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Techniques to make time sharing attractive on a computer 
with a small central memory are presented. "Small" is taken 
to mean that only one user program plus a monitor will fit into 
the memory at any time. The techniques depend on having two 
levels of secondary storage: level 1, several times larger than 
the main memory and quite fast; and level 2, many times 
larger and slower than level 1. 

I n t rod u e t i o n  

It I~:t~ been ~<uggested by ,]ohn ~\h'Carthy that  at leas'~ 
ot~e milliot~ words of directly addressable core memory 
are t~ecessttry for effective thne-sharod computer  use [1], 
[tt fact, the major  effort in the tiine-share world today in 
directe~t towar<:[ systems ttsit/g ext,remely large hardware 
coi,~{igllratiOnSr t[owc:v('l +, lntlny itlstallntions are inter- 
e.4ed i:: pt 'ov( i :g tinie-sharittg facilities, hut have rela.. 
th't,ly small tmrdware configttr ttions. We {+eel that a /tse- 
fill, time shared sys tem can he implemented lit these cases. 
For exun@c, +)tw might set tt[) a small time-share system 
with u. slow re+pcmso tim<~ which would stiI1 be an  immel lSe  
impruvemenl over a b a t  ('It job turn-arottnd time of :2+-4 
hour+. Also~ /:)v ctmn~ing 1he emphasis from time sharing 
~s a tttility to .<t>ccializod time sharing, one cat( have a 
it,asi/>le thne 4utred system on a small core  (:oiil[)ttt(+r [2]+ 
IH a~ldition, interactive lwocessors cat( be provi(ted such 
tluLt ~':t<'}l procv,ssor h:n/dlcs Ill(lily consoles each time it, 
~,om~,s into core, thereby t~fitlimizing the tmmber  of sw:tps 
recitfirt,d 1o sel+vi('(+ tl/(+se consoles. Wit}l several ttst,t's in 
thcsc specialized, easily .<t,r\'iced modes of interaetiotl, one 
('tt~, t~m]<c H.v,,tilal>h~ tt f<,w ~ '  et'al purl)ose slots withe(it 
('ttll.'-,it+,~ a :":(q'iOt1,4 ( l ( 'g lTt( t t l t ioII  o f  t}t( + OVel'..;tltll :..-:ysI(,ii/ 

l'(,+p(+t~+r+ T l l i ~  l )a t ) ( ' r  l)l( ' :<ct/ts so t t l ( '  o f  thE,+ difficulties 
+nlwtcllt it+ ~ttt'}l ;t system t()Ketllt,'r with te(+hni(ltlCS which 
!'~n+ Ill, I;lsell to ~+vcrcome these dittiuulties, 

l>l'~,>qml a~hh'e,~.~: Texn~  IH:<irlmwiits ,  t h d l a s ,  Texn~  
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Pre l in f ina ry  l ) i scuss ion 

This paper was written on the basis of experience gained 
in developing a time-share system on the University of 
Illinois' I I,LIAC II ,  Some of the details peculiar to thin 
implementation are found in the Appendix. In order to 
make this paper' of general interest, we make the hardware 
configuration shown in Figure 1 the basis of our discussion. 
It  will, however, be clear during much of the discussion 
that  we have a particular system in mind. 

I t is essential that  the hardware for a time-shared system 
have the following minimal set of properties: 

(1) A secondary storage large enough to hold a 
reasonable amoun~b of information permanently for each 
potential user of the system. 

(2) Interrupts,  particularly timer, memory violation, 
protected order, and illegal order interrupts. 

(3) A multiplexer for consoles. 
The following are additional assumptions about our 

configuration: 
(1) The core is not large enough in general to hold 

more than the monitor and one user program. 
(2) There are two levels of secondary storage: level 1 

which is relatively small but fast (drum); and level 2 
which is large but slow (disk). 

(3) Transfers between core, drum, and disk are by 
block (i.e., a fixed number of words). 

Some of the difficulties inherent in a small core time- 
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shared system are as follows: 
(1) Sinee only one user program can be resi(teut in 

core, swap .times are unusually important. 
(2) The monitor must be kept as small as possible. 

Thus the options available to the user through the monitor 
will have to be a carefully chosen subset of what; might, be 
provided. 

(3) When a user program generates an I /O request, 
there is no other user program wlfich might perform useful 
computation while the request is being serviced. 

(4) There is a lack of (tore for buffers in which to 
queue I /O requests. 

(5) Effective utilization of the drum is difficult. 
(6) Only a few lines from consoles can be kept in the 

monitor. 
The techniques used to overcome .these diflieulties are 

described in the remainder of the paper. Each of the 
following aspects of the software design will be related to 
the difficulties for which it provides partial solutions: 

(A) Method of tile organiza.tion. 
(B) Secondary storage access optimization and 

minimization. 
(C) Console communication. 
(D) Processors for interactive languages. 

M e t h o d  o f  F i l e  O r g a n i z a t i o n  

F'ile organization for time-shared systems has been 
described at length elsewhere [3, 4]. Our problem is to 
define a feasible file organization for a small core computer. 

A limited amount of the disk is set aside for user and 
system scratch and for saving core loads. The rest of the 
disk is dedicated to a three-level file-by-name system 
(Figure 2) consisting of .the Master ID Table (level 1), 
User File Dictionaries (level 2), and Named Files (level 3). 
(These levels are not to be confused with the two levels of 
secondary storage.) The Mas.ter ID Table contains all 
legal [D's (IDentification Numbers) and a pointer to a 
User File Dictionary for each ID. The User File Dictionary 
contains a dictionary entry for each named file belonging 
to or referenced by that user. A named tile belongs to 
exactly one User File Dictionary, but may be referenced 
by many User File Dictionaries. Each named file consists 
of several ordinary files (see below). 
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Fro. 2. File organization 

Eaeh ordinary file is a cotleelkm of linked disk tracks. 
Each track conlains the follouil~g system information: the 
addresses of lhe previous track, this track and the nex:{ 
track. The first and last t, mcks of a file certain an end-of- 
file flag and a pointer to die User F'ile Dictionary to which 
t, his file belongs. A file: can eontain images of BCD cads, 
binary eards or offline printer litms. For convenience, all 
qn'ee at'(: referred to as lines. The forma~ of lines is fixed 
beeause of a lack of core in which to handle arbitrary for- 
rnats. Each line is prefixed by lhe followi:ng system in- 
formation: line immber, line type, length of this line, and 
length of previous line. The first and las[ lines in a track 
eontain an end-of-record flag. With this symmetrie linldng, 
files appear .to be bidirectional tapes without the dis. 
~vdvantages of tapes. For example, if the first and last 
addresses of active files are kep.t in {.ore, "rewind" time 
becomes negligible. Also, writing into input flies is very 
easily handled. Since one cannot depend on users to main. 
tain the physical and logical linking, and since virtually ' 
every program requires I/O, it, seems reasonable to place 
the file-by-name program in the monitor. By having a 
User File Dictionary (and associated ID in the 2\l~astel: 
ID Table) with a Dictionary En t ry  for each User File 
Dictionary, the system can manipulate the User File 
Dictionaries as ordinary files. Thus all references to .the file- 
by-name area, either by system or user, can be required to 
go through the above monitor program. 

The files making up a named file are: 
Source--The source tile contains the main body of the 

named file, i.e., program or data. If the source file is data 
then bi'nary and listing (below) are irrelevant. Each line irl 
a source file is numbered. 

Table of Contents--For source files longer than four 
.tracks, a subtile is kept containing the following inform> 
lion for each track: track address, largest line number in 
this track, and nmnber of free words in .this track. This 
information is used to facilitate merges into a file and 
selective listing from a file. 

Changes--When changes to a named file are typed in, 
they are entered into .this file. Certain commands (e.g., 
RUN) cause the changes to be sorted and then merged 
into .the source file. This together with the table of co> 
tents allows an extremely efficient algorithm for updating :~ 
file (e.g., only those .tracks of the source file which will be 
changed need to be read in). 

Assernbly Listing--The assembler or compiler listing f0~ 
each program is automatically maintained for use~' 
convenience. 

Binary Image--If a program has not been changed 
since the last assembly or compilation the binary image is 
available. 

The dictionary entry for a named file contains the first 
track address, the last track address and the number d 
tracks for each of the files above. I t  also tells whether 
binary, listing, and/or  changes flies exist for this named 
file. 

This organization of named files allows the system to use 

78 Communicat ions  of the ACM Volume 10 / Number 2 / February, 196~ 



pr(,vi()/i-d?, 2~.1~ ,1: i*,(i } ~ : ~ i  ~," il~<t~2<,s ,,)}'sl~})roui.ines, i}tm'eby 

I ' l l l l l l i l l >  {>l'('~L'(l':/lli>: \\ I / l ( ' l l  4'()IL<iS{ (l{' l l l ' , lNy 5t l i ) r ( ) l l l ,  i l ies .  

\VIi(ul :l I ' l t l l  i'-; ~.{i\ ('/I i l l  It ('()n~()lr, the >yslcl:,/ clm(:l,:s Io  see 

v>'ilirli {it' :ll~V) <)i I{le /il('s r(,~t~l(,>led }1~1,\'(! be(}ll el iai iged. 
'l'ti()se files /l~:/~ }i:lv(' l>('ell Cii:/ll~(!({ Ill'C: l{l('ll updale.d. The 
S\'S{('III llCXl It':lil<l:lle:~ lileS(' sl / i )rolt l i i t ( ,s all.;{ of)l,aii/s {t, 
i'el(i('al~l})lc }>iil:~rv fil(,, whi,'/~ is l]lel~ avail~lt)le for :dl 

f i l l  Ill'(' I'IIIIS, 

{" in: i l l / ,  l i l t  ii:!s~/{.s ()t :~tl fil<~> re(im~,sl('(I are l)a, ssed to l/l(,, 
loa(h'r, :~ lit)r:~:l3 s("<il'(:]i i~-; l)e/ ' [ ' () l ' l i i ( l({,  a l l ( t  t l (',Ol'e i[l l, 'tg() 

form('(I. Tl,e Iil)ri~r/ ~<(,r(~}i (wlfi(:h in(:hid(~s a search of' the 
us(,r's file di( : t i () l l : i r / )  is necess:iry be(:anse, the progi 'anis 
l 'e ( i t ips le( l  i l l  l l i ( '  I ' t / l l  co I t l l l / { f l / ( l  / I l l / y  (~Oi</ItiJlI l ' ()f(we{l(:os Ix) 

() i l ie i"  {) / ' ()~l ' { l l / is i i ( ) i  exi) i i(qt ly :l;lelttioi~e(l i l l  th(! [ ' t in  (~()il3- 

ll/~tll([. Tiffs i,~q)licii/ 'ervr(,t/(:i i lg st~v(~s ti le user f rom havhtg 
to list all stt i)rotit i l ie tt~tlll(+S l'e(/tlil'(~(l ['(>l+ ihe l'Uiq. !I;VC, feel 
tirol; this ()rganiz:~liott allows its Illti('}l f lexib i l i ty  and coil- 
V(?IIJOII('(' :IS l i / i ~ ] l l  })(! (~Xl)(bcle(] OII It sm<+dl c o r e  conlpt l l (~ , r .  

Sel.olld.~ll'V S l l n ' a g e  ,kkcl'c~s ( ) p l  i l l l i z a l i o n  a n d  
7 , l t l i n in i l za  I i on  
7; 

l l f i t i . l l y  ii wits lhou,,.;i~t l i iat  the frl~(-ttle~illy l leeded 
S/St('//15 t)i'(,~I':tllt,'< and l:tt)le> could [)e alloc<,t, ed semi- 
i)ern~al~ent ( l i 'uln :-~I)a((', 'F}m rest, of' lhC (h'( lm would  then 
be used I'()r buff(~ring and holding core, loads. However ,  the 
sh(.(,r bulk of s .( .h s/s{eltL~ ])l'Ogl'{i.lllS {i.long with the fltict- 

Uali l ig load of a t ime-sh<u'ed system, made this infeasible 
(('.7., wli(qi c()ns(>lc /IStt~e ]s }loavy differe,ll systelns pro- 
K/' t i l l s  ;tl'(? II('e({()(]. { h a r t  W]le I l  backgroun( t  is being proces-  

s ed ) . . \ ]SO,  Wi:({i Vel ' /  lOW ([ll'llIll btl'['['(ws availat)le, I / O  
w(),l(i i~:t\'e lo ~() ( ire('tlv t() disk, e'msimJ" costly I / O  waits. 
Th(> a})ov(' l),'()t)ie,~> are vsse. t ia l ly  solved t)y the following 
l)rot)os:d m:~(h' t) 3, S..1. Nusl)l. 

7:{ . \ i [  ([ : ] [{t  l I / ( )V( ' l l l (? l l t  {() a,/d from (:ltsl< and (h'uni is 
:>+ h:mdh'(l  })~," ;i t)i'()~i+ in ill t}le niol,ti(oi'. Speci{io reforcll0es 

, < 

I0 i l l { !  ( [ l ' t l l l l  t t r e  ( l i s a l l owe( l ,  : ' rod thtl.S t h i s  p r o g r a l n  can  

bufi'('r t () to all<l f l '(mi tt~e dislc t h rough  the dru.IIL C'~i~lSs 
are ~vailat)l(~ i() it whi('lt al low sys t em progran-is to make 
('{N('h',~l tts(' (ff lhe /)u{'f('riIig (mt)abiliiies. There  are two 
ge,~(,ra/ ~tre:ts: mif,imiz:ttioi~ of (lisk use and ot)tim zat o~ 
of (lisk :~('(:(,ss(,:-'. 

3,li,,i,n izal io,, 

\Vh(,~ev(,v :*'~3' p r o g r a m  reads or w:rite> at block on the 
disk, it (>:,,t sl)('('ify i}l:tl l Iw, t)lo(!l-t will be needed agait/ ,  

':::; a , d  ihe i,/(mil()r will :li*(,ml)t to keep  tha t  block (m the 
drum. +\lore K(,tt(,r+a/ly. a l>r()~r;am can issne tit/ inforltmtive 
<d} s:~vi,< tlntt it will s(~{m t)(~ ~,ee(ling a t)arti(:uhtr block 

++x2,:, fr()m il~(' disk. If {D(~ bt(,('k iv ,~oi :di'ea(ty ou the drum,  the 
~::;,v>+ moI~iio,' all(!mt)is t() {iI~d r()()m (m the drum.  l ';arh block 

From (lisl< whit'h {in,is ils way io the drum has a status 

!'re {)ar:mwi¢'r a>:<~,,'i:~tr~l wilh it. This  s~,~t~s has (),,e of four 
~}~ v:Llu(*s, xvll()s(' ,',l(':mi,~>'gs are given i~ Tai~h, I, In :idditiou, 

{-; l],(qe is :t,n)ilw," t)it for (,at'It (Irum l)hwk ('alle(l the wtaFrE 
~:::¢ Dii. {I ix /llr~le{l 1)11 ~h(',l  a l)h~ck of ('ore has been t)uffcred 

o,,l() lNe ({r,{m h, l)rt.i>:~,>lio,, (or writ ing o,~ tile disk. Any 

TABIJ)i I. t)*mm STATUS PAItAME'PEIrt 

,5l(U us Meaning 

0 l)r'lm~ block is free, ~md may be ttsed by any bloek needing 
a space on the drum. However,  if the block presently 
oeeupyir g t.he space is requested before the sp~ee iv re- 
:~ssigned, no disk :~eeess is necessary. 

1 ll)rum block holds i,fformation which will be needed 
again. The more reeent the "will need" command, the 
higher the priority. 

2 Drum block being put, to special high priori ty use--nott 
(vwdl:tble for any ot.her use. This status is avMlable 
only to selected system programs. 

3 I)rum block locked out, and unused in normM running, 
Recovery and engineering tesl~ informf~tion st, ored here, 

until the D*S:K WRITE has been given or until a CANCEL 
wen'l:: is given. CANCEL WroTE may be given when a pro- 
gram finishes using temporary disk storage which has 
found its way to the drum. The temporary storage may 
be read (with a WmL NEED) one or more times before the 
CAXCEL WroTE is given. If the temporary storage is still on 
the drum when the WRITE is cancelled, it is then not  neces- 
sary to move the blocks to the disk. 

A stack-down list of all blocks on the drum is kept, and 
references to data already on the drum (with a WILL 
XEEI)) cause the entry to be moved to the top of the stack 
so that it will be the last to leave the drum. That  is, data 
that is most  frequently referenced will tend to remain on 
the drum. Thus when a disk cM1 is made, the drum table is 
first searched for the disk address; if it is not found then a 
direct READ FROM DISK is given. 

After  a compilat ion,  for example, all other jobs for that 
compiler  should be given a high priority since it is now on 
the drum.  

Blocks with status equal to 2 do not go into the stack- 
down list. These are blocks which may not be referenced 
often enough to stay on the drum with status 1, but which 
must  be available immediate ly  when needed (real- t ime 

display, etc.). 

()pt i m i z a t i o n  

Also incorporatcd in the moMtor  is t~ t ight a lgor i thm 
which provides for rain[raM head mow21nelit while moving  
(ta(a to and from the disk. Specifically, lnost ou tpu t  f rom 
core is t irsfD wri t ten on the d rum and an en t ry  containing 
lhe disk dest ination of the ou tpu t  is made  in a table.  The  
posit[ell of the disk arias is then taken  into consideration 
in malting the choice of which d rum [)lock should next  be 
moved to disk. 3lore specifically, the priorit, y of the 
waiting transfers is dynanficMly re-assigned so tha t  the  
transfer requiring the least t ime for moving the heads will 
be hosen  next. The  monitor  mainta ins  a queue of pending 

lransfers, consisting of: 

(I)  :t¢ti:ADS: disk -~ d rum 

(2) WRITES: drnnl  ---> disk 
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Wl~e*~ the drum is trot heavily used, asA i)s are given pri 
ority in order to bring the drum usage up. In  normal use, 
R:~s.~s and wai:rEs have equal priority. In  heavy use, 
when the drum is full, or nearly so, wx~rr~,:s are given 
priority, in order to try to make room on the drum. 

The scheme outlined above for secondary storage con- 
trol is one of the key factors in making time sharing feasible 
on a small core computer. 

With these specifications available, the scheduler is able 
to take advantage of the knowledge tha t  a certain job is 
pending execution and use the w~r~r, N~,:r:D option to over- 
lap the core load to the drum during execution of the cur- 
rent core load. Similarly, when a swap is undertaken the 
active core/o:~d is moved to the drum whence it is grad- 
ually moved back to the disk (if necessary) while the next 
core load is in execution. To fully appreciate the savings 
over sending (:ore loads straight to the disk one must  
realize that  a full core swap to disk takes ~bout 10 times 
more time than to drum. Thus we have gone a long way 
toward alleviating the first difficulty listed in the Intro-  

duction. 
The scheme also allows the possibility of foreseeing input 

requests by the user program and bringing the required 
block fl'om disk to drum ahead of time. Further,  output  
requests are handled very rapidly by being buffered onto 
the drum for later transfer to the disk. 

Using the drum as a bufl'er helps alleviate the lack of 
core available for buffering. 

Finally, the scheme provides automatic dynamic allo- 
cation of the drmn, and so provides very effective utiliza- 

tion of tile drum. 

Console Comm unicat lon  

Since communicatior~ with the Satellite I?rocessing Unit 
(SPU) is line by line there is the problem of what to do 
wiIh lines in a block-oriented computer. 

One emfld bring in the command processor each time a 
console line is received; however, this would raise the 
system overhead to an intolerable level if many  consoles 
were active. Further,  this is unnecessary if the line is data  
(as opposed to a command) since it can simply be packed 
away and looked at  later (e.g., typing lines into a file). 
One is immediately led to the conclusion tha t  the SPU 
should flag lines as being data or command, the latter in- 
forming the monitor that  the command processor will be 
needed. One could then pack the lines into a buffer and 
bring in the command processor when the buffer becomes 
full or when a command is received. However,  this does 
not solve the problem of sending lines to the SPU. Bringing 
in the command processor each time a line (or even a few 
lines) is sent raises the system overhead again. Further,  
such tasks as listing programs do not require a high level 
processor. A solution to these problems seems to be 
achieved by having one block (which will remain on the 
drum in status 2) assigned to each active console. When a 
line is received, the corresponding drum block is read in 
and sent back eont~ining the line. If the line received was a 

comm:md or if tile drum block is nearly f~ll, :t flag is s< 
i~rdicating lhat  the command pro(~essor is l~eoded. Like- 
wise, when ouipu{;{,itlg Ii~es, t}~c appropri~{e ¢trum block 
is read ia~ :.r~d a line remow~d each time the SPU sends a 
request for a line. 

Other advat~tages become apparent  in situations such as 
the following: An interactive core load associated With the 
console Hoes into execution atxct generates output  for that 
console. These output  lines are buffered onto the drum 
until the drum block becomes f'ull or until the user's time 
slot, is finished and a swap takes place. In  either case the 
monitor starts sending lines from the drum block as soon 
as they are available. In  the ideal situation the user has 
filled up the drum block before being swapped and the co> 
sole cat, be kept busy printing fox' three or four minutes 
before that  core load is needed again and before disk a/:- 
eesses associated with this console are required, once again 
reducing the number  of swaps required. Similarly, whe~ a 
console user wishes a program to be listed an entire bI0ck 
is moved from disk to drum and the monitor takes over to 
provide automatic  listing of the entire drurn block. F'0r 
paper' tape input, lines are buffered onto the drum until 
the block becomes full and then the entire block is moved 
to the disk. (One disk access for each 30-.-50 lines of input.) 

Processors tbr interact ive  Languages 

Swap time is probably the most important  factor in the 
building of a time-shared system with a reasonable response 
time. In  fact, most of the techniques so far described help 
to reduce swap time. Our design of processors for inter- 
active languages is intended to reduce it further. 

Each interactive language processor is an integral parl 
of the software system. Each one has facilities available to 
it which are not available to the user in. general. (1) Erich 
proeessor can communicate with many  consoles. In  fact, 
the processor itself determines tile consoles with which k 
interacts. (2) Each processor is allowed to request addi- 
tional time slot, s so tha t  each console with a pending re- 
quest can be serviced once. 

Each processor is non-self-modifying, hence only the data 
pertaining to the consoles need be saved. The interactive 
processors car, be designed with a t ime limit for each con- 
sole so that  all consoles are serviced within the time al- 
lotted to the interactive processor. Thus, users requiring a 
small amount of compute t ime can expect fast  response 
time. i t  has been our experience tha t  many  users have 
found one such processor [7] very useful. 

Conclus ion  

While several aspects of t ime-shared comI)uter use have 
been discussed, many  others have not. Nonetheless, the 
authors believe the suggestions made in this paper  will 
prove useful to other groups who might he thinking 0t . 
implementing a time-share system on a small memory 
computer. In  particular, we believe tha t  we haw~ m:~de 
several promising steps in the direetion of overcoming the 
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problems as>oei:~led with :~ small memory in a time-shz~red 
e~tvir(mment° 
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A P P E N D I X  

We first give a few statistics. The I L M A C  I I  [5] has an 
SK core of 52-bit words, the drum holds 8 core loads, and 
the disk holds about 150 drum loads. The core cycle time 
is 1.75,usee, the core is four times faster than the drum, and 
t, he drum is about 15 times faster than the disk. Maximum 
access t:ime for the drum is 16msee and for the disk 214 
reset. A block is defined to be 256 words. A hardware 
restriction is that  only block transfers to drum are possible. 

The SPU used is the PDP-7 with tile 630 multiplexer. 
II  has a 8K core of 18-bit words, its core cycle time is 1.75 
~,sec, and it cart service up to 64 consoles. 

Planning on the system began in the spring of 1965. A 
pilot system, which has been running 13 hours a day since 
February 1966, required between 1 and 2 man years to 
implement. I t  services four consoles, which are connected 
directly to I L L I A C  I I  instead of coming through the 
PDP-7. Other than that,  the hardware configuration for 
the pilot system is the same as that  shown in Figure 1. Be- 
cause console lines come directly into ILLIAC I I  core in 
the pilot system, a system processor is swapped in each 
time a line arrives. Handling the line may mean sl~ill 
another swap to get the core image for the console from 
which the line came. This core image is likely on the disk, 
so that two or three seconds may have gone by before the 
line is processed by the correct core image and control re- 
turned to tile core image which was present when the line 

came in. This procedure, while rehttively straightforw:~rd, 
results in lengthy waits at the consoles because of excessive 
swapping. While this is bearable when only four consoles 
are attached to the system, it, would not be feasible if many 
more were attached directly to ILMAC II. 

Tile pilot system includes processors for three l:m- 
guages: Tipsy, FowrI~.~r II, attd NICAP (New Illinois 
Compiler and Assembler Program) [6]. The [~'ORTnAN 
and Niece processors are ordinary implementations of a 
compiler and a machine language assembler, respectively. 
The Tipsy processor is interactive, procedure-oriented mid 
designed to handle several consoles at once. I t  is an inter- 
active processor as discussed in the main body of lhe 
paper. 

The pilot system includes as background, the batch 
processor which previously occupied most of the tirne of 
ILMAC II.  In fact, runs from consoles in the pilot system 
are made via this batch processor. 

Finally, tile command language for the pilot system 
includes commands for the following functions: 1. Crea- 
tion and modification of named files; 2. simple file search- 
ing; and 3. running of files through one or another of the 

system processors. 
The design and implementation of the pilot system is 

due primarily to the efforts of F. K. Richardson and C. 

W. Gear. 
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