
Nubes: Object-Oriented Programming for
Stateful Serverless Functions

Kinga AnnaMarek
kingaanna.marek@mail.polimi.it

Politecnico di Milano
Italy

Luca DeMartini
luca.demartini@polimi.it
Politecnico di Milano

Italy

Alessandro Margara
alessandro.margara@polimi.it

Politecnico di Milano
Italy

Abstract
Serveless computing and the Function-as-a-Service (FaaS)
modelpromise rapiddevelopmentof cloud-basedapplications
by abstracting away deployment and resource allocation. As
the stateless nature of functions undermines the generality
of the model, they are often paired with storage services to
persist their state. However, this approach exposes state man-
agement to developers, who need to manually encode the
interactions between functions and storage. The relations
between functions and state are hidden within function im-
plementations, negatively affecting modularity and reuse.
To overcome these problems, we propose a novel abstrac-

tion that brings the benefits of object-oriented programming
to FaaS, and we implement this abstraction into the Nubes
framework. In Nubes, developers define objects that encap-
sulate state in the form of attributes and expose methods to
other objects. Applications are written using familiar object-
oriented concepts, Nubes then transparently and automati-
cally manages the state of objects using a cloud storage ser-
vice and handles the execution of serverless functions. Nubes
simplifies application development and deployment and pro-
motes the reuse of objects as composable building blocks for
cloud applications. Using a case study, we show that Nubes
significantly reduces code complexity with limited overhead
with respect to manually crafted solutions.

Keywords: serverless, function as a service, cloud computing,
stateful functions, object-oriented programming

ACMReference Format:
Kinga AnnaMarek, Luca DeMartini, and Alessandro Margara. 2023.
Nubes: Object-Oriented Programming for Stateful Serverless Func-
tions. In 9th International Workshop on Serverless Computing (WoSC
’23), December 11–15, 2023, Bologna, Italy.ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3631295.3631398

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.
WoSC ’23, December 11–15, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0455-0/23/12.
https://doi.org/10.1145/3631295.3631398

1 Introduction
Serverless computing [3] is a programmingand executionpar-
adigm that aims to simplify the development and operation
of cloud applications by automating the management of the
infrastructure where the applications run. In the serverless
paradigm, developers implement the application components,
and the cloud platform takes care of instantiating and running
them, while hiding resource allocation and deployment con-
cerns. The cloudplatformmayautomatically anddynamically
scale up or down the resources provided to each component
based on demand. As pricing is typically computed per
resource usage, this may further reduce operational costs.
The most common way to utilize the serverless paradigm

is with a combination of Function-as-a-Service (FaaS)
and Database-as-a-Service (DBaaS). With the FaaS model,
developers encode the application logic by programming
functions that the cloud platform instantiates and executes
on demand. As functions are dynamically instantiated, their
state is not persisted between invocations, which limits their
practical applicability. To address this problem, functions are
often pairedwith the use of databases, also offered as services,
to store the application state. This approach decouples the
storage layer from the compute layer, allowing them to scale
independently and based on their heterogeneous needs.
However, this separation presents significant shortcom-

ings. Developers need to manually implement database
access, state query, retrieval, and update. The relation
between state and functions is implicit and developers
must manually enforce the assumptions made by different
software modules in terms of state access. This negatively
limits modularity, composability, and reusability of functions.
Yet, modularity is a fundamental feature to build large-scale
distributed applications that are easy to operate andmaintain:
indeed, recent architectural patterns, such as the microser-
vices paradigm [6], focus on decomposing an application
into independent components that expose restricted APIs
which are used by the other components.

We see a symmetry between the current state of serverless
functions and the downside of procedural programming
languages, where the separation between data and functions
is frequently seen as a limiting factor for modularity and
reuse. In general-purpose programming languages, the
object-oriented paradigm overcomes this problem by

30

https://doi.org/10.1145/3631295.3631398
https://doi.org/10.1145/3631295.3631398
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3631295.3631398&domain=pdf&date_stamp=2023-12-11


WoSC ’23, December 11–15, 2023, Bologna, Italy Marek et al.

bringing together state and functions within composable
units denoted as objects.
Moving from this observation, we propose an object-

oriented programming model for serverless computing and
implement it in the Nubes prototype system. In Nubes, devel-
opers define classes that encapsulate part of the application
state and expose methods to access and modify such state.
Developers use classes to instantiate objects and implement
complete applications, relying on familiar concepts of
object-oriented programming, including state encapsulation
and relations between objects. In this programming model,
classes represent base building blocks that can be reused
across applications.

Nubes automatically deploys the resulting application into
a cloud platform. It translatesmethods to serverless functions
that persist the state of objects into an external storage service.
This approach preserves the benefits of delegating compute
and storage functionalities to distinct services that can scale
independently, but abstracts this implementation detail away
from the programming model, relieving developers from the
burden of explicit state management. Nubes optimizes var-
ious state access patterns that are typical of object-oriented
programming, thus raising the level of abstraction without
introducing significant performance overheads.

Thepaper isorganizedas follows.Section2presents thepro-
gramming model offered by Nubes, and Section 3 details the
design and implementation of the system. Section 4 evaluates
the the proposed programming model and the performance
of Nubes. Section 5 surveys relatedwork, and Section 6 draws
conclusions and indicates possible areas of future work.

2 Programming Interface
This section presents the programming interface of Nubes,
which allows developers towrite object-oriented applications
that are automatically and transparently deployed and
executed in a serverless environment. Figure 1 shows
the high-level view of a Nubes application: one or more
client programs (or simply clients) create or obtain (load)
references to objects that live in a serverless environment.
Their methods are executed within serverless functions and
their state (attributes) is persisted in a cloud storage service.
Nubes is written in Go: writing client programs in Go offers
a seamless integration between the code of the client and the
code executed in the serverless environment. Nonetheless,
developers may also invoke objects methods as standard
serverless functions from other programming languages, for
instance, from aWeb-based client written in Javascript.

Thedevelopmentworkflowof aNubes application involves
four phases (see Figure 2): (1)Classes definition: developers de-
fine the types of objects (classes) they use in their applications.
Classes are the blueprints for objects, which encapsulate
state (attributes) and behaviors (methods). (2) Compilation:
a compilermodule automatically translates the classes into

Storage
service

Serverless
functions

Objects

StateMethodsMethodsMethods

Client program

Client Program

Client Program

create / load / invoke

Serverless  (cloud) environment 

Figure 1.Overview of the Nubes architecture.

Classes Compiler Client
library

Import

Client
program

Import

Nubes
library

Serverless
functions Deployer

1 2

3

4

Figure 2.Components for developing of a Nubes application.

a form that can be deployed and executed in a serverless envi-
ronment. The compilation process produces server-side and
client-side components. Server-side, it produces the serverless
functions to be deployed on the serverless environment.
Client-side, it produces a client library, containing a modified
version of the original classes that automatically converts
invocations of local methods to invocations of serverless
functions. (3) Deployment: serverless functions are deployed
onto the serverless environment and the storage service is
initialized using the provided deployer module. (4) Client
development: developers import and use the classes defined
in the client library to instantiate concrete objects and define
the specific behavior of the application at hand.
2.1 Class definitions
Nubes needs to uniquely identify each class and each
object instantiated from a class. To do this, developers
need to provide a unique class name by implementing the
GetTypeNamemethod. Likewise, developers indicate a set of
key attributes for each class using an annotation – a tag in Go.
Each object of the class will then be uniquely identified by
the values of the key attributes (see the example in Listing 1).
Alternatively, a class can include an Id attribute of type
string that will serve as the key and it will be automatically
generated by Nubes at runtime.

type User struct {
Email string `nubes:"key"`
Name string

}

Listing 1. Example of class definition.

2.2 Object lifecycle
When seen from a client, objects will be in one of three states:
unexported, exported, deleted.

31



Nubes: Object-Oriented Programming for Stateful Serverless Functions WoSC ’23, December 11–15, 2023, Bologna, Italy

Unexported objects are objects that have been created
locally, using normal constructors, but have not been
persisted to the storage. Invocation to methods of an
unexported object will modify it within the client program.
An unexported object can then be exported by invoking the
Export function. Its state will be persisted in the storage and
it will then be accessible from other client applications.
Developers should interact with exported objects only by

invoking their public methods as they will automatically load
and save the state of the object when needed. For instance,
the following Listing 2 initializes an object of type User, sets
the value of its fields, and exports it. The Export function
returns a reference to the exported object, and an error code
that signals the outcome of the invocation. The last line
of Listing 2 shows how developers can seamlessly invoke
methods on exported objects.

user := User {
Email: "user1@nubes.org",
Name: "user1",

}
exportedUser, err := lib.Export[User](user)
exportedUser.Method ()

Listing 2. Initializing, exporting, and using an object.

Clients can also retrieve objects that have been exported by
themselves or a another client. This is done with the the Load
function, which takes in input the unique identifier of the
object (class name and key). Finally, Nubes provides a Delete
function to permanently delete an exported object. Develop-
ers should not interact with deleted objects, and invocations
to methods on a deleted object always return an error.
The behavior of Export and Delete for a given class can

be overwritten with a custom implementation. For instance,
the Export function for an Order class may be customized
to decrease the availability of a product every time an order
for that product is exported.

2.3 Relationships
A key feature in object-oriented design is the ability to
express relationships between objects, which translates to
objects holding references to other objects as part of their
state. Nubes fully supports this feature and offers suitable
constructs to build various types of references.
Unidirectional relationships. In unidirectional relation-
ships, an object references another object, but there is no
inverse relationship. Nubes supports both one-to-one and
one-to-many unidirectional relationships through the special
nubes.Ref and nubes.RefList types, which can be used
when defining classes. The nubes.Ref class has an associated
Getmethod that returns a reference to the object associated
to the relationship. Likewise, the nubes.RefList class has
a GetAtmethod that takes in input an integer 𝑖 and retrieves
the reference to the 𝑖th object associated to the relationship.
Finally, the nubes.RefList class provides the Get method

to return all references associated to the relationship with
a single storage access.
Bidirectional relationships. Bidirectional relationships
between two objects 𝑜1 and 𝑜2 are used to define both a
reference from 𝑜1 to 𝑜2 and a reference from 𝑜2 to 𝑜1. Nubes
defines bidirectional relationships using annotations: given
a relationship between class 𝑐1 and class 𝑐2, (defined in 𝑐1)
developers can make the relationship bidirectional by adding
a field of type BiRefList within 𝑐2 with an annotation to
indicate the name of the original relationship. The hasOne
annotation prefix marks the relationship as one-to-many,
while hasManymarks it as many-to-many.

To exemplify, the following Listing 3 defines a Product
class and a Shop class. The Product has unidirectional
references to one Shop and to a list of Discount objects. The
Shop holds the references to all of its products and indicates
that the relation is bidirectional one-to-many and has its
inverse reference in the SoldBy attribute of Product.

type Product struct { /* ... attributes */
SoldBy nubes.Ref[Shop]
Discounts nubes.RefList[Discount]

}
type Shop struct { /* ... attributes */

Name string
Products

nubes.BiRef[Product] `nubes:"hasOne-SoldBy"`
}

Listing 3. Example of a bidirectional relationship.

3 System Implementation
Nubes is implemented in Go and is available as an open-
source project in GitHub1. Although it can be adapted to use
different technologies, the current implementation works
in the AWS Lambda serverless environment and persists the
state of objects in DynamoDB [7].

Consider again Figure 2, which shows the components and
artifacts involved in the development of a Nubes application:
dark gray components and artifacts are provided by Nubes,
light gray artifacts are automatically generated by Nubes,
white artifacts are provided by the application developers.

The compiler is responsible for translating classes into
a form that can be executed in the serverless environment:
the developers write the classes using the types and methods
provided by the nubes library (nubes.Ref, Export, . . . ), the
compiler then performs source-to-source compilation to gen-
erate (i) thedefinitionof serverless functions that thedeployer
can install onto the serverless environment. (ii) a client library
with the modified classes that client programs import and
use to interact with the objects; The compiler uses the ast
and text/template packages from the Go standard library
to read and modify the abstract syntax tree of the defined

1https://github.com/deib-polimi/Nubes

32

https://github.com/deib-polimi/Nubes


WoSC ’23, December 11–15, 2023, Bologna, Italy Marek et al.

classes. It modifies the functions to correctly interact with the
remote storage and to invoke remote functions when needed.
Serverless functions. The compiler analyzes each class that
implements the GetTypeNamemethod to generate serverless
functions. Each public method of the class is compiled to
a serverless function that is uniquely identified with the
combination of the type name and the name of the method.
The generated function take as input a JSON struct, which
contains (i) the unique identifier of the object on which the
method is invoked (see Section 2.1); (ii) the input parameters
of the method (if any). The code of the generated functions
is similar to the original methods, however, accesses to
the object state are converted to invocations to the storage
service, as discussed later in Section 3.1. Additionally, all
invocations of other object methods in the code are executed
synchronously within the same serverless function.
As an example, when a client calls the Buy method as

defined in Listing 4, it will trigger the execution of one
serverless function, which will execute the body of the
method, including the two invocations to the shop identified
by the SoldBy reference.

func (p *Product) Buy() error {
shop, err := p.SoldBy.Get()
shop.DecreaseAvailability(p.Id)
shop.IncreaseIncome(p.Price)
return nil

}

Listing 4. Example of method invocation.

Client library. The client library contains amodified version
of each defined class, intended to be imported by the client
code. Themodified classes (i) keep track of the lifecycle of the
object, to knowwhether the object is exported or not (see Sec-
tion 2.2); (ii) havemodifiedmethods that transparently invoke
the corresponding serverless function for exported objects.
Even without the library, developers can interact with

serverless functions from other programming languages
if they use the correct input parameters – the standard
approach in public cloud services. They still benefit from
an object-oriented definition of server-side components and
from their automated deployment on the cloud.

3.1 Statemanagement
Nubes stores the state of exported objects in the DynamoDB
storage service. Each class corresponds to a DynamoDB table,
where columns represent the attributes of the class and rows
represent objects instances of that class. Every table has a
key that stores the unique identifier of an object instance,
determined through the set of key attributes as explained in
Section 2.1. We implemented several optimizations to reduce
the interaction with the storage when possible. First, when
the compiler can statically determine that amethod does not
modify the state of the object, it avoidswriting back the values
of attributes to the storage at the end of themethod execution.

Moreover, in the case of getters and setters, the database inter-
action is restricted to theattribute being readorwritten, avoid-
ing access and (de-)serialization of other attributes. Finally, in
a chain of methods invocations where each method invokes
(directly or indirectly) another method of the same object,
only the outermost method interacts with the storage service.
References.We carefully optimized the case of bi-directional
relationships: in order to efficiently retrieve the inverse of
a one-to-one or one-to-many relationship from 𝑐1 to 𝑐2, we
define a secondary index on 𝑐2 based on the key of 𝑐1. This has
two advantages: (i) it is efficient to navigate the relationship
in both directions; (ii) relationship changes are automatically
propagated by the storage service with optimized mecha-
nisms. In case of many-to-many bi-directional relationship,
we use an intermediate table storing the key pairs that define
the relationship between the two classes.

4 Evaluation
We evaluate Nubes considering two criteria: (i) effectiveness
of the programming model in reducing the complexity of
developing serverless applications; (ii) performance and
scalability of applications developed with Nubes.
We compare Nubes with the standard methodology

for developing stateful serverless functions, where state
management is explicit and developers need to manually
control the interactions with an external storage service.

4.1 Experiment setup
For our evaluation, we developed a realistic serverless
application using SSF and Nubes, and we deployed it on the
Amazon AWS cloud infrastructure.
Application. The application we use for our evaluation de-
rives fromDeathStarBench [2], an open-source benchmark
suite formicroservices applications2. It implements the server
side for ahotel booking service andexposes the functionalities
presented inTable1.Wechose this application for tworeasons:
(i) it has been used to asses several recent proposals in the area
of serverless functions [4, 9]. (ii) it is complex enough to cap-
ture all the features of Nubes, including all kinds of relation-
ships between objects, both in cardinality and in directionalty.

2https://github.com/delimitrou/DeathStarBench

Task Features under test Accessmode
register-user export rw

delete-user delete rw

set-hotel-rate update rw

login object method ro

get-hotels get all 1 :𝑛 rel. ro

recommend get inverse 1 :𝑛 rel. ro

reserve export, update,𝑛 :𝑚 rel. rw

get-user-reservations get all 1 :𝑛 rel. ro

Table 1. List of tasks (ro: read-only, rw: read-write).

33

https://github.com/delimitrou/DeathStarBench


Nubes: Object-Oriented Programming for Stateful Serverless Functions WoSC ’23, December 11–15, 2023, Bologna, Italy

The database is populated with 50000 users, 5 cities, 100
hotels per city, 25 rooms per hotel, and 20 reservations per
room, totaling over 12.5k rooms and 250k reservations.
Systems under test.We consider three implementations of
the hotel booking service. (1)Nubes adopts the development
methodology presented in this paper. (2) SSF represents a
basic serverless implementation using the AWS Lambda and
DynamoDB services. This implementation uses the standard
methodology for developing stateful services with explicit
statemanagement. This version has similar access patterns to
the Nubes implementation. (3) SSF-custom adopts the same
methodology as SSF, but customizes the layout of the state
within the storage service to the specific workload (tasks)
we are evaluating. The main difference between Nubes
and SSF-custom is that SSF-custom adopts a de-normalized
approach when it is beneficial for performance (as discussed
in the DynamoDB documentation3) and uses composite keys
that allow range queries when possible.
Cloud environment.We run all tests using the AWS public
cloud:weuseAWSLambda functions for the computation and
DynamoDBas a storage service. Lambdas are configuredwith
1GBofmemoryandDynamoDBisconfigured inon-demand to
allowboth compute anddata to scale freely.The clientused for
the evaluation and latencymeasurement is an EC2 virtual ma-
chine (t3a.2xlarge, 8 vCPU, 32GB RAM, 5Gbps burst band-
width) located in the same region as the serverless application.

4.2 Code complexity
In this section, we analyze and compare the programming
models of Nubes and SSF. We recognize that assessing
code complexity is difficult and highly subjective, and we
approach the problem by (i) measuring the number of lines
of code of the applications as coarse-grained indication of
complexity; (ii) discussing the differences in the concerns
that each programming models exposes to the developers
that may contribute to code complexity.

System LoCwritten LoC generated LoC total
SSF 1020 0 1020
Nubes 369 603 972

Table 2. Lines of code of the hotel booking application.

Table 2 shows the number of lines of code to develop the
hotel booking application. We report and comment only the
numbers for SSF since the lines of code in SSF-custom are
nearly identical. The SSF approach requires developers to
write 2.75× more lines of code than Nubes. This is due to
the fact that SSF requires developers to write code that is
otherwise generated in Nubes: interactions with the storage,
serialization, deployment scripts, storage table setup, etc.

3https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
best-practices.html

dele
te-u

ser

get-
hote

ls

get-
use

r-re
serv

atio
ns logi

n

reco
mm

end
rese

rve

set-
hote

l-rat
e

use
r-re

gist
ratio

n
gate

way
0

20

40

60

80

Du
ra
tio

n[
m
s]

SSF-custom
SSF
Nubes

Figure 3. Lambda duration (10th, 50th, 90th percentile)

4.3 Performance comparison
In the evaluation, the client submits the tasks presented in
Table 1 with uniform distribution at a rate of 100 invocations
per second for over 2 minute, with 15s warmup that is
discarded. As usual in the function-as-a-service model, the
requests are submitted to a gateway that dispatches them
to other functions.
Duration As a first metric of performance, we measure the
execution time of each serverless function involved in the
application, as returned by the duration metric within the
AWS CloudWatch. As Lambdas are billed by execution time,
this measure is directly correlated to the cost of running
the application. Figure 3 shows the results we measured,
grouped by task. For all tasks, Nubes presents results that
are comparable to the baseline SSF approach. The maximum
overhead we measure is about 23% of the median duration, in
the recommend task, where Nubes first accesses an index to
obtain the references of hotels for a specified city, and then re-
trieves the desired hotels, whereas SSF can directly query the
table containing all hotels and filter by city. As a metric of the
average overhead over all tasks, we can consider the duration
of the gateway function:we see thatNubes introduces amean
overhead of 10% with respect to the SSF median duration.
SSF-custom achieves faster execution in the get-hotels

and recommend tasks, this is expected given the manually
optimized, service-specific layout that stores information
about cities and hotels in a single table. However, this
approach complicates the development process and must be
adapted to specific tasks and storage solutions. Conversely,
Nubes offers a general solution that is easy to develop and
modify, and can be ported to different storage services.
Latency. When looking at the latency measured from the
client, we see a mean response time of 43.1 ms for Nubes,
compared to 40.4 ms for SSF and 37.3 ms for SSF-custom.
The absolute differences between the three implementations
reflect the differences in the duration of functions as reported
above. However, as the communication between the client
and the functions introduces a delay for all implementations,
when looking at the relative differences, using Nubes only
introduces a 7.5% increase in latency with respect to SSF
and a 16% increase in latency with respect to SSF-custom.

34

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-practices.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-practices.html


WoSC ’23, December 11–15, 2023, Bologna, Italy Marek et al.

The relative difference will also be lower in a geographically
distributed scenario, as the contribution of network latency
becomes more dominant.

5 RelatedWork
In this section, we present abstractions for application devel-
opment and for statemanagement, in the context of serverless
computing, which are the most strictly related to our work.
Workflows. Most abstractions proposed for serverless
functions target the composition of functions in workflows.
Popular public cloud providers support function work-
flows456. We see this line of investigation as orthogonal to
our proposal, as it targets the composition and coordination
of functions to achieve data processing tasks rather then
abstracting away and hiding data management concerns.
Abstractions for stateful functions. Several programming
abstractions proposed for serverless functions include
state-management capabilities and share some similarities
with what we propose with Nubes. Cloudburst [8] offers
a programming interface that simplifies the interaction
between functions and state. In contrast to Nubes, developers
still need to explicitly define and export state elements in their
code.Objects as a Service (OaaS) [5] is a researchproposal that
shares several similarities with Nubes. However, it deals with
immutable data elements: functions and do not modify the
objects, but output they new state. Additionally, it does not
assist in the configuration and deployment of the functions
as is done in Nubes. Cloudflare Durable Objects7 offers a pro-
gramming abstraction that builds on the concept of objects as
stateful entities that areuniquely identifiedbyan id.Theuseof
object-oriented concepts, however, ends with encapsulation
of the state in objects. Particularly, the interactions with the
objects happen solely through a fetchmethod defined for the
specific object type, which enables clients to retrieve the con-
tent of a specific object. The Durable Function programming
model [1] target the expressivity of workflows definition.
Nubes shares with Durable Functions the idea of defining
an application using a standard programming language.
However, Durable Functions expose the concepts of activities
(functions) and entities (objects) to developers, while Nubes
fully hides the adoption of serverless abstractions.
Execution guarantees.A problem related to serverless envi-
ronments is the lack of guarantees on their actual execution:
for instance, public cloud environments introduce timeouts
that limit the maximum execution time of functions, to pre-
vent the cost of long-running executions caused by bugs [9].
To address these issues, several researchworks proposemech-
anisms to offer some forms of atomicity and concurrency
control in workflows of stateful serverless functions [4, 9].

4https://aws.amazon.com/step-functions/
5https://learn.microsoft.com/azure/azure-functions/durable
6https://cloud.google.com/composer/
7https://developers.cloudflare.com/durable-objects/

The above works are orthogonal to the idea of providing
new programming abstractions to simplify the development
of applications in serverless environment. Leveraging their
contributions, we plan to study fault-tolerance and isolation
semantics for the Nubes model in the future: we foresee the
possibility to define critical sections within methods that
need to be executed in isolation.

6 Conclusions
This paper proposed and evaluated a novel programming
model for serverless computing that builds on object-oriented
abstractions. Nubes significantly reduces complexity with
respect to the standard development process for stateful
serverless functions while introducing limited overhead even
with respect to custom implementations that sacrifice gener-
ality and reusability for performance under specific use cases.

In summary,Nubes offers a familiar programmingmodel to
implement distributed applications, which are automatically
deployed and operated in a serverless environment, obtaining
the benefit of automated scaling based on the actual load.
Our plans for future work include the integration of fault-
tolerance and consistency guarantees within Nubes, with the
goal of covering a wider range of applications requirements.

References
[1] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas,

Connor McMahon, and Christopher S. Meiklejohn. 2021. Durable
Functions: Semantics for Stateful Serverless. Proc. ACM Program. Lang.
5, OOPSLA, Article 133 (2021), 27 pages.

[2] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, FukangWen, Catherine Leung, SiyuanWang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud & Edge Systems
(ASPLOS ’19). ACM, 3–18.

[3] JosephM. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and ChenggangWu. 2019.
Serverless Computing: One Step Forward, Two Steps Back (CIDR’19).

[4] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless
Computing with Shared Logs (SOSP ’21). 691–707.

[5] Pawissanutt Lertpongrujikorn andMohsen Amini Salehi. 2022. Object
as a Service (OaaS): Enabling Object Abstraction in Serverless Clouds.

[6] James Lewis and Martin Fowler. 2016. Microservices, a definition
of this new architectural term. https://martinfowler.com/articles/
microservices.html

[7] Swaminathan Sivasubramanian. 2012. Amazon DynamoDB: A
Seamlessly Scalable Non-Relational Database Service (SIGMOD ’12).
ACM, 729–730.

[8] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey
Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service. Proceedings
of VLDB Endow. 13, 12 (2020), 2438–2452.

[9] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and
Vincent Liu. 2020. Fault-Tolerant and Transactional Stateful Serverless
Workflows (OSDI’20). USENIX Association, Article 67, 18 pages.

35

https://aws.amazon.com/step-functions/
https://learn.microsoft.com/azure/azure-functions/durable
https://cloud.google.com/composer/
https://developers.cloudflare.com/durable-objects/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

	Abstract
	1 Introduction
	2 Programming Interface
	2.1 Class definitions
	2.2 Object lifecycle
	2.3 Relationships

	3 System Implementation
	3.1 State management

	4 Evaluation
	4.1 Experiment setup
	4.2 Code complexity
	4.3 Performance comparison

	5 Related Work
	6 Conclusions
	References

