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Abstract
In the field of distributed system, Arbitrary Pattern Formation (APF) problem is an extensively
studied problem. The purpose of APF is to design an algorithm to move a swarm of robots to
a particular position on an environment (discrete or continuous) such that the swarm can form
a specific but arbitrary pattern given previously to every robot as an input. In this paper the
solvability of the APF problem on a continuous circle has been discussed for a swarm of oblivious and
silent robots without chirality under a semi synchronous scheduler. Firstly a class of configurations
called Formable Configuration(F C) has been provided which is necessary to solve the APF problem
on a continuous circle. Then considering the initial configuration to be an F C, an deterministic and
distributed algorithm has been provided that solves the APF problem for n robots on a continuous
circle of fixed radius within O(n) epochs without collision.
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1 Introduction

Applications of distributed systems and their relevant problems have gained substantial
importance in the last two decades. Unlike a centralized system, using a swarm of inexpensive,
simple robots to do a task is more cost-effective, robust, and scalable. These swarms of robots
have many applications, like rescue operations, military operations, search and surveillance,
disaster management, cleaning large surfaces, and so on.

Researchers are interested in studies about using swarm robots with minimum capabilities
to do some specific tasks like Gathering, Arbitrary Pattern Formation, Dispersion,
Exploration, Scattering etc. The robots are autonomous (have no centralized controller),
anonymous (have no IDs), and homogeneous (have the same capabilities and execute the
same algorithm). Depending on the capabilities of robots, there are four types of robot
models: OBLOT , FST A, FCOM, LUMI. In the OBLOT model, robots do not have
any persistent memory of their previous state, i.e. oblivious and they can’t communicate
with each other, i.e. silent. In the FST A model, robots are not oblivious but silent. In the

© Jane Open Access and Joan R. Public;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

30
3.

10
36

6v
2 

 [
cs

.D
C

] 
 1

4 
Ju

l 2
02

3

mailto:bratim.math.rs@jadavpuruniversity.in
https://orcid.org/0009-0001-3017-9924
mailto:pritamgoswami.math.rs@jadavpuruniversity.in
https://orcid.org/0000-0002-0546-3894
mailto:aviseks.math.rs@jadavpuruniversity.in
https://orcid.org/0000-0001-8940-392X
mailto:buddhadeb.sau@jadavpuruniversity.in
https://orcid.org/0000-0001-7008-6135
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Arbitrary Pattern Formation on a Continuous Circle by Oblivious Robot Swarm

FCOM model, robots are oblivious but not silent. In the LUMI model, robots are neither
oblivious nor silent.

Each robot executes a Look-Compute-Move (LCM) cycle after activation. In Look
phase, the robot takes a snapshot of its surroundings and collects the required information.
Then the robot calculates the target using that information in the Compute phase and
moves to the destination in Move phase. A scheduler is the controller of the activation of
robots. There are three types of schedulers: Fully synchronous (FSync) scheduler, Semi
synchronous (SSync) scheduler, Asynchronous (ASync) scheduler. In FSync scheduler,
time is divided into global rounds of the same duration, and each robot is activated in every
round and executes the LCM cycle. In SSync scheduler, time is also divided into global
rounds of the same duration as FSync, but all robots may not be activated at the beginning
of each round. In ASync scheduler, robots are activated independently, and the LCM cycle
is not synchronised here.

The problem considered here is the Arbitrary Pattern Formation (APF) problem, in
which a swarm of robots is deployed in an environment (discrete or continuous domain).
The APF problem aims to design an algorithm such that robots move to a particular
position and form a specific but arbitrary pattern, which is already given to every robot
as input. There is a vast literature on APF in both discrete and continuous domains
([1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 16, 18, 19]). Most of the works of APF in the continuous
domain are considered on the Euclidean plane. There are other sorts of environments that
are included in the continuous domain, e.g., any closed curve embedded on the plane where
robots can only move on that curve. In real life, such environments also exist and are
hugely applicable in different scenarios such as roads, railway tracks, tunnels, waterways, etc.
Another example of this kind of environment is a circle of fixed radius embedded in a plane.
Studying this problem is interesting because the solution can be extended to all other closed
curves. Thus, in this paper, we have considered the problem of Arbitrary Pattern Formation
(APF) on a circle.

2 Related Works and Our Contribution

2.1 Related work
In swarm robotics, Arbitrary Pattern Formation (APF) problem is a hugely studied problem.
This problem was first introduced by Suzuki and Yamashita in [18] on the Euclidean plane.
Later, they characterised the geometric patterns formable by oblivious and anonymous robots
in [19] for fully synchronous and asynchronous schedulers. After that, this problem has been
considered in different environments on continuous and discrete domains ([1, 2, 3, 4, 5, 6, 7,
8, 11, 14, 16]).

In the continuous domain, most of the works that consider arbitrary pattern formation
are done on the Euclidean plane under different settings. In [14] Flocchini discussed the
solvability of the pattern formation problem by considering oblivious robots with fully
asynchronous schedulers. They showed that if the robots have no common agreement with
their environment, they are unable to form an arbitrary pattern. Moreover, if the robots
have one axis agreement, then any odd number of robots can form an arbitrary pattern,
whereas the even number can’t. Further, if the robots have both axis agreement, then any
set of robots can form any pattern. They proved that it is possible to elect a leader if it is
possible to form any pattern for n ≥ 3 robots. The converse of this result is proved, and a
relationship between leader election and arbitrary pattern formation for oblivious robots in
the asynchronous scheduler is studied in [11]. The authors showed that for n ≥ 4 robots with
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chirality (respectively for n ≥ 5 without chirality), the Arbitrary pattern formation problem
is solvable if and only if leader election is possible. In [4] the authors proposed a probabilistic
pattern formation algorithm for oblivious robots under an asynchronous scheduler without
chirality. Their protocol is a combination of two phases: a probabilistic leader election phase
and a deterministic pattern formation phase. Later in [5] they proposed a new geometric
invariant that exists in any configuration with four oblivious anonymous mobile robots to
solve arbitrary pattern formation problems with or without the common chirality assumption.
In [7] authors studied Embedded Pattern Formation without chirality with oblivious robots.
They characterised when the problem can be solved by a deterministic algorithm and when
it is unsolvable. In [2] authors studied the APF problem for robots whose movements can
be inaccurate and the formed pattern is very close to the given pattern. In [3] the authors
provided a deterministic algorithm in the Euclidean plane with asynchronous opaque robots.

Note that all the work on arbitrary pattern formation considering the continuous domain
has been done only for the Euclidean plane, where the robots can arbitrarily move from one
point to another via infinitely many paths. But there are some environments in the continuous
domain in which the movements of robots from one point to another are restricted to a finite
number of possible paths. A continuous circle of fixed radius is one such environment. To
the best of our knowledge, there are some works ([9, 10, 12, 13, 15, 17]) which considered
continuous circle as their corresponding environment. The problems of patrolling, gathering,
and rendezvous are the main focus of these works. But none of them considered the problem
of APF on the continuous circle.

2.2 Our Contribution
In this work, we aim to solve the problem of Arbitrary Pattern Formation (APF) on a
continuous circle by oblivious and silent mobile robots with full visibility under a semi-
synchronous scheduler. To the best of our knowledge, the APF problem has not yet been
considered on a continuous circle. So in this paper, we have considered this problem for
the first time. Here the robots do not agree with a particular direction i.e. robots have
no chirality. The movements of robots are restricted only in two directions, clockwise and
anti-clockwise from any point. So, avoiding collision in a circle is more difficult than avoiding
collision on a plane.

The robot model considered here is the weakest OBLOT model. In this problem, there
is no particular landmark or door from which the robots enter. Here we characterise the
class of initial configuration for which this APF problem is solvable. We name this class
of configurations, Formable Configuration (FC). We have shown that FC contains either
asymmetric configuration or configuration having only reflectional symmetry and there exists
at least one line of reflection having a robot on it. Then we have provided a deterministic
and distributed algorithm APF_CIRCLE which solves this problem for any FC as the
initial configuration within O(n) epochs under a semi synchronous (SSync) scheduler.

Observe that, if a configuration is rotationally symmetric then it is not an FC and
hence APF can’t be solvable for this kind of configuration. So, maintaining a rotationally
asymmetric configuration is necessary throughout an execution of any algorithm which solves
the problem. There are some known techniques in [1, 17], that maintain the asymmetry of
the configuration. For example in an infinite grid, the asymmetry is maintained by moving
a particular robot to a certain distance ([1]). In a continuous circle we can not adapt this
technique due to the bounded and circular nature of the environment. Furthermore, in
[17], authors solved the problem of gathering under limited vision on a continuous circle.
The algorithm proposed in this paper also requires to maintain the rotational asymmetry

CVIT 2016



23:4 Arbitrary Pattern Formation on a Continuous Circle by Oblivious Robot Swarm

of the configuration. For this purpose, the authors exploited the global weak multiplicity
detection and chirality agreement, in their work. But here in this work, we can not have the
luxury of having multiplicity points as the target pattern does not include any multiplicity
points and the robots are oblivious. So, for maintaining the asymmetry in circle, we have
came up with a new technique that have been used in designing the deterministic algorithm
APF_CIRCLE, presented in this paper.

2.3 Road map to the Paper

Section 1 is dedicated to introducing the problem and then in Section 2 some related works
and the contribution of this work has been described. In Section 3, the problem definition
along with the model is discussed. In Section 4, Some preliminaries such as some definitions,
notations, and some results have been established. In Section 5, the leader election and target
pattern embedding has been described. Section 6 is dedicated to describing the provided
algorithm along with the correctness results and finally, this work is concluded in Section 7.

3 Model and Problem Definition

3.1 Problem Definition

Let CIR be a continuous circle of fixed radius. Let n, n ≥ 3 robots resides on the perimeter
of CIR. The robots can move freely on the circle. A sequence of angular distances
β0, β1, β2 . . . , βn−1 is given to all the robots as input which is the target pattern such that
the sum of the angles of the sequence is equal to 2π. The problem is to design a distributed
algorithm for the robots so that by finite execution of the algorithm, the robots move in such
locations on CIR, such that the final configuration has the following property:

✧ There exist a robot, say r0 and a direction D ∈ { clockwise, anticlockwise} such that the
angular distance between the i-th and (i + 1)-th robot in the direction D (denoted as ri

and ri+1 respectively) is βi, where all the indices are considered under modulo n.

3.2 Model

3.2.1 Robot Model:

All robots are placed on the perimeter of a circle, say CIR. Here the robots can move only
on the perimeter of the circle. Robots have no particular orientation (i.e., no agreement on
clockwise or anticlockwise direction). Robots have full visibility of the circle. The initial
configuration is rotationally asymmetric. The movements of the robots are rigid i.e. robots
always moves to its destination in a particular round. Robots have following properties-

Autonomous: Robots don’t have any centralised controller.
Anonymous: Robots have no IDs.
Homogeneous: All robots have same capabilities and execute the same algorithm.
Oblivious: Robots have no persistent memory.
Silent: Robots have no means of communications.
Visibility: Robots have full visibility of the circle i.e., robots can see all other robots on
the circle.
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3.2.1.1 LCM cycle:

Each robot executes a cycle of Look-Compute-Move(LCM) phases upon activation.

LOOK: In look phase a robot takes a snapshot of its surroundings and gets the location
of other robots on the circle according to its own coordinate .
COMPUTE: Robot determines target location using the snapshot of the look phase as
the input by executing the provided algorithm.
MOVE: In move phase robot moves to the destination point calculated in the compute
phase.

3.2.2 Scheduler Model:
The activation of robots are controlled by an entity called scheduler. Depending on the
activation timing there are three types of schedulers:

Fully synchronous (FSync): In fully synchronous scheduler time is divided into rounds
of equal length and all robots are activated at the beginning of every round and performs
the LCM cycle synchronously.

Semi synchronous (SSync): Similar to fully synchronous scheduler here also time is
divided into rounds of equal length. But all robots might not get activated at the
beginning of a particular round. In a particular round the activated robots perform the
LCM cycle synchronously. Note that semi synchronous scheduler is more generalised than
fully synchronous scheduler.

Asynchronous (ASync): In asynchronous scheduler time is not divided into rounds like
fully synchronous and semi synchronous scheduler. Robots are activated independently.
In a particular moment of time some robots may be in Look phase, some in Compute
phase, some in Move phase or some may be idle. Asynchronous scheduler is the most
general among all the schedulers.
In this paper, Semi Synchronous (SSync) scheduler has been considered to solve the
problem.

4 Prelimineries

In this section, we first justify the reason for assuming the initial configuration being
rotationally asymmetric. Before that let us first define what a configuration is and what does
it mean by the phrase “configuration is rotationally asymmetric”.

▶ Definition 1 ((A, B)D). Let A and B be two points on the circle CIR. Let D be a direction
either clockwise or anticlockwise. Then (A, B)D denotes the angular distance from point A

to point B in the direction D.

▶ Definition 2 (Configuration). A configuration is a set of n points on the circle CIR such
that each point in the set consists exactly one robot.

▶ Definition 3 (Rotationally Asymmetric Configuration). A configuration is called a rotationally
asymmetric configuration if there does not exist any non-trivial (less than 2π) rotation of the
circle CIR such that the configuration remains same after and before the rotation.

CVIT 2016



23:6 Arbitrary Pattern Formation on a Continuous Circle by Oblivious Robot Swarm

▶ Definition 4 (Reflectionally Symmetric Configuration). We call a configuration reflectionlly
symmetric if
1. there exist a straight line called "line of reflection" , say L, passing through the center of

the circle and intersecting it at two points, say A and B. L divides the circle into two
halves.

2. for any robot r located on any of the two halves there exist another robot r′ on the other
half such that (r, x)D = (r′, x)D′ where, D is either the clockwise or, the anticlockwise
direction, D′ is the opposite direction of D and x ∈ {A, B}

A configuration is called an Asymmetric if the configuration is both rotationally and
reflectionally asymmetric.

▶ Proposition 5. There is no deterministic distributed algorithm that solves arbitrary pattern
formation problem on a continuous circle if the initial configuration is rotationally symmetric.

Proof. Let C(0) be the initial configuration which is rotationally symmetric. Let C(0) has a
k−fold symmetry i.e., for a rotation of 2π

k along the center, the configuration remains the
same. By proposition 2.4 in [17] if the scheduler is fully synchronous then for any algorithm
A, the new configuration will have a k′−fold symmetry after one execution of A, where
k′ ≥ k. Thus for any finite execution of A, the configuration will always have a k1−fold
symmetry where k1 ≥ k. So if the target pattern is asymmetric it can not be formed by the
robot swarm by finite execution of A. Hence the result. ◀

▶ Proposition 6. There is no deterministic algorithm which solves arbitrary pattern formation
on a continuous circle without chirality if the initial configuration is reflectionally symmetric
and there is no robot on a line of reflection.

Proof. Let there be a deterministic algorithm A that solves the arbitrary pattern formation
on a continuous circle without chirality. Let C be a configuration which has a line of
reflectional symmetry L in a configuration such that L does not contain any robot on it.
Then we show that execution of algorithm A cannot destroy the reflection symmetry without
coalition. This will imply A cannot form an asymmetric target pattern starting from C.
Since the line L does not contain any robot then the total number of robots present is even.
Each robot can be paired with its reflectional image with respect to L. We denote a pair as
[r, r′]. Suppose the adversary maintains a semi-synchronous scheduler where in a round only
one such pair of robot is activated. Suppose a such pair [r, r′] is activated. If on activation r

decides to move a point p, then since r and r′ have same view due to reflectional symmetry,
so destination points of r and r′ either are mirror images of each other with respect to L or
on the same point of L. If the destination points are on a point on L, then coalition takes
place. Otherwise, after the completion of the move the new configuration still have the line
of reflectional symmetry L. Therefore, the reflectional symmetry remains in every round if
the mentioned activation schedule is considered.

◀

Next, we define some terminologies here in this section that will be needed to describe
the algorithm provided in the next section.

▶ Definition 7 ( Set of Angle Sequences of a robot r). Let, R = {r0, r1, r2, . . . , rn−1} be the
set of robots placed consecutively in a fixed direction, say D (either clockwise or anticlockwise)
on the circle CIR. Let θi (mod n) be the angular distance from the location of robot ri (mod n)
to the location of robot ri+1 (mod n) in the direction D. Then the set of angle sequences of
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Figure 1 Here, AS(r) = {(30◦90◦60◦75◦105◦), (105◦75◦60◦90◦30◦)} is the set of angle sequences
for the robot r. Note that AS(r) contains the minimum angle sequence (30◦90◦60◦75◦105◦) so, r is
a nominee. This configuration is also a single nominee configuration.

the robot r = r0, denoted as AS(r), is the set {ASD(r), ASD′(r)} where, D′ is the opposite
direction of D and ASD(r) = (θ0, θ1, . . . , θn−1), ASD′(r) = (θn−1, θn−2, . . . , θ0) are two
angle sequences in the direction D and D′ respectively.

Since the initial configuration is rotationally asymmetric then, for a fixed particular
orientation (either clockwise or anti-clockwise) all the robots have different angle sequences
[17]. So, note that, for two robots, say r1 and r2 if ASD1(r1) ∈ AS(r1) is equal to
ASD2(r2) ∈ AS(r2) then, D1 must be equals to D′

2

▶ Definition 8 (Nominee). A robot rl is considered as the nominee if

min(∪r∈RAS(r)) ∈ AS(rl)

▶ Proposition 9. If the initial configuration is rotationally asymmetric then there are at
least one and at most two nominees.

Proof. Since the initial configuration is rotationally asymmetric, by a result stated in [17] it
can be said that all the robots have distinct angle sequences in a particular direction. Thus
n robots have n distinct angle sequences in a particular direction. Similarly in opposite
direction, there exists n distinct angle sequence. Among those 2n angle sequences, at least
one angle sequence must be minimum. If this minimum angle sequence belongs to AS(r),
then r is selected as the nominee. So the initial configuration must have at least one nominee.

Now, let it be assumed that there are more than two nominees in the initial configuration.
Without loss of generality let there be three nominees in the initial configuration. Let the first
nominee whose angle sequence is minimum, has the minimum angle sequence in a particular
direction say, D. Then the second nominee must get its minimum angle sequence in the
direction D′, the opposite direction of D (as no two robots can have minimum angle sequence
in the same direction). Now, the third nominee must have its minimum angle sequence in
the direction of either D or D′. But this can’t be possible because, in a particular direction,
no two robots have the same angle sequence. So there can not be more than two nominees
in the initial configuration.

◀

▶ Definition 10 (Single nominee configuration). A rotationally asymmetric configuration is
called a single nominee configuration if there is only one nominee.

CVIT 2016
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Figure 2 A double nominee configuration where both r and r′ are nominees. The angle bisector
AB contains a robot. Arc(r) is highlighted with red dotted line and Arc(r′) is highlighted with
green dotted line.

▶ Definition 11 (Double nominee configuration). A rotationally asymmetric configuration is
called a double nominee configuration if there are two nominees.

▶ Definition 12 (Angle Bisector in a double nominee configuration). Let r and r′ be two
nominees in a double nominee configuration. The angle bisector of this configuration is
defined as the straight line that bisects the angles formed by the robots r and r′ and is denoted
as AB.

In the future, the term “angle bisector of a configuration" or the symbol AB will always be
used for a double nominee configuration even if it is not mentioned explicitly.

▶ Definition 13 (Arc of a nominee in a double nominee configuration). Let r and r′ be two
nominees in a double nominee configuration. Let AB be the angle bisector of the angle between
r and r′. Now, AB divides the circle into two arcs. Among these two arcs, the arc on which
the robot r is located except the points of AB is called the arc of the robot r and is denoted as
Arc(r).

▶ Proposition 14. An asymmetric configuration must be a single nominee configuration.

Proof. Assume that the configuration is a double nominee configuration where r0 and r′
0 be

the two nominees. Let L be the angle bisector AB which intersects the circle in two points,
say A and B. Let D be the direction such that ASD(r0) is minimum in the configuration.
Then ASD(r0) = ASD′(r′

0). Without loss of generality let A be the first (among A and B)
point in the direction D from r0. So, A is also the first point among A and B from r′

0 in the
direction D′. Thus, (r0, A)D = (r′

0, A)D′ . Now, let r be a robot on Arc(r0). Now, we have
two cases.

Case I: Let r is on the arc joining r0 and A in the direction D. Since ASD(r0) = ASD′(r′
0),

there exists a robot r′ on Arc(r′
0) such that it is located on the arc joining r′

0 and A in
the direction D′. Also, (r0, r)D = (r′

0, r′)D′ . So, (r, A)D = (r0, A)D − (r0, r)D = (r′
0, A)D′ −

(r′
0, r′)D′ = (r′, A)D′ . This is true for any D ∈ {clockwise direction, anticlockwise direction}

and also for the point B. Hence the configuration has reflectional symmetry.
Case II: Let r is on the arc joining r0 and B in the direction D′ from r0. Since

ASD(r0) = ASD′(r′
0), there exists a robot r′ on Arc(r′

0) such that it is located on the arc
joining r′

0 and B in the direction D and (r0, r)D′ = (r′
0, r′)D. Now, since (r0, A)D = (r′

0, A)D′ ,
we have, (r, A)D = (r, r0)D + (r0, A)D = (r′, r′

0)D′ + (r′
0, A)D′ = (r′, A)D′ . This is also true

for any D ∈ {clockwise direction, anticlockwise direction} and also for the point B. Hence
the configuration has reflectional symmetry.
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So, for both the cases we arrive at a contadiction. Thus an asymmetric configuratioin
can not be a double nominee configuration. ◀

▶ Proposition 15. A single nominee configuration can not have reflectional symmetry.

Proof. Let C be a single nominee configuration where r0 be the nominee. If possible, let C
has reflectional symmetry. Let L be a line of reflection. We first claim that r0 can not be
on L. In this case let two neighbours of r0 be r1 in direction, say D and rn−1 in D′. Since
r0 is on L, (R0, R1)D = (R0, Rn−1)D′ = say α0, where R0, R1 and Rn−1 are locations of
r0, r1 and rn−1 respectively. Also since r0 is the nominee, α0 is the minimum angle in C.
Which implies ASD′(r1) and ASD(rn−1) is smaller than ASD(r0) = ASD′(r0) which is a
contradiction. So, let r0 is not on L. Let r′

0 be the reflection of r0 along L. Now, if r0 has
its minimum angle sequence in the direction D then ASD(r0) = ASD′(r′

0) which implies C is
not an single nominee configuration contradicting our assumption. Thus we can conclude
that a single nominee configuration must not have reflectional symmetry. ◀

Now from definition, a single nominee configuration must be rotationally asymmetric.
Thus from Proposition 15, it can be concluded that a single nominee configuration must be
asymmetric. Also, from Proposition 14 we have the following theorem.

▶ Theorem 16. A configuration is asymmetric if and only if the configuration is a single
nominee configuration.

▶ Proposition 17. A configuration which is rotationally asymmetric, reflectionally symmetric
must be a double nominee configuration .

Proof. From Proposition 15 we have that if a configuration has reflectional symmetry then
it can not be a single nominee configuration. Now, a rotationally asymmetric configuration
can either be a single nominee configuration or a double nominee configuration. So, A
rotationally asymmetric configuration having reflectional symmetry must be a double nominee
configuration. ◀

Now from the above propositions (Proposition 14 and Proposition 17) we can have the
following result.

▶ Theorem 18. A configuration is a double nominee configuration if and only if the configu-
ration is rotationally asymmetric and reflectionally symmetric.

▶ Proposition 19. In a double nominee configuration with odd number of robots, exactly one
robot must be located on the angle bisector AB.

Proof. By Theorem 18, a double nominee configuration must be roationally asymmetric,
has reflectional symmetry and the angle bisector AB is the line of reflection without any
nominee. Now, since the configuration has reflectional symmetry with respect to AB, the
total number of robots which are not on AB is even. Now, since it is given that the number
of robots are odd, AB must contain exactly one robot.

◀

5 Leader Election and Target Embedding

5.1 Leader Election
In this section, the concept of the leader in different configuration is discussed briefly. For
embedding the target pattern on the circle CIR, a particular point and a fixed direction

CVIT 2016
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must be agreed upon by all the robots of R. The position of the elected leader is here used
as the point.

For a single nominee configuration the unique nominee is considered to be the leader of
the configuration. So, due to Proposition 14, for any asymmetric initial configuration, the
unique nominee robot becomes the leader.

Now, if the configuration is symmetric then, there can be two types of symmetry.
rotational symmetry
reflectional symmetry

If a configuration has rotational symmetry then by Proposition 5 arbitrary pattern formation
is impossible. So, we assume that initial configuration is rotationally asymmetric. Thus by
symmetric initial configuration only reflectional symmetry is considered. Now for a symmetric
initial configuration let us consider the set SReflect = {r ∈ R | r is on a line of reflection }.
Now for any r ∈ SReflect we have an observation:

▶ Observation 20. For any robot r ∈ SReflect, ASD(r) = ASD′(r).

So, if SReflect ̸= ϕ then, there must exist an unique r0 ∈ SReflect such that ASD(r0) =
min

r∈SReflect

{ASD(r) ∪ ASD′(r)} = min
r∈SReflect

ASD(r) (as the configuration is rotationally asym-

metric r0 is unique). So, for a symmetric configuration which is rotationally asymmetric
but has reflectional symmetry, if SReflect ̸= ϕ then we can elect a unique leader r0, where
r0 ∈ SReflect has the minimum angle sequence in SReflect. Note that, a double nominee
configuration is rotationally asymmetric, has reflectional symmetry (due to Theorem 18). So,
for a double nominee configuration, if SReflect ̸= ϕ an unique leader can be elected from the
set SReflect as described earlier.

Configuration Classification Leader
Single nominee configuration The unique nominee
Double nominee configuration r0 ∈ SReflect such that

with SReflect ̸= ϕ ASD(r0) = min
r∈SReflect

ASD(r)

5.2 Target Embedding
From the above description it is clear that a unique leader can be elected for the mentioned
configurations which is used to embed the target pattern on CIR . Now the question is in
which direction target pattern will be embedded. To answer this following two cases arise.

Case I: Let r0 be the elected leader in a single nominee configuration. Thus, ASD(r0) ̸=
ASD′(r0). In this case, the angle sequences of the leader r0 in the directions D and D′ are
different. So there must exists one direction in which the angle sequence of r0 is minimum.
This direction will be considered by all the robots for embedding the target pattern. Let
the position of r0 be denoted as T0 and the direction in which r0 has the smallest angle
sequence is denoted as D. Let the j-th target location on CIR from T0 in the direction D is
denoted by Tj , where j ∈ {0, 1, . . . , n − 1}. The points are embedded in such a way on CIR
that (Tj , Tj+1)D = βj where the sequence β0, β1, . . . , βn−1 is lexicographically smallest upto
rotation of the input pattern given to the robots (all the indices are considered in modulo n).

Case II: Let r0 be the elected leader in a double nominee configuration. Then ASD(r0) =
ASD′(r0). In this case the leader r0 has same angle sequence in both the direction D and
D′. So a particular direction can’t be agreed upon by the other robots. Thus the target
is embedded as described similar to the Case I, but in both clockwise and anti-clockwise
direction. Observe that there are two possible embedding for this case.
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Figure 3 (β0, β1, . . . βn−1) is the smallest in lexicographic ordering of all possible sequences that
can be formed from the input upto rotation. The sequence is embedded on the circle starting from
the location of r0 and in the direction Dp.

We say that, target pattern is formed, if n robots are on the n points Tj , where j ∈
{0, 1, . . . , n − 1}, for at least one such embedding.

6 Algorithm APF_CIRCLE

Let us first define the class of configurations called Formable Configurations (FC).

▶ Definition 21 (Formable Configuration(FC)). We say that a configuration is an FC if the
configuration is one of the following:
1. A single nominee configuration
2. A double nominee configuration and SReflect ̸= ϕ

In a single nominee FC we will follow the following notation.
In a single nominee configuration if r0 is the leader then the direction in which r0 has

the smallest angle sequence is called a Pivotal direction and is denoted as Dp. Let ri be the
i-th robot from r0 in the direction Dp. Position of any robot ri is denoted as Ri ( In some
cases position of robots r is denoted as R). Let (Ri, Ri+1)Dp

= αi and
∑n−1

i=0 αi = 2π.
From Proposition 5 and Proposition 6 it is clear that if a distributed deterministic

algorithm for APF has to be designed then only the FCs has to be considered as the initial
configuration. So here in this section, assuming the initial configuration C(0) to be an FC,
we propose an deterministic and distributed algorithm APF_CIRCLE that solves the
arbitrary pattern formation problem on a continuous circle under Semi Synchronous (SSync)
without chirality agreement by oblivious and silent robots with rigid move. Algorithm
APF_CIRCLE consists of several stages. In each subsection of this section we describe
the stages individually and provide the correctness proofs of the stage. Now before moving
further into the details of the algorithm let us define some special type of configurations that
will be needed later.

▶ Definition 22 (Rotational Asymmetry Fixing Configuration (RAFC)). A configuration C is
called a RAFC if all the following conditions holds
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(a) RAFC Maintaining Configuration. Here
α0 < min

i̸=0
{αi, β0} and α1 < min

j ̸=0,1
{αj , β0}. (b) Partially Formed configuration, where all

the robots ri, i ≥ 3 are in target.

Figure 4 RMC and PFC

1. C is a single nominee configuration with leader r0.
2. α0 < min

i ̸=0
{αi, β0} where β0 is minimum angle in the target pattern.

▶ Definition 23 (RAFC Maintaining Configuration (RMC)). A RMC is a RAFC where
α1 < min

j ̸=0,1
{αj , β0} where β0 is the minimum angle in target pattern.

▶ Definition 24 (Partially Formed Configuration (PFC)). A single nominee configuration,
say C, is called a PFC if all robots rp, p ≥ 3 are on their target location Tp in C.

6.1 A brief outline of the algorithm
The algorithm can be divided into seven stages based on the configuration. Since the robots
are oblivious, in each Look-Compute-Move cycle, robots determine in which stage it belongs
to by checking some certain conditions. This conditions are described by some Boolean
variables in the following table:

Variable Definition
c0 Target pattern is formed
c1 Double nominee configuration
c2 RAF C

c3 P F C

c4 RMC

c5 (R1, R2)Dp > β0 − α0

c6 all but one robot is in target
c7 (T1, R2)Dp ≤ β1

The main focus of the problem is to fix the position and the direction of the leader and
to keep the leader and its pivotal direction fixed throughout the execution of the algorithm.
Another motto is to move the robots to its target without collision. In Stage 1, leader moves
an angular distance and makes the unique minimum angle. This minimum angle will be
maintained throughout the algorithm so that the rotational asymmetry is maintained. After
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this the configuration becomes Rotational Asymmetry Fixing Configuration (RAFC). In
Stage 2, the second neighbour r2 of the leader in pivotal direction, moves an angular distance
in direction D′

p and makes second minimum angle. It is ensured that the second minimum
angle will not appear in the configuration throughout the execution of the algorithm. Thus
Stage 2 ensures that the leader and its pivotal direction remain unchanged throughout
the execution of the algorithm. These two stages are necessary, because if the rotational
asymmetry is not maintained, then there might be a time when a configuration becomes a
rotationally symmetric configuration and since the robots are oblivious, even if the initial
configuration is Formable Configuration, the problem becomes unsolvable. Also if the leader
or the pivotal direction changes infinitely often the robots may end up in a live-lock situation
without forming target pattern. Note that after stage 2, configuration becomes a RMC

configuration.
In stage 3, we ensure that all the robots except r0, r1, r2 moves to their target avoiding

collision and form a PFC. Since the position of the robots r0 is assumed as the target
position T0, so after the PFC formed only r1 and r2 are not in their target. From a PFC,
for r1 and r2 to move to their target we have stage 4,5,6 and 7.

If r2 is in between T2 and T3, then r2 moves to T2 directly by executing stage 5. Note
that, after execute stage 5, only r1 is not in its target. In a PFC, if r2 is in between R1 and
T1, then r1 can’t move to T1 unless r2 moves. Now r2 moves to target T2 if after moving
to T2, angle between R1 and T2 is smaller than βn−1. Otherwise the leader and the pivotal
direction may change. For this case when angle between R1 and T2 is greater equal to βn−1,
then r2 does not move to T2 directly, it first moves to a point D2 between T1 and T2 such
that the angle between R1 and D2 is less than βn−1. This ensures after this moves, the
leader and its pivotal direction remain unaltered. This is done in stage 4. Note that after
this stage , r1 can now move to T1 without collision. This is stage 6. We ensure that, in
stage 6 also, the leader and the pivotal direction remain unchanged. After stage 6, either the
pattern has been formed or there is only one robot r2 which is not in its target position. For
this case or case after the execution of stage 5, only one robot is not in its target. Then the
robot which is not in its target, executes stage 7 and moves to its target. After completion
of stage 7, the target pattern has been formed.

6.2 Stage 1

In Stage 1 the leader r0 performs the following subroutine.
RAFC Formation():

Input: (¬c0 ∧ c1) ∨ (¬c0 ∧ ¬c1 ∧ ¬c2 ∧ ¬c3) ∨ (¬c0 ∧ ¬c1 ∧ ¬c2 ∧ c3 ∧ ¬c6)
Output: ¬c0 ∧ ¬c1 ∧ c2

If the configuration C is a single nominee configuration with the leader r0, then r0 finds a real
number ϵd and moves an angular distance of ϵd in Dp such that the configuration becomes an
RAFC. If C is a double nominee FC, the leader r0 has same view in both the direction. In
this case the leader r0 chooses any one of the direction, say D and moves an angular distance
ϵd in D such that the configuration becomes an RAFC.

After RAFC is formed, it is maintained unless PFC is formed. This is needed to avoid
rotational symmetry.

The following lemma proves the existence of such ϵd.
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Figure 5 Here the leader r0 moves towards r1 and angular distance ϵd such that after the move
the angular distance between r0 and r1 is strictly smallest in the current configuration and also
strictly less than all angles in target pattern.

6.2.1 Correctness of Stage 1

▶ Lemma 25. If an FC is not an RAFC, then there exists an ϵd > 0 such that after a move
by the leader r0 according to the subroutine RAFC Formation() the configuration becomes an
RAFC.

Proof. Let the configuration C be an FC which is not a RAFC. Then C is either a single
nominee configuration or a double nominee configuration with SReflect ̸= ϕ.

Case: I Let, the configuration C be a single nominee configuration with leader r0. Since,
C is not a RAFC, α0 ≥ min

i̸=0
{αi, β0}. Note that, in C, α1 ≤ αn−1 as r0 is the nominee.

Now for any ϵd ∈ (α0 − min
i ̸=0

{αi, β0}, α0) ⊆ (0, α0), if r0 moves an angular distance ϵd in the

direction Dp, then (R0, R1)Dp
becomes α0 − ϵd which is strictly less than min

i ̸=0
{αi, β0} by the

choice of the ϵd. So now it is enough to show that after this move by r0 the configuration,
say C′, remains a single nominee configuration. If possible let the configuration is not a
single nominee configuration. Since C′ is rotationally asymmetric, it must be a double
nominee configuration where the nominees are the robots r0 and r1. Thus the minimum
angle sequences of r0 and r1 in C′ must be same. Now the second angles in the minimum
angle sequences of r0 and r1 are α1 and αn−1 + ϵd respectively. For them to be equal we
have, ϵd = α1 − αn−1 ≤ 0, which contradicts the choice of ϵd. Hence C′ must be a single
nominee configuration and hence an RAFC.

Case: II Let the configuration C be a double nominee configuration with SReflect ≠ ϕ.
Let r0 ∈ SReflect be the leader in C. Then ASD(r0) = ASD′(r0). Since C is not an RAFC,
r0 moves in any one of clockwise or anticlockwise direction. Let the direction in which r0
decided to move is denoted as D. Let ri be the i-th robot from r0 in the direction D and
(Ri, Ri+1)D = αi. Also in this configuration α0 ≥ min

i ̸=0
{αi, β0}. Let ϵd is chosen such a way

that ϵd ∈ (α0 − min
i ̸=0

{αi, β0}, α0) ⊆ (0, α0) and ϵd ̸= α1 − αn−1. Note that existence of such
ϵd is guaranteed from the fact that number of robots are finite and the interval from which
ϵd is chosen has infinite points. Let C′ be the configuration after r0 moves. By the similar
argument as in Case I, it can be concluded that C′ is an RAFC.

Hence if a FC is not an RAFC then the leader r0 can always find an ϵd > 0 such that
after a move of angular distance ϵd by r0 according to the subroutine RAFC formation()
the configuration becomes an RAFC. ◀
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6.3 Stage 2
Observe that in a RAFC, the minimum angle α0 appears only once in the whole configuration.
Also, in the algorithm we ensure that this angle is never formed anywhere else in the
configuration. This implies that throughout the execution, the configuration always remains
rotationally asymmetric until the pattern is formed. But this does not imply that the
configuration will remain a RAFC during the execution of the algorithm. This is needed
because in an RAFC we get an unique embedding of the target pattern. To do that, the
second neighbour of r0 in Dp in a RAFC (i.e r2) moves in the direction D′

p to form a RAFC
maintaining configuration or RMC.

If a RAFC is not a RMC then Stage 2 will be executed. In stage 2, r2 performs the
subroutine RMC Formation() described below.
RMC Formation():

Input: ¬c0 ∧ ¬c1 ∧ c2 ∧ ¬c3 ∧ ¬c4
Output: ¬c0 ∧ ¬c1 ∧ c2 ∧ ¬c3 ∧ c4

If the configuration C is a RAFC but not a RMC and target is not formed then r2 moves
an angular distance ϵ1 in the direction D′

p such that the configuration becomes an RMC.

6.3.1 Correctness of Stage 2
In the following lemma existence of such ϵ1 is guaranteed.

Figure 6 Here α1 is not strictly smaller than other αis (except i = 0) or βjs. So r2 moves an
angular distance ϵ1 towards r1 such that the new α1 after the move becomes the second uniquely
minimum angle of the configuration and also less than all βjs. Thus forming a RMC

▶ Lemma 26. If a RAFC is not a RMC then there always exists an ϵ1 such that α1 − α0 >

ϵ1 > 0 and after the move by r2 of the angular distance ϵ1 in D′
p the configuration becomes

an RMC.

Proof. Let C be a RAFC which is not a RMC. Thus, C is a single nominee configuration
with leader r0 and α0 < min

i̸=0
{αi, β0} and α1 ≥ min

j ̸=0,1
{αj , β0} where β0 is the minimum angle

in the target pattern. Now to show the existence of an ϵ1 in the range (0, α1 − α0) such that
if r2 moves an angle ϵ1 in the direction D′

p the configuration becomes an RMC, it is enough
to find an ϵ1 ∈ (0, α1 − α0) such that the condition α1 − ϵ1 < min

j ̸=0,1
{αj , β0} is true.

Let us consider ϵ1 = α1 −
α0+min

i̸=0
{αi,β0}

2 . This implies α1 − ϵ1 =
α0+min

i̸=0
{αi,β0}

2 > α0 (as
α0 < min

i̸=0
{αi, β0}). Also, since α0 < α1 and min

i ̸=0
{αi, β0} ≤ α1, ϵ1 > 0. Now we only have to

show that, the mentioned condition holds for our chosen ϵ1. If possible let the condition does
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not hold for the chosen ϵ1. Now since min
i̸=0

{αi, β0} ≤ min
j ̸=0,1

{αj , β0}, We have the following
inequality,

α0 + min
i ̸=0

{αi, βj}

2 = α1 − ϵ1 ≥ min
j ̸=0,1

{αj , β0} ≥ min
i ̸=0

{αi, β0}

Which implies, α0 ≥ min
i ̸=0

{αi, β0}, a contradiction. Hence the condition α1−ϵ1 < min
j ̸=0,1

{αj , β0}
holds. ◀

6.4 Stage 3

Note that in a RMC, the angles α0 and α1 occurs exactly once in the whole configuration.
So, if these angles are not changed the configuration remains a single nominee configuration.
Also, the leader and the pivotal direction remains same as we ensure that these angles will
not be formed again during the execution of this stage. So, after the RMC is formed the
target embedding remains unique.

In this stage, the robots ri, where i ∈ {3, 4, . . . , n − 1} perform the subroutine
PFC formation() to eventually form a Partially formed Configuration or PFC.

Before describing the subroutine PFC formation() we first need to define the term "Move
Ready Robot".

▶ Definition 27 (Move Ready Robot). In a RMC, let r be the first robot from leader, say r0
in the direction Dp which satisfies the following condition:
1. r is not the first or second neighbour of leader r0 in the direction Dp.
2. (R, R′)D − (R, T )D > α1; where T is the destination of r in direction D, r′ be the

neighbour of r in the direction D, R and R′ are the locations of r and r′ respectively on
the circle.

Then r is defined as the Move Ready robot of the configuration

PFC formation():
Input: ¬c0 ∧ ¬c1 ∧ c2 ∧ ¬c3 ∧ c4

Output: ¬c0 ∧ ¬c1 ∧ c2 ∧ c3
If a configuration C is not the target pattern and C is a RMC which is not a PFC then the
move ready robot, say rp moves to the target position Tp.

6.4.1 Correctness of Stage 3

Observe that during this procedure no angle is created which is less or equal to α0 or α1.
So during this procedure, the configuration remains a RMC and the leader and the pivotal
direction does not change.

We now have to ensure further that From a RMC a PFC will be formed eventually. To
do so we have to prove that in a RMC which is not a PFC, there will always be a robot
which is the move ready robot. This will remove the possibility of a deadlock situation during
the PFC formation() procedure. Thus in each round during the execution of this procedure,
one of rp reaches its target position Tp where p ≥ 3. This implies PFC formation() runs for
at most n − 3 rounds and within this, the configuration will become a PFC. Now, to prove
that a RMC which is not a PFC will have a robot which is the move ready robot, we have
to first prove the following lemma.
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(a) case:1 (b) case:2

Figure 7 If the target destination Ti of the robot ri is in the direction D, then the target
destination Ti+1 of its neighbour ri+1 is also in the same direction D.

▶ Lemma 28. In a RMC which is not a PFC, if a robot ri, i ≥ 3 is not a Move Ready
robot and the destination of ri i.e., Ti is in the direction D from Ri then, the neighbor of ri

in the direction D, say rk, must also have its target destination Tk in direction D from Rk.

Proof. Let ri (i ≥ 3) be a robot that is not Move Ready and its destination Ti is in direction
D from Ri. Let rk be the neighbour of ri in the direction D (k can be either i + 1 or, i − 1
in modulo n). Since ri is not move ready, (Ri, Rk)D − (Ri, Ti)D ≤ α1. Now there can be two
possibilities. Either, (Ri, Rk)D − (Ri, Ti)D ≤ 0 or, 0 < (Ri, Rk)D − (Ri, Ti)D ≤ α1. Now, if
possible let the destination of rk i.e., Tk be in the direction D′ from Rk.

Case 1: Let (Ri, Rk)D −(Ri, Ti)D ≤ 0. This implies Ti is further than Rk in the direction
D, from Ri (Fig.7a). Now consider k = i + 1 and thus the D = Dp. Note that i then can not
be n − 1 as Tn−1 can not be further than R0 = T0 in the direction Dp from Rn−1 according
to the target embedding. Now, for all other values for i ≥ 3, if Ti+1 is in the direction
D′

p from Ri+1, then Ti+1 appears before Ti in the direction Dp in the embedding which is
contradiction. Similarly, let us consider k = i − 1 and thus D = D′

p. Here note that i can
not be 3 as otherwise r3 is Move Ready. This is because T3 and T2 must be on the arc from
R2 to R3 in the direction Dp. Thus T3 can not be further than R2 from R3 in the direction
D′

p as, (T3, R2)D′
p

> (T3, T2)D′
p

= β2 > α1 > 0 . Now for all other values of i > 3, it can
be shown that we will arrive at a contradiction by a similar argument as in the case where
k = i + 1 has been considered.

Case 2: Let 0 < (Ri, Rk)D − (Ri, Ti)D ≤ α1. This implies Rk is further than Ti from Ri

in the direction D but, (Ti, Rk)D ≤ α1 (Fig. 7b). Let k = i + 1 and hence D = Dp (i can not
be n − 1 as shown earlier in case 1). Now, according to the embedding Ti can not be further
than Ti+1 from T0 in the direction Dp. Hence, Ti+1 must be on the arc joining from Ti to
Ri+1 in the direction Dp. This implies β0 ≤ (Ti, Ti+1)Dp

≤ (Ti, Ri+1)Dp
≤ α1 =⇒ β0 ≤ α1,

a contradiction due to the fact that the configuration is a RFC. Similarly if k = i − 1
and hence the direction D = D′

p then again we will arrive at a contradiction by a similar
argument.

Since for both the possibilities we arrive at a contradiction, Tk must also be in the
direction of D from Rk.

CVIT 2016



23:18 Arbitrary Pattern Formation on a Continuous Circle by Oblivious Robot Swarm

◀

▶ Lemma 29. If a RMC is not a PFC then there exists a robot rp which is Move Ready.

Proof. A robot is called terminated if it has already reached its target. If possible let in a
RFC the robots ri (i ≥ 3) are either terminated or not Move Ready (existence of such robot
is guaranteed by the fact that the configuration is not a PFC). Let rk be a robot from R0 in
the direction Dp which has not terminated and is not Move Ready. Let the target of rk i.e.,
Tk be in a direction D from Rk. Observe that if rk = r3, then D = Dp. Otherwise, since T2 is
in the direction Dp from R2, (R3, R2)D′

p
− (R3, T3)D′

p
= (R2, T3)Dp

≥ (T2, T3)Dp
= β2 > α1

and hence r3 becomes Move Ready. Similarly if rk = rn−1 then, Tn−1 must be in the
direction D′

p from Rn−1. Otherwise, Tn−1 must lie on the arc joining Rn−1 and T0 = R0 in
the direction Dp which implies (Rn−1, R0)Dp − (Rn−1, Tn−1)Dp = (Tn−1, T0)Dp = βn−1 > α1
a contradiction.

Now we claim that, for a robot ri, (i ≥ 3) which has not terminated and is not move
ready, if the direction of its target is in the direction D from ri, then the neighbor of ri , say
rj in the direction D must have not terminated also. Otherwise, if rj is terminated then it
must be on Tj . Also, Ti must be on the arc joining the points from Ri to Tj in the direction
D. This implies (Ri, Rj)D − (Ri, Ti)D = (Ti, Tj)D = βt > α1 (t ∈ {i, j}) and thus ri becomes
move ready contrary to the assumption.

So, now for a robot rk1 which is not Move Ready and has not terminated yet, let D be
the direction of Tk1 from Rk1 (Rk1 is the location of rk1 on the circle). Also let rk2 be the
neighbour of rk1 in the direction D. By Lemma 28 and the above claim rk2 must have not
terminated yet and the direction of Tk2 must be in the direction D from Rk2 (Rk2 is the
location of rk2 on the circle). Now by mathematical induction, it can be shown that all robots
ri (i ∈ {3, 4, . . . , n − 1}) in the direction D from rk, must have not terminated and are not
Move Ready. So either r3 or rn−1 must be not Move Ready and has not terminated. If r3 is
not move ready and has not terminated then the direction of T3 must be Dp from R3 and then
by induction it can be shown that rn−1 must also be not Move ready and has not terminated
and direction of Tn−1 must be in Dp from Rn−1 which is a contradiction. Similarly, if rn−1
is not Move ready and has not terminated then Tn−1 must be in the direction D′

p from Rn−1
which will imply r3 is not Move Ready and is not terminated and T3 must be in direction
D′

p from R3. which is again a contradiction. Hence in a RMC which is not a PFC there
always exists a robot which is the move ready robot in the configuration. ◀

6.5 Stage 4
After the configuration becomes a PFC after completion of Stage 3, only the robots r1
and r2 are not in their target locations. In this scenario the condition ¬c6 true. Now, if
(R1, R2)Dp ≤ β0 − α0, then the robot r2 performs the procedure R2Move1().
R2Move1():

Input: ¬c0 ∧ ¬c1 ∧ c2 ∧ c3 ∧ ¬c6 ∧ ¬c5
Output: (¬c0 ∧ ¬c1 ∧ c2 ∧ c3 ∧ ¬c6 ∧ c5) ∨ (¬c0 ∧ ¬c1 ∧ c2 ∧ c3 ∧ c6)

If β0 + β1 − α0 < βn−1 then r2 moves to T2 otherwise chose a δ ∈ (0, βn−1 − β0 + α0) and
move to an angular distance α0 + βn−1 − δ from R0 = T0 in Dp.

6.5.1 Correctness of Stage 4
▶ Lemma 30. If r2 executes the procedure R2Move1() then the configuration remains a
single nominee configuration where the leader and pivotal direction does not change.
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Proof. When r2 executes R2Move1() during stage 4, r1 is not on T1, and r2 moves to D2.
Now, either D2 = T2 or, it is a point on the circle such that, (R1, D2)Dp

= (R0, D2)Dp
−

(R0, R1)Dp
= α0 + βn−1 − δ − α0 = βn−1 − δ, where 0 < δ < βn−1 − β0 + α0. As

α0 < α1 < β0 ≤ β1, then the destination D2 of r2 must be on the arc joining from point R2
to point R3 = T3 in the direction Dp.

Case-I: If (R1, T2)Dp
= β0 + β1 − α0 < βn−1, then r2 moves to its target T2. Then the

angle sequence of r0 in the pivotal direction remains uniquely minimum, as (R1, T2)Dp < βn−1.
Thus in this case the configuration remains a single nominee configuration and also the leader
and the pivotal direction does not change.

Case-II: If (R1, T2)Dp = β0 + β1 − α0 ≥ βn−1, then r2 moves to a point D2 in the
direction Dp such that (R1, D2)Dp

must be βn−1 − δ. Then the minimum angle sequence
of the configuration remains unique and belongs to AS(r0) and the pivotal direction also
remains same as βn−1 > βn−1 − δ, for any δ ∈ (0, βn−1 − β0 + α0). So the configuration
remains a single nominee configuration and also the leader and the pivotal direction does not
change. ◀

▶ Lemma 31. If r2 executes R2Move1() in stage 4 and R2 is the new position of r2 after
the move then the condition (R1, R2)Dp

> β0 − α0 must become true.

Proof. Let r2 executes R2Move1() in stage 4 and let R2 be the new position of r2 after
the move. Now R2 is either T2 or, the point D2 such that (R1, D2)Dp

= βn−1 − δ for some
δ ∈ (0, βn−1 − β0 + α0).

Case-I: Let R2 is T2. We now have to show that (R1, T2)Dp
> β0 − α0. If (R1, T2)Dp

≤
β0 − α0 then, β0 + β1 − α0 ≤ β0 − α0 =⇒ β1 ≤ 0 which is a contradiction. Hence
(R1, T2)Dp

> β1.
Case-II: Let R2 is D2 such that (R1, D2)Dp

= βn−1 − δ, where δ ∈ (0, βn−1 − β0 + α0).
This implies (R1, D2)Dp

= βn−1 − δ > β0 − α0 and hence the result.
◀

6.6 Stage 5
Stage 5 is executed if target is not already formed and the current configuration is a RAFC

and a PFC with (R1, R2)Dp > β0 − α0 and (T1, R2) > β1 i.e., r2 is located in the arc
joining T2 and T3 in the direction Dp. In this stage the robot r2 executes the procedure
R2MoveReverseToT2(). We describe the procedure in the following.
R2MoveReverseToT2():

Input: ¬c0 ∧ ¬c1 ∧ c2 ∧ c3 ∧ ¬c6 ∧ c5 ∧ ¬c7
Output: ¬c0 ∧ ¬c1 ∧ c2 ∧ c3 ∧ c6

In this stage the robot r2 moves to T2 in the direction D′
p.

6.6.1 Correctness of Stage 5
▶ Lemma 32. If r2 executes the procedure R2MoveReverseToT2() in stage 5, the configuration
remains a single nominee configuration where leader and the pivotal direction does not change.

Proof. Let the configuration becomes a double nominee configuration after r2 executes
R2MoveReverseToT2() in stage 5 during some round, say t. Since the configuration remains
an RAFC after completion of the round only r0 and r1 can be the nominees. Let Dp be
the pivotal direction at the beginning of the round t. Then ASDp(r0) decreases more after
the completion of round t. Now if the new ASDp

(r0) = ASD′
p
(r1) then, at the beginning of
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round t, ASDp(r0) > ASD′
p
(r1). This is a contradiction. Hence, r1 can not be a nominee

and thus the configuration remains a single nominee configuration and the leader as well as
the pivotal direction remains same. ◀

6.7 Stage 6
This stage is executed if the target pattern is not already formed and the current configuration
is a RAFC and a PFC along with (R1, R2)Dp

> β0 − α0 and (T1, R2)Dp
≤ β1. In this stage

the robot r1 executes the procedure R1MoveToTarget(). We describe the procedure in the
following.
R1MoveToTarget():

Input: ¬c0 ∧ ¬c1 ∧ c2 ∧ c3 ∧ ¬c6 ∧ c5 ∧ c7
Output: ¬c0 ∧ ¬c1 ∧ c3 ∧ c6

In this procedure r1 moves to T1.

6.7.1 Correctness of Stage 6
▶ Lemma 33. By following the procedure R1MoveToTarget(), r1 can move to T1 without
collision.

Proof. Collision occurs only when (R1, T1)Dp ≥ (R1, R2)Dp > β0 − α0. This implies,
β0 − α0 > β0 − α0. Thus we reach a contradiction. Hence r1 moves to T1 by executing
R1MoveToTarget() in stage 6 without collision. ◀

After completion of stage 6, two possible things can happen. Either the target is formed
or, all robot but r2 are in their corresponding target position . Now for the latter case, we
have to ensure that the configuration after r1 executes R1MovesToTarget(), remains a single
nominee configuration. Otherwise, an unique embedding can not be agreed upon by the
robots. Since (T1, R2)Dp

< β1 (for the latter case) before the execution of stage 6, r2 must
be located on the arc joining T1 and T2 in the direction Dp but not on T2. Let after r1 moves
to T1 during Stage 6, (T1, R2)Dp

= β1 − ϵ, and (R2, T3)Dp
= β2 + ϵ for some ϵ > 0 and Dp

being the pivotal direction before execution of stage 6 by r1. Now since in this stage the
configuration deviates from being a RAFC, we first have to ensure that after completion of
this stage rotational symmetry does not occur. The following lemma ensures it.

▶ Lemma 34. If r1 performs R1MoveToTarget() in stage 6, the configuration does not
become rotationally symmetric.

Proof. If possible let the configuration become rotationally symmetric after the movement
of r1. Then there is another robot which has an angle sequence same as r0.Let ri be that
robot.

Case I: i ≥ 3. In this case ri will have strictly smallest angle sequence in the target
pattern, which is not true according to our embedding.

Case II: i = 1. For this case, all angles in the configuration is β0. This gives (R2, R3)Dp
=

(R2, T3)Dp = β0. Thus, β2 + ϵ = β0, implies β2 < β0. This is a contradiction.
Case III: i = 2. For this case, similar to the previous case, (R2, R3)Dp

= β0, which
similarly leads to contradiction.

Therefore, the configuration remains rotationally asymmetric. ◀

Now, for a unique embedding we also have to ensure that the new configuration is a
single nominee configuration. For that we have the following lemma.
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▶ Lemma 35. If r1 performs R1MoveToTarget() in stage 6, the configuration remains a
single nominee configuration. Also the leader and the pivotal direction does not change.

Proof. If the configuration after r1 executes stage 6 becomes a double nominee configuration
then r0 and r1 can only be the nominees. This is because no other robot has β0 and β1 − ϵ

as the first two terms of its angle sequence. Also note that, first two terms of ASDp
(r0)

and ASDp
(r1) respectively are (β0, β1 − ϵ) and (β0, βn−1) (Dp is the pivotal direction before

execution of stage 6). Now since βn−1 ≥ β1 > β1 − ϵ, ASDp
(r0) < ASDp

(r1). Thus we arrive
at a contradiction. Hence after r1 executes R1MoveToTarget() in stage 6 the configuration
remains a single nominee configuration with same leader and the pivotal direction. ◀

6.8 Stage 7
This stage executes only when the configuration is a single nominee configuration and all but
one robot are at their corresponding target locations. During this stage the robot that is not
at the target moves to target by executing the procedure Target Formation().
Target Formation():

Input: ¬c0 ∧ ¬c1 ∧ c3 ∧ c6
Output: c0

the robot which is not in target moves to its target location thus forming the pattern.
Note that in the worst case all stages but Stage 3 takes only one epoch too terminate.

And stage 3 takes at most n−3 epochs to terminate . Also observe in the algorithm flowchart
(Fig. 8, Fig. 9) that no stage is executed more than once. Also in the whole execution of
the algorithm if stage 5 is executed then stage 6 will not be executed and vice versa. So the
total time taken by algorithm APF_CIRCLE to terminate is n + 2 epochs. Thus we have
the following theorem stating the correctness of the algorithm APF_CIRCLE.

▶ Theorem 36. Algorithm APF_CIRCLE can solve arbitrary pattern formation problem
on a continuous circle with oblivious and silent swarm of robots without chirality and under
a semi synchronous scheduler from any Formable Configuration (FC) within O(n) epochs
where n is the number of robots in the swarm.

Figure 8 Algorithm Flowchart: part 1
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Figure 9 Algorithm Flowchart: part2

7 Conclusion

The arbitrary pattern formation problem is a classical problem in the field of swarm robotics.
Till now it has been studied considering the euclidean plane and some discrete domains
mostly. In continuous domains, there are certain environments that restrict the movement of
the robot in any direction. Any closed curve embedded on a plane is an example of this. In
the real world, this kind of environment can be seen everywhere, for example, train lines,
road networks, etc. It can be argued that a problem solvable in a continuous circle can be
solved on any closed curve. So here, in this paper, this problem has been introduced on
a continuous circle for the first time. Her in this work we have completely characterized
the class of initial configurations for which arbitrary pattern formation problem is solvable
in a deterministic method and then provided an deterministic and distributed algorithm
APF_CIRCLE which solves the APF problem for any solvable configuration considering
the robots to be oblivious, silent and without chirality under a semi synchronous scheduler.

For the days ahead, it would be really interesting if this problem can be solved under an
asynchronous scheduler. Also, another interesting thing would be to find out if there is an
initial configuration and a target configuration such that for any embedding of the target
the time taken by the n robots to form the target is O(n) or not. If this lower bound is O(n)
then the algorithm presented here is time optimal otherwise another time-optimal algorithm
has to be designed. One can also consider the limited visibility model to study this problem
to extend this research further.
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