
f 7 • ~ + + +

I S i t a r , r i g a (, O m l m t e r . w i t h

u S++ all M e m o r y +,

Techniques to make time sharing attractive on a computer
with a small central memory are presented. "Small" is taken
to mean that only one user program plus a monitor will fit into
the memory at any time. The techniques depend on having two
levels of secondary storage: level 1, several times larger than
the main memory and quite fast; and level 2, many times
larger and slower than level 1.

I n t rod u e t i o n

It I~:t~ been ~<uggested by ,]ohn ~\h'Carthy that at leas'~
ot~e milliot~ words of directly addressable core memory
are t~ecessttry for effective thne-sharod computer use [1],
[tt fact, the major effort in the tiine-share world today in
directe~t towar<:[systems ttsit/g ext,remely large hardware
coi,~{igllratiOnSr t[owc:v('l +, lntlny itlstallntions are inter-
e.4ed i:: pt 'ov(i :g tinie-sharittg facilities, hut have rela..
th't,ly small tmrdware configttr ttions. We {+eel that a /tse-
fill, time shared sys tem can he implemented lit these cases.
For exun@c, +)tw might set tt[) a small time-share system
with u. slow re+pcmso tim<~ which would stiI1 be an immel lSe
impruvemenl over a b a t ('It job turn-arottnd time of :2+-4
hour+. Also~ /:)v ctmn~ing 1he emphasis from time sharing
~s a tttility to .<t>ccializod time sharing, one cat(have a
it,asi/>le thne 4utred system on a small core (:oiil[)ttt(+r [2]+
IH a~ldition, interactive lwocessors cat(be provi(ted such
tluLt ~':t<'}l procv,ssor h:n/dlcs Ill(lily consoles each time it,
~,om~,s into core, thereby t~fitlimizing the tmmber of sw:tps
recitfirt,d 1o sel+vi('(+ tl/(+se consoles. Wit}l several ttst,t's in
thcsc specialized, easily .<t,r\'iced modes of interaetiotl, one
('tt~, t~m]<c H.v,,tilal>h~ tt f<,w ~ ' et'al purl)ose slots withe(it
('ttll.'-,it+,~ a :":(q'iOt1,4 (l ('g lTt(t t l t ioII o f t}t(+ OVel'..;tltll :..-:ysI(,ii/

l'(,+p(+t~+r+ T l l i ~ l)a t) (' r l)l(' :<ct/ts so t t l (' o f thE,+ difficulties
+nlwtcllt it+ ~ttt'}l ;t system t()Ketllt,'r with te(+hni(ltlCS which
!'~n+ Ill, I;lsell to ~+vcrcome these dittiuulties,

l>l'~,>qml a~hh'e,~.~: Texn~ IH:<irlmwiits , t h d l a s , Texn~
i J)i,]l:~clnwttt (+i' (?imlI):t tet ' a;ci(,i~c<,, T h i s w<wk wrts ~ttpp+,rh 'd

is+ [)::rl }+,V ,,\+Italic 1' :('t'~\+ ('t>l/lnxi,~a~i<m (~ot/tl'+tci N<), A T (l l t) -

tl~;9

~olmuc 10 / N,ml,~+r 2 / I:~'l,ruary. 1967

R. L. ASHENHURST, Editor

Pre l in f ina ry l) i scuss ion

This paper was written on the basis of experience gained
in developing a time-share system on the University of
Illinois' I I,LIAC II , Some of the details peculiar to thin
implementation are found in the Appendix. In order to
make this paper' of general interest, we make the hardware
configuration shown in Figure 1 the basis of our discussion.
It will, however, be clear during much of the discussion
that we have a particular system in mind.

I t is essential that the hardware for a time-shared system
have the following minimal set of properties:

(1) A secondary storage large enough to hold a
reasonable amoun~b of information permanently for each
potential user of the system.

(2) Interrupts, particularly timer, memory violation,
protected order, and illegal order interrupts.

(3) A multiplexer for consoles.
The following are additional assumptions about our

configuration:
(1) The core is not large enough in general to hold

more than the monitor and one user program.
(2) There are two levels of secondary storage: level 1

which is relatively small but fast (drum); and level 2
which is large but slow (disk).

(3) Transfers between core, drum, and disk are by
block (i.e., a fixed number of words).

Some of the difficulties inherent in a small core time-

Consoles

MuHiplexer

i
i
i

_ _ _ _ J -

Satellite Processing

Unit (SPU)

(+°+0 Storage

Level t.

(Drum)

i

Fie;. l ,

+

Central Processing

Unit (CPU)

[[:u'dware eonfiguz':~tion

(]ommunications of the ACM 77

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363067.363086&domain=pdf&date_stamp=1967-02-01

shared system are as follows:
(1) Sinee only one user program can be resi(teut in

core, swap .times are unusually important.
(2) The monitor must be kept as small as possible.

Thus the options available to the user through the monitor
will have to be a carefully chosen subset of what; might, be
provided.

(3) When a user program generates an I /O request,
there is no other user program wlfich might perform useful
computation while the request is being serviced.

(4) There is a lack of (tore for buffers in which to
queue I /O requests.

(5) Effective utilization of the drum is difficult.
(6) Only a few lines from consoles can be kept in the

monitor.
The techniques used to overcome .these diflieulties are

described in the remainder of the paper. Each of the
following aspects of the software design will be related to
the difficulties for which it provides partial solutions:

(A) Method of tile organiza.tion.
(B) Secondary storage access optimization and

minimization.
(C) Console communication.
(D) Processors for interactive languages.

M e t h o d o f F i l e O r g a n i z a t i o n

F'ile organization for time-shared systems has been
described at length elsewhere [3, 4]. Our problem is to
define a feasible file organization for a small core computer.

A limited amount of the disk is set aside for user and
system scratch and for saving core loads. The rest of the
disk is dedicated to a three-level file-by-name system
(Figure 2) consisting of .the Master ID Table (level 1),
User File Dictionaries (level 2), and Named Files (level 3).
(These levels are not to be confused with the two levels of
secondary storage.) The Mas.ter ID Table contains all
legal [D's (IDentification Numbers) and a pointer to a
User File Dictionary for each ID. The User File Dictionary
contains a dictionary entry for each named file belonging
to or referenced by that user. A named tile belongs to
exactly one User File Dictionary, but may be referenced
by many User File Dictionaries. Each named file consists
of several ordinary files (see below).

~4osTer ~o Toble i

• • 6 • * • o e • , i

i u~e* File [w e t r i le
! OJ¢fie~ry i I 01ctiorlo,y [
r - 7 - i/ I ~ [.... ' r
j I , :

. ~ l _ _ _ _ _ L _ J

~ e f 5 !

~ . . . ~-~ r T~ L'~LJ L 2 : ~ • • •

Fro. 2. File organization

Eaeh ordinary file is a cotleelkm of linked disk tracks.
Each track conlains the follouil~g system information: the
addresses of lhe previous track, this track and the nex:{
track. The first and last t, mcks of a file certain an end-of-
file flag and a pointer to die User F'ile Dictionary to which
t, his file belongs. A file: can eontain images of BCD cads,
binary eards or offline printer litms. For convenience, all
qn'ee at'(: referred to as lines. The forma~ of lines is fixed
beeause of a lack of core in which to handle arbitrary for-
rnats. Each line is prefixed by lhe followi:ng system in-
formation: line immber, line type, length of this line, and
length of previous line. The first and las[lines in a track
eontain an end-of-record flag. With this symmetrie linldng,
files appear .to be bidirectional tapes without the dis.
~vdvantages of tapes. For example, if the first and last
addresses of active files are kep.t in {.ore, "rewind" time
becomes negligible. Also, writing into input flies is very
easily handled. Since one cannot depend on users to main.
tain the physical and logical linking, and since virtually '
every program requires I/O, it, seems reasonable to place
the file-by-name program in the monitor. By having a
User File Dictionary (and associated ID in the 2\l~astel:
ID Table) with a Dictionary En t ry for each User File
Dictionary, the system can manipulate the User File
Dictionaries as ordinary files. Thus all references to .the file-
by-name area, either by system or user, can be required to
go through the above monitor program.

The files making up a named file are:
Source--The source tile contains the main body of the

named file, i.e., program or data. If the source file is data
then bi'nary and listing (below) are irrelevant. Each line irl
a source file is numbered.

Table of Contents--For source files longer than four
.tracks, a subtile is kept containing the following inform>
lion for each track: track address, largest line number in
this track, and nmnber of free words in .this track. This
information is used to facilitate merges into a file and
selective listing from a file.

Changes--When changes to a named file are typed in,
they are entered into .this file. Certain commands (e.g.,
RUN) cause the changes to be sorted and then merged
into .the source file. This together with the table of co>
tents allows an extremely efficient algorithm for updating :~
file (e.g., only those .tracks of the source file which will be
changed need to be read in).

Assernbly Listing--The assembler or compiler listing f0~
each program is automatically maintained for use~'
convenience.

Binary Image--If a program has not been changed
since the last assembly or compilation the binary image is
available.

The dictionary entry for a named file contains the first
track address, the last track address and the number d
tracks for each of the files above. I t also tells whether
binary, listing, and/or changes flies exist for this named
file.

This organization of named files allows the system to use

78 Communicat ions of the ACM Volume 10 / Number 2 / February, 196~

pr(,vi()/i-d?, 2~.1~ ,1: i*,(i } ~ : ~ i ~," il~<t~2<,s ,,)}'sl~})roui.ines, i}tm'eby

I ' l l l l l l i l l > {>l'('~L'(l':/lli>: \\ I / l (' l l 4'()IL<iS{ (l{' l l l ' , lNy 5t l i) r () l l l , i l ies .

\VIi(ul :l I ' l t l l i'-; ~.{i\ ('/I i l l It ('()n~()lr, the >yslcl:,/ clm(:l,:s Io see

v>'ilirli {it' :ll~V) <)i I{le /il('s r(,~t~l(,>led }1~1,\'(! be(}ll el iai iged.
'l'ti()se files /l~:/~ }i:lv(' l>('ell Cii:/ll~(!({ Ill'C: l{l('ll updale.d. The
S\'S{('III llCXl It':lil<l:lle:~ lileS(' sl / i)rolt l i i t (,s all.;{ of)l,aii/s {t,
i'el(i('al~l})lc }>iil:~rv fil(,, whi,'/~ is l]lel~ avail~lt)le for :dl

f i l l Ill'(' I'IIIIS,

{" in: i l l / , l i l t ii:!s~/{.s ()t :~tl fil<~> re(im~,sl('(I are l)a, ssed to l/l(,,
loa(h'r, :~ lit)r:~:l3 s("<il'(:]i i~-; l)e/ ' [' () l ' l i i (l({, a l l (t t l (',Ol'e i[l l, 'tg()

form('(I. Tl,e Iil)ri~r/ ~<(,r(~}i (wlfi(:h in(:hid(~s a search of' the
us(,r's file di(: t i () l l : i r /) is necess:iry be(:anse, the progi 'anis
l 'e (i t ips le(l i l l l l i (' I ' t / l l co I t l l l / { f l / (l / I l l / y (~Oi</ItiJlI l ' ()f(we{l(:os Ix)

() i l ie i" {) / ' ()~l ' { l l / is i i () i exi) i i(qt ly :l;lelttioi~e(l i l l th(! [' t in (~()il3-

ll/~tll([. Tiffs i,~q)licii/ 'ervr(,t/(:i i lg st~v(~s ti le user f rom havhtg
to list all stt i)rotit i l ie tt~tlll(+S l'e(/tlil'(~(l ['(>l+ ihe l'Uiq. !I;VC, feel
tirol; this ()rganiz:~liott allows its Illti('}l f lexib i l i ty and coil-
V(?IIJOII('(' :IS l i / i ~] l l })(! (~Xl)(bcle(] OII It sm<+dl c o r e conlpt l l (~ , r .

Sel.olld.~ll'V S l l n ' a g e ,kkcl'c~s () p l i l l l i z a l i o n a n d
7 , l t l i n in i l za I i on
7;

l l f i t i . l l y ii wits lhou,,.;i~t l i iat the frl~(-ttle~illy l leeded
S/St('//15 t)i'(,~I':tllt,'< and l:tt)le> could [)e alloc<,t, ed semi-
i)ern~al~ent (l i 'uln :-~I)a((', 'F}m rest, of' lhC (h'(lm would then
be used I'()r buff(~ring and holding core, loads. However , the
sh(.(,r bulk of s .(.h s/s{eltL~])l'Ogl'{i.lllS {i.long with the fltict-

Uali l ig load of a t ime-sh<u'ed system, made this infeasible
(('.7., wli(qi c()ns(>lc /IStt~e]s }loavy differe,ll systelns pro-
K/' t i l l s ;tl'(? II('e({()(]. { h a r t W]le I l backgroun(t is being proces-

s ed) . . \]SO, Wi:({i Vel ' / lOW ([ll'llIll btl'['['(ws availat)le, I / O
w(),l(i i~:t\'e lo ~() (ire('tlv t() disk, e'msimJ" costly I / O waits.
Th(> a})ov(' l),'()t)ie,~> are vsse. t ia l ly solved t)y the following
l)rot)os:d m:~(h' t) 3, S..1. Nusl)l.

7:{ . \ i [([:] [{t l I / ()V(' l l l (? l l t {() a,/d from (:ltsl< and (h'uni is
:>+ h:mdh'(l })~," ;i t)i'()~i+ in ill t}le niol,ti(oi'. Speci{io reforcll0es

, <

I0 i l l { ! ([l ' t l l l l t t r e (l i s a l l owe(l , : ' rod thtl.S t h i s p r o g r a l n can

bufi'('r t () to all<l f l '(mi tt~e dislc t h rough the dru.IIL C'~i~lSs
are ~vailat)l(~ i() it whi('lt al low sys t em progran-is to make
('{N('h',~l tts(' (ff lhe /)u{'f('riIig (mt)abiliiies. There are two
ge,~(,ra/ ~tre:ts: mif,imiz:ttioi~ of (lisk use and ot)tim zat o~
of (lisk :~('(:(,ss(,:-'.

3,li,,i,n izal io,,

\Vh(,~ev(,v :*'~3' p r o g r a m reads or w:rite> at block on the
disk, it (>:,,t sl)('('ify i}l:tl l Iw, t)lo(!l-t will be needed agait/ ,

':::; a , d ihe i,/(mil()r will :li*(,ml)t to keep tha t block (m the
drum. +\lore K(,tt(,r+a/ly. a l>r()~r;am can issne tit/ inforltmtive
<d} s:~vi,< tlntt it will s(~{m t)(~ ~,ee(ling a t)arti(:uhtr block

++x2,:, fr()m il~(' disk. If {D(~ bt(,('k iv ,~oi :di'ea(ty ou the drum, the
~::;,v>+ moI~iio,' all(!mt)is t() {iI~d r()()m (m the drum. l ';arh block

From (lisl< whit'h {in,is ils way io the drum has a status

!'re {)ar:mwi¢'r a>:<~,,'i:~tr~l wilh it. This s~,~t~s has (),,e of four
~}~ v:Llu(*s, xvll()s(' ,',l(':mi,~>'gs are given i~ Tai~h, I, In :idditiou,

{-; l],(qe is :t,n)ilw," t)it for (,at'It (Irum l)hwk ('alle(l the wtaFrE
~:::¢ Dii. {I ix /llr~le{l 1)11 ~h(',l a l)h~ck of ('ore has been t)uffcred

o,,l() lNe ({r,{m h, l)rt.i>:~,>lio,, (or writ ing o,~ tile disk. Any

TABIJ)i I. t)*mm STATUS PAItAME'PEIrt

,5l(U us Meaning

0 l)r'lm~ block is free, ~md may be ttsed by any bloek needing
a space on the drum. However, if the block presently
oeeupyir g t.he space is requested before the sp~ee iv re-
:~ssigned, no disk :~eeess is necessary.

1 ll)rum block holds i,fformation which will be needed
again. The more reeent the "will need" command, the
higher the priority.

2 Drum block being put, to special high priori ty use--nott
(vwdl:tble for any ot.her use. This status is avMlable
only to selected system programs.

3 I)rum block locked out, and unused in normM running,
Recovery and engineering tesl~ informf~tion st, ored here,

until the D*S:K WRITE has been given or until a CANCEL
wen'l:: is given. CANCEL WroTE may be given when a pro-
gram finishes using temporary disk storage which has
found its way to the drum. The temporary storage may
be read (with a WmL NEED) one or more times before the
CAXCEL WroTE is given. If the temporary storage is still on
the drum when the WRITE is cancelled, it is then not neces-
sary to move the blocks to the disk.

A stack-down list of all blocks on the drum is kept, and
references to data already on the drum (with a WILL
XEEI)) cause the entry to be moved to the top of the stack
so that it will be the last to leave the drum. That is, data
that is most frequently referenced will tend to remain on
the drum. Thus when a disk cM1 is made, the drum table is
first searched for the disk address; if it is not found then a
direct READ FROM DISK is given.

After a compilat ion, for example, all other jobs for that
compiler should be given a high priority since it is now on
the drum.

Blocks with status equal to 2 do not go into the stack-
down list. These are blocks which may not be referenced
often enough to stay on the drum with status 1, but which
must be available immediate ly when needed (real- t ime

display, etc.).

()pt i m i z a t i o n

Also incorporatcd in the moMtor is t~ t ight a lgor i thm
which provides for rain[raM head mow21nelit while moving
(ta(a to and from the disk. Specifically, lnost ou tpu t f rom
core is t irsfD wri t ten on the d rum and an en t ry containing
lhe disk dest ination of the ou tpu t is made in a table. The
posit[ell of the disk arias is then taken into consideration
in malting the choice of which d rum [)lock should next be
moved to disk. 3lore specifically, the priorit, y of the
waiting transfers is dynanficMly re-assigned so tha t the
transfer requiring the least t ime for moving the heads will
be hosen next. The monitor mainta ins a queue of pending

lransfers, consisting of:

(I) :t¢ti:ADS: disk -~ d rum

(2) WRITES: drnnl ---> disk

~, , I .me l i i / ~ , , m b c r '2 ' l"cl , ruury. 1%7 (; o m m u n i c a t i o n s o f t i le ACM 79

Wl~e*~ the drum is trot heavily used, asA i)s are given pri
ority in order to bring the drum usage up. In normal use,
R:~s.~s and wai:rEs have equal priority. In heavy use,
when the drum is full, or nearly so, wx~rr~,:s are given
priority, in order to try to make room on the drum.

The scheme outlined above for secondary storage con-
trol is one of the key factors in making time sharing feasible
on a small core computer.

With these specifications available, the scheduler is able
to take advantage of the knowledge tha t a certain job is
pending execution and use the w~r~r, N~,:r:D option to over-
lap the core load to the drum during execution of the cur-
rent core load. Similarly, when a swap is undertaken the
active core/o:~d is moved to the drum whence it is grad-
ually moved back to the disk (if necessary) while the next
core load is in execution. To fully appreciate the savings
over sending (:ore loads straight to the disk one must
realize that a full core swap to disk takes ~bout 10 times
more time than to drum. Thus we have gone a long way
toward alleviating the first difficulty listed in the Intro-

duction.
The scheme also allows the possibility of foreseeing input

requests by the user program and bringing the required
block fl'om disk to drum ahead of time. Further, output
requests are handled very rapidly by being buffered onto
the drum for later transfer to the disk.

Using the drum as a bufl'er helps alleviate the lack of
core available for buffering.

Finally, the scheme provides automatic dynamic allo-
cation of the drmn, and so provides very effective utiliza-

tion of tile drum.

Console Comm unicat lon

Since communicatior~ with the Satellite I?rocessing Unit
(SPU) is line by line there is the problem of what to do
wiIh lines in a block-oriented computer.

One emfld bring in the command processor each time a
console line is received; however, this would raise the
system overhead to an intolerable level if many consoles
were active. Further, this is unnecessary if the line is data
(as opposed to a command) since it can simply be packed
away and looked at later (e.g., typing lines into a file).
One is immediately led to the conclusion tha t the SPU
should flag lines as being data or command, the latter in-
forming the monitor that the command processor will be
needed. One could then pack the lines into a buffer and
bring in the command processor when the buffer becomes
full or when a command is received. However, this does
not solve the problem of sending lines to the SPU. Bringing
in the command processor each time a line (or even a few
lines) is sent raises the system overhead again. Further,
such tasks as listing programs do not require a high level
processor. A solution to these problems seems to be
achieved by having one block (which will remain on the
drum in status 2) assigned to each active console. When a
line is received, the corresponding drum block is read in
and sent back eont~ining the line. If the line received was a

comm:md or if tile drum block is nearly f~ll, :t flag is s<
i~rdicating lhat the command pro(~essor is l~eoded. Like-
wise, when ouipu{;{,itlg Ii~es, t}~c appropri~{e ¢trum block
is read ia~ :.r~d a line remow~d each time the SPU sends a
request for a line.

Other advat~tages become apparent in situations such as
the following: An interactive core load associated With the
console Hoes into execution atxct generates output for that
console. These output lines are buffered onto the drum
until the drum block becomes f'ull or until the user's time
slot, is finished and a swap takes place. In either case the
monitor starts sending lines from the drum block as soon
as they are available. In the ideal situation the user has
filled up the drum block before being swapped and the co>
sole cat, be kept busy printing fox' three or four minutes
before that core load is needed again and before disk a/:-
eesses associated with this console are required, once again
reducing the number of swaps required. Similarly, whe~ a
console user wishes a program to be listed an entire bI0ck
is moved from disk to drum and the monitor takes over to
provide automatic listing of the entire drurn block. F'0r
paper' tape input, lines are buffered onto the drum until
the block becomes full and then the entire block is moved
to the disk. (One disk access for each 30-.-50 lines of input.)

Processors tbr interact ive Languages

Swap time is probably the most important factor in the
building of a time-shared system with a reasonable response
time. In fact, most of the techniques so far described help
to reduce swap time. Our design of processors for inter-
active languages is intended to reduce it further.

Each interactive language processor is an integral parl
of the software system. Each one has facilities available to
it which are not available to the user in. general. (1) Erich
proeessor can communicate with many consoles. In fact,
the processor itself determines tile consoles with which k
interacts. (2) Each processor is allowed to request addi-
tional time slot, s so tha t each console with a pending re-
quest can be serviced once.

Each processor is non-self-modifying, hence only the data
pertaining to the consoles need be saved. The interactive
processors car, be designed with a t ime limit for each con-
sole so that all consoles are serviced within the time al-
lotted to the interactive processor. Thus, users requiring a
small amount of compute t ime can expect fast response
time. i t has been our experience tha t many users have
found one such processor [7] very useful.

Conclus ion

While several aspects of t ime-shared comI)uter use have
been discussed, many others have not. Nonetheless, the
authors believe the suggestions made in this paper will
prove useful to other groups who might he thinking 0t .
implementing a time-share system on a small memory
computer. In particular, we believe tha t we haw~ m:~de
several promising steps in the direetion of overcoming the

80 Communications of tile ACM Volume 10 / Number 2 / February, 1%7

problems as>oei:~led with :~ small memory in a time-shz~red
e~tvir(mment°

Acl,:~lo~fedflmC~zts. The authors acknowledge the bene-
fit of cri{icisms of early versions of the paper by Professors
C. W. C, ear, ~\i. P~ml, and B. Squires. They would also
like to lhmtk N[r. J. I). i\ladden for encouraging them. Fi-

nally, they would like to thank tile members of the staff of
the Department of Computer Seienee at the University of
Illinois, including L. Greninger, S. ,l. Nuspl, F. K. Ricb-
~rdson, and A. Otis, all of whom rnade many useful sug-
gestions.

t~.ECEIVED AUGUST, 1966

REFERENCES

1. M(:CA~¢~vHv, .](mN. Time-sharing computer systems. In Martin
(h'eenberger (bh).), Compellers and the World of the l,'ut'~re,
M.I.T. Press, Cambridge, Mass., 1962, p. 232.

2. LICIITENBE/XGEn, 1{. WAYNE~ AND PIRTLE, MELVIN W. A
facility for experimentation in man-machine interaction.
Prec. AFIPS 1965 Fall Joint Comput. Conf., Vol. 27, Part 1,
pp. 589-598.

3. Ci~IS~AN, P. A. tee.) The Compatible 7'tree-Sharing System:
A Programmer's Guide. M.[.T. Press, Cambridge, Mass.,
1965.

~. ILxlJCV, 1~. C., AND NEUM_~NN, P.G. A general-purpose file

system for secondary storage. Prec. AF[PS 1965 Fall Joint.
Comput. Conf., Vol. 27, Part 1, pp. 213-230.

5. BRI~L~RI,IqY, It. C. ILI,[AC II, a short description and amlo-
tated bibliography. IEEE 7'ra~.~. EC-14, 3 (Jane, 1965),
399-403.

6. Gn.at~, C.W. Optimization of the address field computation
in the ILLIAC [[assembler. Comput. J. 6 (1964), 332-335.

7. GsAt¢, C. W. Tipsy, a fast response interactive processor.
Programming Memo. No. 50, [)ep~. of Computer Science, U.
of Illinois, Urbana, Ill.

A P P E N D I X

We first give a few statistics. The I L M A C I I [5] has an
SK core of 52-bit words, the drum holds 8 core loads, and
the disk holds about 150 drum loads. The core cycle time
is 1.75,usee, the core is four times faster than the drum, and
t, he drum is about 15 times faster than the disk. Maximum
access t:ime for the drum is 16msee and for the disk 214
reset. A block is defined to be 256 words. A hardware
restriction is that only block transfers to drum are possible.

The SPU used is the PDP-7 with tile 630 multiplexer.
II has a 8K core of 18-bit words, its core cycle time is 1.75
~,sec, and it cart service up to 64 consoles.

Planning on the system began in the spring of 1965. A
pilot system, which has been running 13 hours a day since
February 1966, required between 1 and 2 man years to
implement. I t services four consoles, which are connected
directly to I L L I A C I I instead of coming through the
PDP-7. Other than that, the hardware configuration for
the pilot system is the same as that shown in Figure 1. Be-
cause console lines come directly into ILLIAC I I core in
the pilot system, a system processor is swapped in each
time a line arrives. Handling the line may mean sl~ill
another swap to get the core image for the console from
which the line came. This core image is likely on the disk,
so that two or three seconds may have gone by before the
line is processed by the correct core image and control re-
turned to tile core image which was present when the line

came in. This procedure, while rehttively straightforw:~rd,
results in lengthy waits at the consoles because of excessive
swapping. While this is bearable when only four consoles
are attached to the system, it, would not be feasible if many
more were attached directly to ILMAC II.

Tile pilot system includes processors for three l:m-
guages: Tipsy, FowrI~.~r II, attd NICAP (New Illinois
Compiler and Assembler Program) [6]. The [~'ORTnAN
and Niece processors are ordinary implementations of a
compiler and a machine language assembler, respectively.
The Tipsy processor is interactive, procedure-oriented mid
designed to handle several consoles at once. I t is an inter-
active processor as discussed in the main body of lhe
paper.

The pilot system includes as background, the batch
processor which previously occupied most of the tirne of
ILMAC II. In fact, runs from consoles in the pilot system
are made via this batch processor.

Finally, tile command language for the pilot system
includes commands for the following functions: 1. Crea-
tion and modification of named files; 2. simple file search-
ing; and 3. running of files through one or another of the

system processors.
The design and implementation of the pilot system is

due primarily to the efforts of F. K. Richardson and C.

W. Gear.

Volume 10 / Number 2 / February, 1967 Communications of tile ACM 81

