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Abstract

This paper studies the message complexity of authenticated Byzantine agreement (BA) in syn-

chronous, fully-connected distributed networks under an honest majority. We focus on the so-called

implicit Byzantine agreement problem where each node starts with an input value and at the end a non-

empty subset of the honest nodes should agree on a common input value by satisfying the BA properties

(i.e., there can be undecided nodes)*. We show that a sublinear (in n, number of nodes) message com-

plexity BA protocol under honest majority is possible in the standard PKI model when the nodes have

access to an unbiased global coin and hash function. In particular, we present a randomized Byzantine

agreement algorithm which, with high probability achieves implicit agreement, uses Õ(
√
n) messages,

and runs in Õ(1) rounds while tolerating (1/2− ǫ)n Byzantine nodes for any fixed ǫ > 0, the notation Õ
hides a O(polylogn) factor†. The algorithm requires standard cryptographic setup PKI and hash func-

tion with a static Byzantine adversary. The algorithm works in the CONGEST model and each node does

not need to know the identity of its neighbors, i.e., works in the KT0 model. The message complexity

(and also the time complexity) of our algorithm is optimal up to a polylogn factor, as we show a Ω(
√
n)

lower bound on the message complexity.

To the best of our knowledge, this is the first sublinear message complexity result of Byzantine

agreement. A quadratic message lower bound is known for any deterministic BA protocol (due to

Dolev-Reischuk [JACM 1985]). The existing randomized BA protocols have at least quadratic mes-

sage complexity in the honest majority setting. Our result shows the power of a global coin in achieving

significant improvement over the existing results. It can be viewed as a step towards understanding the

message complexity of randomized Byzantine agreement in distributed networks with PKI.

Keywords: Distributed Algorithm, Randomized Algorithm, Byzantine Agreement, Message Complexity,

Global Coin, Cryptographic Assumptions.

1 Introduction

Byzantine agreement is a fundamental and long studied problem in distributed networks [33, 7, 35]. In this

problem, all the nodes are initiated with an input value. The Byzantine agreement problem is required to

satisfy: (i) the honest nodes must decide on the same input value; and (ii) if all the honest nodes receive the

same input value, then they must decide on that value‡. This should be done in the presence of a constant

fraction of Byzantine nodes that can arbitrarily deviate from the protocol executed by the honest nodes.

*The work of A. R. Molla was supported in part by ISI DCSW Project, file number E5413.
†Indian Statistical Institute, Kolkata 700108, India.E-mail: manishsky27@gmail.com.
‡Indian Statistical Institute, Kolkata 700108, India. E-mail: anisurpm@gmail.com.

*Implicit BA is a generalization of the classical BA problem. Throughout, we write Byzantine agreement or BA to mean

implicit Byzantine agreement.
†We use the abbreviated phrase “w.h.p.” or “with high probability,” signifying a probability of at least 1− 1/nǫ for a constant

ǫ, where n corresponds to the number of nodes present in the network.
‡Throughout, we interchangeably use the term ‘non-Byzantine’ and ‘honest’, and similarly, ‘Byzantine’ and ‘faulty’.
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Byzantine agreement provides a critical building block for creating attack-resistant distributed systems.

Its importance can be seen from widespread and continued application in many domains such as wireless

networks [29, 34, 48, 47], sensor networks [46], grid computing [6], peer-to-peer networks [45] and cloud

computing [49], cryptocurrencies [11, 15, 3, 28, 37], secure multi-party computation [9] etc. However,

despite huge research, we lack efficient practical solutions to Byzantine agreement for large networks. A

main drawback for this is the large message complexity of currently known protocols, as mentioned by many

systems papers [4, 5, 13, 36, 50]. The best known Byzantine protocols have (at least) quadratic message

complexity [23, 10, 16, 30], even in the authenticated settings [14, 41]. In a distributed network, nodes

communicate with their neighbors by passing messages. Therefore, communication cost plays an important

role to analyze the performance of the algorithms, as also mentioned in many papers [1, 25, 24, 41].

King and Saia [27] presented the first Byzantine agreement algorithm that breaks the quadratic message

barrier in synchronous, complete networks. The message complexity of their algorithm is Õ(n1.5). Later,

Braud-Santoni et al. [12] improved this to Õ(n) message complexity. Both works require the nodes to

know the IDs of the other nodes a priori. This model is known as KT1 model (known till 1) [43]. Another

challenging model is KT0, where nodes do not know their neighbors a priori [43]. Note that in KT0 model,

nodes can know their neighbors easily by communicating to all the neighbors, perhaps in a single round, but

that will incur Ω(n2) messages. The KT0 model is more appropriate to the modern distributed networks

which are permissionless, i.e., nodes can enter and leave the network at will.

In this paper, our main focus is to study the message complexity of the Byzantine agreement problem

in the KT0 model under the assumption of cryptographic setup and a global coin (as defined in [44]). In

fact, we study the implicit version of the Byzantine agreement, where not all the honest nodes need to be

decided; only a non-empty subset of the honest node must decide on an input value. Our main result is a

randomized algorithm to solve implicit Byzantine agreement using sublinear messages (only Õ
√
n) while

tolerating f ≤ (1/2− ǫ)n Byzantine nodes, where n is the number of nodes in the network, f is the number

of Byzantine nodes and ǫ > 0 is a fixed constant. The implicit algorithm can be easily extended to the

explicit Byzantine agreement (where all the honest nodes must decide) using O(n log n) messages only.

The algorithm is simple and easily implementable, which is highly desired for practical purposes. While

the assumptions on the Public Key Infrastructure (PKI) set up with keyed hash function and the global coin

together make the model a little weaker, they are realistic and implementable §. Similar assumptions were

made earlier in the literature, e.g., in Algorand, Gilad et al. [21] uses “seed” and PKI setup, where “seed”

is essentially the shared random bits. In their approach, they formed a set of candidate nodes and reached

an agreement with the help of the sortition algorithm (see Section 5 of [21]) using proof-of-stake (PoS).

They further used verifiable random functions (VRFs) [38] for the verification of the candidate nodes which

return hash and proof. In our work, we do not require the assumption of VRFs. The message complexity of

Algorand is Õ(n), albeit for the explicit agreement.

Without PKI setup, hash function and global coin assumptions, we do not know if a sublinear (or even a

linear) message complexity Byzantine agreement algorithm is possible or not. So far, the best results have

quadratic message bound in the KT0 model and sub-quadratic in the KT1 model.

Our result introduces the first sublinear message complexity Byzantine agreement algorithm and at the

same time tolerates optimal resilience, i.e., f ≤ (1/2 − ǫ)n. We also argue a lower bound on the message

complexity of the problem. The lower bound shows that the message complexity of our algorithm is optimal

up to a polylog n factor. Our results can be viewed as a step towards understanding the message complexity

of randomized BA in distributed networks under the assumptions of PKI, hash function and global coin.

Paper Organization: The rest of the paper is organized as follows. In the rest of this section, we state our

result and introduce the model and definition. Section 2 is a related work, which introduces the seminal

works done in the same direction. Section 3 presents the main implicit Byzantine agreement algorithm. In

§Throughout, we interchangeably use the term ‘hash function’ and ‘keyed hash function’.

2



Section 4, we present the lower bound on the message complexity to support the optimality of our algorithm.

Finally, we conclude with some open problems in Section 5.

1.1 Our Results

We show the following main results.

Theorem 1.1 (Implicit Agreement). Consider a synchronous, fully-connected, anonymous network of n
nodes and CONGEST communication model. Assuming a public-key infrastructure with the keyed hash

function, there exists a randomized algorithm which, with the help of global coin, solves implicit Byzantine

agreement with high probability in O(log2 n) rounds and uses O(n0.5 log3.5 n) messages while tolerating

f ≤ (1/2− ǫ)n Byzantine nodes under non-adaptive adversary, where ǫ is any fixed positive constant.

Theorem 1.2 (Explicit Agreement). Consider a synchronous, fully-connected network of n nodes and CON-

GEST communication model. Assuming a public-key infrastructure with the keyed hash function, there

exists a randomized algorithm which, with the help of global coin, solves Byzantine agreement with high

probability in O(log2 n) rounds and uses O(n log n) messages while tolerating f ≤ (1/2 − ǫ)n Byzantine

nodes under non-adaptive adversary, where ǫ is any fixed positive constant.

Theorem 1.3 (Lower Bound). Consider any algorithm A that has access to an unbiased global coin and

sends at most f(n) messages (of arbitrary size) with high probability on a complete network of n nodes.

If A solves the authenticated Byzantine agreement under honest majority with constant probability, then

f(n) ∈ Ω(
√
n).

1.2 Model and Definitions

The network is synchronous and fully-connected graph of n nodes. Initially, nodes do not know their

neighbors, also known as KT0 model [43]. Nodes have access to an unbiased global coin through which

they can generate shared random bits. The network is f ≤ (1/2 − ǫ)n resilient, i.e., at most (1/2 − ǫ)n
nodes (among n nodes) could be faulty, for any constant ǫ > 0. We consider Byzantine fault [33]. A

Byzantine faulty node can behave maliciously such that it sends any arbitrary message or no message in

any round to mislead the protocol, e.g., it may send different input values to different nodes, or it may not

send any message to some of the nodes in a particular round. We assume that a static adversary controls

the Byzantine nodes, which selects the faulty nodes before the execution starts. However, the adversary can

adaptively choose when and how a node behaves maliciously. Further, the adversary is rushing and has full

information– the adversary knows the states of all the nodes and can view all the messages in a round before

sending out its own messages for that round. We assume that each node possesses multi-valued input of size

O(log n) provided by the adversary.

We assume the existence of digital signatures, Public Key Infrastructure (PKI) and hash function. Each

node possesses a public-secret key pair (pk, sk). Secret keys are generated randomly, and correspondingly

public keys are generated with the help of a prime order group’s generator. Therefore, the public keys are

not skewed but random. Trusted authority also provides other cryptographic primitives for each node, and

certifies each node’s public keys. Nodes use digital signatures for the authentication of any information. We

abstract away the details of the cryptographic setup; assuming it is a standard framework. Public key (pk)

of all the nodes, hash function, shared random bits (generated through global coin) and n are the common

knowledge for all the nodes.

We consider the CONGEST communication model [43], where a node is allowed to send a message of

size (typically) O(log n) or O(polylog(n)) bits through an edge per round. The message complexity of an

algorithm is the total number of messages sent by all the non-faulty nodes throughout the execution of the

algorithm.
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Definition 1 (Implicit Byzantine Agreement). Suppose initially all the nodes have an input value (say,

provided by an adversary). An implicit Byzantine agreement holds when the following properties hold: (i)

the final state of all the non-Byzantine nodes is either “decided” or “undecided”; (ii) all the “decided” non-

Byzantine nodes must agree on the same value (consistency property); (iii) if all the non-Byzantine nodes

have the same input value then they must decide on that value (validity property); (iv) all the non-Byzantine

nodes eventually reach to the final state, where at least one non-Byzantine node must be in the “decided”

state (termination).

Definition 2 (Keyed Hash Function). Let Kh,X be two non-empty finite sets and H be an b-bit function

such that H : Kh ×X → {0, 1}b , where H follows three properties: (i) Preimage Resistant - Given a hash

value h, it should be difficult to find any message m such that h = H(k,m). (ii) Second Preimage Resistant

- Given an input m1, it should be difficult to find a different input m2 such that H(k,m1) = H(k,m2). (iii)

Collision Resistant - It should be difficult to find two different messages m1 and m2 such that H(k,m1) =
H(k,m2).

In the Byzantine Broadcast, there is a designated sender (could be Byzantine or honest) who broadcasts

the input values to the nodes. Termination and consistency are the same as in the case of Byzantine agree-

ment. In the case of validity, all the non-faulty nodes output the same value if the sender is honest. Also,

that value should be the input value of the sender.

2 Related Work

Byzantine agreement and Byzantine broadcast have been studied extensively in various models and settings

in the last four decades, starting from its classic introduction by Lamport, Shostak and Pease [33, 42]. They

presented protocols and fault tolerance bounds for two settings (both synchronous). Without cryptographic

assumptions (the unauthenticated setting), Byzantine broadcast and agreement can be solved if f < n/3.

Assuming digital signatures (the authenticated setting), Byzantine broadcast can be solved if f < n and

Byzantine agreement can be solved if f < n/2. The initial protocols had exponential message complexities

[33, 42]. Fully polynomial protocols were later shown for both the authenticated (f < n/2) [14] and the

unauthenticated (f < n/3) [20] settings. Both protocols require f + 1 rounds of communication, which

matches the lower bound on round complexity for deterministic protocols [18].

Our Byzantine agreement algorithm makes use of a few past results. First, we make use of the concept

of a set of candidate nodes, which is a subset of nodes. The notion of a committee (set of candidate nodes)

is used in, e.g., [8, 22, 31, 32]. Finally, we adapt the Byzantine Agreement algorithm designed by Dolev et

al. [14].

The previous results in the same direction are summarized in the Table 1. In comparison with our work,

we are using shared random value and non-adaptive adversary with rushing adversary. Shared random

value help us to break the linear communication (message) complexity. In implicit agreement, we have

sublinear communication complexity while in explicit agreement it is linear with cryptographic assumptions

and tolerate f ≤ (1/2 − ǫ)n Byzantine nodes.

3 Authenticated Implicit Byzantine Agreement

In this section, we present a randomized Byzantine agreement algorithm in a complete n-node network that

tolerates f ≤ (1/2− ǫ)n Byzantine nodes under a public-key infrastructure, keyed hash function and access

to a global coin. The algorithm incurs Õ(
√
n) messages, has latency Õ(1), and has high success probability.

In the algorithm, we run a subroutine BA protocol, which can tolerate f ≤ (1/2 − ǫ)n Byzantine

nodes and may have a polynomial message (and time) complexity. In fact, we adapt the classical algorithm
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Comparison of the Results

Protocol Agreement

Type

Communication

(in bits)

Adversary Cryptographic

Assumptions

Resilience

Santoni et al.

[12]

Implicit Õ(n) Non-adaptive No f < n/(3 + ǫ)

King-Saia [27] Explicit Õ(n1.5) Adaptive No f ≤ (1/3 − ǫ)n

Dolev-Strong

[14]

Explicit Õ(n3) Adaptive Yes f < n/2

Momose-Ren

[41]

Explicit Õ(n2) Adaptive Yes f < n/2

Abraham et al.

[2]

Explicit O(n2)∗ Adaptive Yes f < n/2

This paper Implicit Õ(n0.5) Non-adaptive Yes f ≤ (1/2 − ǫ)n

This paper Explicit Õ(n) Non-adaptive Yes f ≤ (1/2 − ǫ)n

Table 1: Comparison of various model with our result. ǫ is any positive constant. Our results assume a

global coin and hash function while others are not. * indicates the bound holds in expectation.

presented by Dolev-Strong [14].¶ Dolev-Strong designed an algorithm for the Byzantine broadcast (BB)

problem, which can be converted into a Byzantine agreement algorithm with an initial round to broadcast the

input Byzantine nodes under a public-key infrastructure and access to a global coin. The communication/bit

complexity is O(κn3) [19]. However, using multi-signature it can be improved to O(κn2 + n3), where κ is

a security parameter which is essentially the maximum size of the messages [41]. While the original Dolev-

Strong BB protocol tolerates f ≤ n − 1 faults, the converted BA protocol works for the honest majority

nodes, i.e., tolerates f < n/2 Byzantine faults which is optimal for an authenticated BA [2, 17, 26, 33, 39,

41].

Dolev-Strong algorithm is deterministic and has a latency of f + 1 rounds. The general idea of the BB

protocol is to form a signature chain consisting of signatures from distinct nodes. A signature chain of f +1
signatures must contain a non-faulty signature from a non-faulty node which can send the value to all the

other nodes. The protocol is designed in such a way that in f + 1 rounds it forms a signature chain of size

f + 1. We adapted the Dolev-Strong BB protocol for the Byzantine agreement problem and used it in our

implicit BA algorithm.

Let us now describe the implicit BA algorithm. The public key (pk) of the nodes is known to all the

nodes (as distributed by the trusted third party), but a node does not know which port or edge is connecting

to which node (having a particular public key). To minimize the message complexity, a generic idea is to

select a set of small-size candidate nodes, which will be responsible for solving the (implicit) agreement

among themselves. Thus, it is important to have honest majority in the set of candidate nodes. For this,

a random set of nodes, called as candidate nodes or committee nodes, of size O(log n) is selected. Let us

¶One can use other suitable BA protocols, e.g., the protocol in [41].
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denote the candidate nodes set by C. A Byzantine node may try to claim that it is in C, which needs to be

stopped to guarantee the honest majority in C. To overcome this problem, we take the help of a global coin

and a keyed hash function, which together determine the candidate nodes.

A common random number, say r, is generated with the help of the global coin. The random number

should be large enough to use as the key to the hash function. Note that the random number is generated

after the selection of the Byzantine nodes by the adversary. Every node uses its respective public key (pk)
as the message and r as the key of the hash function, say, H . That is they compute Hr(pk). For each pki ,
we represent its hash value Hr(pki) as Hi. Since the hash values are random (with high probability), the

smallest c log n values among the n hash values are chosen to be the candidate nodes, where c is a suitable

constant (to be fixed later). More precisely, a node i with the hash value Hi is in C if it is in the smallest

c log n values of the set {Hi : i = 1, 2, . . . , n}. Therefore, a node can easily figure out the candidate nodes

since it knows the random number r, hash function and the public keys of all the nodes. However, the node

does not know the ports connecting to them (as KT0 model).

Although a node knows all the candidate nodes (in fact, their public keys), it does not know the edges

connecting to the candidate nodes, since the network is anonymous, i.e., KT0 model. It can be known by the

candidate nodes by sending a message to all the nodes, but that will cost n log n messages. Since knowing

each other is message expensive in this model, the candidate nodes communicate among themselves via

some other nodes. For this, each candidate node randomly samples Θ(
√
n log n) nodes among all the n

nodes; call them as referee nodes. The reason behind sampling so many referee nodes is to make sure there

is at least one common “non-faulty” referee node between any pair of candidate nodes. The candidate nodes

communicate with each other via the referee nodes. Notice that a node may be sampled as a referee node

by multiple candidate nodes. It might happen that a Byzantine referee node may change the value of an

honest candidate node before forwarding it to the candidate nodes. To avoid this, we take advantage of

digital signature. Each referee node signs the input value before transmitting it to its referee nodes. As a

digital signature helps to detect forging messages, each candidate node considers only the genuine messages

received from the referee nodes.

Thus, we have a small committee of nodes (i.e., C) with the highly probable honest majority and the

committee nodes can communicate via the referee nodes. Then we apply the Dolev-Strong BA protocol

[14] in the committee to achieve agreement. Let us now present the adapted Dolev-Strong algorithm to

work for the Byzantine agreement.

Step 0: Each candidate node u does the following in parallel. u signs and sends its input value to its

corresponding referee nodes, say, Ru. Each referee node w sends all the received values to its respective

candidate nodes, say, Cw. Therefore, the candidate nodes have the input values of all the candidate nodes.

Now each candidate node proposes a value for the agreement based on the priority, along with all the

signatures received corresponding to that input value. If there is a value that is sent by the majority of the

nodes (i.e., more than (c log n)/2 nodes), then that value gets the highest priority. In case of more than

one majority, the value proposed by the maximum number of nodes gets the highest priority. There might

be the case, two values are proposed by the same number of nodes; in that case, the larger input value

gets the highest priority. If a candidate node has the highest priority input value, then it sends the value

(after signing) to all the candidate nodes along with the received signatures for the highest priority value.

Otherwise, the candidate node does not send anything. The reason of getting more than one majority value is

that a Byzantine node may propose different values to different nodes. If no such majority value is received,

then the candidate nodes decide on a default value, say, the minimum in the input value set. By sending the

input value, we mean sending the input value along with all the signatures corresponding to that input value.

Then, the following two steps are performed iteratively||.

||An iteration is the number of rounds required to send messages from one candidate node to all the candidate nodes via the

referee nodes. Since we consider the CONGEST model, an iteration may take up to O(log n) rounds in our algorithm.
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Step 1: If a candidate node u receives a set of at least i legitimate signatures in ith iteration with a higher

priority value than its earlier sent value, then u proposes this new highest priority value along with all the

signatures to its referees nodes Ru.

Step 2: If a referee node w receives a set of at least i legitimate signatures in ith iteration (with the highest

priority value) then w forwards this highest priority value to its corresponding candidate nodes Cw.

The above two steps (i.e., Step 1 and 2) are performed for O(c log n) iterations and then the algorithm

terminates. In the end, all the (non-faulty) candidate nodes have the same value, either the default value or

the value possessed by the majority of nodes (the highest priority value). Intuitively, there are O(c log n)
candidate nodes and a single node may propose the highest priority value in each iteration (say, the single

node with the highest priority value is faulty and send to only faulty nodes) and thus the highest priority

value may propagate slowly. But eventually, the highest priority value is received by all the candidate nodes

as the set of candidate nodes contains the majority of the non-faulty nodes (see Lemma 1) and there is a

common non-faulty referee node between any pair of candidate nodes (see Lemma 2). On the other hand, if

there is no highest priority value, then they decide on the default value. Thus, the (honest) candidate nodes

agree on a unique value. A pseudocode is given in Algorithm 1.

Let us now show the above claims formally. We first show that the majority of the nodes in the candidate

set are honest.

Lemma 1. The number of Byzantine nodes in the candidate set C is strictly less than 1
2 |C| with high proba-

bility.

Proof. Let α fraction of the nodes in the network are Byzantine where α = 1/2 − ǫ is a fixed constant. So

α + ǫ = 1/2. The nodes in C are chosen uniformly at random (i.e., with probability 1/n) and the number

of Byzantine nodes is at most αn, the probability that a particular node in C is Byzantine is at most α . Let

C contain k nodes, {ui | i = 1, 2, . . . , k}. Let us define random variables Xis such that Xi = 1 if ui is

Byzantine, and 0 otherwise. Further, X =
∑k

i=1Xi is the total number of Byzantine nodes in C. Then, by

linearity of expectation, E[X] ≤ αk. Then, by Chernoff bounds [40],

Pr(X ≥ (α+ ǫ)k) = Pr(X ≥ (1 + ǫ/α)E[X]) ≤ exp
(

−E[X](ǫ/α)2/3
)

≤ exp
(

−(kǫ2)/(3α)
)

for k = |C| = (3α/ǫ2) log n

Thus, Pr(X < (α+ ǫ)|C|) = Pr(X < 1
2 |C|) > 1−1/n. In other words, C contains at most (1/2−δ)|C|

Byzantine nodes with high probability, for any fixed δ > 0.

The candidate nodes communicate with each other via the referee nodes, which are sampled randomly

by the candidate nodes. The number of referee nodes is sampled in such a way that there must be a common

referee node between every pair of candidate nodes (so that the candidate nodes can communicate) and at

the same time keep the message complexity lower. In fact, we need to guarantee a stronger result. Namely,

there must be a non-faulty common referee node for reliable communication.

Lemma 2. Any pair of candidate nodes have at least one common non-faulty referee node with high prob-

ability.

Proof. Let us consider two candidate nodes v and w, and let xi be the ith node selected by v. Let the

random variable Xi be 1 if xi is also chosen by w and 0 otherwise. Since the xis are chosen independently

at random, the Xis are independent. So, Pr[Xi = 1] = 2
√
n logn
n . Hence, the expected number of (choice

of) referee nodes that v and w haven in common are:

E[X] = E[X1] + E[X2] + · · ·+ E[X(2
√
n logn)](by linearity)

= 2
√

n log n · 2
√
n log n

n
= 4 log n (1)

7



Algorithm 1 AUTHENTICATED-IMPLICIT-BA

Require: A complete n node anonymous network with f ≤ (1/2 − ǫ)n Byzantine nodes. Each node

receives an input value provided by an (static) adversary, a pair of public-private keys (pk, sk), keyed

hash function and a global coin. ǫ > 0 is a fixed constant.

Ensure: Implicit Agreement.

1: Select c log n nodes as the candidate nodes set (say, C), which have the smallest c log n hash values

generated with the help of public key and random number. The value of the constant c is 3α/ǫ2, follows

from Lemma 1.

2: Each candidate node u randomly samples 2
√
n log n nodes as referee nodes (say, Ru).

3: Each candidate node u signs and sends its input value (with signature) to Ru.

4: Each referee node w sends all the received values to their respective candidate nodes Cw along with the

legitimate signatures one by one. It takes O(log n) rounds.

5: Each candidate node u sends the input value along with all the received signatures to Ru based on the

(highest) priority. ⊲ Highest priority is defined in the description, Step 0.

6: for the next (c log n) iterations, the candidate and referee nodes in parallel do

7: Each referee node w checks:

8: if w receives a set of at least i legitimate signatures in the ith iteration then

9: w sends highest priority value to Cw.

10: else

11: w does not send any messages.

12: end if

13: Each candidate node u checks:

14: if u receives a set of at least i legitimate signatures in the ith iteration with a highest priority value

than it sent earlier then

15: u sends highest priority value to Ru.

16: else

17: u does not send any messages.

18: end if

19: end for

20: All the (non-faulty) candidate nodes have the same highest priority value on which they agree. Other-

wise, if they do not receive any highest priority value, they agree on a default value, say, the minimum

in the input value set.

Thus, by using the Chernoff bound [40], Pr[X < (1− δ)E[X]] < e−δ2E[x]/2 for δ = 0.5, we get

Pr[X < (1− 0.5)4 log n] < e−(0.5)2(4 logn)/2 <
1√
n

(2)

For that reason at least 2 log n choice of nodes by v are jointly chosen by v and w. As a consequence, the

probability that none of these choices is non-faulty:

(

1

2
− ǫ

)2 logn

<
1

n
(3)

Therefore, the probability of selecting at least one non-faulty referee node from the sampled nodes of u is at

least 1− 1/n.

Lemma 1 ensures that a committee (i.e., the candidate set) of size O(log n) with honest majority can

be selected. Lemma 2 ensures that the committee nodes can communicate with each other reliably via the
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referee nodes. Thus, the BA problem on n nodes reduces to a O(log n)-size committee nodes. Then the

Dolev-Strong BA protocol ensures that the committee nodes achieve Byzantine agreement among them-

selves deterministically. Therefore, the algorithm (Algorithm 1) correctly solves the implicit Byzantine

agreement with high probability (i.e., among the committee nodes only). The non-faulty nodes which are

not selected in the committee may set their state as “undecided” immediately after the selection of the

candidate nodes.

Below, we analyze the message and time complexity of the algorithm.

Lemma 3. The message complexity of the authenticated implicit BA algorithm is O(n0.5 log3.5 n).

Proof. In Step 3 and 4 of the algorithm, O(log n) candidate nodes send their input value with signature to

the other candidate nodes via the 2
√
n log n referee nodes. Here the size of each message is O(κ + log n)

bits, where κ is the security parameter, the size of the signature. So these two steps uses O(
√
n log n) ·

O(log n) ·O(κ+ log n) = O((κ+ log n)
√

n log3 n) bits.

Inside the O(log n) iteration (Step 6): O(log n) candidate nodes may have at most O(log n) messages

to be sent to the referee nodes for O(log n) rounds. The size of each message is O(κ+log n) bits. So it uses

O((κ + log n)
√

n log7 n) bits. Further, the same number of message bits are used when the referee nodes

forward the messages to the candidate nodes. Thus, a total O((κ + log n)
√

n log7 n) bits are used inside

the iteration.

Hence, the total communication complexity of the algorithm is O((κ + log n)
√

n log7 n) bits. Since

the length of κ is typically to be the maximum size of the messages [41], it is safe to assume κ is of

order O(log n) for large n. Therefore, the total number of bits used is: O(
√

n log9 n). Thus, the message

complexity of the algorithm is O(
√

n log7 n), since the size of each message is O(log n)**.

Lemma 4. The time complexity of the algorithm is O(log2 n) rounds.

Proof. There are O(log n) candidate nodes, and each may have O(log n) messages to be sent to its referee

nodes in parallel. Thus, it takes O(log2 n) rounds, since it takes one round to send a constant number of

messages of size O(log n) bits. The same time bound holds when the referee nodes forward the messages

to the candidate nodes. Therefore, the overall round complexity is O(log2 n).

Thus, we get the following result of the implicit Byzantine agreement with authentication.

Theorem 3.1 (Implicit Agreement). Consider a synchronous, fully-connected network of n nodes and CON-

GEST communication model. Assuming a public-key infrastructure with the keyed hash function, there ex-

ists a randomized algorithm which, with the help of a global coin, solves implicit Byzantine agreement with

high probability in O(log2 n) rounds and uses O(n0.5 log3.5 n) messages while tolerating f ≤ (1/2 − ǫ)n
Byzantine nodes under non-adaptive adversary, where ǫ is any fixed positive constant.

Our implicit agreement algorithm can be easily extended to solve explicit agreement (where all the

honest nodes must decide on the same value satisfying the validity condition) in one more round. After the

implicit agreement, the committee nodes send the agreed value (along with the signature) to all the nodes in

the network in the next round. This incurs O(n log n) messages. Then all the nodes decide on the majority

value since the majority of the nodes in the committee are honest. Thus, the following result of explicit

agreement follows immediately.

Theorem 3.2 (Explicit Agreement). Consider a synchronous, fully-connected network of n nodes and CON-

GEST communication model. Assuming a public-key infrastructure with the keyed hash function, there

**Alternatively, the communication complexity is O
(

√

n log9 n
)

bits.
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exists a randomized algorithm which, with the help of global coin, solves Byzantine agreement with high

probability in O(log2 n) rounds and uses O(n log n) messages while tolerating f ≤ (1/2 − ǫ)n Byzantine

nodes under non-adaptive adversary, where ǫ is any fixed positive constant.

4 Lower Bound on Message Complexity

We argue a lower bound of Ω(
√
n) on the number of messages required by any algorithm that solves the

authenticated Byzantine agreement under honest majority with high probability. Recall that all the nodes

have access to an unbiased global coin. The nodes know the IDs of the other nodes, but are unaware of the

port connecting to the IDs. Also, the communication is authenticated.

Our AUTHENTICATED-IMPLICIT-BA algorithm solves multi-valued agreement in polylogarithmic rounds

and uses Õ(
√
n) messages (see, Theorem 3.1). In a non-Byzantine setting, the multi-valued agreement can

be used to elect a leader by using the IDs of the nodes as the input values. Thus, any lower bound on the

message complexity (and also on the time complexity) of the leader election problem also applies to the

multi-valued agreement. Therefore, the Ω(
√
n) lower bound shown by [8] for the leader election problem

using global coin (in the non-Byzantine setting) also applies to our multi-valued Byzantine agreement with

global coin. Note that the lower bound holds because of the high success probability requirement of the

agreement; otherwise, the leader election solves the agreement with zero message cost, but with only con-

stant success probability. However, the above argument does not hold for the binary agreement, where the

input values are either 0 or 1. Below, we argue for the binary case.

Let A be an algorithm that solves the authenticated Byzantine (binary) agreement with constant prob-

ability (say, more than 1/2) under an honest majority with the access of an unbiased global coin and uses

only o(
√
n) messages. We show a contradiction. Recall that it is a KT0 model; so nodes do not know which

edge connects to which node-ID. To achieve agreement with constant probability, nodes must communicate

with the other nodes; otherwise, if the nodes try to agree locally without any communication, it is likely that

there exist two nodes that agree on two different values (this can be easily shown probabilistically). On the

other hand, if all the nodes try to communicate, then the message complexity of A would be Ω(n). So, only

a few nodes need to initiate the process. Thus, A must pick these few initiator nodes randomly; otherwise,

if picked deterministically, the Byzantine nodes can take over the initiator nodes. The initiator nodes must

communicate with the nodes in the network to achieve agreement.

The initiator nodes do not know each other. In the KT0 setting, for any two nodes to find each other

with more than 1/2 probability requires Ω(
√
n) messages– inferred from the following lemmas.

Lemma 5. The KT0 model takes Ω(
√
n) messages for any two nodes to find each other with more than

constant probability.

Proof. Suppose x and y be the two nodes. Both x and y samples f(n) nodes uniformly at random from all

the nodes to find out each other. Let E be the event of having a collision in the random samples. Then, for

f(n) <
√
n,

Pr[E] = 1−
(

1− f(n)

n

)f(n)

= 1− e
−(f(n))2

n < 1− 1/e = 0.63 (4)

Therefore, x and y cannot find out each other with more than constant probability with o(
√
n) messages.

Each initiator node samples some nodes. The initiator and the sampled nodes may exchange messages

with the other nodes in the network throughout the execution of A– all these nodes form a connected sub-

graph. Let us call this sub-graph as communication graph of the initiator node. Thus, for every initiator

node, there is a communication graph. Some of them may merge and form a single communication graph.
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However, it is shown in [8] that if the algorithm A sends only o(
√
n) messages, then there exist two disjoint

communication graphs w.h.p. (see, Section 2 of [8]). Since the nodes do not know each other (in KT0), the

communication graphs have similar information. The global coin also gives the same information to all the

nodes. Since the communication graphs are disjoint, no information is exchanged between them. A formal

proof of this argument can be found in [32, 8].

Let Hu and Hv be the two disjoint communication graphs corresponding to the two initiators u and

v respectively. We show that Hu and Hv agree with opposite decisions, i.e., if Hu decides on 0 then Hv

decides on 1 and vice versa.

Lemma 6. The nodes of Hu and Hv agree with opposing decisions.

Proof. The nodes in Hu and Hv are random since the network is anonymous and no information is known

before contacting a node. Thus, the same (1/2− ǫ) fraction of Byzantine nodes (as in the original graph G)

are present in both Hu and Hv in expectation. Now consider an input distribution I , in which each node in

the graph G is given an input value 0 and 1 with probability 1/2. Then in expectation, half of the honest

nodes in Hu (and also in Hv) gets 0 and the other half gets 1. We argue that the two disjoint sets of nodes

in Hu and Hv decide on two different input values under the input distribution I . Recall that the nodes in

Hu have the same information as the nodes in Hv. Further, they run the same algorithm A. The Byzantine

adversary (which controls the Byzantine nodes) knows the algorithm and also the input values of the honest

nodes in Hu and Hv. Since the number of Byzantine nodes in each of the Hu and Hv is almost half of their

size, and 0 − 1 distribution among the honest nodes is almost 50-50, the Byzantine nodes can control the

output of the agreement in the two groups— Hu and Hv. Suppose the Byzantine nodes in Hu exchange

some input bits with honest nodes to agree on 0 in Hu, then the Byzantine nodes in Hv must exchange

opposite bits to agree on 1 in Hv. Thus, Hu and Hv agree with opposing decisions.

The above lemma contradicts the assumption that A solves the Byzantine (binary) agreement with only

o(
√
n) messages. The global coin does not help, as it gives the same information to all the nodes. Thus, we

get the following result on the lower bound of the message complexity.

Theorem 4.1. Consider any algorithm A that has access to an unbiased global coin and sends at most

f(n) messages (of arbitrary size) with high probability on a complete network of n nodes. If A solves

the authenticated Byzantine agreement under honest majority with more than 1/2 probability, then f(n) ∈
Ω(

√
n).

Note that the lower bound holds for the algorithms in the LOCAL model, where there is no restriction

on the size of a message that can be sent through edges per round [43].

5 Conclusion and Future Work

We studied one of the fundamental problem in distributed networks, namely Byzantine agreement. We

showed that implicit Byzantine agreement can be solved with sublinear message complexity in the honest

majority setting with the help of cryptographic set up of PKI and hash function, and access to a global coin.

The bound is also optimal up to a polylog n factor. To the best of our knowledge, this is the first sublinear

message bound result on Byzantine agreement.

A couple of interesting open problems are: (i) is it possible to achieve a sublinear message complexity

Byzantine agreement algorithm without the global coin or hash function in this setting? (ii) whether a

sublinear message bound is possible under adaptive adversary, which can take over the Byzantine nodes at

any time during the execution of the algorithm?
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