arXiv:2302.14354v1 [cs.CV] 28 Feb 2023

DEEP LEARNING FOR IDENTIFYING IRAN’S CULTURAL
HERITAGE BUILDINGS IN NEED OF CONSERVATION USING
IMAGE CLASSIFICATION AND GRAD-CAM*

Mahdi Bahrami Amir Albadvi
Information Technology Department Information Technology Department
Tarbiat Modares University Tarbiat Modares University
Tehran, Iran Tehran, Iran
mahdi_bahrami@modares.ac.ir albadvi@modares.ac.ir

March 1, 2023
ABSTRACT

The cultural heritage buildings (CHB), which are part of mankind’s history and identity, are in
constant danger of damage or in extreme situations total destruction. That being said, it’s of utmost
importance to preserve them by identifying the existent, or presumptive, defects using novel methods
so that renovation processes can be done in a timely manner and with higher accuracy. The main
goal of this research is to use new deep learning (DL) methods in the process of preserving CHBs
(situated in Iran); a goal that has been neglected especially in developing countries such as Iran, as
these countries still preserve their CHBs using manual, and even archaic, methods that need direct
human supervision. Having proven their effectiveness and performance when it comes to processing
images, the convolutional neural networks (CNN) are a staple in computer vision (CV) literacy and
this paper is not exempt. When lacking enough CHB images, training a CNN from scratch would be
very difficult and prone to overfitting; that’s why we opted to use a technique called transfer learning
(TL) in which we used pre-trained ResNet, MobileNet, and Inception networks, for classification.
Even more, the Grad-CAM was utilized to localize the defects to some extent. The final results were
very favorable based on those of similar research. The final proposed model can pave the way for
moving from manual to unmanned CHB conservation, hence an increase in accuracy and a decrease
in human-induced errors.

Keywords built cultural heritage conservation - deep learning - image processing - convolutional neural networks
(CNN) - gradient weighted class activation mapping (Grad-CAM) - Structural health monitoring - transfer learning

1 Introduction

Two main categories of Cultural Heritage (CH) are tangible and intangible heritages, and the CHBs fall under the
former category. The tangible CHs have universal values which must be physically preserved for future generations
as an irreplaceable legacy [1, 2]. CHBs are indubitably an integral part of the history and culture of human beings.
Throughout the years many of these precious buildings have been in danger of damage due to several reasons, namely
material deterioration, natural disasters, presence of visitors, vandalism, etc. [3—5]. Currently, the topic of CH has
attracted increasing global attention from scientists and researchers alike, and the scope of its concept is constantly
expanding. Most social scientists emphasize on its utility in supporting ethnic and national interests, while many others
point to its creative and counter-hegemonic aspects [5, 6].
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1.1 Importance

Endowed with rich CHBs, Iran is ranked 10th in 2022, among all other countries, with 26 UNESCO world heritage
sites [7]. Although only 26 of the CHBs in Iran have been registered in UNESCO and not all of them are buildings, the
number of CHBs in Iran is of the order of thousands and according to archaeological findings, Iranian architecture dates
back to 6,000-8,000 B.C. [8]. One of the reasons why Iran has been unsuccessful in registering more CHBs is the fact
that most of these CHBs have not been preserved correctly, if not at all. Even some CHBs are beyond restoration. The
CHBs, which fall under the category of immovable tangible CHs, demand more sophisticated methods for conservation
since we cannot move them to museums to preserve. Lack of resources in terms of skilled practitioners, budget, and new
technologies are just some of the shortcomings that introduce many problems in the conservation process. As regards
the usage of state-of-the-art technologies, Iran as a developing country still uses archaic, and sometimes obsolete,
manned methods to preserve these precious treasures of humanity. From a broader perspective, many CHBs around the
world suffer from such problems as well, so the use of artificial intelligence (Al) techniques such as ML and DL is not a
luxury anymore but a necessity. Using ML and DL, we can move toward unmanned conservation of CHB, hence an
increase in accuracy and a decrease in human-induced error.

1.2 Research Aim

The aim of this paper was to develop a highly generalized, yet simple, deep learning pipeline for the identification of
CHBs in need of preservation, which can be used even in poor countries. We achieved this by making our model as
lightweight as possible using a wealth of novel methods, as not all countries have access to expensive resources. This
mindset allows for having fewer data and processing power but still reaping satisfying results (Table 3).

1.3 Contribution

Unprecedented in Iran: To the best of our knowledge, and to our surprise, not even a single scientific research had
been conducted using ML or DL in the conservation of Iran’s CHBs. The body of research outside Iran is not so much
either. according to Fiorucci et al. [9] the use of ML in CH literacy has been quite limited in contrast to other fields.
We believe that more research in the intersection of Al and CH can change this situation and can pave the way for the
prevalence of such techniques in the process of CHB conservation around the world and accrue many benefits to CHB
literacy as well.

First-hand Complex Data: We used first-hand data, which had been collected from different sources, as discussed in
subsection 3.1. Using first-hand data is important in the sense that not only our experiment would be unprecedented in
Iran but globally as well; since no known CHB dataset to date [9] can cover the diversity of types of buildings, types of
defects, and color nuances of both Persian and Islamic architecture, like ours.

New combination of Methods: This paper proposes an automated deep learning pipeline for identifying surface
damage of CHBs. Having developing countries in mind, we used a combination of state-of-the-art methods to cater to
their conservation needs with as little budget as possible. That said, the final deep learning pipeline, using a pre-trained
MobileNet, can be run on low-cost devices, for instance a budget mobile phone, to make inference.

* Image classification: define whether a CHB needs preservation or not.

* MobileNet: a very lightweight CNN architecture, but with approximately the same performance as a lot of
havier CNNs (e.g., ResNet and/or Inception).

* Grad-CAM: to approximately localize the defects.

* Transfer learning: to reap great results without the need for expensive servers or manpower to take copious
images.

* A valid data augmentation pipeline: allows the model to learn more features from the same data.

* Compound regularization method: a combination of four regularization methods together, namely augmenta-
tion, dropout, L2 regularization, and batch normalization.

2 Related works

Globally many attempts have been made to use deep learning for damage detection in CHB images. Wang et al. [10]
used object detection (OD) with the aid of FasterR-CNN based on a ResNet101 CNN to detect damage in images of
masonry buildings with bounding boxes. In another research, Wang et al. [1 1] used instance segmentation (IS), by
the means of a Mask R-CNN model, for damage detection, using a masked colored layer, in glazed tiled CHBs. An
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interesting work by Pathak et al. [12] used Faster-RCNN to detect damage in CHBs, but with one major difference to
other works. They used point clouds data, instead of images, as the input to their proposed model, and instead rendered
point clouds as images which increased the versatility of their model, since capturing photogrammetry doesn’t have the
same limitations of manually taking photos. Expectedly, damage detection using deep learning is not limited to CHB
literacy; for instance, Perez and Tah [13] used OD to detect defects on the images of modern buildings.

As highly revered as OD and IS are, they have some downsides, namely (1) a time-consuming data labeling process
with bounding boxes (for OD) or color annotation (for IS); (2) the need for a huge amount of accurately labeled data;
(3) detecting only pre-specified types of defects; and (4) much higher computational complexity, in comparison with
image classification. This is especially important in the case of developing countries (e.g., Iran), where budgets and
resources are limited. That’s why despite the prevalence of OD and IS in computer vision, many researchers opted to
use the simpler image classification, where each image will be given a label as a whole, and the position of damage
is not delineated. As an example, Perez et al. [ 14] used image classification and CAM layers to classify and localize
defects. The downside of their work was not the use of image classification, but using cropped images, which would
have been more suitable for object detection rather than image classification.

The usage of image classification and deep learning has not been just for damage detection, but aspects of CHB can
benefit from them, as was the case with Llamas et al. [15] who attempted to classify different architectural elements in
historical buildings.

In terms of methodology, we followed the footsteps of Llamas et al. [15] and Perez et al. [14] by using image
classification over OD and/or IS. Although our work is different in terms of the details of methodology and data. Unlike
them, we used data augmentation and a combination of four regularization methods together, which in our case resulted
in a 4-5% improvement in metrics (Table 3 and 4).

Research Gap: To the best of our knowledge, most of the works regarding deep learning and CHB use either simplistic
data or use the data belonging to a single CHB. As a result, the final trained model lacks the generalization needed to be
used for a wide range of buildings in the country of origin. We believe that the data must reflect the variety of real-world
data with no editing or cropping. This way the research can come as close as possible to the practical application
of using deep learning in the conservation of CHBs. Despite being known as de facto in CV, OD and/or IS need
substantial computational resources to process images and detect damage, therefore making these methods infeasible for
developing and/or poor countries with so many CHBs (e.g., Iran). Using more lightweight and sophisticated techniques,
we can achieve reasonable results but with low-budget and simple devices (e.g., Mobile Phones).

3 Materials and Methods

3.1 Data

For this experiment, we curated a labeled dataset of approximately 10,500 CHB images. In the following, the data
curation process is discussed.

3.1.1 Data Collection

The data were gathered from four different sources; (i) The archives of Iran’s cultural heritage ministry; (ii) The author’s
(M.B) personal archives; (iii) images captured on site by the authors (M.B) during the research process and (iv) pictures
crawled from the Internet but kept it to a minimum as their distribution differed due to heavy edits and effects. The
images that didn’t meet the desired quality were removed, to avoid introducing noise to our dataset. Our collected
images proved to be very challenging, in the terms of complexity, peculiarity, level of detail, and variation in size, color,
characteristics, etc (Figure 1).

Regarding the population of data, as it was infeasible to have access to all the CHBs of Iran, or manually take pictures
of them, we tried a random but fair approach to increase the richness of data by taking samples from a wide variety of
buildings in terms of architectural style, color theme, quality, time of building, etc. In the process of collecting data
different types of criteria were foremost in our minds:

¢ Locations: Semnan, Hamedan, Tehran, Ghazvin, etc.

» Types: Mosques, Shrines, Churches, Palaces, etc.;

« Style: Islamic, Roman, Persian, etc.;

* Types: cracks, deterioration, mold, etc.;

* Color nuances: we have images from different times of the day and in different seasons.;
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Figure 1: A few sample images which show the complexity, diversity and variation of our data.

3.1.2 Data cleaning and preprocessing

A number of preprocessing steps were taken before creating our final datasets:

1. Cleaning low-quality images, in terms of relevance, corruption, aspect ratio, grayscale, lighting condition, etc.
(Figure A.1).

2. Fixing the auto-rotation EXIF metadata.
3. Finding a good enough resolution and resizing all images to it (i.e., 224x224).

4. Normalizing pixel values to a range of [—1, 1].

3.1.3 Data labeling

Not to exacerbate the existent data imbalance, we chose binary classification over multi-class classification. The
negative class (label 0) was used for images that didn’t include physical defects and the positive class (label 1) for the
ones that did.

Not to become biased in the labeling phase we had three different highly qualified CHB practitioners label the images
individually. This way the final label of a single image was determined by the majority vote of these three labelers.

When it comes to labeling, especially image data, we almost always have to deal with some degree of inconsistency, as
different practitioners have different experiences, expertise, criteria, etc. To mitigate this effect we defined some criteria
by which each labeler had a more consistent and clear guideline to label the images. Figure A.2 shows why it was so
crucial to have some criteria that distinctly determine what should be considered a defect (e.g., in terms of length or
depth). As regards what types of physical defects were considered in the labeling process, we can enumerate the crack,
mold, stain, and deterioration as the most important ones with enough samples in our dataset.

3.1.4 Creating the datasets

After cleaning and preprocessing our data, it was divided into three mutually exclusive and jointly exhaustive sets,
namely train, validation (aka dev), and test (Figure 1). To ensure a random but fair division we used stratifying shuffle
that’s why we have approximately the same ratio between the number images for each label (Table 1).
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Table 1: The distribution of data; both aggregated and for each dataset separately.

class/label Total images Train set Validation set Test set

negative/( 1432 1018 (13.8%) 207 (12.99%) 207 (13.28%)

positive/1 9096 6358 (86.2%) 1386 (87.01%) 1352 (86.72%)
Total 10528 7376 (70.06%) 1593 (15.13%) 1559 (14.80%)

As it’s evident in Table 1, the notorious yet prevalent problem of data imbalance could be identified. A will be discussed
in subsection 4.2 we used a weighted loss function to mitigate this problem by a large margin.

3.2 Convolutional Neural Networks (CNNs)

Synonymous with unassailable performance when it comes to processing image data, the CNNs were a staple in the
field of CV since their introduction in 1989 by LeCun et al. [16, 17]. Therefore it was somewhat indubitable that we
needed to process our CHB images with this type of NNs to benefit from all the advantages that could accrue to our
models by using CNNs. Goodfellow et al. [18] believe CNNs to have three main benefits: translation equivariance,
sparse connections, and parameter sharing. A CNN network has less number of learnable parameters in comparison
with its conventional fully connected (FC) counterpart. This reduction in the number of parameters is the product of
having sparse connections and parameter sharing which enables CNNs to; (i) train faster; (ii) be less prone to overfitting
and as results demand fewer train data; and (iii) be able to work with high dimensional data (e.g., images), that their
FC counterparts are incapable of. The CNN does the onerous work of feature extraction automatically; the task that
without CNNs used to be done by hand engineering the features [19].

In this experiment, we used three of the most prestigious CNN architectures which have shown compelling results and
interesting loss convergence, namely ResNet [20], Inception [21], and MobileNet [22].

3.3 Transfer Learning

Dealing with several restraints such as lack of enough data and powerful computers, a methodology called transfer
learning was employed to drastically mitigate these impediments. TL tries to transfer the knowledge, a pre-trained
model has already learned from a large amount of data, to another model [23]. Generally, TL consists of two main parts.
The first part is responsible for customizing the output layer to our problem. The second part fine-tunes the pre-trained
model to adapt more to our specific data.

3.4 Class Activation Mapping (CAM)

In spite of the merits of image classification, there is a notorious drawback that lies within, and that is the black-box
nature of artificial neural networks (NN). That being said, we don’t know whether the model considers pertinent features
in an image to decide its class or not. That’s why researchers came up with a solution named class activation mapping
(CAM) [24].

In this experiment we used gradient-weighted class activation maps (Grad-CAM) [25] which is a CAM method that
merges the gradients (aka derivatives) of the final classification, that is the output layer deciding the label of the image,
and the output of the final Conv layer of the model to generate a heatmap. The heatmap then is applied to the original
image to localize the places that were taken into account when deciding its class/label.

3.5 Regularization

As one of the salient reasons for the occurrence of overfitting is the lack of enough data, which is ubiquitous in CV, we
are always in need of more data. Unfortunately getting more brand-new data is not always possible. A workaround is
to use the data we already have to increase the number of valid labeled train data, hence a decrease in overfitting as
the model is now less capable of naively memorizing the train set [26]. As data augmentation is a staple in CV [26],
we almost always opt for using it and this paper is not exempt. Finally, in Figure 2 the result of our proposed data
augmentation pipeline after nine runs on the same image can be seen. The data augmentation methods used in this
paper can be found in Table 2.

Briefly, to decrease overfitting, which is commonplace in DL models, due to their high capacity in terms of the number
of parameters, a combination of four famous methods were used, namely L2 regularization [27], dropout [28], batch
normalization layer [29], and data augmentation [26]. The results of this combining approach, as discussed in section 5,
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Table 2: The data augmentation methods used in this paper and their corresponding values.

method value | method value

random flip Horizontal | random brightness 0.05
random rotation 0.005 random saturation 0.6 - 1.2
random crop 5% random contrast  0.75-1.1

random quality 80 - 100 random hue 0.03

Figure 2: An example of applying the proposed data augmentation methods on a train image (i.e., nine times). Notice how random,
realistic, and valid the augmented versions are.

were quite satisfiable in terms of overfitting and resulted in a very small amount of overfitting (i.e., < 1%) for all of our
models.

4 Implementation

4.1 Network Architecture

In the Figure 3 the holistic architecture of our proposed method is represented. Not to process new input images through
a data preprocessing pipeline every time, we embedded both the resizing and the normalization preprocessing functions
into our network (i.e., pink box). This way, there would be no need to process the unknown images before executing the
prediction on them, after the model had been trained.

It was alluded to before that in this experiment we made use of several pre-eminent CNN architectures to tackle
the problem at hand and not to be biased toward a certain architecture. As a result, four different networks were
implemented, namely ResNet50-v2, ResNet152-v2, InceptionResNet-v2, and MobileNet-v2. One main difference
between the ResNet50-v2 and other models is that we trained the ResNet50-v2 from scratch and with randomly
initialized weights; while the other three were pre-trained models which were accompanied by TL.
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The responsibility of the Global Average Pooling layer (i.e., purple box) was to flatten the output of the last Conv layer
into a matrix, which is the desired shape of the input of a fully connected (FC) layer. Before replacing the output of
the pre-trained model with a layer of our own, an FC layer (i.e., light blue box) was added to decrease underfitting;
the bigger our network becomes the less underfitting we experience, but it also increasing overfitting, that’s why a
single FC layer proved to provide a desired trade-off, and thus reduced underfitting by a large margin without increasing
overfitting too much.

As shown in Figure 3, our model has two outputs. The first (i.e., green box) is responsible for the task of classification,
by which each image will be given a label (i.e., negative or positive). The second output on the other hand does the task
of localizing the parts by which the model has decided on a certain label for a specific image; this task is done by the
Grad-CAM method (i.e., orange box).

ground_up model:
Preprocessing ResNets0-v2 A ] 0:no defect
pretrained model: @ y
A ResNet152-v2 1: has defect
Unit MobileNet-v2

InceptionResNet-v2 (N, 1)

predicted label
input_image (N, nylt], nylt), ncltl) (N, nclt]) (N, 100)
(N, 224, 224, 3)

ey o LEGEND, P
reprocessing layers : Class it

&3P oNN model

Activation
&P ciobalavgPool (Flatten) i .
AP Fuly Connected + ELU H Mapping
&P output + sigmoid H Layer

output_image
(N, 224, 224, 3)

£ Grad-cam localization layer

(N, 224, 224, 3)

Figure 3: The overall architecture of our proposed model/network. Where the values shown in parenthesis below each layer represent
the layer’s output shape. The NV, n%] s ng,LV], and n[CL I refer to the batch size, height, width, and channels of the last layer (L) of the

embedded CNN model respectively.

4.2 Evaluation

To evaluate the implemented networks several metrics have been used in an endeavor to meticulously monitor the
behavior of the networks at different stages of training. All these metrics will be scrutinized in the following subsections.

4.2.1 Cost function

As mentioned in subsubsection 3.1.4 our two classes were imbalanced and since it would nudge our model to be biased
toward the class with more examples (i.e., the positive class), we had to tackle this problem somehow. Having decided
in favor of using the class weight method due to its numerous merits the Equation 1 was used to calculate the weight of
each class, but it’s worth noting that there is a myriad of ways to calculate the weights but as we would fine-tune the
calculated weights later on in hyperparameter tuning phase we chose the most widely used:

Uz
We = ——— (D
ny *x Ne

Where w,, n¢, n;, and n. indicate the calculated weight of class c, the total number of images in the dataset, the number
of classes, and the number of images in class c respectively. These weights then will be used in the cost function of our
networks so that the importance of images belonging to the inferior class outweighs that of the superior class, in a way
that network will be rewarded or penalized more when it comes to the images of the class with fewer examples in it. The
binary cross-entropy cost function was used, and the way it calculates cost before and after applying class weights can
be seen in Equation 2 and 3 respectively. To make it more concrete the first one is used in validation, test, and prediction
while the latter is employed in training time; that is we only care about data imbalance during training which is common
sense as the network only updates its internal parameters (e.g., weights) in training time and backpropagation.

Ly) = - (yzog@ (1 y)log(1 - y)) ®
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Where y refers to the true label and the g to the predicted label of the given record. Note that as we did binary
classification and sigmoid activation function for the output layer then g is actually the probability ([0, 1]) of the record
belonging to the positive class.

4.2.2 Performance measures and metrics

When it comes to the evaluation of our model, several metrics were incorporated to ensure the rigor of our results. As
we suffer from imbalanced data the Accuracy can be quite misleading if the model gets biased toward the superior class,
so to address this issue four more performance measures were used, namely Precision, Recall, F-Score, and AUC. If
anything, the F-Score is the harmonic mean of the Precision and Recall, thus it takes into account both of them to give
us a balanced score of the two. Mathematically, Accuracy, Precision and Recall, and F-Score are defined as:

Accuracy = TP+1IN 4)
Y= TPYFP+TN+FN
P TP )
recision — TP + FP
TP
frecall = 75 N ©

2 % Precision * Recall
F-S = 7
core Precision + Recall @

Where TP, TN, FP, and FN are True Positive, True Negative, False Positive, and False Negative respectively. In this
paper the FN takes precedence over FP, thus the Recall is more important than precision as the FN is in the denominator
of the Recall’s Equation 6, however, we tried to balance them as much as possible. The reason is that if an image
is falsely labeled as positive then in the worst-case scenario we lose time, but in the case of an image being falsely
labeled as negative, then a building in dire need of conservation can be overlooked which might lead to irredeemable
destruction. The area under the ROC curve, abbreviated as AUC, was employed in an endeavor to refrain from creating
a model biased toward a certain class. AUC demonstrates the power of the model in distinguishing different classes.

5 Results

After slogging through the onerous task of training and fine-tuning the hyperparameters several times, we achieved
highly satisfactory results (Table 3). Note that the training process of the ResNet50-v2 doesn’t have the fine-tuning
step as we trained it from the ground up and with random initial weights. Considering the lack of enough data and
computational power, which were alluded to before, it was of no surprise that the networks trained with TL fared the
best.

Among the networks that used TL, there is no definite winner, but the MobileNet-v2 had the best performance
considering both the performance measures and the computational complexity for both the training and making an
inference. That said, MobileNet’s lightweight architecture is conducive to training and predicting faster which is
especially important for devices with low computational power such as mobile phones, edge devices, etc. which are
considered de facto pieces of equipment to monitor CHBs [30].

5.1 Evaluation of MobileNet-v2’s Performance

As mentioned before and according to Table 3 the fine-tuned model made with pre-trained MobileNet-v2 was the
winner among the other three networks. and its lightweight architecture which is conducive to training and predicting
faster is especially important for devices with low computational power such as mobile phones, edge devices, etc. That
being said, as the winner among all four network architectures let’s scrutinize MobileNet-v2’s performance even more.
The results of other networks in detail can be found in Figure A.3-A.5. The Table A.1 displays the most important
hyperparameters used during the training and fine-tuning of our multiple networks.
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Table 3: Final results, after hyperparameter tuning.

ResNet50V2 ! ResNet152V2 2 MobileNetV2 %3  InceptionResNetV2 2

train  val test | train  val test | train  val test

Measure

train  val test

Loss 048 047 048 | 038 038 038 | 031 032 033 | 036 036 0.37
Accuracy 0.83 084 0.83 | 0.88 0.89 0.89 | 090 090 090 | 0.88 0.88 0.88
Precision 087 087 087 | 092 092 092 | 095 094 094 | 091 091 0091

Recall 095 095 095 | 095 095 09 | 094 094 094 | 096 095 096
F-Score 091 091 091 | 093 094 094 | 094 094 094 | 093 093 093
AUC 054 054 054 | 08 088 088 | 093 092 09 | 087 086 0.85
TP 6040 1310 1287 | 6056 1319 1296 | 5961 1311 1274 | 6082 1319 1295

FP 923 189 192 | 551 107 114 328 78 76 623 123 135
TN 95 21 22 467 103 100 | 690 127 139 | 395 87 79
FN 318 73 67 302 64 302 397 71 79 276 64 59

' This NN was trained from scratch and with initial random weights.
% These NNs were trained and fine-tuned using TL.
3 This NN has the best performance among all.

The fine-tuned MobileNet-v2 doesn’t suffer from underfitting nor overfitting (Figure 4). As regards the second output
of the fine-tuned MobileNet-v2, the localizations seemed completely relevant and attest to the fact that the model had
learned the correct features in the train data (Figure 5).
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Figure 4: The changes in performance measures reported after each epoch for both the train and validation sets during the training
and fine-tuning phase; belonging to the MobileNet-v2 network. the green line indicates the point, in terms of epoch number, where
we started to fine-tune some late layers in the pre-trained model.

The output of several Conv layers, aka feature maps, from our fine-tuned MobileNet-v2 network, are visualized in
Figure 6; we purposefully chose one layer from the beginning, one from the middle, and another from the end of the
network to demonstrate that the more we go deep into the network the more holistic and abstract the detected features
will be and vice versa.

6 Discussion

This work demonstrates the facilities of DL in the conservation of CHB by the means of damage detection. As we have
collected a diverse set of intricate CHB images, the trained model is very robust and achieved a minimum of 90% for
all the metrics we used on the test set. More than our diverse data, using TL, data augmentation, and three different
regularization methods in combination, was conducive to reducing overfitting and increasing the generalization power
of our model. The salient reasons that attest to why our results are considered to be good enough are (i) Bayes error rate
and (ii) the value of performance measures. Although measuring Bayers error rate is a hard and time-consuming task,
which was not in the scope of this experiment, we can argue that its value is high, as for instance even a highly skilled
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(a) Tarikhane Mosque (b) Bayazid shrine (¢) Oljayto porch

(d) Tarikhane (Grad-CAM) (e) Bayazid shrine (Grad-CAM) (f) Oljayto porch (Grad-CAM)

Figure 5: Some samples of the output of Grad-CAM layer of fine-tuned MobileNet-v2 network. The localized defects are shown by
a heatmap (from Blue to Red).

layer 4

-0.66
- 0.64
- 0.62
- 0.60
058
- 0.56

layer 48

layer 146

-0.63
- 062
|- 0.61
|- 0.60
- 0.59

Figure 6: A few samples (i.e., 8) of feature maps from the beginning (top), mid-section (middle), and end (bottom) of our fine-tuned
MobileNet-v2 network. The input image was the same as that of the Of subfigure ¢ in Figure 5.

CHB practitioner from the south of Iran, would have had a hard time detecting the defects in CHBs from north of the
country, considering the peculiarity and idiosyncrasies of each building in our dataset.

According to Mandrekar [31], in the field of CV, values larger than 90% are considered excellent, so it’s safe to assume
that the MobileNet-v2 had excellent performance, recording values above 90% for all of our metrics. Other than
reaching the best performance among other models, the MobileNet-v2 is particularly interesting as it is a faster NN
which is particularly important in doing real-time damage detection in devices with low computational resources, such
as mobile phones or edge devices. Using our proposed model based on MobileNet-v2 can pave the way for the wide
usage of such models in CH sites in Iran and/or around the world with the fewest possible resources.
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To compare our results with those of similar researchers, the papers of Llamas et al. [15] and Perez et al. [14] were
used, as these were the ones that used image classification, CNN, and TL, just like this experiment. As both of these
papers used multiclass classification whereas we used binary classification, we took the average of each metric (e.g.,
Recall) for all classes, Llamas et al. had ten/10 classes and Perez et al. had four/4 classes; this way we could make their
results comparable to those of ours. The comparison of the results on the test set is shown in Table 4.

Table 4: A comparison between the results of similar studies. the reported values are for test set.

Precision Recall F1 Score

Llamas et al. (ResNet) [15] 0.90 0.90 0.90
Perez et al. (VGG-16) [14] 0.90 0.89 0.89
Our fine-tuned model (MobileNet-v2) 0.94 0.94 0.94

The most important challenges and limitations that we faced during this experiment were: (i) needing more data, which
is a perennial problem in CV; (ii) lack of suitable computational power; and (iii) inconsistency in labeling due to
personal preference and difference in the level of labelers’ expertise.

7 Conclusion

This experiment is concerned with applying novel yet matured methods such as DL and CNNs to make the process of
conservation of CHBs less prone to errors and more efficient than doing it manually by direct human supervision. By
getting Iran’s CHB practitioners, the main beneficiaries of this experiment, to use our proposed models besides their
old methods, a higher rate of success in detecting physical defects of such buildings can be achieved. We irrevocably
believe that CHB practitioners using DL models, such as our proposed one, can identify physical defects more often
than either does alone and hopefully as a result, a lower prospect of CHBs deteriorating in structural health.

In an endeavor to practically demonstrate the utilities of DL in CH literature, We developed a fully fledged DL model
that classifies the images in need of conservation and even more approximately localizes the defects to help the CH
practitioners identify defects in a timely manner, and as a result speed of the process of CHB conservation as well as
increasing its accuracy. In spite of all the limitations, we achieved very good results with a score of at least 94% for
Precision, Recall, and F1-Score, which were about 4-5% more than similar works (Table 4).

As regards future works, addressing the limitations we faced can open up a plethora of opportunities in terms of methods
and outputs. for instance, if had access to a large amount of labeled data and powerful servers, physical or in the cloud,
then object detection or instance segmentation would be more useful and could elicit more accurate and user-friendly
results from our data. Having gotten traction in the past few years, the generative adversarial networks (GANSs) can be
utilized in our network architecture to propose restoration based on the label and localizations our proposed model
offers.
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A Appendix: Supplementary Materials

W

(a) elongated (b) irrelevant to CHB (c) too little light

(d) blurry (e) scans from printed images (f) too much light

Figure A.1: Some examples of unsuitable images, which were omitted in the data preprocessing phase.

Figure A.2: Comparing a picture with small-sized defects (left) with a picture with large-sized defects (right). The defects are
delineated in red, for more clarity.
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Figure A.3: The changes in performance measures reported after each epoch for both the train and validation error for the
ResNet50-v2 network.
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Figure A.4: The changes in performance measures reported after each epoch for both the train and validation error belonging to the
ResNet152-v2 network.
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Figure A.5: The changes in performance measures reported after each epoch for both the train and validation error belonging to the

InceptionResNet-v2 network.

Table A.1: The salient hyperparameters used to train our networks.

hyperparameter ResNet50V2 ResNet152V2  MobileNetV2 InceptionResNetV2 default
batch_size 32 32 32 32 -
feature range [-1, 1] [-1, 1] [-1, 1] [-1, 1] [0, 255]
dropout 0.8 0.7 0.5 0.5 0.0
L2 lambda 0.1 0.01 0.01 0.01 0.01
class weight {°0’:3.5,°1’:1}  {°0:2,°1°: 1}y {°0:2,°1’: 1} {°0: 3,°1’: 1} {°0:1,°1°: 1}
optimizer Adam Adam Adam Adam RMSprop
first step !

learning rate 0.01 0.005 0.001 0.001 0.001
decay steps 1,000 1,000 1,000 1,000 100,000
decay rate 0.96 0.96 0.96 0.96 0.96
#epochs 100 10 30 30 -
second step 2

learning rate - le-8 le-6 le-8 0.001
decay steps - 300 300 300 100,000
decay rate - 0.96 0.96 0.96 0.96
#epochs - 10 10 10 -
#unlocked layers 3 - 64 out of 564 54 out of 154 80 out of 780 -

! Refers to the first part of TL where we train the weights of the added FC layers at the end of pre-trained models.

2 Refers to the second part of TL where we fine-tune the weights of several filters in the pre-trained model.
3 This value shows how many of the later layers in the pre-trained models were unlocked to be fine-tuned in second step of TL.
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