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Figure 1: VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments

ABSTRACT

The VALERIE tool pipeline is a synthetic data generator [14] devel-
oped with the goal to contribute to the understanding of domain-
specific factors that influence perception performance of DNNs
(deep neural networks). This work was carried out under the Ger-
man research project KI Absicherung in order to develop a methodol-
ogy for the validation of DNNs in the context of pedestrian detection
in urban environments for automated driving.

The VALERIE22 dataset was generated with the VALERIE pro-
cedural tools pipeline providing a photorealistic sensor simulation
rendered from automatically synthesized scenes. The dataset pro-
vides a uniquely rich set of metadata, allowing extraction of specific
scene and semantic features (like pixel-accurate occlusion rates,
positions in the scene and distance + angle to the camera). This
enables a multitude of possible tests on the data and we hope to
stimulate research on understanding performance of DNNGs.

Based on cross-domain semantic segmentation experiments, i.e.
training on synthetic data and evaluation on target real world
data, a comparison with several other publicly available datasets is
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provided, demonstrating that VALERIE22 is one of best performing
synthetic datasets currently available in the open domain. !
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1 INTRODUCTION

Recently, great progress has been made in applying machine learn-
ing techniques to deep neural networks to solve perceptional prob-
lems. Automated vehicles (AV) are a recent focus as an important
application of perception from cameras and other sensors, such
as LIDAR and Radar [36]. Although the current main effort is on
developing the hardware and software to implement the function-
ality of AVs, it will be equally important to demonstrate that this
technology is safe.

! Available here: https://huggingface.co/datasets/Intel/ VALERIE22
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The German collaborative research project KI Absicherung [1]
was a cross industry and academia effort to develop a methodology
for the validation of DNNs in the context of pedestrian detection
in urban environments for automated driving. Specifically, one
important goal of that project was to make the safety aspects of ML-
based perception functions predicable. As one important research
stream of this project synthetic data generation was used as a base,
as this allows full control over domain-specific scene parameters
and the ability to generate parameter variations of these. Further,
additional metadata annotations were specified and automated
computation of these were added to the synthesis pipeline.

The VALERIE tools pipeline was developed as a research tool to
improve quality of data synthesis and to get an understanding of
factors that determine the domain gap between synthetic and real
datasets. For that a powerful synthesis pipeline has been developed,
which allows the fully automated creation of complex urban scenes.
In this paper we only summarize some of the functionalities of
the VALERIE synthesis pipeline and focus on a description of the
(meta-)data formats of the VALERIE22 dataset that was generated
with the tool chain. More details on the synthesis tools can be found
in [14].

Additionally, we present evaluation results to assess the quality
of our synthetic data compared to other synthetic datasets in the
autonomous driving domain.

1.1 Related work

In [14] we suggest a computational data synthesis approach for
deep validation of perception functions based on parameterized
synthetic data generation. We introduce a multi-stage strategy to
sample the input domain and to reduce the required vast amount
of computational effort. This concept is an extension and gener-
alization of our previous work on parameterization of the scene
parameters of concrete scenarios. We extended this parameteri-
zation by a probabilistic scene generator to widen the coverage
of scenario spaces and a more realistic sensor simulation. These
approaches were used to generate the scenes and data in the VA-
LERIE22 dataset.

Techniques to capture and render models of the real world have
been matured significantly over the last decades. Computer gener-
ated imagery (CGI) is increasingly popular for training and valida-
tion of deep neural networks (DNNs) as synthetic data can avoid
privacy issues found with recordings of members of the public and
can automatically produce ground truth data at higher quality and
reliability than costly manually labeled data. Moreover, simulations
allow synthesis of rare scene constellations helping validation of
products targeting safety critical applications, specifically auto-
mated driving. Because of the progress in visual and multi-sensor
synthesis, now building systems for validation of these complex
systems in the data center becomes not only feasible but also offers
more possibilities for the integration of intelligent techniques in
the engineering process of complex applications.

The use of synthesized data for development and validation is an
accepted technique and has been also suggested for computer vision
applications (e.g. [3]). Several methodologies for verification and
validation of AVs have been developed [8, 21, 22] and commercial
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options exist.? These tools were originally designed for virtual
testing of automotive functions, like braking systems and then
extended to provide simulation and management tools for virtual
test drives in virtual environments. They provide real-time capable
models for vehicles, roads, drivers, and traffic which are then being
used to generate test (sensor) data as well as APIs for users to
integrate the virtual simulation into their own validation systems.

Recently, specifically in the domain of driving scenarios, game
engines have been adapted [27, 34]. Another virtual simulator sys-
tem, which gained popularity in the research community is CARLA
[11], also based on a commercial game engine (Unreal4 [12]). Al-
though game engines provide a good starting point to simulate
environments, they usually only offer a closed rendering set-up
with many trade-offs balancing between real-time constraints and
a subjectively good visual appearance to human observers. Specifi-
cally, the lighting computation in this rendering pipelines is limited
and does not produce physically correct imagery. Instead, game
engines only deliver fixed rendering quality typically with 8bit per
RGB color channel and only basic shadow computation.

In contrast, physical-based rendering techniques have been ap-
plied to the generation of data for training and validation, like
in the Synscapes dataset[33]. For our experimental work we use
the physical-based open source Blender Cycles renderer® in high
dynamic range (HDR) resolution.

The effect of sensor and lens effects on perception performance
has only been limited studied. In [4, 24] the authors are modeling
camera effects to improve synthetic data for the task of bounding
box detection. Metrics and parameter estimation of the effects from
real camera images are suggested by [23] and [5]. A sensor model
including sensor noise, lens blur, and chromatic aberration was
developed based on real data sets [15] and integrated into our
validation framework.

Looking at virtual scene content, most recent simulation systems
for validation of complete AD system include simulation and testing
of the ego-motion of a virtual vehicle and its behavior. The used test
content or scenarios are therefore aiming to simulate environments
with a large extension and are virtually driving a high number of
test miles (or km) in the virtual world provided [8, 25, 32]. This
might be a good strategy to validate full AD stacks, one problem
for validation of perception systems is the limited coverage of data
testing critical and performance limiting factors.

A more suitable approach is to use probabilistic grammar sys-
tems [10, 33] to generate 3D scenarios which include a catalog of
different object classes and places them relative to each other to
cover the complexity of the input domain. The VALERIE22 dataset
demonstrates the effectiveness of our probabilistic grammar system
together with our previous scene parameter variation [30] with
a novel multi-stage strategy. This approach allows to systemati-
cally test conditions and relevant parameters for validation of the
perceptional function under consideration in a structured way.

The remainder of this contribution is structured as the following:
The next section will give an outline of our synthesis approach
and a description of the generated meta-data. In section 3 a brief

2For example Carmaker from IPG or PreScan from TASS International.
3https://www.blender.org/
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Figure 2: Overview of VALERIE pipeline flow as defined in
[14].

overview of the VALERIE22 dataset and its characteristics can be
found.

In section 4 we will give a comparison of VALERIE22 with a
number of publicly available real and synthetic datasets.

2 VALERIE DATA SYNTHESIS PIPELINE

VALERIE is composed of several modules, as depicted in fig. 2. The
validation flow control is in principle designed to run automated
validation strategies in a data center, with the help of an orchestra-
tion based on slurm®. A description of the concept of these modules
is outside the scope of this paper, see [14] for more details. The aim
in here is to only give an overview over some of the modules in
the data synthesis part, so that the reader is able to understand the
features of the dataset and how to identify objects in the rendered
frames.

2.1 Computation of synthetic data

Synthetic data is generated with graphics methods. Specifically for
color (RGB) images, there are many software systems available,
both commercially and as open source. For the generation of the
dataset described in this paper Blender was used as a base to import,
edit, and rendering of 3D content.

The generation of highly varied synthetic data involves the fol-

lowing steps:

(1) A 3D scene model with a city model is generated using a
terrain/street generator. Parameters like width of a street
and pavement, type of segment (e.g. tall houses, sub-urban
residential, green/park, place, etc.) and materials for roads,
sidewalks, segments are generated based on a scene descrip-
tion. Alongside this process the semantic information about
the types and geometry of the segments is passed as input
to the next step.

(2) A placement step is inserting 3D assets, like cars, vegetation,
road elements and pedestrians into the scene. This placement
is inserting objects based on a density declaration (per seg-
ment) and a list of assets for this type of segment (e.g. road,
sidewalk, etc.). The result is a complete scene. Fig. 4 shows
examples of scenes with a variation of person densities.

4https://slurm.schedmd.com/documentation.html

CSCS 23, December 05, 2023, Darmstadt, Germany

general-globally-per-frame-analysis_jso|

' “Entitias" |
i
‘“ “profotype™ {
“assef_d": "0dc54160-56e8-4de 1-5i0e-

Asset database 0607d50 10047

272c8-d002-4814-8880-222284cddf 44"

5-4002-4914-088¢-

Asset ID
“0dcB4180 58D 4de1
802.0borase1000r

Rendered frame

=

Instance Id
B0027208-4002-401 46880 23a204cddFe4

Instance Id
43011208002 7788 0820 002284 111188

Figure 3: Object identifiers allow tracking of object instances
through the rendered frames and metadata.

(3) (optionally) a set of scene parameters can be varied before
each rendering pass. This includes position of objects, cam-
eras and time-of-the-day (to vary the sun position) and many
more.

The steps (1) and (2) are computed in the Probabilistic scene
generator in fig. 2 and step (3), the variation of scene parameters
is executed in the module parameter variation generator.

The dataset contains a multitude of additional metadata. For
example all objects in the scenes are tagged with an identifier (see
next section) and semantic and scene information, like position in
the scene and distance + angle to the camera is documented in form
of json files. This enables a multitude of possibilities to analyze
the data, and we hope to stimulate research on understanding
performance of DNNs with our dataset.

2.2 Assets and object instances

The assets® in the asset database (left side in fig. 2) have a unique
identifier in form of a UUID (Universally Unique IDentifier). This
identifier is used in the scene description either explicitly (for static
objects) or in selection lists used by the probabilistic scene genera-
tor.

The asset id® is also used to identify objects in the rendered
frames. The dataset contains metadata files (json format) with a
list of objects and their asset ids. Objects are also identified with a
specific UUID. This is depicted in fig. 3. In the appendix, section on
Metadata an example json file is listed. The "entities" key, in this
example "91" is an integer and corresponds to the instance label
(see below) of the instance ground truth. With the help of the scene
metadata files and the unique UUIDs of the assets it is possible to
identify assets in the rendered scene. This can be used for statistical
purposes or to retrieve more information from the asset database
(not included in the dataset).

The scene composition and also the used assets in VALERIE22
are European, e.g. the traffic signs and road markings are German.
The types of houses are also mainly European style.

5An asset here means a 3D model or 2D texture.
%id == identifier for brevity.
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Figure 4: Variation of density of pedestrians in the street and
on side walk (top) low, to high (bottom).

2.3 Ground truth and metadata

The VALERIE22 dataset provides a very rich set of metadata anno-
tations and ground truth:

e pixel-aligned class groups (semantic label image)

o pixel-aligned object instances (label image)

e object 2D bounding box

e object 3D bounding box

e object position and orientation, angle and distance to camera

e object occlusion (only for person class)

e scene parameters, specifically time-of-the-day and sun (illu-
mination)

e camera parameter, including pose in scene

The labels for object classes will be mapped to a convention used
in annotation formats and follows the Cityscapes convention [7] for
training and evaluation of the perception function. The 2D image
of a scene is computed along with the ground truth extracted from
the modeling software rendering engine.
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2.4 Sensor Simulation

We implemented a sensor model to simulate real sensor behavior.
The module works on HDR images in linear RGB space and floating
point resolution as provided by the Blender Cycles renderer. The
resulting image resolution is 1920x1200.

We simulate a camera error model by applying sensor noise, as
added Gaussian Noise (mean=0, variance: free parameter) and an au-
tomatic, histogram-based exposure control (linear tone-mapping),
followed by non-linear Gamma correction. Further, we simulate
the following lens artifacts chromatic aberration, and blur. Fig. 5
shows a comparison of the standard tone-mapped 8bit RGB output
of Blender (left) with our sensor simulation (right). The parameters
were adapted to approximate the camera characteristic of Cityscape
images. The images do not only look more realistic for the human
eye, they also are further closing the domain gap between the syn-
thetic and real data (for details see [15]).

3 DATASET DESCRIPTION

The VALERIE22 dataset is a product of our deep variational data
synthesis pipeline method, as sketched out in the previous sections.
The dataset is structured in sequence groups. Each group has certain
characteristics, like the amount of different assets used, the scene
complexity and composition.

There is a history of experiments and development of the synthe-
sis pipeline. Each sequence therefore corresponds to a stage in the
development of the data synthesis pipeline and exhibits distinctive
features differentiating them from one another is aspects, like num-
ber of 3D model assets used or variations of camera positioning
(ego-vehicle) or time-of-the day and linked to that the sun position.

The most distinctive features of each sequence are described
in Table 1. The following gives a brief description of the main
characteristics of the sequence groups.

Table 1: Characteristics of each sequence generated at 48.18°
N, 11.58° E in the VALERIE22 dataset.

Cameras

Scenes
per Scene

Seq. | Characteristics

‘ Frames

Fixed street layout
0050 | 2 crossings 1000 1 200
Night scenes
Similar to 0050
0052 Time 5:30 to 21:00 (GMT+1) 1800 ! 300
2 crossings

0054 | Few traffic signs 480 1 480
Time 10:05 (GMT+1)
2 crossings

7 facades

0057 Varying street width 1000 ! 1000
Time 6:00-20:00 (GMT+1)
Similar to 0057

0058 | Time 6:30-20:00 (GMT+1) 1395 ! 1395

2 crossings

0059 | Varying street width 1306 2 653
Time 10:30 (GMT +1)
T-junction

0060 | Varying street width 1430 2 715

Random ego-vehicle
looking direction
Similar to 0058

0062 | Time 7:00-10:12 (GMT+1) 10855 2 700
South looking direction
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Figure 5: Realistic sensor effect simulation, (left) standard Blender tone-mapped output, (right) the sensor simulation output.

The early sequences 50 and 52 are based on a simple grammar
with a fixed street and one crossing. They were kept in for variety,
specifically since sequence 50 contains some night scenes with
artificial light sources.

The sequences from 54 to 62 were generated with our procedural
scene generator, as briefly introduced in section 2.1. The general
layout is described in Table 1, column Characteristics.

Most variations in the dataset were created by linear stepping
through a parameter interval or random sampling of these. Exam-
ples are time-of-the-day to control the sun settings or position and
orientation of the camera. The parameters used in variation runs
are documented in a json file with the actual parameter variations.
However, the sun camera parameters are also documented in the
‘per-frame-analysis’ file.

The scene generator allows to specify statistical variations, e.g.
on Gaussian distribution of object and pedestrian densities in cer-
tain zones, e.g. on the road or side walk. Further, some high-level
features map, for example the width of the street onto an automatic
layout of the street (autolane feature): Depending on the street
width it includes park lanes and separate lanes in each direction.
Table 2 shows an excerpt from the scene generator configuration
file, as used in sequence 54.

Table 2: Scene parameters for sequence 54.

"facade_dist": 4,
"static_stuff_distance ": 1,
"density_road_persons": 0.005,

"stdvar_road_persons": 0.001,
"density_side_persons": 0.01,
"stdvar_side_persons": 0.005,
"density_lane_cars": 0.005,
"stdvar_lane_cars": 0.002,

"density_parking_cars": 0.003,
"stdvar_parking_cars": 0.01,
"parking_separator_spacing ": 25,
"tree_density": 0.01,
"tree_density_sidewalk": 0.01,
"parking_separator_var": 2.0

The use of the procedural scene generation and statistical place-
ment generate scenes with a very balanced distribution. The 3D
assets were inserted from our asset database, as depicted in fig. 2.

We could demonstrate that our data sequences produced less
bias problems than early sequences on the manual placements in
the SynPeDS dataset. The next section gives more details of the
influence of various parameters and compares it to other available
datasets.

4 EVALUATION

To evaluate the quality of our dataset we conducted several ex-
periments using the semantic segmentation task. We compare the
segmentation performance of a DeeplabV3+ model trained on our
synthetic data and compare the performance with models trained
on several synthetic datasets. The performance of these models is
then evaluated on five different real world automotive segmentation
datasets. Use cases of our metadata include improved training and
identification of impairing factors (for more details see [16, 18]).

Next, we investigated the segmentation performance on the per-
son class of the CityPersons dataset if we train the model on subsets
of our dataset. We additionally evaluated the person class perfor-
mance with models trained on subsets of the SynPeDS dataset [29]
provided by the KI Absicherung project’. Finally, we investigated
how the performance of the models differs for the number of unique
person assets used to create the datasets and their subsets.

Lastly, we investigated how the number of training images influ-
ences the segmentation performance. Again we trained on subsets
of our dataset and the SynPeDS dataset and evaluated the segmenta-
tion performance on all classes with the DeeplabV3+ segmentation
model.

4.1 Computation and evaluation of perceptional
functions

State-of-the-art perception functions consists of a multitude of dif-
ferent approaches considering the wide range of different tasks. For

7Currently a publication of the SynPeDS dataset is under preparation, see https://www.
ki-absicherung-projekt.de/
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experiments presented in this chapter, we are considering the task
of semantic segmentation. In this task, the perception function seg-
ments an input image into different objects by assigning a semantic
label to each of the input image pixels. One of the main advantages
of semantic segmentation is the visual representation of the task
which can be easily understood and analyzed for flaws by a human.

In this work, we considered the DeeplabV3+ CNN-based model
which originated from [6] and utilizes a ResNet1@1 [19] backbone.
The backbone has been pre-trained on the ImageNet dataset [9].

We compare our dataset to three different synthetic datasets. The
first dataset is the synthetic dataset SynPeDS [29] consisting of ur-
ban street scenes inspired by the preceding two real-world datasets.
The second dataset is the GTAV dataset [27], created by sampling
data from the 3D game of the same name. Last, the Synscapes dataset
[33] which is intended to synthetically re-create charateristics of
the Cityscapes dataset is considered.

To compare our dataset we train segmentation models on each of
these datasets with their respective training split and evaluate the
segmentation performance on five real-world datasets. Usual data
augmentation strategies are applied, e.g., random image cropping
and flipping, saturation and contrast distortions as well as applica-
tion of additive Gaussian noise. The training was performed on 2
Nvidia Quadro RTX 6000 graphics cards and a batch size of 4 images
per GPU. The learning rate was set to Ir = 0.005, with a weight
decay of 0.0001 and momentum of 0.9 for the stochastic gradient
descent (SGD) optimizer. Each model is trained for 50 epochs and
the applied loss function is cross entropy.

An overview of all the used datasets in this work is given in
tab. 3. The first dataset we considered is the Cityscapes dataset [7], a
collection of European urban street scenes in the daytime with good
to medium weather conditions. The second dataset is the A2D2 by
[13], similar to the Cityscapes dataset it is a collection of German
urban street scenes and additionally it has sequences from driving
on a freeway. The third dataset is the BDD100K dataset [35] a diverse
dataset recorded in North-America at diverse weather conditions.
Next, the India Driving Dataset dataset [31], which was recorded in
India and contains entirely different street scenes compared to the
European or American datasets. Last, the Mapillary Vistas dataset
[26], a world wide dataset with emphasis on northern America. All
of these datasets are labeled on a subset of 11 classes which are
alike in these datasets to provide comparability between the results
of the different trained and evaluated models.

To measure the performance of the task of semantic segmen-
tation the mean Intersection over Union (mIoU) from the COCO
semantic segmentation benchmark task is used [28]. The mIoU is de-
noted as the intersections between predicted semantic label classes
and their corresponding ground truth divided by the union of the
same, averaged over all classes. We showed in our previous work
how to use the extensive metadata accompanied to our dataset to
detect data biases in person detectors due to the underlying training
data used to train the bounding box detectors [18].

Another work investigated the usage of the metadata to calculate
visual impairing factors, i.e., factors that lead to detrimental detec-
tion performance of a person detector such as increased occlusion
or decreased contrast. Re-training a person detector with a focus
on harder to detect samples, according to these factors, improves
the overall detection performance [16].
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Figure 6: Cross-domain 11-class segmentation performance
of synthetic datasets VALERIE22, SynPeDS, GTAV and Syn-
scapes evaluated on real world datasets A2D2, BDD100K,
Cityscapes, IDD and Mapillary Vistas.

4.1.1 Cross domain evaluation. To demonstrate the quality of our
synthetic dataset we conducted several cross-domain performance
experiments with other real-world automotive and synthetic datasets.
This cross-domain performance analysis is also commonly referred
to as generalization distance. We trained a DeeplabV3+ model on
our VALERIE22 dataset, as well as for the SynPeDS, the GTAV and
the Synscapes dataset. Next, we evaluated the segmentation per-
formance on the validation data split of real-world datasets A2D2,
BDD100K, Cityscapes, IDD and Mapillary Vistas.

As the real-world and synthetic datasets do not have exactly
the same semantic annotation format, the segmentation models
were trained on a subset of 11 labels per dataset to ensure consis-
tency of classes across. The labels are defined as follows: Road and
sidewalk incorporate the road-markings and the curb respectively.
Further, the building, sky, car and truck classes are used, which are
consistent across these datasets. Pole, traffic light and traffic sign
classes are mapped from similar sub-classes in the used datasets,
e.g., utility pole in Mapillary Vistas. The vegetation class consists of
the Cityscapes sub-classes terrain, i.e., plants covering the ground,
and the original vegetation class, i.e., trees and bushes. Last, the
person class is defined as all humans in the dataset, e.g., pedestrians
and riders.

The mloU generalization performance has been found to be
a good predictor of the domain discrepancy compared to other
well known domain distance measures, e.g. Fréchet Inception dis-
tance (FID) [20] or Kernel Inception distance (KID) [2], as was
shown in [17]. Additionally, the segmentation performance cap-
tures the understanding of the whole scene of an image compared
to just single objects as would for example the 2D bounding-box
detection cross domain performance. The mloU cross-domain gen-
eralization performance results over all 11 classes are depicted
in fig. 6. Our VALERIE22 dataset performs best on three datasets
(BDD100K, Cityscapes, IDD) and just marginally worse than the
SynPeDS trained model on A2D2. Compared to the mainly North-
American based Mapillary Vistas dataset our dataset shows a signif-
icant domain shift. Although, still the cross-domain evaluation of
VALERIEZ2?2 is significantly better than Synscapes and close to GTAV.
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Table 3: Description of real-world and synthetic datasets used in our work with number of annotated frames for semantic
segmentation task. The metadata Sky Model describes the time of day, weather and location of the scene. The sensor metadata

describes the used sensor and additional parameter such as focal length and placement in the world coordinate system. The
Object Level metadata provides information about placement of an object in the world coordinate system and additional metrics

such as contrast, occlusion etc. as described in [18].

Dataset Annotated frames Tasks Metadata

Sem.-Seg. Inst-Seg. 2D Det. 3D Det. Sky Model Sensor Object Level

A2D2[13] 41K v v - v R v R

= BDD100K[35] 10K v - v - - - -

g Cityscapes[7] 5K v - - - - - -

7"? IDD[31] 10K v v - - - - -

& Mapillary Vistas[26] 25K v v - - - - -

9 GTAV[27] 250K v v - v R - R

E Synscapes[33] 25K v v v v - - -

E SynPeDS[29] 150K v v v v v v -

¥ VALERIE22 (ours) 13,5K v v v v v v v
Most notably our dataset outperforms the SynPeDS dataset on 80 — e m——
the Cityscapes dataset. This comes as a surprise as the SynPeDS 704 /}/1 1
dataset was created to synthetically resemble the Cityscapes dataset. 7 / i i
Even though our dataset consists of significantly fewer frames _ 601 ./ : . : : : :
for training the segmentation model, the cross-domain performance £ 50 ./ T :g g: 1 g: %:
is on-par or better compared to the other synthetic datasets. We 2 401 ’/ | . ar o o
attribute this to the high diversity of assets and sequences which g 501 E:é: EI E: :% fl ke %JI %JI
was a central focus in the development of our dataset. To further un- a é:é: E: ‘5: :é é: :‘5:; é: é:
derline this hypothesis we analyzed the influence of asset diversity 201 &a I S 1
on the generalization performance. 10 A : : : : :é 5: : EI E:
1l 1oag ar a gl
04 11 1P o9 <

4.1.2  Number of Assets. We conducted experiments to understand 0 20 40 60 80 100 120 140 160

the influence of diversity of the training data. Therefore, cross-
domain performance is evaluated by comparing the number of
unique training assets and the resulting cross-domain segmentation
performance.

While comparing automotive real-world and synthetic images
it becomes obvious that most images and scenes in real-world im-
ages are unique, whereas in synthetic images the scenes are often
composed of repetitive content, i.e., a limited amount of unique
assets, which are continuously differently arranged. In synthetic
datasets the 3D assets, i.e., the 3D meshes and textures of objects in
a scene, are expensive to create at a high fidelity and should there-
fore be used as much as possible. Training a pedestrian detector
on a dataset consists of too few unique person assets will lead to
a strongly biased detector which is able to detect solely the few
trained person assets, but will fail to generalize on other persons.
Overfitting will therefore occur if the training data is of low diver-
sity and the model will fail to generalize, but it is non-obvious on
how much diversity is actually needed to generalize well.

To understand the required diversity we investigated the seman-
tic segmentation performance on the person class of a DeeplabV3+
model trained with different subsets of the VALERIE22 and the
SynPeDs datasets. The subsets, i.e., sequences, of our dataset are
described in the Appendix whereas the subsets of the SynPeDS
dataset, i.e., tranches, are described in [29]. To track the number
of unique person assets per subset in our dataset we just have to

unique person asset count

Figure 7: Unique person assets per SynPeDS (blue) tranche or
VALERIE22 (red) sequence and person class generalization
performance on the Cityscapes dataset.

count the occurrences of unique asset IDs in the scene metadata
files of a sequence.

Each subset of both datasets represents a stage in the process
of its development and therefore these dataset subsets consist of
an increasing number of pedestrian assets the further the devel-
opment progressed. The trained models are cross-validated on
the Cityscapes validation dataset to investigate the cross-domain
generalization performance. Fig. 7 shows the resulting number
of unique person assets in the dataset subsets compared to the
cross-domain person class performance measured as IoU on the
Cityscapes dataset.

The VALERIE22 subset for higher unique person counts clearly
outperforms the SynPeDS subset in the cross-domain performance.
While a low number of unique assets will lead to overfitting on
these assets, a higher number clearly benefits the generalization
capabilities of the model. Both, the VALERIE22 trained models and
the SynPeDS trained model benefit from an increasing number of
person assets on the cross-domain performance. The model trained



CSCS 23, December 05, 2023, Darmstadt, Germany

cityscapes baseline
80
70 4
60 5
[ ] L]
50 J! ./l
< 501 1 1
<
= d .IOI 1 1
D 401 3231 o 1 I
2 g NS 1 ]
g 404 gi gl [ | 1
8l gl [ 1
2l o o o 1
201 GRS ol ol <l ol ol
- L al
104 BH- 8 - =i
FI 1 ;I ;I E:I E5I ol
0 [ [T | 1

20000 40000 60000 80000 100000 120000 140000
cumulative frame count

o4

Figure 8: Number of training frames per SynPeDS (blue)
tranche or VALERIE22 (red) sequence and overall generaliza-
tion performance on the Cityscapes dataset.

on our full VALERIE22 dataset is just < 1% absolute worse in per-
formance than the baseline Cityscapes trained model. The results
clearly indicate the more diverse a dataset with regard to person
assets, the better the generalization capabilities of a segmentation
model on this class.

4.1.3  Number of Training Images. Training with a diversified dataset
shows significant improvement on the cross-domain performance.
This might also raise the question on the performance difference

if we have a huge number of training images with lower asset di-
versity compared to a smaller count of images but with a higher

number of assets. A very low number of images should obviously

lead to overfitting, but training with a huge dataset with only mar-
ginal differences between images could lead to overfitting as well.
From our previous experiment we found that the person asset di-
versity in the overall VALERIE22 dataset is higher compared to the

SynPeDS dataset and this leads to a better segmentation perfor-
mance. However, the number of training images is vastly different

between these datasets. To understand the influence of the number

of training images we compared the cross-domain performance on

all 11 classes on the Cityscapes dataset again trained on subsets of

the VALERIE22 and SynPeDS datasets. Fig. 8 shows the generaliza-
tion results with the respective cumulative frame counts that were

used to train each segmentation model.

While no model reaches the baseline performance of 82.34%,
the cross-domain performance with sequences of our VALERIE22
dataset reach higher mIoU performance values with far fewer im-
age frames than the SynPeDS dataset. As previously shown, the
diversity in the VALERIE22 dataset continuously improved, which
is evident by the increasing cross-domain performance, whereas
the performance of the SynPeDS model even deceased for tranche
4. In tranche 4 a significant pedestrian object distribution bias was
introduced into the dataset as was found in [14]. Here we addition-
ally showed how to utilize the exact positioning metadata of the
person assets in the images to identify the pedestrian distributions
and understand if data biases were introduced. Overall, it is clearly

Grau and Hagn

visible in this result that only increasing the frame count by reiter-
ating the same assets in the scenes is no viable strategy to increase
the cross-domain generalization performance.

5 SUMMARY

This paper describes the VALERIE22 dataset. The dataset and its
underlying scene models are generated completely automated with
a parametric scene generation and rendering pipeline. The results
of cross-evaluation semantic segmentation experiments with real
and other synthetic datasets demonstrates the performance of this
approach. Compared to European datasets, VALERIE22 is perform-
ing best (or equal) to the synthetic SynPeDS, GTAV and Synscapes
datasets.

VALERIE22 comes with a rich set of metadata annotations making
it a valuable asset for research on understanding performance and
domain aspects of DNNs.
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