-shot

arxiv Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric
GCN 0.259 £0.033 0.244+0.018  0.296 £0.029 0.288+0.021  0.142+0.017 0.122+0.015  0.171£0.010 0.157£0.011
SGC 0.277£0.020 0.274+0.011  0.334 £0.018 0.321+0.009 0.157£0.007 0.155+0.011  0.217£0.009 0.196 &+ 0.012
GraphSAGE 0.280+0.021 0.260 £0.019  0.317+0.022 0.297£0.025 0.143+0.016 0.121£0.012  0.170+£0.015 0.144 £0.019
PTA 0.311£0.018 0.303+0.020 0.352£0.016 0.344+0.022 0.187£0.017 0.180+0.017 0.235£0.014 0.227 +0.016
Meta-GNN  0.451 £0.017 0.4434+0.009  0.481£0.028 0.478+0.026 0.230£0.030 0.2224+0.018  0.327£0.021 0.302 +0.011
GPN 0.376 £0.015 0.420+0.019  0.492£0.018 0.514+0.019 0.255£0.019 0.266 +0.017  0.266 £0.015 0.338 &= 0.009
G-Meta 0.418 £0.012 0.422£0.014 0.453+0.013 0.500+0.015 0.272+£0.012 0.282£0.018 0.355+0.017 0.377 £0.011
Mate-GPS  0.432+£0.016 0.438+0.015 0.469 £0.013 0.487+0.011 0.263+£0.011 0.271+0.014 0.335£0.015 0.357 +£0.014
Meta-GIN  0.494 +0.021 0.475+0.018 0.572+0.013 0.545+0.016 0.336 £0.021 0.325 + 0.023 0.447 +0.013 0.390 + 0.013

troid embedding of local subgraphs as the prototypes and is
optimized with both the prototypical loss and MAML.

Evaluation Results

General Comparisons. We evaluate the proposed Meta-
GIN and all the baseline models on different weakly-
supervised node classification tasks. For each of the datasets,
we inject either the symmetric noise or the asymmetric noise
with noise ratio ¢ = 30%. Following previous work of few-
shot node classification, we adopt Accuracy (ACC) as the
evaluation metric. We test each model 10 times and report
the mean =+ standard deviation in Table [I] We can observe
that the proposed Meta-GIN significantly outperforms all the
baseline methods on weakly-supervised node classification
tasks for different datasets corrupted by either symmetric or
asymmetric label noise.

GNN-based methods such as GCN, SGC and Graph-
SAGE obtain poor performance while adapted for weekly-
supervised few-shot learning scenarios since they require
abundant clean labeled data to achieve satisfying classifi-
cation accuracy. Though PTA can mitigate label noise to
some extent, it is unable to transfer the knowledge from
seen classes to unseen classes. For the graph FSL methods,

they still fall behind the proposed Meta-GIN on the weakly-
labeled data since they are vulnerable to label noise. Pow-
ered by the well-designed Graph Interpolation Networks un-
der the robustness-enhanced episodic training framework,
Meta-GIN is able to generate the noise-reduced node rep-
resentation and achieve the best few-shot node classification
performance on the noisy label data. It is also worth not-
ing that noise usually have larger impact on meta-learning
relying on fewer shot. However, compared with the graph
meta-learning methods, the improvement of Meta-GIN on
N-way-1-shot tasks is larger than that on N-way-3-shot
tasks. This illustrates Meta-GIN’s power on denoising for
the practical few-shot learning scenarios.

Robustness Analysis. To examine the robustness of Meta-
GIN on data with different noise levels, we show its per-
formance in Figure 2] by varying the noise ratio. Firstly, on
the data with no injected noise (i.e., ¢ = 0), Meta-GIN can
still outperform the state-of-the-art for graph few-shot learn-
ing, which shows it is powerful in extrapolating the knowl-
edge from seen to unseen node classes. Then if we inject
the noise, the performance of all the baseline methods is de-
graded as the noise ratio increases, which is in accordance
with our assumption. In addition, we also find that symmet-
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Figure 2: Performance comparisons w.r.t. different noise ratios on ogbn-arxiv dataset.
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Figure 3: Ablation results for different model variants.

ric noise leads to larger decrease in the performance com-
pared to asymmetric noise in both 5-way 1-way and 10-way
1-way tasks. The main reason is that corrupting a label to a
wider range of node classes may lead to a more challenging
weakly-supervised meta-learning task. However, when we
increase the noise ratio for either the symmetric or asymmet-
ric noise, the performance of Meta-GIN does not decrease
very much. It can obtain larger improvement compared with
the baselines in the data with higher noise level. This veri-
fies the effectiveness of Meta-GIN in achieving robust per-
formance on weakly-labeled data.

Ablation Study. To investigate the contribution of each
component in Meta-GIN, we compare it with its variants in
Figure 3] Specifically, Meta-GIN-naive can be considered
as a naive variant by excluding both robustness-enhanced
episodic training and node interpolation. Meta-GIN-MLP
and Meta-GIN-mean denote the variants that calculate the
confidence score for each node using a fully connecting
layer and taking the average, respectively. As shown in the
reported results, Meta-GIN-naive is highly vulnerable to
label noise and unable to obtain competitive results with
other variants on weakly-labeled few-shot node classifica-
tion. Based on the proposed robustness-enhanced episodic
training, Meta-GIN-mean uses the simplest way to compute
the noise-reduced node representations, but can significantly
outperforms Meta-GIN-naive, which verifies the importance
of using the new episodic training paradigm. Meanwhile,
though Meta-GIN-MLP can improve Meta-GIN-mean by as-
signing weigthed confidence score to each node, it still fall
behind our approach, which shows the node interpolation
module can better estimate the confidence score of each
weakly-labeled node via message passing.

Parameter Analysis. To further understand the model de-
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Figure 4: Evaluation for different parameters .

sign, we analyze the sensitivity of Meta-GIN to the support
size K and the task number M. Due to the space limit,
here we show the results under the task of 5-way 1-shot
with symmetric noise (¢ = 0.3), similar patterns can be ob-
served for other cases. In Figure E| (a), we summarize the
performance of Meta-GIN with various support size K on
ogbn-arxiv and we can observe that the proposed Meta-GIN
can always achieve the best performance on different 5-way
K-shot tasks. This demonstrates the superiority of Meta-
GIN for solving weakly-supervised graph few-shot learning
problems. Next, we investigate the performance of Meta-
GIN by varying the task number M and show the results
of 5-way 1-shot (Sym) on the three datasets. From Figure [4]
(b), we find that by increasing M, the performance of Meta-
GIN gradually improves, which indicates that interpolating
more tasks is helpful for noise-reduced node representations.
Also, the model performance become stable when M > 5,
thus 5 is the appropriate value for M to obtain satisfying
performance considering both efficiency and effectiveness.

Conclusion

In this paper, we introduce a novel graph meta-learning
framework Graph Interpolation Networks (Meta-GIN) to
solve few-shot learning problems under the weakly-
supervised setting. Unlike existing methods, our approach
does not require abundant golden labeled data from seen
classes and can be meta-learned to denoise for extracting
highly transferable meta-knowledge from weakly-labeled
data. Essentially, Meta-GHN leverages robustness-enhanced
episodic training to interpolate node representations by com-
paring and summarizing from weakly-labeled data in a
meta-learning fashion. The empirical results over different
datasets demonstrate that our proposed model can effec-



tively generalize to unseen tasks.
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REPRODUCIBILITY SUPPLEMENTARY

Datasets Details and Preprocessing

Amazon. To construct the graph, we retrieved all the prod-
ucts belonging to the top-level category “Electronics” from
the publis Amazon datase We apply bag-of-words model
on product descriptions to obtain node attributes and usethe
complementary relationship (“bought together”) between
products to connect the nodes. Additionally, each product
corresponds to a low-level category, e.g., Monopods, LED
TVs and DVD Recorders, which is used to define the node
label. Those classes containing 100 to 1000 nodes are se-
lected and the isolated products is deleted.

DBLP. This public citation dat;ﬂ is extracted from DBLP,
containing the available papers with the corresponding ab-
stract, authors, references and venue. In the experiment, we
filter out venues which lasted for less than 20 years and focus
on venues which has published 100 to 1000 papers. For con-
structing the graph, each paper in these venues is treated as a
node and the citation relations are regarded as links between
them. We apply bag-of-words model on the paper abstract to
obtain node attributes.

ogbn-arxiv. This citation graph is directly obtained from
Open Graph Benchmark (OGB), which is a collection of
benchmark datasets for graph machine learning researclﬂ
Specifically, ogbn-arxiv is built with all Computer Science
Arxiv papers indexed by MAG. For each paper, its attributes
are obtained by averaging the 128-dimension word2vec em-
beddings of words in its title and abstract.

Table 2: Statistics of the evaluation datasets.

Datasets #nodes #edges # attributes # Train/Valid/Test
Amazon 42,318 43,556 8,669 90/37/40
DBLP 40,672 288,270 7,202 80/27/30
ogbn-arxiv 169,343 1,166,243 128 16/12/12

Label Noise Injection

To enable our experiments on few-shot node classification
with weakly-labeled data, we need to inject label noise to the
training data. We focus on two representative types of label
noise: symmetric and asymmetric noise (Chen et al.[[2019).
In fact, the noise injection can be done by flipping the labels
following the transition probabilities defined in a corruption
matrix 7', in which T;; denotes the probability of flipping
class ¢; to class c;. In Figure[5] we visualize the examples of
corruption matrix for the dataset containing 5 label classes.
For injecting noise of ratio € to a dataset with P classes:

* Symmetric noise flips a label uniformly to all the other
classes,s.t. Tj; =1 —eand T;; = ¢/(P — 1) if ¢ # j.

* Asymmetric noise flips a label to a different class with
probability €, s.t. Tj; = 1 —eand 3¢ # j, Tj; = €.

Zhttp://snap.stanford.edu/data/amazon/productGraph/
*https://Ifs.aminer.cn/misc/dblp.v11.zip
*https://ogb.stanford.edu/

Implementation of Baselines

We randomly sampled 100 meta-test tasks from the test node
classes and evaluate both Meta-GIN and the baseline meth-
ods on these tasks. The process is repeated for 10 times to
obtain the reported results in the paper. We test all the base-
line methods with the publicly released implementations. In
the experiments, we fine-tune the hyperparameters to report
their best performance.

* GCN. It utilizes two graph convolutional layers (32, N di-
mensions) to learn the node representations for N-way-
K-shot tasks.

* SGC. This linear model reduces the unnecessary com-
plexity of GCN by successively collapsing the convolution
functions between consecutive layers into a linear trans-
formation. After the feature pre-processing step, it learns
the node representations with 2-layer feature propagation.

* GraphSAGE. It can efficiently generate node embeddings
by uniformly sampling a fixed size of neighbors and then
aggregating the feature information from the neighbors.
We set the search depth to 2 and the neighborhood sample
size to 35 for both layers. ReLu function is used for non-
linearity and the mean-pooling aggregator is selected for
comparison. Two layers (32, N dimensions) are used for
learning node representations.

* PTA. It is a decoupled GNN which is robust to label noise
using adaptive weighting strategy. As suggested in the
original paper, we use K = 10 propagation steps and set
the optimal teleport probability o = 0.1. For fair compar-
ison, it employs a two-layer (32, N dimensions) MLP for
representation learning.

* Meta-GNN. It applies MAML (Finn, Abbeel, and Levine
2017) to Simple Graph Convolution (SGC) for few-shot
node classification in graphs. A 2-layer SGC is used for
network embedding. Each batch contains 5 tasks. As sug-
gested in the original paper, we set task-learning rate
ay = 0.5 and meta-learning rate as = 0.003.

e GPN. This Graph Prototypical Network can learn highly
representative class prototypes with a GNN-based net-
work encoder and node valuator. It predicts node labels
by measuring their similarity with prototypes. It employs
a 2-layer (32, 16 dimensions) GCN as network encoder.
The node valuator relies on two score aggregation layers.
We use the optimal learning rate o = 0.005.

* G-Meta. It constructs a local subgraph for each node and
regards the centroid embedding of subgraphs as the proto-
types. It is optimized with both the prototypical loss and
MAML. It takes the 2-hop neighbors into consideration
and employs two graph convolutional aggregation layers
(32, 32 dimensions) for representation learning. We select
the optimal update learning rate « = 0.01 meta learning
rate 5 = 0.001.

* Meta-GPS. This graph Meta-learning framework is based
on Prototype and Scaling & shifting transformation to
obtain highly transferable meta-knowledge from meta-
training tasks. It employs a 2-layer (32, 16 dimensions)
network encoder. We use the optimal step size o« = 0.5,
meta-learning rate S = 0.001 and regularization coeffi-
cient v = 0.001.


http://snap.stanford.edu/data/amazon/productGraph/
https://lfs.aminer.cn/misc/dblp.v11.zip
https://ogb.stanford.edu/

€1 € €3 € Cs €6 ¢ €3 C Cs

C1' 0.075 0.075 0.075 0.075 Cl' 0.000 0.000 0.300 0.000
c2—0.0750.075 0.075 0.075 52—0.3000.000 0.000 0.000
c3-0.075 0.075 0.075 0.075 c3-0.000 0.300 0.000 0.000
C4-0.075 0.075 0.0750.075 C4-0.000 0.000 0.0000.300
Cs-0.075 0.075 0.075 OAO75 C5-0.300 0.000 0.000 0.000

(a) Sym Noise (¢ = 0.3) (b) Asym Noise (¢ = 0.3)

Figure 5: Example of the noise corruption matrix.

Model Implementation. The proposed model is imple-
mented in PyTorch. Specifically, we employ a 2-layer propa-
gation SGC for the node representation learning module. As
for the node interpolation module, we use one aggregation
layer and the negative slope for the LeakyReLU in it is set to
be 0.2. We grid search for task numbers in {1, 5, 10, 15, 20,
25}, meta learning rate « and meta step size 8 in {0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. The optimal val-

ues are selected when the model achieve the best perfor-
mance for validation set. We select the meta-learning rate
a to be 0.1 and the meta step size § to be 0.001. For model
training, the task number in each batch is 5 and the query
size K’ is 5. For constructing the meta-training episodes, un-
less otherwise notice, we let the set size M to be 5 for both
the support and query set. We train the model with 20,000
episodes or stop earlier when the performance on validation
set converges. In the testing phase, we feed the N-way K-
shot support set from unseen classes to both Meta-GIN and
the baseline models for fair comparison.

Packages Used for Implementation. For reproducibility,
we also list the packages we use in the implementation with
their corresponding versions:

* python==3.7.9

* pytorch==1.4.0

* cuda==10.1

* numpy==1.19.2

* scipy==1.6.0

* scikit-learn==0.24.0
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